

Chapter 7

Organizing Classes to Use Inheritance

What is in This Chapter ?
Until now, we have been making simple objects that interact together to form an application.
Some of the more important concepts in Object-Oriented programming arise only when we
have many classes in our application, some classes being specializations of others. We will
discuss here how we can organize our classes and take advantage of the notion of
Inheritance which allows much of our code to be "shared" between similar classes called
subclasses. The proper use of inheritance will allow us to reduce the amount of code that we
need to write, resulting in quicker implementation time, less maintenance time and hence
reduced costs overall. We will discuss abstract vs. concrete classes as a means of forcing
users of our classes to be specific with respect to the kinds of objects that they use. Also, we
will discuss interfaces in JAVA as a means of forcing certain classes to have particular
behavior.

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 177 -

 7.1 Class Hierarchy

We have been defining a few objects throughout the course (i.e., Person, Address,
BankAccount, Team, League, Car, Autoshow, etc..). We created/defined a class for each
of these objects. In fact, a definition of the word ‘class’ in English is: "A collection of things
sharing a common attribute".

So, for example, when we created a Person class, we implied that all Person objects have
some attributes in common. Similarly, a Car class was created to define the common
attributes that Car objects have. In general, since Person and Car are different classes, their
list of attributes will differ.

In real life, however, there are some objects that “share” attributes in common. For example,
Person objects may have name and phoneNumber attributes, but so can Employee,
Manager, Customer and Company objects. Yet, there may be attributes of these other
objects that Person does not have. For example, an Employee object may maintain empID
information or a Company object may have a clientList attribute, whereas Person objects in
general do not keep such information.

In addition to commonality between attributes, classes may also share common behavior.
That is, two or more objects may have the ability to perform the same function or procedure.

phoneNumber
name “Hank Urchiff”

“1-613-555-2145”

phoneNumber
name

Employee object

empID 42516

“Max Energy”

“1-613-555-1316”

phoneNumber
name

Company object

clientList

“Perfect Store”

“1-613-555-5432”

Person object

Shared
Attributes

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 178 -

For example, if a Person, Car and Company are all insurable, then they may all have a
function called calculateInsurancePremium() that determines the pricing information for their
insurance plan.

All object-oriented languages (e.g., JAVA) allow you to organize your classes in a way that
allows you to take advantage of the commonality between classes. That is, we can define a
class with certain attributes (and/or behaviors) and then specify which other classes share
those same attributes (and/or behaviors). As a result, we can greatly reduce the amount of
duplicate code that we would be writing by not having to re-define the common attributes
and/or behaviors for all of the classes that share such common features.

JAVA accomplishes this task by arranging all of its classes in a "family-tree”-like
ordering called a class hierarchy. A class hierarchy is often represented as an
upside down tree (i.e., the root of the tree at the top). The more “general” kinds
of objects are higher up the tree and the more “specific” (or specialized) kinds of
objects are below them in the hierarchy. So, a child object defined in the tree is
a more specific kind of object than its parent or ancestors in the tree. Hence,
there is an "is a" (i.e., "is-a-kind-of") relationship between classes:

Each class is a subclass (i.e., a specialization) of some other class which is called its
superclass (i.e., a generalization). The direct superclass is the class right “above” it:

Whale Dog Lizard Snake

Mammal Reptile

Animal

Iguana Gecko

Reptile
is an

Animal

Snake
is a

Reptile

Gecko is a
Lizard which
is a Reptile

more
general

more
specific

Whale Dog Lizard Snake

Mammal Reptile

Animal

Iguana Gecko direct subclass
of Reptile

direct superclass
of Whale & Dog

subclass of Animal,
Reptile & Lizard

superclass of
Lizard, Snake,

Iguana & Gecko

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 179 -

Here, Snake, and Lizard are subclasses of Reptile (i.e., they are special kinds of reptiles).
Also Whale and Dog are subclasses of Mammal. All of the classes are subclasses of Animal
(except Animal itself). Animal is a superclass of all the classes below it, and Mammal is a
superclass of Whale and Dog. As we can see, we can go even deeper in the hierarchy by
creating subclasses of Lizard. Usually, when we use the term superclass, we are referring to
the class that is directly above a particular class (i.e., the direct superclass).

The Animal hierarchy above represents a set of classes that we may define ourselves. But
where do they fit-in with all the other pre-made JAVA classes like String, Date, ArrayList
etc... ? Well, all objects have one thing in common ... they are all Objects. Hence, at the very
top of the hierarchy is a class called Object. Therefore, all classes in JAVA are subclasses of
Object:

All of the classes that we created so far have been direct subclasses of Object. That means
that they did not share attributes with one another, but that they shared attributes only with
Object. However, we have the freedom to re-arrange our classes in a manner that will allow
them to share attributes with one other.

The way in which we arrange our classes will depend on how similar our objects are with
respect to their attributes. For example, a Car and a Truck have something in common ...
they are both drivable. Whereas an MP3Player and a BankAccount have little or nothing in
common with Car or Truck objects. So, intuitively, Car and Truck classes should somehow
be grouped together (i.e., placed nearby) in the hierarchy.

As an example, consider creating many kinds of bank accounts. We might arrange them in a
hierarchy like this:

Object

SuperSavings PowerSavings BusinessChecking PowerChecking

SavingsAccount CheckingAccount

BankAccount

Object

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 180 -

Here are a few more examples of hierarchies of classes that we may create:

We will talk more about how and why we arrange these classes as above. But remember, a
class should only be a subclass of another class if it "is a kind of" its superclass.

Sometimes, students misunderstand the class hierarchy,
thinking that a class becomes a subclass
of another one if the superclass
"is made of" the subclasses.

That is, they mistakenly assume that
it is a "has a" relationship instead of
an "is a" relationship. Therefore, the
following hierarchies would be wrong

Apple Orange Potato Carrot

Fruit Vegetable

Food

HomeImprovementLoan

Lease Mortgage

Loan

TownHome SingleFamilyHome Warehouse Office

Residential Commercial

BuildingStructure

Factory

Object Object

Object

Distributor SparkPlug Hood Door

Engine Body

Car

Employee Office Customer

Company

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 181 -

In JAVA, in order to create a subclass of another class, use the extends keyword in our class
definition. For example, assume that we wanted to ensure that class A was placed in the
hierarchy as a subclass of class B as follows:

To make this happen, we simply write extends B immediately after we specify name of class
A as follows:

class A extends B {
 ...
}

If the extends keyword is not used (i.e., as we left it out from all our previous class definitions),
it is assumed that the class being defined extends the Object class. So, all the classes that
we defined previously were direct subclasses of Object.

How do we know how deep we should make the class hierarchy (i.e., tree) ?

Most of the time, any “is a” relationship between objects should
certainly result in subclassing. Object-oriented code usually involves
a lot of small classes as opposed to a few large ones.

It is often the case that our class hierarchies become rearranged
over time, because we often make mistakes in deciding where to
place the classes. We make such mistakes because it is not always
easy to choose a hierarchy ... it depends on the application.

For example, hierarchies of classes representing students in a university may be arranged in
many different ways ... here are just 3 possibilities …

 A

 B

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 182 -

How do we know which one to use ? It will depend on the state (i.e., attributes) and behavior
(i.e., methods) that is common between the subclasses. If we find that the main differences in
attributes or behavior are between full time and part time students (e.g., fee payment rules),
then we may choose the top hierarchy. If however the main differences are between graduate
and undergraduate (e.g., privileges, requirements, exam styles etc..), then we may choose the
middle hierarchy. The bottom hierarchy further distinguishes between full and part time
graduate and undergraduate students, if that needs to be done. So ... the answer is ... we
often do not know which hierarchy to choose until we thought about which hierarchy allows
the maximum sharing of code.

The getClass() method in the Object class can be sent to any object. It returns a special
Class object that represents the class that an object actually belongs to. We can even use the
getName() method on a Class object to get a string representing the class name. Here is an
example of how to use these …

PartTimeStudent FullTimeStudent

Student

UndergradStudent GradStudent

Student

PartTimeUndergrad FullTimeUndergrad PartTimeGrad FullTimeGrad

UndergradStudent GradStudent

Student

PartTimeUndergrad PartTimeGrad FullTimeUndergrad FullTimeGrad

PartTimeStudent FullTimeStudent

Student

Object

Object

Object Object

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 183 -

BankAccount a;
Class c;

// Make a BankAccount object and get its class
a = new BankAccount();
c = a.getClass();
System.out.println(c); // prints class BankAccount
System.out.println(c.getName()); // prints BankAccount

Keep in mind that the getClass() method can be sent to any object ... while the getName()
method can ONLY be sent to a Class object.

Similarly, we can use the instanceof keyword to determine whether or not an object belongs
to a particular class:

BankAccount a;

a = new BankAccount();
if (a instanceof BankAccount) { // same as a.getClass() == BankAccount
 ...
}

As we will see later in this section, the instanceof keyword can be quite useful when you need
to figure out what kind of object you have (for example when you pull arbitrary objects out of a
“collection” and need to make a decision based on its type).

 7.2 Inheriting Attributes

You may have heard the term inherit before which has various meanings in English such as:

• “to receive from a predecessor” or
• “to receive by genetic transmission”

Through birth, all of us have inherited traits and
behaviors from our parents. Something similar
happens in JAVA with regards to the class
hierarchy. A subclass (i.e., child) inherits the
attributes (i.e., instance variables) and behavior
(i.e., methods) from all of its superclasses (i.e.,
ancestors in the class hierarchy). So as a general
definition, in Object-Oriented Programming,
Inheritance is the act of receiving shared
attributes and behavior from more general types
of objects up the hierarchy.

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 184 -

This means that a subclass has the same "general" attributes/behaviors as its superclasses as
well as possibly some new additional attributes/behaviors which are specific for the subclass.

There are many advantages of using Inheritance:

• allows code to be shared between classes. This promotes software re-usability

• saves programming time since code is shared … less code needs to be written

• helps keep code simple since inheritance is natural in real life

Some languages (e.g., C++) allow Multiple Inheritance, which means that a class can inherit
state and behavior from more than one class. However, JAVA does not support multiple
inheritance. We can however, partially "fake" it (with respect to methods) through the use of
interfaces (which we will discuss later).

Consider making an object to represent an Employee in a company which maintains: name,
address, phoneNumber, employeeNumber and hourlyPay. We may make a single class
for this:

class Employee {
 String name;
 Address address;
 String phoneNumber;
 int employeeNumber;
 float hourlyPay;
 …
}

Assume now that we have many employees in a company in which a few of them are
managers. If the managers are all essentially the same as employees, except perhaps that
the have a higher hourlyPay, then there is no need to create any new classes. The
Employee class is sufficient to represent them.

However, what if there were some more significant differences between managers and
employees ? Perhaps it would be beneficial to create a separate class for them. We would
need to determine what is different between these two classes with respect to their attributes
and behaviors. For example, a Manager may have:

• additional attributes (e.g., a list of duties, a list of employees that work for them, etc...)

• additional (or different) behavior (e.g., they may compute their pay differently, or have

different benefit packages, etc...)

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 185 -

In these situations, a Manager may be considered as a special “kind of”
Employee. It would therefore make sense for the Manager to be
a subclass of Employee as follows:

class Employee {
 String name;
 Address address;
 String phoneNumber;
 int employeeNumber;
 float hourlyPay;
 …
}

class Manager extends Employee {
 ArrayList<String> duties;
 ArrayList<Employee> subordinates;
 …
}

Notice here that Manager would inherit all of the attributes of the Employee class, so that
Employees have 5 attributes, while Managers have 7. All Employee behaviors would also
be inherited by Managers.

Now, what if we wanted to represent a Customer as well in our application ? Our application
may require keeping track of a customer’s name, address and phoneNumber. But these
attributes are also being used for our Employee objects. We could make two separate
unrelated classes ... one called Customer ... the other called Employee. We could define
Customer as follows:

class Customer {
 String name;
 Address address;
 String phoneNumber;
 …
}

This would work fine. However, you will notice that both Employee and Customer have
some attributes in common. So, if we defined the Customer class in this manner, we would
need to repeat the same definitions, and perhaps some of the behaviors. It would be better if
we could somehow use inheritance to allow Customers to share attributes and behaviors that
are in common with Employees. So, we should perhaps have Customer inherit from
something. We have a few choices. We can have Customer inherit from Manager,
Employee inherit from Customer or Customer inherit from Employee as follows …

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 186 -

However, neither of these hierarchies will work according to the "is a" relationship because:

• a Customer is not always a Manager
• an Employee is not always a Customer
• a Customer is not always an Employee

One possible solution is to change the name Customer to Person. In this way, a customer is
simply represented by a Person object and we can use the following hierarchy:

class Person {
 String name;
 Address address;
 String phoneNumber;
 …
}

class Employee extends Person {
 int employeeNumber;
 float hourlyPay;
 …
}

class Manager extends Employee {
 ArrayList<String> duties;
 ArrayList<Employee> subordinates;
 …
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 187 -

Now Employee inherits 3 attributes from Person, so it has 5 altogether, while Manager
inherits 3 from Person and 2 from Employee, making 7 altogether. Customers, are then
represented simply as Person objects.

This is a good solution as long as ALL of the attributes (e.g., name, address, phone number)
for a customer (i.e., Person object) is also shared with Employee and Manager. Also, there
must not be any attributes or behaviors in the Person class that do not apply to an Employee
and a Manager. For example, if the application required us to keep track of a list of items
purchased by the customer or perhaps even a purchase history, then such attributes may not
make sense for an Employee or Manager. So, if there is different behavior or attributes that is
unique to customers, then we must create a separate Customer class to define these
differences. In this case, we can still share the name, address and phoneNumber by
creating an extra Customer class to hold the common attributes. We can create the following
hierarchy:

class Person {
 String name;
 Address address;
 String phoneNumber;
 …
}

class Employee extends Person {
 int employeeNumber;
 float hourlyPay;
 …
}

class Customer extends Person {
 ArrayList<String> itemsPurchased;
 ArrayList<Date> purchaseHistory;
 …
}

class Manager extends Employee {
 ArrayList<String> duties;
 ArrayList<Employee> subordinates;
 …
}

This will allow all common attributes (i.e., name, address, phoneNumber) to be shared by all
the classes while allowing Customer objects to have their own attributes and behaviors.

At this point, we should clarify the advantages of the attribute-related inheritance that is
occurring within our hierarchy. Here is a simple example piece of code showing the attributes
that are readily available to each type of object defined in our example …

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 188 -

Person p = new Person();
Employee e = new Employee();
Customer c = new Customer();
Manager m = new Manager();

p.name = "Hank Urchiff"; // own attribute
p.address = new Address(); // own attribute
p.phoneNumber = "1-613-555-2328"; // own attribute

e.name = "Minnie Mumwage"; // attribute inherited from Person
e.address = new Address(); // attribute inherited from Person
e.phoneNumber = "1-613-555-1231"; // attribute inherited from Person
e.employeeNumber = 232867; // own attribute
e.hourlyPay = 8.75f; // own attribute

c.name = "Jim Clothes"; // attribute inherited from Person
c.address = new Address(); // attribute inherited from Person
c.phoneNumber = "1-613-555-5675"; // attribute inherited from Person
c.itemsPurchased.add(“Pencil Case”); // own attribute
c.purchaseHistory.add(Date.today()); // own attribute

m.name = "Max E. Mumwage"; // attribute inherited from Person
m.address = new Address(); // attribute inherited from Person
m.phoneNumber = "1-613-555-8732"; // attribute inherited from Person
m.employeeNumber = 232867; // attribute inherited from Employee
m.hourlyPay = 8.75f; // attribute inherited from Employee
m.duties.add("Phone Clients"); // own attribute
m.subordinates.add(e); // own attribute

Notice that we use the inherited attributes just as if they were defined as part of that class
directly. For example, the Employee object e, Customer object c and Manager object m, all
access the name attribute as if it was defined in their class … even though it is actually defined
in the Person class … written in a different .java file!! You can see that through inheritance,
we do not have to re-define the name attribute in each of these classes. The same holds true
for the address and phoneNumber attributes, as well as any other inherited attributes in the
subclasses.

At this point, we only examined how to decide upon a class hierarchy based on the differences
in attributes. However, we would have to think in the same manner by examining the
behaviors of the individual classes. For example, even if managers did not have the duties
and subordinates attributes shown above, we may still want to make a separate class for
managers if there are behaviors that differ (e.g., different computePay() method). In the next
section, we will consider an example that shows how inheritance applies to behaviors within a
simple hierarchy of BankAccount objects.

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 189 -

 7.3 Inheriting Behavior

Consider creating an application for a bank that maintains account information for its
customers. All bank accounts at this bank must maintain 3 common attributes (the owner’s
name, the account number and the balance of money remaining in the account). Also, an
account, by default, should have simple behaviors to deposit and withdraw from the account.
So, in its simplest form, a BankAccount object can be defined and used as follows:

class BankAccount {
 static int LAST_ACCOUNT_NUMBER = 100000;

 String owner; // person who owns the account
 int accountNumber; // the account number
 float balance; // amount of money currently in the account

 // Some constructors
 BankAccount() {
 this.owner = "";
 this.accountNumber = LAST_ACCOUNT_NUMBER++;
 this.balance = 0;

}
 BankAccount(String ownerName) {
 this.owner = ownerName;
 this.accountNumber = LAST_ACCOUNT_NUMBER++;
 this.balance = 0;
 }

 // Return a string representation of the account
 public String toString() {
 return "Account #" + this.accountNumber + " with $" + this.balance;
 }

 // Deposit money into the account
 void deposit(float amount) {
 this.balance += amount;
 }

 // Withdraw money from the account
 void withdraw(float amount) {
 if (this.balance >= amount)
 this.balance -= amount;
 }
}

Now assume that the bank wants to distinguish between “savings” accounts and
“non-savings” accounts in that the customer cannot withdraw money from a
“savings” account once it has been deposited (i.e., to get the money out of the
account, the customer must close the account).

BankAccount

Object

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 190 -

We would need to have a way of disabling the withdraw behavior for savings accounts. We
could do this through inheritance by creating a subclass of BankAccount to represent a
special “kind of” account … we will call it SavingsAccount:

class SavingsAccount extends BankAccount {
}

Just by writing this simple “virtually empty” class definition in which SavingsAccount
extends BankAccount, we have “invented” a new type of bank account that inherits
all 3 attributes from BankAccount as well as the toString(), deposit() and
withdraw() methods. We could verify this by writing a simple piece of test code:

SavingsAccount s = new SavingsAccount();

System.out.println(s); // displays Account #100000 with $0.0

s.deposit(120);
System.out.println(s); // displays Account #100000 with $120.0

s.withdraw(20);
System.out.println(s); // displays Account #100000 with $100.0

Something important to know, however, is that a subclass does not automatically inherit the
constructors in its superclass. So, SavingsAccount does not inherit the two constructors in
BankAccount … but it does get to use its own default constructor (i.e., zero-parameter
constructor) for free. We can verify this by altering the first line in our test code so read:

SavingsAccount s = new SavingsAccount("Bob");

If we made such an alteration to the code, our test code would no longer compile. We would
receive the following compile error:

cannot find symbol constructor SavingsAccount(java.lang.String)

which is telling us that we don’t have a constructor in our SavingsAccount class that takes a
single String parameter. How then did our new SavingsAccount() code work previously
since it seems to have properly initialized the account number ? Well, as it turns out, the
default constructor that we get for free actually looks as follows:

SavingsAccount() {
 super();
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 191 -

What does this mean ? What does the keyword super do ? The keyword
super is actually a special word that represents the superclass of this class.
In our case, the super class is BankAccount. So, it is essentially doing a
call to BankAccount() … which means it is calling the superclass
constructor. Therefore, if we want to make use of the attribute initialization
code that is in a constructor in a superclass, we can call the superclass
constructor from our own by using super(…) along with the appropriate
parameters. Hence we can write the following constructor in our
SavingsAccount class:

class SavingsAccount extends BankAccount {
 SavingsAccount(String aName) {
 super(aName);
 }
}

If we do this, then we can use the following code without
compile errors:

SavingsAccount s = new SavingsAccount("Bob");

Keep in mind, however, that the list of parameters (i.e., the types) supplied within the
super(…) call, must match the list of parameters (i.e., the types) of one of the constructors in
the superclass. In order to see the advantage of using constructor inheritance, here is what
the code would look like with and without using inherited constructors:

Without Inheritance (need to re-write the code) With Inheritance

SavingsAccount() { {
 this.owner = "";
 this.accountNumber = LAST_ACCOUNT_NUMBER++;
 this.balance = 0;
}

SavingsAccount(String ownerName) {
 this.owner = ownerName;
 this.accountNumber = LAST_ACCOUNT_NUMBER++;
 this.balance = 0;
}

SavingsAccount() {
 super("");
}

SavingsAccount(String aName) {
 super(aName);
}

Again … the amount of code that needs to be written is reduced when using inheritance.

So, we have SavingsAccount properly inheriting from BankAccount, however, the
SavingsAccount class still allows withdrawals. In order to disable this behavior, we need to
somehow “prevent” the withdraw method code from being used by savings accounts. The
simplest and most common way of doing this is to write a new withdraw() method in the
SavingsAccount class that simply does nothing as follows …

BankAccount

Object

SavingsAccount

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 192 -

class SavingsAccount extends BankAccount {
 // Constructor to call the superclass constructor
 SavingsAccount(String aName) { super(aName); }
 SavingsAccount() { super(""); }

// Prevent the withdrawal of money from the account
 void withdraw(float amount) {
 // Do nothing
 }
}

Once we re-compile, we can test it out by running our test code again:

SavingsAccount s = new SavingsAccount();

System.out.println(s); // displays Account #100000 with $0.0

s.deposit(120);
System.out.println(s); // displays Account #100000 with $120.0

s.withdraw(20); // this will do nothing now
System.out.println(s); // displays Account #100000 with $120.0

Notice that the test code remains the same but now it no longer performs the withdrawal
calculation. What is actually happening here ? By writing the withdraw() method in the
SavingsAccount class, we are actually overriding the one that is in the BankAccount class.
That is, we are replacing the inherited behavior with our own unique behavior. So, we are
preventing or disabling the inheritance for this behavior.

The idea of overriding behavior is actually not new to us. Every time that we write a
toString() method, we are actually overriding the one that we would normally inherit from the
Object class.

At this point, we now have SavingsAccounts that cannot be withdrawn from and normal
BankAccounts that can be withdrawn from. Lets see another way that we can use overriding
… to modify inherited behavior.

Assume that the bank also wants to encourage depositing to savings accounts by
giving $0.50 to the customer for each $100 that they deposit into their
SavingsAccount (i.e., not for regular BankAccounts). For example, if they
deposit $354.23, then their account balance should immediately increase by
$355.73 … showing the extra $1.50 applied to the deposit amount.

To do this, we can completely override the deposit method from BankAccount by
writing the following method in SavingsAccount …

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 193 -

// Deposit money into the account
void deposit(float amount) {
 this.balance += amount;

 // Now add the bonus 50 cents per $100
 int wholeDollars = (int)(amount/100);
 this.balance += wholeDollars * 0.50f;
}

This method of overriding would work fine and would properly add the extra bonus deposit
incentive. However, the first line is a duplication of the BankAccount class’s deposit()
method. This duplication may seem insignificant in this simple example, but in a real bank
application there may actually be much more code devoted to the deposit process (e.g.,
logging the transaction). Hence, it would be better to make use of inheritance.

How though, can we inherit the deposit() method in BankAccount, while also incorporating
the additional bonus deposit behavior necessary for SavingsAccounts ? The answer makes
use of the super keyword again. Here is the solution:

// Deposit money into the account
void deposit(float amount) {
 // Call the deposit() method in the superclass
 super.deposit(amount);

 // Now add the bonus 50 cents per $100
 int wholeDollars = (int)(amount/100);
 this.balance += wholeDollars * 0.50f;
}

Notice that this time we use a dot . after the super keyword, followed by the method that we
want to call in the superclass. Here, the word super is used to tell JAVA to look for the
deposit() method in the superclass. JAVA will go and evaluate the superclass deposit()
method (which performs the “normal” depositing process) and then return here and complete
the behavior by adding the 50 cent bonus incentive. This method is still considered to
override the deposit() method in BankAccount. It is an example of a situation in which we
want to “borrow” a superclass’s behavior, but then add some additional behavior as well.

Alternatively, we could have combined the deposit amount with the 50 cent bonus incentive
before calling the superclass method as follows:

// Deposit money into the account
void deposit(float amount) {
 int wholeDollars = (int)(amount/100);
 super.deposit(amount + (wholeDollars * 0.50f));
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 194 -

or even simpler:

// Deposit money into the account
void deposit(float amount) {
 super.deposit(amount + (int)(amount/100)* 0.50f);
}

I’m sure you will agree that the overriding can be quite powerful tool to save coding time.

Just so you understand … what would happen if we used this instead of super as follows:

// Deposit money into the account
void deposit(float amount) {
 this.deposit(amount + (int)(amount/100)* 0.50f);
}

Well, we would be asking JAVA to call the deposit() method in this class, not the one in
BankAccount. Furthermore, since this code is written inside the deposit() method, we are
telling JAVA to call the method that we are actually trying to write! So the method will keep
calling itself forever … an infinite loop! We would get a pile of runtime error messages that
says something like this:

Exception in thread "main" java.lang.StackOverflowError
 at SavingsAccount.deposit(SavingsAccount.java:13)
 at SavingsAccount.deposit(SavingsAccount.java:13)
 at SavingsAccount.deposit(SavingsAccount.java:13)
 ...
 at SavingsAccount.deposit(SavingsAccount.java:13)

OK. Now assume that the bank application needs to further distinguish between
accounts in that it also has a special “power savings” account that is a special
type of savings account that allows withdrawals, but there is a $1.25 service fee
each time a withdrawal is made. As before, this new type of account should
also have the 50 cent incentive for each $100 deposited.

Assuming that we call the new class PowerSavings, where do we put it in the
hierarchy ? We need it to inherit the deposit() method from SavingsAccount but the
withdraw() method from BankAccount. If we make PowerSavings a subclass of
SavingsAccount, we will inherit the deposit() behavior that we want, but would then need to
write a new withdraw() method, since the one in SavingsAccount does nothing. We could
do this …

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 195 -

class PowerSavings extends SavingsAccount {
 // Constructor to call the superclass constructor
 PowerSavings(String aName) { super(aName); }
 PowerSavings() { super(""); }

// Withdraw money from the account
 void withdraw(float amount) {
 if (this.balance >= (amount + 1.50f))
 this.balance -= (amount + 1.50f);
 }
}

This code would work fine.

Again, we are using overriding by having the withdraw() method in PowerSavings override
the default behavior in SavingsAccount. We can test our new class with the following test
code:

PowerSavings s = new PowerSavings();

System.out.println(s); // displays Account #100000 with $0.0

s.deposit(320);
System.out.println(s); // displays Account #100000 with $321.50

s.withdraw(20);
System.out.println(s); // displays Account #100000 with $300.0

Notice that the withdraw() method properly deducts the $1.50 fee.

However, again we are duplicating code. The code here is small, however in a large system,
there may be more complicated code for withdrawing money (e.g., transaction logging,
overdraft allowances, etc…). So, we do not want to duplicate this code. In fact, it would be
nice if we could do something like this to call the withdraw() method code up in
BankAccount:

class PowerSavings extends SavingsAccount {
 // Constructor to call the superclass constructor
 PowerSavings(String aName) { super(aName); }
 PowerSavings() { super(""); }

// Withdraw money from the account
 void withdraw(float amount) {
 super.withdraw(amount + 1.50f);
 }
}

BankAccount

Object

SavingsAccount

Power Savings

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 196 -

But this won’t work. Why not ? Because super refers to the SavingsAccount class here,
and so it calls the withdraw() method in SavingsAccount that does nothing. In a way, what
we want to do is something like this:

super.super.withdraw(amount + 1.50f); // super-duper does not work

Unfortunately, we cannot skip over a class when looking up the class hierarchy for a method.
What can we do then ? The solution is to re-organize our hierarchy. We seem to need
common deposit behavior for savings accounts, but then differing withdrawal behavior. In
reality, we actually need to distinguish between the two kinds of savings accounts. We will
rename SavingsAccount to SuperSavings which will represent the previous savings account
behavior. Then we will create a new SavingsAccount class that will contain the shared
deposit behavior between the two types of savings accounts. Here is the new hierarchy:

Here is the code:

class SavingsAccount extends BankAccount {
 SavingsAccount(String aName) { super(aName); }
 SavingsAccount() { super(""); }

void deposit(float amount) {

 super.deposit(amount + (int)(amount/100)* 0.50f);
}

}

class SuperSavings extends SavingsAccount {
 SuperSavings(String aName) { super(aName); }
 SuperSavings() { super(""); }

void withdraw(float amount) { /* Do nothing */ }
}

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 197 -

class PowerSavings extends SavingsAccount {
 PowerSavings(String aName) { super(aName); }
 PowerSavings() { super(""); }

void withdraw(float amount) {
 super.withdraw(amount + 1.50f);
 }
}

The code will work as we expect it to now, taking full advantage of inheritance.
You may have wondered about the toString() method. In all of our bank account subclasses,
we are able to inherit the toString() method that was written in the BankAccount class. So,
for example, PowerSavings accounts do not inherit the toString() method from its direct
superclass SavingsAccount, rather it inherits it from the BankAccount class further up the
hierarchy. That is because of JAVA’s strategy for looking up methods when you call them.

Whenever you call a method from a class directly (e.g., this.myMethod()), JAVA looks first to
see whether or not you have such a method in the class that you are calling it from. If it finds
it there, it evaluates the code in that method. Otherwise, JAVA tries to look for the method up
the hierarchy (never down the hierarchy) by checking the superclass. If not found there, JAVA
continues looking up the hierarchy until it either finds the method that you are trying to call, or
until it reaches the Object class at the top of the tree.

Here is the general strategy for all instance method lookup:

• If method myMethod()

exists in class H, then
it is evaluated.

• Otherwise, JAVA

checks the superclass
of H for myMethod (in
this case class F).

• If not found there,

JAVA continues looking
up the hierarchy until
Object is reached,
visiting additional
classes C, A and Object.

If not found at all during this search up to the Object class, the compiler will catch this and
inform you that it cannot find method myMethod() for the object you are trying to sending it to:

C:\Test.java:20: cannot resolve symbol
symbol : method myMethod ()

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 198 -

If there were many implementations of myMethod() along the path in the hierarchy
(e.g., classes F, C, and A all implement myMethod()), then JAVA will execute the first one that
it finds during its bottom-up search.

Notice the use of the keyword this in the picture. That tells JAVA to start looking for the
method in "this" class. Alternatively, we can also use the keyword super here (i.e.,,
super.myMethod()) to tell JAVA to start its search for the method in the superclass. So, if we
used super in the example above, JAVA would start looking for myMethod() in class F first.
If not found, it would then continue on up the tree looking for the method as usual. In fact if
there was an implementation of myMethod() in the H class, it would not be called if we used
super, since the search begins in the superclass, not in this class. So, the use of super
merely specifies "where the method lookup should begin the search" ... nothing more.

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 199 -

 7.4 University Database Example

Consider implementing a university database system. Perhaps we might come up with the
following hierarchy showing the different types of people. The attributes are listed below the
classes as well.

From this example we can see that there are different specializations of people but each of
these special people share some common attributes (e.g., name, phoneNumber and
address). Notice that PartTimeStudents do not have any of their own attributes, but will
inherit 7 attributes from its superclasses Student and Person. (On a side note, do you know why
would we create a subclass that does not have any additional attributes ? How is a PartTimeStudent object
different from a Student object ? Well, PartTimeStudents may have different behavior as well which is
implemented in that class.)

 Here are the class definitions showing the attributes defined in each class …

Professor Secretary

PartTimeStudent

Employee Student

Person
name
address
phoneNumber
emailAddress

employeeNumber
workPhoneNumber
salary

studentNumber
courseList
gpa

courses
officeNumber
tenured

workload
schedule

major

FullTimeStudent

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 200 -

class Person {
 String name;
 String address;
 String phoneNumber;
 String emailAddress;
 ...
}

class Employee extends Person {
 int employeeNumber;
 String workPhoneNumber;
 float salary;
 ...
}

class Professor extends Employee {
 ArrayList<Course> courses;
 String officeNumber;
 boolean tenured;
 ...
}

class Secretary extends Employee {
 ArrayList<String> workLoad;
 ArrayList<WorkTask> schedule;
 ...
}

class Student extends Person {
 int studentNumber;
 ArrayList<Course> courseList;
 float gpa;
 ...
}

class FullTimeStudent extends Student {
 String major;
 ...
}

class PartTimeStudent extends Student {
 ...
}

Consider writing a getDescription() method for the Person, Employee, Professor, Secretary
and Student classes that returns a String showing information about the object as follows:

"Person
 NAME: Jim Class
 ADDRESS: 1445 Porter St.
 PHONE #: 613-555-3232"

"Employee
 NAME: Rob Banks
 ADDRESS: 789 ScotiaBank Road.
 PHONE #: 613-555-2332
 EMPLOYEE #: 88765
 WORK #: 613-555-2433"

"Professor
 NAME: Guy Smart
 EMPLOYEE #: 65445
 WORK #: 613-555-3415
 OFFICE #: 5240 PA"

"Secretary
 NAME: Earl E. Bird
 ADDRESS: 12 Knowhere Cres.
 PHONE #: 613-555-7854
 EMPLOYEE #: 76845
 WORK #: 613-555-3243"

"FullTimeStudent
 NAME: May I. Passplease
 ADDRESS: 5567 Java Drive
 PHONE #: 613-555-8923
 STUDENT #: 100156753
 MAJOR: Computer Science"

"PartTimeStudent
 NAME: Al B. Back
 ADDRESS: 23 Return Blvd.
 PHONE #: 613-555-9738
 STUDENT #: 100134257"

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 201 -

Notice that the strings span multiple lines. Also, notice that the name of the class is in the
strings as well. Also note that only some of the object’s attributes are shown in each case.
For example, the courses were not displayed for Professors or Students. To obtain the
desired results for each class, we can simply write a separate getDescription() method for
each class that does what we want. However, this would be wasteful. Let us try to save
ourselves from writing a lot of code. We will try to "share" code among classes by making use
of inheritance and overriding by using the super keyword.

First, we notice that all classes show the name. This should definitely be done in the Person
class since all others are subclasses and can inherit the code. Next, we see that all classes
(except Professor) also show the phoneNumber and address. (I guess Professors do not want to
show everybody this information). Thus, we will allow all subclasses to display this information and
we will have to do something different for the Professor class. Let us begin by writing the
getDescription() method for the Person class:

class Person {
 ...
 String getDescription() {
 return ("Person \n" +
 " NAME: " + this.name + "\n" +
 " ADDRESS: " + this.address + "\n" +
 " PHONE #: " + this.phoneNumer);
 }
}

It is quite straight forward. At this point, all of the subclasses will inherit this method and we
will obtain the following results:

// Result when calling getDesription()
// on Person object
"Person
 NAME: Jim Class
 ADDRESS: 1445 Porter St.
 PHONE #: 613-555-3232"

// Result when calling getDesription()
// on Employee object
"Person
 NAME: Rob Banks
 ADDRESS: 789 ScotiaBank Road.
 PHONE #: 613-555-2332"

// Result when calling getDesription()
// on Professor object
"Person
 NAME: Guy Smart
 ADDRESS: 267 Lost Cres.
 PHONE #: 613-555-2378"

// Result when calling getDesription()
// on Secretary object
"Person
 NAME: Earl E. Bird
 ADDRESS: 12 Knowhere Cres.
 PHONE #: 613-555-7854"

// Result when calling getDesription()
// on FullTimeStudent object
"Person
 NAME: May I. Passplease
 ADDRESS: 5567 Java Drive
 PHONE #: 613-555-8923"

// Result when calling getDesription()
// on PartTimeStudent object
"Person
 NAME: Al B. Back
 ADDRESS: 23 Return Blvd.
 PHONE #: 613-555-9738"

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 202 -

So by writing the one method in Person, all subclasses inherit it for free. However, we would
like the “type” of person displayed as the first word of the String … we do not always want
“Person” displayed. We can make use of this.getClass().getName() to extract the name of
the particular object. So we just need to make the following change in the method that we
wrote:

class Person {
 ...
 String getDescription() {
 return (this.getClass().getName() + "\n" +
 " NAME: " + this.name + "\n" +
 " ADDRESS: " + this.address + "\n" +
 " PHONE #: " + this.phoneNumer);
 }
}

Now all of the subclasses will inherit this method and we will obtain the following results (note
the highlighted changes):

// Result when calling getDesription()
// on Person object
"Person
 NAME: Jim Class
 ADDRESS: 1445 Porter St.
 PHONE #: 613-555-3232"

// Result when calling getDesription()
// on Employee object
"Employee
 NAME: Rob Banks
 ADDRESS: 789 ScotiaBank Road.
 PHONE #: 613-555-2332"

// Result when calling getDesription()
// on Professor object
"Professor
 NAME: Guy Smart
 ADDRESS: 267 Lost Cres.
 PHONE #: 613-555-2378"

// Result when calling getDesription()
// on Secretary object
"Secretary
 NAME: Earl E. Bird
 ADDRESS: 12 Knowhere Cres.
 PHONE #: 613-555-7854"

// Result when calling getDesription()
// on FullTimeStudent object
"FullTimeStudent
 NAME: May I. Passplease
 ADDRESS: 5567 Java Drive
 PHONE #: 613-555-8923"

// Result when calling getDesription()
// on PartTimeStudent object
"PartTimeStudent
 NAME: Al B. Back
 ADDRESS: 23 Return Blvd.
 PHONE #: 613-555-9738"

This is closer to what we want. Now what else is common within the remaining classes ? We
notice that all Employees (also Professors and Secretaries) show their employee number
and work number. Therefore, this can all be done in the Employee class.

In order to make sure that the name, address and phoneNumber are shown as well, we must
use the superclass method first. So we will override the getDescription() method in the
Person class with one in the Employee class that will make use of its superclass method and
then add additional code …

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 203 -

class Employee extends Person {
 ...
 String getDescription() {
 return (super.getDescription() + "\n" +
 " EMPLOYEE #: " + this.employeeNumber + "\n" +
 " WORK #: " + this.workNumer);
 }
}

Note the use of super.getDescription(). This allows us to inherit what the superclass did and
then add more information for this class. Here is what we have as results so far:

// Result when calling getDesription()
// on Person object
"Person
 NAME: Jim Class
 ADDRESS: 1445 Porter St.
 PHONE #: 613-555-3232"

// Result when calling getDesription()
// on Employee object
"Employee
 NAME: Rob Banks
 ADDRESS: 789 ScotiaBank Road.
 PHONE #: 613-555-2332
 EMPLOYEE #: 88765
 WORK #: 613-555-2433"

// Result when calling getDesription()
// on Professor object
"Professor
 NAME: Guy Smart
 ADDRESS: 267 Lost Cres.
 PHONE #: 613-555-2378
 WORK #: 613-555-3415
 OFFICE #: 5240 PA"

// Result when calling getDesription()
// on Secretary object
"Secretary
 NAME: Earl E. Bird
 ADDRESS: 12 Knowhere Cres.
 PHONE #: 613-555-7854
 EMPLOYEE #: 76845
 WORK #: 613-555-3243"

// Result when calling getDesription()
// on FullTimeStudent object
"FullTimeStudent
 NAME: May I. Passplease
 ADDRESS: 5567 Java Drive
 PHONE #: 613-555-8923"

// Result when calling getDesription()
// on PartTimeStudent object
"PartTimeStudent
 NAME: Al B. Back
 ADDRESS: 23 Return Blvd.
 PHONE #: 613-555-9738"

Notice how the Employee, Professor, and Secretary classes all have the additional
information now. In fact, we do not even need to write a getDescription() method in the
Secretary class since it inherits the one in Employee which already does what it needs to do.

Now what about the Student class ? It merely inherits from Person and also displays the
studentNumber, so we can use super again.

class Student extends Person {
 ...
 String getDescription() {
 return (super.getDescription() + "\n" +
 " STUDENT #: " + this.studentNumber);
 }
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 204 -

We can append a little more for FullTimeStudent objects to include their major:

class FullTimeStudent extends Student {
 ...
 String getDescription() {
 return (super.getDescription() + "\n" +
 " MAJOR: " + this.major);
 }
}

Here is the resulting change to results when calling getDescription() on a Student:

// Result when calling getDesription() // Result when calling getDesription()
// on FullTimeStudent object // on PartTimeStudent object
"FullTimeStudent "PartTimeStudent
 NAME: May I. Passplease NAME: Al B. Back
 ADDRESS: 5567 Java Drive ADDRESS: 23 Return Blvd.
 PHONE #: 613-555-8923 PHONE #: 613-555-9738
 STUDENT #: 100156753 STUDENT #: 100134257"
 MAJOR: Computer Science"

Notice that we did not write any code in PartTimeStudent, as this simply inherits the method
from Student.

The Professor class however, will have problems. We cannot merely inherit from Employee
because the Employee method inherits from Person (which displays the phone number and
address, and professors do not want this information available). Therefore, we can do this
one without inheritance by completely overriding the Employee method:

class Professor extends Employee {
 ...
 String getDescription() {
 return ("Professor \n" +
 " NAME: " + this.name + "\n" +
 " EMPLOYEE #: " + this.employeeNumber + "\n" +
 " WORK #: " + this.workNumer + "\n" +
 " OFFICE# : " + this.officeNumber);
 }
}

Now we have the results that we want. It is too bad though, since we now have some
duplicate code in the Professor class. If only there was a way to make use of "some" of the
code in the Person class, but not all of it. But if we change the getDescription() method in
the Person class, then this will affect the getDescription() method in the Employee class.
We must be careful.

We can create two getDescription() methods in the Person class. One that displays the
name only, and the other one will display name, address and phoneNumber. Of course the
methods need to have different names:

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 205 -

class Person {
 ...
 String getDescription() {
 return (this.getClass().getName() + "\n" +
 " NAME: " + this.name + "\n" +
 " ADDRESS: " + this.address + "\n" +
 " PHONE #: " + this.phoneNumer);
 }
 String shortGetDescription() {
 return (this.getClass().getName() + "\n" +
 " NAME: " + this.name);
 }
}

We want the Professor class to use the shortGetDescription() method … but how do we do
it ? If we call super.shortGetDescription(), it will display the name properly, but then we still
need to display the employeeNumber, workNumber and officeNumber:

class Professor extends Employee {
 ...
 String getDescription() {
 return (super.shortGetDescription() + "\n" +
 " EMPLOYEE #: " + this.employeeNumber + "\n" +
 " WORK #: " + this.workNumer + "\n" +
 " OFFICE# : " + this.officeNumber);
 }
}

How can we make use of the getDescription() in the Employee class so that it displays the
employeeNumber and workNumber for us ? Well, we can make an additional
getDescription() in the Employee class as follows:

class Employee extends Person {
 ...
 String getDescription() {
 return (super.getDescription() + "\n" +
 " EMPLOYEE #: " + this.employeeNumber + "\n" +
 " WORK #: " + this.workNumer);
 }

 String shortGetDescription() {
 return (super.shortGetDescription() + "\n" +
 " EMPLOYEE #: " + this.employeeNumber + "\n" +
 " WORK #: " + this.workNumer);
 }
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 206 -

But this duplicates code in the Employee class!!! We can fix this by extracting the common
code into a helper method as follows:

class Employee extends Person {
 ...
 String commonString() {
 return ("\n" + " EMPLOYEE #: " + this.employeeNumber +
 "\n" + " WORK #: " + this.workNumer);
 }

 String getDescription() {
 return(super.getDescription() + this.commonString());
 }
 String shortGetDescription() {
 return(super.shortGetDescription() + this.commonString());
 }
}

Now the Professor class merely needs to call the shortGetDescription() method as before ...
but this time the super call finds the method in the Employee class, so that one is executed
(which in turn calls the one in Person). Here is the code:

class Professor extends Employee {
 ...
 String getDescription() {
 return(super.shortGetDescription() + "\n" +
 " OFFICE# : " + this.officeNumber);
 }
}

This is nice and short now and makes use of shared code. In fact, we do not even need to
say super in the code above, and it will work the same. Do you know why ?

 7.5 Abstract Classes & Methods

Recall our example in the previous section pertaining to the various types of bank accounts.
We had two types of accounts: SuperSavings and PowerSavings, which both inherited from
a more general class called SavingsAccount and indirectly from BankAccount a little further
up the hierarchy. Assume further that we distinguished between savings accounts and
chequing accounts … where chequing accounts allow their owners to write cheques.

Assume that the real bank actually has exactly 4 types of accounts so that
when someone goes to the bank teller to open a new account, they specify
whether or not they want to open a SuperSavings, PowerSavings,
BusinessChequing or PowerChequing account.

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 207 -

Here is a revised hierarchy …

In our class hierarchy however, there are 7 account-related classes. The four classes
representing the accounts that we can actually open are called concrete classes. A concrete
class in JAVA is a class that we can make instances of directly by using the new keyword.
That is, throughout our code, we will find ourselves creating one of these 4 classes. For
example:

account1 = new SuperSavings(…);
account2 = new PowerSavings(…);
account3 = new BusinessChequing(…);
account4 = new PowerChequing(…);

However, we will likely never need to create instances of the other 3 account-related classes:

account5 = new BankAccount(…);
account6 = new SavingsAccount(…);
account7 = new ChequingAccount(…);

Why not ? Well, put simply, these types of objects are not specific enough because they
cause ambiguity. For example, if you went to the bank teller and asked to open just “a bank
account”, the teller does not know which of the 4 types of accounts you actually want. The
teller would likely ask you questions to help you narrow down your choices, but ultimately, the
type of account that is opened (i.e., the account that is actually created) MUST be one of the 4
accounts that the bank offers. Likewise, in our program, if we were to create instances of
BankAccount, SavingsAccount and ChequingAccount, then these objects would not be
specific enough to define account behavior that matches one of the 4 real account types.

So in a sense, the BankAccount, SavingsAccount and ChequingAccount classes are not
concrete, they are more abstract in that they don’t exactly match the real-life objects.
In JAVA, we actually use the term abstract class to define a class that we do not want to
make instances of. So, BankAccount, SavingsAccount and ChequingAccount should all
abstract classes. We will draw abstract classes with dotted lines as follows …

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

BusinessChequing PowerChequing

ChequingAccount

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 208 -

So, in JAVA, an abstract class is simply a class for which we cannot create instances. That
means, we can never call the constructor to make a new object of this type.

new BankAccount(…) // does not compile
new SavingsAccount(…) // does not compile
new ChequingAccount(…) // does not compile

All of the classes that we created so far in this course were concrete classes, although some
could have been easily made abstract. We define a class to be abstract simply by using the
abstract keyword in the class definition:

abstract class BankAccount {
 ...
}

abstract class SavingsAccount extends BankAccount {
 ...
}

abstract class ChequingAccount extends BankAccount {
 ...
}

That is all that is involved in creating an abstract class. There really is nothing more to it. In
fact, the remainder of the code in that class definition may remain as is.

So, in fact, by making a class abstract, all we have done is to prevent the user of the class
from calling any of its constructors directly. This may raise an interesting question. If we
cannot ever create new objects of the abstract class, then why would we ever want to create
an Abstract class in the first place ?

Well why did we create the BankAccount and SavingsAccount classes in the first place ?
Inheritance was the key reason. These classes still contain the common attributes and
shared behavior for all of their subclasses. The BankAccount class, for example, contains
the 3 instance variables common to all accounts (owner, accountNumber and balance).

SuperSavings PowerSavings

SavingsAccount

BankAccount

Object

BusinessChequing PowerChequing

ChequingAccount

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 209 -

Also, the SavingsAccount, for example, contains the deposit() method that is shared
between SuperSavings and PowerSavings. Hence, you can see that even though a class
may be declared as abstract it is still useful and important in keeping our code organized
properly in our class hierarchy. Their attributes and behaviors are still being used by their
concrete subclasses.

How do we know which classes to make abstract and which ones to leave as concrete ? If we
are not sure, it is better to leave them as concrete. However, if we discern that a particular
class has subclasses that cover all of the possible concrete classes that we would ever need
to create in our application, then it would be reasonable to make the superclass abstract.

Is there any advantage of making a class abstract rather than simply leaving it concrete ? Yes.
By making a class abstract, you are informing the users of that class that they should not be
creating instances of that class. In a way, you are telling them “If you want to use this
class, you should make your own concrete subclass of it.”. You are actually forcing them
to create a subclass if they want to use your abstract class. It forces the user of your class to
be more specific in their object creation, thereby reducing ambiguity in their code.

Here are a few more examples of class hierarchies that we already discussed, showing how
we could make some classes abstract:

PartTimeUndergrad PartTimeGrad FullTimeUndergrad FullTimeGrad

PartTimeStudent FullTimeStudent

Student

Object

HomeImprovementLoan

Lease Mortgage

Loan

Object

TownHome SingleFamilyHome Warehouse Office

Residential Commercial

BuildingStructure

Factory

Object

Apple Orange Potato Carrot

Fruit Vegetable

Food

Object

Manager

Employee Customer

Person

Object

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 210 -

Abstract Methods:

In addition to having abstract classes, JAVA allows us to make abstract methods. An
abstract method is a method which has no code. That is, it is merely a specification of a
method’s signature (i.e., return type, name and list of parameters), but the body of the code
remains blank. To define an abstract method, we use the abstract keyword at the beginning
of the method’s signature. Here are a couple of examples:

abstract void deposit(float amount);
abstract void withdraw(float amount);

Notice that there are no braces { } to specify the method body … the method
signature simply ends with a semi-colon ;.

At this point you should be wondering: “Why would any sane person would
write a method that has no code in it ?”. That is certainly a reasonable
question since, after all, methods are called so that we can evaluate the code that
is in them.

Abstract methods are actually never called, so JAVA never attempts to evaluate
their code. Just as an abstract class is used to force the user of that class to have
subclasses, an abstract method forces the subclasses to implement (i.e., to
write code for) that method. So, by defining an abstract method, you are really
just informing everyone that the concrete subclasses must write code for that
method. All concrete subclasses of an abstract class MUST implement the
abstract methods defined in their superclasses, there is no way around it.

When JAVA compiles an abstract method for a class (e.g., class A), it checks
to see whether or not all the subclasses of A have implemented the method
(i.e., that they have written a method with the same return type, name and
parameters). That is really all that happens in regard to the abstract methods.

For example, if we make deposit(float amount) and withdraw(float amount) methods
abstract in the BankAccount class, then, all of its concrete subclasses (SuperSavings,
PowerSavings, BusinessChequing and PowerChequing) would be forced to implement
those methods … complete with code as follows …

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 211 -

Each of the 4 concrete subclasses would implement their deposit() and withdraw() code
according to the bank's rules for that type of account (i.e., apply certain fees, limit amount,
etc...).

Alternatively, we can take advantage of inheritance. If, for example, the SuperSavings and
PowerSavings accounts both deposit() in the same manner, instead of duplicating the code
we can implement a non-abstract deposit() method in the SavingsAccount class that
performs the required behavior. This method would then be shared (i.e., used) by both the
SuperSavings and PowerSavings subclasses through inheritance.

In this case, the SuperSavings and PowerSavings classes would NOT need to implement
the deposit() method, since it is inherited …

SuperSavings

SavingsAccount

BankAccount

Object

ChequingAccount

abstract void deposit(float amount);
abstract void withdraw(float amount);

void deposit(float amount) {
 ...
}
void withdraw(float amount) {
 ...
}

PowerSavings

void deposit(float amount) {
 ...
}
void withdraw(float amount) {
 ...
}

BusinessChequing

void deposit(float amount) {
 ...
}
void withdraw(float amount) {
 ...
}

PowerChequing

void deposit(float amount) {
 ...
}
void withdraw(float amount) {
 ...
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 212 -

HomeImprovementLoan

Lease Mortgage

Loan

Object

Only abstract classes are allowed to have such abstract methods. However, as you know, an
abstract class may have regular methods as well.

If we were to find that all 4 types of concrete accounts did the exact same thing when a
deposit() was made, then we would likely simply write the shared deposit() method in the
BankAccount class, INSTEAD OF making the abstract deposit() method in the first place.
This allows a kind of default deposit() behavior for all subclasses to inherit, not forcing any
classes to implement this method.

It is often the case that we define more than one
abstract method in a class. This allows us to
specify a set of “standard” behavior that ALL of
its subclasses MUST have. For example,
assume that we have the following hierarchy in
which an abstract Loan class has 3 specific
subclasses as shown here

We may decide on some particular behavior that
all types of loans must exhibit. For example, we
may want to ensure that we have a way to
calculate a monthly payment for the loan, a way
to make payments on the loan, a way to re-finance
the loan and perhaps a way to extract the client’s information that pertains to the loan.

SavingsAccount

BankAccount

Object

ChequingAccount

abstract void deposit(float amount);
abstract void withdraw(float amount);

void deposit(float amount) {
 ...
}

SuperSavings

void withdraw(float amount) {
 ...
}

PowerSavings

void withdraw(float amount) {
 ...
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 213 -

If this is the case, perhaps some of the behavior is similar for all loans (e.g., getting the client’s
information), while other behaviors may be unique depending on the type of loan (e.g., leases
and mortgages may be re-financed differently). Here is how we might define the Loan class:

abstract class Loan {
 abstract float calculateMonthlyPayment();
 abstract void makePayment(float amount);
 abstract void renew(int numMonths);

 Client getClientInfo() { // a non-abstract method
 ...
 }

}

Notice that the getClientInfo() method is non-abstract, so that we can write code in there that
is shared by all the subclasses. The other 3 methods shown are abstract … so the Lease,
Mortgage and HomeImprovementLoan classes MUST implement all 3 of these methods,
with the appropriate code. Remember … an abstract class is just like any other class in
regards to its attributes and behaviors. So there may be many more methods (abstract or
non-abstract) and/or attributes defined in the Loan class.

Do you see the benefit of defining abstract methods ? They allow you to define a set of
behaviors that all your subclasses must have while giving them the flexibility to specify their
own unique code for those behaviors. What would happen if we did not make any of the
methods abstract ?:

abstract class Loan {
 float calculateMonthlyPayment(){ return 0;}
 void makePayment(float amount){ }
 void renew(int numMonths){ }
 Client getClientInfo() { ... }

}

Two things would be different. First, the methods would need to have a body. We could
leave the code body blank or we could put in some default code of our choosing.

Second, the subclasses would not be “forced” to write these methods. So if the subclass did
not supply the method, then these methods here would be inherited. This is not such a “big
deal”, but if we simply forgot to implement these methods, then the inherited behavior may be
unexpected and in some cases undesirable. By making the 3 methods abstract, the compiler
will force us to write the methods, eliminating the possibility of us forgetting to implement them.

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 214 -

 7.6 Defining Interfaces

In the previous section, we showed how we can use a set of abstract methods to force a set
of specific behaviors in our subclasses. By doing that, we were able to ensure that all of the
subclasses of that abstract class have definitely implemented the required behavior.

Abstract methods are indeed quite useful for defining (and forcing) common behavior for
subclasses of an abstract class. How though, would we define (and force) common behavior
between seemingly unrelated classes in different parts of the class hierarchy ?

There is another mechanism in JAVA for doing this. In JAVA, an interface is a specification
(i.e., a list) of a set of behaviors. It is similar to the idea of having a set of abstract methods,
except that the interface exists on its own, that is, it is defined by itself in its own file. We
define this list of behaviors/methods as if we were defining a new class, except that we use the
keyword interface instead of class:

interface InterfaceName {
 ...
}

Just like classes, interfaces are types and are defined in their own .java files. So, the above
interface would be saved into a file called InterfaceName.java.

The methods themselves are defined like abstract methods, but without the word abstract.
Here is a comparison of the Loan class’s abstract methods and a similarly-defined interface:

abstract class Loan {
 abstract float calculateMonthlyPayment();
 abstract void makePayment(float amount);
 abstract void renew(int numMonths);
 ...
}

interface Loanable {
 float calculateMonthlyPayment();
 void makePayment(float amount);
 void renew(int numMonths);
}

There are some similarities between the two:

• both define a list of methods with no code.

• like abstract classes, we cannot create instances of interfaces. So,

we cannot use this code anywhere in our code: new Loan()

There are also some differences between the two:

• we cannot declare/define any attributes nor static constants in
an interface, whereas an abstract class may have them

• we can only declare “empty” methods in an interface, we cannot supply code for them.

In contrast, an abstract class can have non-abstract methods with complete code.

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 215 -

Since interfaces are defined on their own (i.e., the interface does not belong to any particular
class), we must have a way to inform JAVA which objects will be implementing the methods
that are defined in the interface.

Consider defining an interface called Insurable that defined the common behavior that all
insurable objects MUST have as follows:

interface Insurable {
 public int getPolicyNumber();
 public int getCoverageAmount();
 public double calculatePremium();
 public java.util.Date getExpiryDate();
}

In this example, we did not have any parameters for the methods, but you can have
parameters as well, just like any other method. The code above would need to be saved and
compiled before we can use it. Notice that the methods all have public in front of them.
Interfaces must be publicly accessible. We will talk more about this in an upcoming chapter.

Assume now that we want to have some classes in our hierarchy that are considered to be
insurable. Perhaps Person, Car and Company objects in our application are all considered
to be insurable objects.

We would want to make
sure that they all
implement the methods
defined in the Insurable
interface as shown here

Company Car

Person

Insurable
Object

Employee

Manager

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 216 -

To do this in JAVA, we simply add the keyword implements in the class definition, followed by
the name of the interface that the class will implement as follows:

abstract class Person implements Insurable {
 ...
}

class Company implements Insurable {
 ...
}

class Car implements Insurable {
 ...
}

By adding this to the top of the class definition, we are informing the whole world that these
objects are insurable objects. It represents a "stamp of approval" to everyone that these
objects are able to be insured. It provides a "guarantee" that these classes will have all the
methods required for insurable items (i.e., getPolicyNumber(), getCoverageAmount(),
calculatePremium() and getExpiryDate()). So then, for each of the implementing classes,
we must go and write the code for those methods:

class Car implements Insurable {
 ...
 public int getPolicyNumber() { /* write code here */ }
 public double calculatePremium() { /* write code here */ }
 public java.util.Date getExpiryDate() { /* write code here */ }
 public int getCoverageAmount() { /* write code here */ }
 ...
}

abstract class Person implements Insurable {
 ...
 public int getPolicyNumber() { /* write code here */ }
 public double calculatePremium() { /* write code here */ }
 public java.util.Date getExpiryDate() { /* write code here */ }
 public int getCoverageAmount() { /* write code here */ }
 ...
}

class Company implements Insurable {
 ...
 public int getPolicyNumber() { /* write code here */ }
 public double calculatePremium() { /* write code here */ }
 public java.util.Date getExpiryDate() { /* write code here */ }
 public int getCoverageAmount() { /* write code here */ }
 ...
}

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 217 -

Again, notice that the methods all have public in front of them. We will talk more about this in
an upcoming chapter. Remember that these classes may define their own attributes and
methods but somewhere in their class definition they must have ALL 4 methods listed in the
Insurable interface.

Interestingly, a class may implement more than one interface:

Here the Car object implements 3 interfaces. To allow this in our code, we just need to specify
each implemented interface in our class definition (in any order), separated by commas:

class Car implements Insurable, Drivable, Sellable {
 ...
}

Of course, the Car class would have to implement ALL of the methods defined in each of the
three interfaces. Like classes, interfaces can also be organized in a hierarchy:

Insurable
Object

Sellable

Drivable

Car Company Product

Insurable Object

Company Person Car

Fixed
Insurable

Depreciating
Insurable

COMP1005/1405 – Organizing Classes to Use Inheritance Fall 2009

 - 218 -

As with classes, we form the interface hierarchy by using the extends keyword:

interface Insurable { ...
 public int getPolicyNumber();
 public int getCoverageAmount();
 public double calculatePremium();
 public java.util.Date getExpiryDate();
}

interface DepreciatingInsurable extends Insurable {
 public double computeFairMarketValue();
 public void amortizePayments();
}

interface FixedInsurable extends Insurable {
 public int getEvaluationPeriod();
}

Classes that implement an interface must implement its "super" interfaces as well. So
Company and Person would need to implement the method in FixedInsurable as well as the
four in Insurable, while Car would have to implement the two methods in
DepreciatingInsurable and the four in Insurable as well.

In summary, how do interfaces help us ? They provide us with a way in which we can specify
common behavior between arbitrary objects so that we can ensure that those objects have
specific methods defined. There are many pre-defined interfaces in JAVA and you will see
them used often in the next course COMP1006/1406.

