

Chapter 9

Proper Coding Style

What is in This Chapter ?
In this chapter, we will discuss various ways to improve the code that we write. We begin by
discussing how we can simplify the way others will use our objects and we will find ways to
secure the attributes of our object by using access modifiers such as public, private and
protected. We will then discuss the use of get and set methods to access and modify our
objects in a safe way. The chapter then discuses ways to simplify our constructors as well as
reducing clutter in our code all by using or removing the this keyword. We then discuss in
detail how we can type-cast objects into more general types as a means of simplifying our
code greatly. Lastly, we briefly discuss ways in which we should test the code that we write.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 249 -

 9.1 Protecting and Simplifying an Object

When creating and defining an object it is a good idea to keep it simple so that anybody who
uses that object in the future (including yourself) can remember how to use it. Often, there are
details about an object that we don’t need to know about in order to use the object. For
example, when we drive a car, we need to know simple things such as:

• starting/ stopping
• steering
• changing gears
• braking, etc..

However, we do not need to worry about things such as:

• assembling the carburetor
• adjusting the spark plug timing
• installing gas lines
• changing the muffler, etc..

Cars are clearly designed to be easy to drive, requiring a simple and easy-to-understand
interface. Similarly, it is important that we make our code easy to use and easy to
understand. Otherwise, making changes to the code, debugging it and extending it with new
features can quickly become very difficult and time consuming.

In order to keep our code simple, we need to make the interface (or
"outside view") of our objects as simple as possible. That means,
we need to “hide the details” of our object that most people
would not need to worry about. That is, we need to hide some of
the attributes (complicated parts) and methods (complicated
procedures) for our object “under the hood”, so to speak.

In addition to simplicity, there is another reason to hide some of the
details of our object. We would like to prevent outsiders from "messing
around with" the inner details of an object. For example we lock our car
doors and trunk so that people don't get in there are take things away or
damage them etc.. Similarly, for example, if we allow anyone to access
the attributes of our object and perform behaviors on it in the wrong
order, then this could lead to corrupt data and/or various types of errors
in our code.

The idea of hiding the "unnecessary details" of an object from general users is called
encapsulation in JAVA. Encapsulation involves enclosing our object with a kind of
“protective bubble” so that it cannot be accessed or modified without proper permission.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 250 -

In JAVA, we protect and hide attributes and behaviors by using something called an access
modifier. This is a big word for something quite simple. Basically, it allows us to set
permissions for our attributes and methods so that they will be visible/modifiable/usable) from
some places in our code but not from other places. As a result, when working with a team of
software developers on a large program, some developers will have the freedom to access or
modify attributes or methods from various objects, while others will not be allowed such
freedom to view or change portions the objects as they would like to.

Protecting Behaviors

We have already been using an access modifier called public when we wrote our public
main() method and toString() methods:

public static void main(String args[]) { … }
public String toString() { … }

The keyword public at the front of a method declaration means that the method is publicly
available to everyone, so that these methods may be called from anywhere. For all of our
other methods however, we did not write public, and so they had what is known as default
access … meaning that the methods may be called from any code that is in the same package
or folder that this method’s class is saved into. If we write all of our code in the same folder,
then default and public access means the same thing.

There are two other access modifier options available called private and protected. When
we declare a method as private, we would not be able to use this method from any class other
than the class in which it is defined. Protected methods are methods that may be called from
the method’s own class or from one of its subclasses. So here is a summary of the access
modifiers for methods:

• none - can be called from any class in the same folder
• public - can be called from anywhere
• private - can only be called from this class
• protected - can be called from this class or any subclasses

In this course, most of the methods that we write are public methods which allows the most
freedom to access and modify our objects. Usually, private methods are known as helper
methods since they are often created for the purpose of helping to reduce the size of a larger
public method or when a piece of code is shared by several methods.

For example, consider bringing in your car for repair. The publicly available method would be
called to repair() the car. However, many smaller sub-routines are performed as part of the
repair process (e.g., runDiagnostics(), disassembleEngine() etc...). From the point of view
of the user of the class, there is no need to understand the inner workings of the repair
process. The user of the class may simply need to know that the car can be repaired,
regardless of how it is done.

Here is an example of breaking up the repair problem into helper methods that do the sub-
routines as part of the repair …

COMP1005/1405 – Proper Coding Style Fall 2009

 - 251 -

class Car {
 public void repair() {
 this.runDiagnostics();
 this.disassembleEngine();
 this.repairBrokenParts();
 this.reassembleEngine();
 this.runDiagnostics();
 }
 private void runDiagnostics() { ... }
 private void disassembleEngine() { ... }
 private void repairBrokenParts() { ... }
 private void reassembleEngine() { ... }
}

Notice that the helper methods are private since users of this class probably do not need to
call them. Here is an example showing how we might attempt to call these methods from
some other class:

class SomeApplicationProgram {
 public static void main(String args[]) {
 Car c = new Car();
 c.repair(); // OK to call this method
 c.disassenbleEngine(); // Won’t compile, since it is private
 c.repairBrokenParts(); // Won’t compile, since it is private
 }
}

Now, to understand the protected modifier, we need to consider a class hierarchy. Recall the
Person/Employee/Manager/Customer example. Consider four methods within the
Employee class with various access modifiers as follows:

Manager

Employee

Customer

Person

 String getEmployeeNumber();
public String getPhoneNumber();
private String changePassword(String newOne);
protected ArrayList<String> jobsCompleted();

COMP1005/1405 – Proper Coding Style Fall 2009

 - 252 -

Now consider some code within the Manager class that attempts to access these methods:

class Manager extends Employee {
 void tryThingsOut() {
 System.out.println(this.getEmployeeNumber()); // access allowed
 System.out.println(this.getPhoneNumber()); // access allowed
 System.out.println(this.changePassword("12345678"));// compile error
 System.out.println(this.jobsCompleted()); // access allowed
 }
}

Notice that the only method not allowed to be accessed is the private method, since the
tryThingsOut() method is written in the Manager class, not in Employee.

Consider now the Customer class restrictions:

class Customer extends Person {
 void buyFrom(Employee emp) {
 System.out.println(emp.getEmployeeNumber()); // access allowed
 System.out.println(emp.getPhoneNumber()); // access allowed
 System.out.println(emp.changePassword("12345678"));// compile error
 System.out.println(emp.jobsCompleted()); // compile error
 }
}

Now we can no longer call the jobsCompleted() method, since it has been declared
protected and Customer is not a subclass of Employee.

There really is not much more to the access modifiers when it comes to methods. However,
there is one more protective keyword that can be used with methods. We can declare a
method as final to prevent subclasses from modifying the behavior. That is, when we declare
a method as being final, JAVA prevents anyone from overriding that method. Hence no
subclasses can have a method with that same name and signature:

public final void withdraw(float amount) {
 ...
}

Why would we want to do this ? Perhaps the behavior defined in the method is very critical
and overriding this behavior "improperly" may cause problems with the rest of the program.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 253 -

Protecting Attributes

Now what about protecting an object’s attributes ? Well, the public/private/protected and
default modifiers all work the same way as with behaviors. When used on instance variables,
it allows others to be able to access/modify them according to the specified restrictions.

So far, we have never specified any modifiers for our attributes, allowing them all default
access from classes within the same package or folder.

However, in real world situations, it is often best NOT to allow outside users
to modify the internal private parts of your object. The reason is that results
can often be disastrous. It is easy to relate to this because we well
understand how we hide our own private parts ☺.

As an example, consider the following code, which may appear in any class. It shows that we
can directly access the balance of a BankAccount. This is clearly undesirable since there is
little protection. Could you imagine if anyone could modify the balance of your bank account
directly ?

BankAccount myAccount = new BankAccount("Mine");

myAccount.balance = 1000000.00f; // YAY :)

myAccount.balance = -1000000.00f; // WHY :(

In order to prevent direct access to important information we would need to prevent the code
above from compiling/running. If we were to declare the balance instance variable as private
within the BankAccount class, then the above code would not compile, thus solving the issue.

In general, while freedom to access/modify anything from anywhere seems like a friendly thing
to do, it is certainly dangerous. Anyone could "stomp" all over our instance variables
changing them at will. A general "rule-of-thumb" that should be followed is to declare ALL of
your instance variables as private as follows:

class Person {
 private String name;
 private int age;
 private float height;
 private char gender;
 private boolean retired;

 ...
}

COMP1005/1405 – Proper Coding Style Fall 2009

 - 254 -

Once we do this, then the following code will not work (when written in a class other than the
Person class):

class SomeApplicationProgram {
 public static void main(String args[]) {
 Person p = new Person();
 p.name = "Sandy Beach"; // will NOT compile
 p.age = 15; // will NOT compile
 p.height = 5.85f; // will NOT compile
 p.gender = 'M'; // will NOT compile
 p.retired = false; // will NOT compile
 System.out.println(p.name); // will NOT compile
 System.out.println(p.age); // will NOT compile
 System.out.println(p.height); // will NOT compile
 System.out.println(p.gender); // will NOT compile
 System.out.println(p.retired); // will NOT compile
 }
}

What we have essentially done is to erect a wall around the object ... like
the wall around a city. We have encapsulated it with a protective bubble.
Although we are still able to create the object, we are prevented from
accessing or modifying its internals now from outside the class. By doing
this, we have protected the object so much that we cannot get information
neither into it nor out from it. We have kind of secluded the object from the
rest of the world by doing this. However, just as a walled city has gates or doors to allow
access, we too have a form of gated access by means of any publicly available methods.

We will grant access to "some" of our object's attributes (i.e., instance variables) by creating
methods known as get and set methods (also called getters and setters). The idea of
creating these gateways to our object’s data is common practice and is considered to be a
robust strategy when creating classes to be used in a large software application. In this
course, since we are only creating a few classes and since we are the only code writers, we
may not immediately see the benefits of declaring private attributes and then creating these
methods. However, in a larger/complicated system with hundreds of classes, the benefits
become quite clear:

• object attributes are easier to understand and use
• attributes are protected from external/unknown changes
• we are following proper and robust coding style

COMP1005/1405 – Proper Coding Style Fall 2009

 - 255 -

false

'M'

0

0

null

retired

gender

height

age

name

false

'M'

0

0

null

Get methods
Person object

Let us first consider get methods. They let
us look at information that is within the
object by getting the object’s attribute
values (i.e., get the values of the instance
variables):

Get methods have:

• public access
• name matching attribute’s name
• return type matching attribute’s type
• code returning attribute’s value

Here is how we would write the standard
get methods for the Person class:

public class Person {
 private String name;
 private int age;
 private float height;
 private char gender;
 private boolean retired;

 // Get method for name attribute
 public String getName() {
 return this.name;
 }
 // Get method for age attribute
 public int getAge() {
 return this.age;
 }
 // Get method for height attribute
 public float getHeight() {
 return this.height;
 }
 // Get method for gender attribute
 public char getGender() {
 return this.gender;
 }
 // Get method for retired attribute
 public boolean isRetired() {
 return this.retired;
 }
}

Notice that all the methods look the same in structure. They are all public, all have return
types and names that match the attribute type, all have no parameters and all are one line
long. When we call the method to get the attribute value, the method simply returns the
attribute value to us. Its quite simple. By convention, all get methods start with “get” followed
by the attribute name, with the exception of attributes that are of type boolean. In that case,
we usually use “is” followed by the attribute name, as it makes the method call more natural.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 256 -

retired

gender

height

age

name

false

‘M’

0

0

null

Set methods

false

'M'

5.85

15

Sandy Beach

Person object

Now let us examine the set
methods. Set methods allow
us to put values into the
instance variables (i.e., to set
the object's attributes):

Set methods have:

• public access
• void return type
• name matching

attribute’s name
• a parameter matching

attribute’s type
• code giving the attribute

a value

Here is how we would write the standard set methods for the Person class:

 // Set method for name attribute
 public void setName(String n) {
 this.name = n;
 }
 // Set method for age attribute
 public void setAge(int a) {
 this.age = a;
 }
 // Set method for height attribute
 public void setHeight(float h) {
 this.height = h;
 }
 // Set method for gender attribute
 public void setGender(char g) {
 this.gender = g;
 }
 // Set method for retired attribute
 public void setRetired(boolean r) {
 this.retired = r;
 }

The single line of code in a set method is quite simple also.
When we call the method to give the attribute a new value (i.e., we supply the new value as a
parameter to the method), the method simply takes that new attribute value and sets the
attribute to it by using the = operator.

Normally, we write all the get and set methods together, and sometimes shorten them onto
one line. Also, they are often listed in the code right after the public constructors as follows:

COMP1005/1405 – Proper Coding Style Fall 2009

 - 257 -

class Person {
 private String name;
 private int age;
 private float height;
 private char gender;
 private boolean retired;

 // Constructors
 public Person() { /*...*/ }
 public Person(String n, int a, float h, char g, boolean r) { /*...*/ }

 // Get methods
 public String getName() { return this.name; }
 public int getAge() { return this.age; }
 public float getHeight() { return this.height; }
 public char getGender() { return this.gender; }
 public boolean isRetired() { return this.retired; }

 // Set methods
 public void setName(String n) { this.name = n; }
 public void setAge(int a) { this.age = a; }
 public void setHeight(float h) { this.height = h; }
 public void setGender(char g) { this.gender = g; }
 public void setRetired(boolean r) { this.retired = r; }
}

Here is how the get method works:

Notice that primitive attribute values are returned as simple values but object attribute values
are returned as pointers to the object. The Person object remains unchanged as a result of a
get method call. Here is how the set method works:

retired

gender

height

age

name

false

‘M’

0

0

false

'M'

0

0

aPerson.isRetired()

aPerson.getGender ()

aPerson.getHeight()

aPerson.getAge()

aPerson.getName()

“Sandy Beach”

aPerson

Person object

COMP1005/1405 – Proper Coding Style Fall 2009

 - 258 -

Notice that primitive attribute values are simply replaced with the new value. For object
attribute values, after the set call, the attribute will point to the new object. The previous
object that the attribute used to point to is discarded (i.e., garbage collected) if no other objects
are holding on to it. Once we create these get/set methods, we can then access and modify
the object from anywhere in our program as before:

class TestPersonProgram {

 public static void main(String args[]) {
 Person p = new Person();

 System.out.println("Before Setting ...");
 System.out.println(p.getName()); // was println(p.name);
 System.out.println(p.getAge()); // was println(p.age);
 System.out.println(p.getHeight()); // was println(p.height);
 System.out.println(p.getGender()); // was println(p.gender);
 System.out.println(p.isRetired()); // was println(p.retired);

 p.setName("Sandy Beach"); // was p.name = "Sandy Beach";
 p.setAge(15); // was p.age = 15;
 p.setHeight(5.85f); // was p.height = 5.85f;
 p.setGender('F'); // was p.gender = 'F';
 p.setRetired(true); // was p.retired = true;

 System.out.println("\nAfter Setting ...");
 System.out.println(p.getName()); // was println(p.name);
 System.out.println(p.getAge()); // was println(p.age);
 System.out.println(p.getHeight()); // was println(p.height);
 System.out.println(p.getGender()); // was println(p.gender);
 System.out.println(p.isRetired()); // was println(p.retired);
 }
}

retired

gender

height

age

name

false

'M'

0

0

aPerson

retired

gender

height

age

name

true

'F'

6.2

32

aPerson.setRetired(true)

aPerson.setGender('F')

aPerson.setHeight(6.2f)

aPerson.setAge(32)

aPerson.setName("Biffy")

“Biffy”

aPerson

“Sandy Beach”

Before After

COMP1005/1405 – Proper Coding Style Fall 2009

 - 259 -

Here is what the output would be (however, initial values depend on the Person constructor):

Before Setting ...
"UNKNOWN"
0
0.0
?
false

After Setting ...
"Sandy Beach"
15
5.85
F
true

Now if we think for a moment ... what did we really do by making all the get and set methods
? Really, we wrote a lot of code (e.g., 5 get methods and 5 set methods for the Person
class) but did not gain anything new. The code does the same thing as before. In fact, the
test code seems longer and perhaps slower (since we are calling a method to get/set the
instance variables for us instead of accessing them directly). So why did we do this ? Lets
review the advantages again:

1. First, get/set methods actually make life simpler for users of your
class because the user does not have to understand the “guts” of
the object being used. It allows them to treat the object as a “black
box”. The user does not need to know about all the instance
variables. Some are used to hold data that is temporary or
private. You should only create public get methods for the
instance variables that the user of the class would need to know
about.

2. Second, it prevents the users of a class from directly modifying the
object's internals. Recall, for example, that we should never be
able to directly change the balance of our bank account without
going through the proper transaction procedures such as
depositing and withdrawal. Of course, if we always create public
get/set methods for all our attributes, then we still would have no
such protection. So, it is important to create set methods only for the attributes that
you want the user of the class to be able to change directly. Therefore, you do not
always need to make set methods.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 260 -

Protecting Classes

In regards to class definitions, we are also allowed to indicate either default or public access
to the class. So far, all of our classes have been default access, but we can write public in
front of the class if we want this to be a truly publicly accessible object:

public class Manager { // public access from classes anywhere
 ...
}

class Employee { // default access from classes within package/folder
 ...
}

Interestingly, we can also declare a class as final. This means that it CANNOT have
subclasses:

public final class Manager {
 ...
}

Why would we want to do this ? Perhaps the class has very weird code that the author does
not want you to inherit ... maybe because it is too complicated and may easily be misused.
Many of the JAVA classes (e.g., ArrayList) are declared as final which means that we cannot
make any subclasses of them. It is a kind of security issue to prevent us from "messing up"
the way those classes are meant to be used. It’s a shame, because often we would like to
have special types of ArrayLists and other similar objects .

 9.2 Simplifying Constructors and Eliminating “this”

You may have noticed that we have a lot of duplicated code in our 3 Person constructors that
we wrote earlier. Each attribute of the object was set explicitly with a line of code like this:

this.<attribute> = <initialValue>;

Here was the code …

COMP1005/1405 – Proper Coding Style Fall 2009

 - 261 -

// This is the zero-parameter constructor
Person() {
 this.firstName = "UNKNOWN";
 this.lastName = "UNKNOWN";
 this.gender = '?';
 this.retired = false;
 this.age = 0;
 this.address = null;
}

// This is a 4-parameter constructor
Person(String fn, String ln, char g, boolean r) {
 this.firstName = fn;
 this.lastName = ln;
 this.gender = g;
 this.retired = r;
 this.age = 0;
 this.address = null;
}

// This is a 6-parameter constructor
Person(String fn, String ln, int a, char g, boolean r, Address adr) {
 this.firstName = fn;
 this.lastName = ln;
 this.age = a;
 this.gender = g;
 this.retired = r;
 this.address = adr;
}

We can actually reduce the amount of duplicated code by chaining our constructors together
(i.e., calling one constructor from another). We do this by making use of the this keyword
again. Notice the reduced code:

// This constructor calls the 6-parameter one
Person() {
 this("UNKNOWN", "UNKNOWN", 0, '?', false, null);
}

// This constructor calls the 6-parameter one
Person(String fn, String ln, char g, boolean r) {
 this(fn, ln, 0, g, r, null);
}

// This is the 6-parameter constructor
Person(String fn, String ln, int a, char g, boolean r, Address adr) {
 this.firstName = fn;
 this.lastName = ln;
 this.age = a;
 this.gender = g;
 this.retired = r;
 this.address = adr;
}

COMP1005/1405 – Proper Coding Style Fall 2009

 - 262 -

Notice that the first 2 constructors simply call the last one which takes all 6 parameters as
arguments. You may also notice that there is no dot . operator after the this keyword. This
is a special use of the keyword this which only applies when calling one constructor from
another.

Notice as well in the above code that the keyword this is also used to access the object’s
attributes. As it turns out, whenever we are writing a constructor or instance method of a
class, we do not need to use the keyword this to access the attributes of the object or not call
another instance method in the same class. We can leave off this completely, and JAVA will
assume that we meant “this” object. Hence, the following constructor is equivalent to the 3rd
one above:

Person(String fn, String ln, int a, char g, boolean r, Address adr) {
 firstName = fn; // same as this.firstName = fn;
 lastName = ln; // same as this.lastName = ln;
 age = a; // same as this.age = a;
 gender = g; // same as this.gender = g;
 retired = r; // same as this.retired = r;
 address = adr; // same as this.address = adr;
}

Note however, that we cannot remove the keyword this in the chained constructors that use
this without the dot afterwards, so the first two constructors must remain the same.

In fact, we can go through our entire code and remove the code this. from our instance
methods since all instance methods have direct access to their own internal attributes. Here
are some methods that we wrote in the Person class. Notice how we can remove all
occurrences of this. from the code:

int computeDiscount() {
 if ((this.gender == 'F') && (this.age < 13 || this.retired))
 return 50;
 else
 return 0;
}

boolean isOlderThan(Person x) {
 return (this.age > x.age);
}

boolean isOlderThan(Person x, Person y) {
 if ((this.age > x.age) && (this.age > y.age))
 return true;
 else
 return false;
}

COMP1005/1405 – Proper Coding Style Fall 2009

 - 263 -

Person oldest(Person x, Person y) {
 if ((this.age > x.age) && (this.age > y.age))
 return this; // cannot remove this here though
 else if ((x.age > this.age) && (x.age > y.age))
 return x;
 else
 return y;
}

void swapNameWith(Person x) {
 String tempName;

 tempName = this.firstName;
 this.firstName = x.firstName;
 x.firstName = tempName;

 tempName = this.lastName;
 this.lastName = x.lastName;
 x.lastName = tempName;
}

public String toString() {
 String answer = this.age + " year old ";

 if (!this.retired)

 answer = answer + "non-";

 return ("retired person named " +
 this.firstName + " " + this.lastName);
}

Recall as well in the Team/League example that we called one instance method from within
another. Here too, for each call that we made within the same class, we can remove the
references to this. since JAVA assumes automatically that we meant “this” class if we leave it
out. Here are some examples from the Team/League example showing where it can be
removed:

void recordWinAndLoss(String winnerName, String loserName) {
 Team winner, loser;

 winner = this.teamWithName(winnerName);
 loser = this.teamWithName(loserName);
 this.recordWinAndLoss(winner, loser);
}

void recordTie(String teamAName, String teamBName) {
 Team teamA, teamB;

 teamA = this.teamWithName(teamAName);
 teamB = this.teamWithName(teamBName);
 this.recordTie(teamA, teamB);
}

COMP1005/1405 – Proper Coding Style Fall 2009

 - 264 -

As a rule of thumb, you can ALWAYS remove “this.” whenever it appears in your code since
JAVA will automatically assume that you are trying to access attributes for (or call a method
for) the receiver object when no object is specified. Until now, we have been using this.
throughout our code because it makes it easier to understand which object we are dealing
with. However, it is common practice to leave this. out of our code to reduce the clutter.

 9.3 Type-Casting, Polymorphism and Double-Dispatching

Recall that we can type-cast primitives to convert a value from one type to another:

(int)871.34354; // results in 871
(char)65; // results in 'A'
(long)453; // results in 453L

Remember that some type-casting is done automatically by JAVA whereas in other cases we
can explicitly type-cast in order to simplify the data (e.g., from float to int) or for display
purposes (e.g., from byte to char).

In JAVA, we can also type-cast objects from one type to another type. However, type-casting
objects is different from type-casting primitives in that the objects are not converted or
modified in any way. Instead, when we type-cast an object variable, it is simply restricted with
respect to the kinds of behaviors that it is capable of doing from then on in our program.

It is important to understand the type-casting of objects because JAVA often type-casts objects
automatically. Therefore, we must understand how to type-cast and when it is done
automatically.

The type-casting of objects is done the same way (i.e, with the round brackets) as with
primitives. Here are a few examples:

p = (Person)anEmployee;
c = (Customer)anArrayList.get(i);
b = (SavingsAccount)aBankAccount;

Notice that there is an object type (i.e., class name) within the round brackets.

When we type-cast an object to another type we are not modifying it in any way.
Rather, we are simply causing the object to be “treated” more generally from then on
in the program. As a result, the object will then be less flexible in that we can no longer
call some of the methods that we used to call on it. In a way, we are ignoring some of
the behavior that is available to the object.

This may sound strange, but we do this in real life. Lets consider a couple of examples.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 265 -

getName()
getAddress()

getPhoneNumber()

getEmployeeNumber()
getHourlyPay() getItemsPurchased()

getPurchaseHistory()

getDuties()
getSubordinates()

Manager

Employee Customer

Person

Object

Consider meeting your professor with his family outside of class, perhaps at a local shopping
mall. Likely, you would “treat” your professor as a general/normal Person ...
not as your "professor". So, you might ask him questions that you would ask
anyone such as: “Is this your family?” or “What are you shopping for today?”.
However, you would likely not ask him a question like “What kind of questions
will be on the final exam?” and hopefully you would not pull out a laptop and
ask him to help you debug the code on your assignment. So, in a sense, you
have type-casted the Professor to a more general Person object by
restricting the available behaviors to those that are applicable to more general
people, avoiding any professor-specific behavior.

As another example, consider an Apple … normally
you may polish, peel or eat it ... but in a food fight,
you may type-cast (i.e., treat) your apple as a general
throwable projectile. Then, the apple takes on
different behavior such as throw, catch, splatter,
etc... The fact is ... it is still an Apple, but it is being
treated differently. You may even type-cast other
objects to be projectiles such as grapes, sandwiches,
pineapples (ouch), chairs, etc.. a dangerous food
fight.

Now lets look at a real coding example. Consider the following class hierarchy of Employee,
Person, Manager and Customer objects with some instance methods belonging to each
class as shown:

Consider what happens when we create a single Employee object and then type-cast it to a
Person. Take note of the methods that are available for use and those which will not compile.
Note that we create 2 variables, yet both point to the same object …

COMP1005/1405 – Proper Coding Style Fall 2009

 - 266 -

…

“Earl”
address

name

employee variable

Employee object

person variable

phoneNumber

employeeNumber 10012

hourlyPay 8.50f

…

Person person;
Employee employee;

employee = new Employee("Earl");
employee.getName();
employee.getAddress();
employee.getPhoneNumber();
employee.getEmployeeNumber();
employee.getHourlyPay();

// now treat Earl like a person
person = (Person)employee;
person.getName();
person.getAddress();
person.getPhoneNumber();

// these two will not compile
person.getEmployeeNumber();
person.getHourlyPay();

// type-cast back and all is ok
((Employee)person).getEmployeeNumber();
((Employee)person).getHourlyPay();

You will notice that once the type-cast to (Person) occurs, we are no longer able to use the
getEmployeeNumber() and getHourlyPay() methods since they are Employee-specific
methods and we are now treating Earl as simply a Person. However, the person variable is
still pointing to Earl … the exact same object. When we type-cast the person variable back to
(Employee) again, and then try the same two methods, they work fine because we are now
treating Earl as an Employee again.

Notice what we are not able to do:

Employee employee;
Manager manager;
Customer customer;

employee = new Employee("Earl");
manager = (Manager)employee; // Type-cast is not allowed
customer = (Customer)employee; // Type-cast is not allowed

We are only allowed to use class type-casting to generalize an object. Therefore we can only
type-cast to classes up the hierarchy (e.g., Person and Object) but not down the hierarchy
(e.g., Manager) or across the hierarchy (e.g., Customer) from the original object class (e.g.,
Employee). In summary, objects may ONLY be type-casted to:

• a type which is one of its superclasses
• an interface which the class implements
• or back to their own class again

COMP1005/1405 – Proper Coding Style Fall 2009

 - 267 -

In the following example, an Employee object can only be type-casted to (or stored in a
variable of type) Employee, Person, Object or Insurable:

Attempts to type-cast to anything else will generate a ClassCastException. So Employees
CANNOT be type-casted to Manager, Customer, Company or Car. Such restrictions make
sense, after all, why would we "treat" a Manager as a Company or a Car.

Why would we want to do type-casting in the first place ? It seems that all we are doing is
restricting the object in some way. Would it not be better (i.e., more flexible) to simply allow
the object’s methods to be used at any time ? These are valid questions. However, there are
reasons for type-casting.

Perhaps the main advantage of type-casting is that it allows for
polymorphism which is the ability to use the same behavior for
objects of different types. That is, it allows different objects to
respond to the exact "same" messages (i.e., methods). The
result is that we have much less to remember when we go to use
the object. That is, by using polymorphism, we just need to
understand a few commonly used methods that all these objects
understand. For example:

• we can ask all Person objects what their name is. This is independent as to whether
or not they are instances of Employees, Managers, Customers etc...

• and, we can deposit to any BankAccount, independent of its type.

• all Objects understand the toString() method, so we do not have to remember
additional method names.

And so … by treating an object more generally (i.e., type-casting it), we are simplifying the way
that we will use the object by restricting its usage to a few well understood methods. As a
result, our code becomes easier to understand, more intuitive and quicker to write since the
programmer does not need to remember as many methods.

Employee Customer

Insurable

Object

Manager

Person

Company Car

COMP1005/1405 – Proper Coding Style Fall 2009

 - 268 -

Circle Triangle

Shape

Rectangle

Object

Some coding advantages arise through implicit or automatic type-casting. Sometimes JAVA
will automatically type-cast an object, even if we do not explicitly do so with the brackets ().
There are two main situations in which automatic type-casting occurs:

1. when we assign an object to a variable with a more general type:

Person person;
Employee employee;

employee = new Employee("Earl");
person = employee; // same as person = (Person)employee;

2. when we pass in the object as a parameter to a method which has a more general type:

Employee employee;

employee = new Employee("Earl");
doStandardHiringProcess(employee);
...

public void doStandardHiringProcess(Person p) {
 // employee object is type-casted to Person upon entering method
 ...
}

In both cases, you should be aware that an automatic type-cast has taken place. In fact, it
usually does not matter if you “know” that the type-casting is taking place, because the
compiler will tell you. However, it tells you this by means of a compile error … which is
somewhat unpleasant, as you well know. Also, sometimes the compiler message is not
straightforward to understand.

Let us now look at a simple example to see
how much we can reduce our code through
the use of automatic type-casting. Consider a
hierarchy of shape-related objects as shown
here. We can create a Circle, a Triangle
and a Rectangle and all three can be stored
into a variable of type Shape:

Shape s;
Circle c = new Circle(20);
Triangle t = new Triangle(10, 20, 30);
Rectangle r = new Rectange(10, 10, 20, 20);
s = c; // s points to object c
s = t; // s points to object t
s = r; // s points to object r

COMP1005/1405 – Proper Coding Style Fall 2009

 - 269 -

Notice that we did not make any explicit type-cast to Shape (although we
could have done so). Here we simply re-assigned variable s to have three
different values corresponding to three different types of objects. The
example code itself is pointless, but it helps us to see how we can use
automatic type-casting.

Assume now that we want to draw a shape and that the Circle, Triangle
and Rectangle classes all have an appropriate method for drawing themselves called draw ():

class Circle extends Shape {
 ...
 public void draw() { ... }
}

class Triangle extends Shape {
 ...
 public void draw() { ... }
}

class Rectangle extends Shape {
 ...
 public void draw() { ... }
}

Consider now our Shape variable s which can hold any kind of shape:

 Shape s = ...;

At any given time, we may not know exactly which kind of shape is currently stored in the
aShape variable. How then do we know which draw() method to call ? Well, we could check
the type of the object, perhaps with the instanceof keyword and then use some if statements
as follows:

if (s instanceof Circle)
 s.draw();

if (s instanceof Triangle)
 s.draw();

if (s instanceof Rectangle)
 s.draw();

However, looking at the code, it is clear that regardless of the type of shape we have, we just
need to call draw(). Since we called all of the methods draw(), this is an example of
polymorphism … that is … all shape objects understand the draw() method. For this to
compile though, there should also be a draw() method defined in the Shape class, which may
be blank.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 270 -

As a result, because of polymorphism and the explicit type-cast, we don't even need the IF
statements. Our code can be simplified to:

s.draw();

Incredible!!! What a reduction in code! But why does this work ? How does JAVA know
which draw() method to call ? Well, remember, whatever we store in the Shape variable s
does not change its type. The compiler will look at the kind of object that we put in there and
call the appropriate method accordingly by starting its method lookup in the class
corresponding to that object type (i.e., either Circle, Triangle or Rectangle, depending on
what was stored in s). As you can see, polymorphism can be quite powerful.

Now consider a Pen object which is capable of drawing shapes. We would like to use code
that looks something like this:

Pen aPen = new Pen();

aPen.draw(aCircle);
aPen.draw(aTriangle);
aPen.draw(aRectangle);

However, this is not so straight forward. We would have to define a draw() method in the Pen
class for each kind of shape in order to satisfy the compiler with regards to the particular type
of the parameter:

class Pen {
 ...
 public void draw(Circle aCircle) {
 // code that draws a Circle
 }
 public void draw(Triangle aTriangle) {
 // code that draws a Triangle
 }
 public void draw(Rectangle aRectangle) {
 // code that draws a Rectangle
 }
}

Since the drawing code is likely different for all 3 shapes we will need the 3 different pieces of
code to do the drawing. However, all of the shape-drawing code must appear here in the
Pen class. This is somewhat intuitive in regards to real life, since Pen’s draw shapes.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 271 -

However, if we had other drawing classes such as Pencil, Marker or Chalk, we would need to
go to all these classes and insert shape-specific code for each kind of shape. Even worse, if
we wanted to add shapes (e.g., Ellipse, Diamond, Parallelogram, Rhombus, etc..) then we
would have to go to the Pen, Pencil, Marker and Chalk classes to add the appropriate shape-
drawing code.

This is quite terrible since our code is not modular … the adding of one simple Shape class
would require us to recompile 4 other classes.

There must be a better way to do this!

The answer is to use a technique known as double-dispatching. When we call a method in
JAVA, this is the same notion as sending a message to the object. The idea behind double-
dispatching is to dispatch a JAVA message two times. Through double dispatching, we force
a second message to be sent (i.e., we call another method) in order to accomplish the task.

Before we do the double-dispatch, we need to adjust our code a little. We can simplify the
draw() methods in the Pen, Pencil, Marker and Chalk classes by combining them all in one
method. The new method will take a single parameter of type Shape. Hence, through type-
casting, we can pass in any subclass of Shape to the method. Here is the code …

class Pencil {
 ...
 public void draw(Circle
aCircle) {
 // code that draws a Circle
 }
 public void draw(Triangle
aTriangle
 // code that draws a
Triangle
 }
 public void draw(Rectangle
aRectangl

// code that draws a

class Chalk {
 ...
 public void draw(Circle
aCircle
 // code that draws a
Circle
 }
 public void draw(Triangle
aTriangle
 // code that draws a
Triangle
 }
 public void draw(Rectangle
aRectangle) {

class Marker {
 ...
 public void draw(Circle aCir
 // code that draws a
Circle
 }
 public void draw(Triangle
aTriangle) {
 // code that draws a
Triangle
 }
 public void draw(Rectangle
aRectangle) {

// code that draws a

class Pen {
 ...
 public void draw(Circle aCircle){
 // code that draws a Circle
 }
 public void draw(Triangle aTriangle){
 // code that draws a Triangle
 }
 public void draw(Rectangle aRectangle){
 // code that draws a Rectangle
 }

 public void draw(Ellipse anEllipse) {
 // code that draws an Ellipse
 }

}

class Ellipse {
 ...
}

COMP1005/1405 – Proper Coding Style Fall 2009

 - 272 -

class Pen {
 ...
 public void draw(Shape anyShape) {
 if (anyShape instanceof Circle)
 // Do the drawing for circles
 if (anyShape instanceof Triangle)
 // Do the drawing for triangles
 if (anyShape instanceof Rectangle)
 // Do the drawing for rectangles}
 }
}

At this point, we still have to decide how to draw the different Shapes. So then when new
Shapes are added, we still need to come into the Pen class and make changes. However,
we can correct this problem by shifting the drawing responsibility to the individual shapes
themselves, as opposed to it being the Pen's responsibility. This "shifting" (or flipping) of
responsibility is where the notion of double dispatching comes in. It is similar to the
expression "passing-the-buck" in English. In other words, we are saying: "I'm not going to
do it ... you do it yourself".

We perform double-dispatching by making a method in each of the specific Shape subclasses
that allows the shape to draw itself using a given Pen object:

class Circle extends Shape {
 ...
 public void drawWith(Pen aPen) { ... }
}

class Triangle extends Shape {
 ...
 public void drawWith(Pen aPen) { ... }
}

class Rectangle extends Shape {
 ...
 public void drawWith(Pen aPen) { ... }
}

COMP1005/1405 – Proper Coding Style Fall 2009

 - 273 -

Then, we do the double dispatch itself by calling the drawWith() method from the Pen class:

class Pen {
 ...
 public void draw(Shape aShape) {
 aShape.drawWith(this);
 }
}

Notice that the code is incredibly simple. When the Pen is asked to draw a Shape, it basically
says: "No way! Let the shape draw itself using ME!". That is the second message call, which
itself does the real drawing work. We would write a similar one-line method in the Pencil,
Chalk and Marker classes. In order for this to compile, you must also have a
drawWith(Pen aPen) method declared in class Shape even if that method does nothing.

Do you see the tremendous advantages here ? Regardless of the kind of Shape that we may
add in the future, we NEVER have to go into the Pen, Pencil, Marker or Chalk classes to
make changes. This code remains intact. Instead, we simply write a drawWith() method in
the new Shape class to do the drawing of itself. And who would know better how to draw the
shape than itself. The code is much more modular and has a nice clean separation.
Furthermore, the code is logical and easy to understand.

Type-casting also provides advantages when multiple unrelated classes implement the same
interface. Objects can be type-casted to an interface type, provided that the class implements
that interface. In the hierarchy below, we can type-cast any instances of Car, Company,
Customer, Employee or Manager to Insurable.

Employee Customer

Insurable

Object

Manager

Person

Company Car

COMP1005/1405 – Proper Coding Style Fall 2009

 - 274 -

Assume that Insurable has a method defined called getPolicyNumber() and that the Car
class has a getMileage() method. Notice the type-casting as follows:

Car jetta = new Car();
Insurable item = (Insurable)jetta;

item.getPolicyNumber(); // OK since Insurable
jetta.getMileage(); // OK (assuming it is a Car method)
item.getMileage(); // Compile Error
((Car)item).getMileage(); // OK now

Notice the compile error when calling getMileage() on item. Even though item is actually a
Car object, it has been type-casted to Insurable, and so only methods that are defined in the
Insurable interface can be used on it.

What is the advantage of type-casting to an interface ? Well, we can treat “seemingly
unrelated” objects the same way. This is often useful when we have a collection of such
items. Consider adding a variety of Insurable items to an ArrayList and then listing all of the
policies and totaling the amounts of all the policies:

float total = 0;
ArrayList<Insurable> insurableItems;

insurableItems = new ArrayList<Insurable>();
insurableItems.add(new Car("Porshce", "Carerra", "Red", 340));
insurableItems.add(new Customer("Guy Rich"));
insurableItems.add(new Company("Elmo’s Edibles", 2009));
insurableItems.add(new Employee("Jim Socks"));
insurableItems.add(new Manager("Tim Burr"));

System.out.println("Here are the policies:");
for (Insurable item: insurableItems) {
 System.out.println(" " + item.getPolicyNumber());
 total += item.getPolicyAmount();
}
System.out.println("Total policies amount is $" + total);

In the above example, all 5 unique objects are automatically type-casted to Insurable when
added to the ArrayList. Then when listing the policies, we simply use the common
getPolicyNumber() method (which must be defined in Insurable and implemented by all the
classes). Similarly, we total all the policy amounts by using the common getPolicyAmount()
method.

What would the code look like without having the Insurable interface ? Well, in order to store
the items in the same ArrayList we would still need to know what they have in common.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 275 -

Without the Insurable interface, the only other thing that all the objects have in common is that
they are subclasses of Object. So we would have to make an ArrayList<Object> of general
objects.

ArrayList<Object> insurableItems = new ArrayList<Object>();

This will affect the type defined for our FOR loop as well:

for (Object item: insurableItems) { ... }

Once we make these changes, then the compiler will prevent us from calling the
getPolicyNumber() or getPolicyAmount() methods because it assumes that the item
extracted in the FOR loop is a general Object … but general objects do not have such
methods. Therefore, we would be forced to check the type of every object, beforehand …
implying that we knew all the different types that would ever be placed in the ArrayList. Our
code would be longer, more complicated, messier and non-modular:

...
for (Object item: insurableItems) {
 if (item instanceof Car)
 System.out.println(" " + ((Car)item).getPolicyNumber());
 total += ((Car)item).getPolicyAmount();
 }
 else if (item instanceof Employee)
 System.out.println(" " + ((Employee)item).getPolicyNumber());
 total += ((Employee)item).getPolicyAmount();
 }
 else if (...)

 ...
}

Of course, an alternative to using the shared interface would be to have all insurable objects
extend (i.e., inherit from) a common abstract class, perhaps called Insurable as well. We
could then define the getPolicyNumber() and getPolicyAmount() methods as abstract
methods, forcing all subclasses to implement them. Then, we could use the same identical
code that worked with the Insurable interface.

The big disadvantage though of doing things this way, is that we are restricting the inheritance
of Insurable objects to be insurable-related. That means, we cannot take advantage of other
kinds of inherited attributes and behaviors.

Here is a diagram showing how we could get such shared behavior either with interfaces or
with abstract methods …

COMP1005/1405 – Proper Coding Style Fall 2009

 - 276 -

As another more tangible example, consider defining a Controllable interface for objects that
can be controlled via remote control. The interface may look as follows:

public interface Controllable {
 public void turnLeft();
 public void turnRight();
 public void moveForward();
 public void moveBackward();
}

abstract int getPolicyNumber();
abstract float getPolicyAmount();

int getPolicyNumber();
float getPolicyAmount();

Employee Customer

Insurable

Object

Manager

Person

Company Car

Employee Customer

Insurable

Manager

Person

Company Car

Object

Shared Behavior Using Abstract Methods

Shared Behavior Using a Common Interface

COMP1005/1405 – Proper Coding Style Fall 2009

 - 277 -

Now, consider a Robot object which is Controllable and implements this interface:

public class Robot implements Controllable {
 private int batteryLevel;
 private ArrayList<Behavior> behaviors;

 // These are the Controllable-related methods
 public void turnLeft() { ... }
 public void turnRight() { ... }
 public void moveForward() { ... }
 public void moveBackward() { ... }

 // There will likely also be some other methods
 // which are robot-specific
 public Behavior computeDesiredBehavior() { ... }
 public int readSensor(Sensor x) { ... }
 ...
}

Now, what about a ToyCar, or even a Lawnmower ? We can implement the
Controllable interface for each of these as well. In fact, suppose that we
want to set up a handheld remote control for Controllable objects. We can
then treat all of the objects (Robots, ToyCars, Lawnmowers, etc...) as a
single type of object ... a Controllable object:

public class RemoteControl {
 private Controllable machine;

 public RemoteControl(Controllable m) {
 machine = m;
 }

 public void handleButtonPress(int buttonNumber) {
 if (buttonNumber == 1)
 m.moveForward();
 else if (buttonNumber == 2)
 m.moveBackward();
 else if (buttonNumber == 3)
 m.turnLeft();
 else
 m.turnRight();
 }
 ...
}

Notice that the remote control constructor is supplied with any object that is of type
Controllable (i.e., a Robot, ToyCar, Lawnmower, etc..) Therefore, as can be seen in the
handleButtonPress() method, the code for controlling the machine from the remote is
independent of the type of object being controlled.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 278 -

This is a nice clean separation of code in that any new Controllable object that is developed in
the future can be controlled by this RemoteControl object. The programmer would not need
to make any changes to the RemoteContrrol class code whatsoever:

ToyPlane aPlane = new ToyPlane();
ToyBoat aBoat = new ToyBoat();

RemoteControl planeRemote = new RemoteControl(aPlane);
RemoteControl boatRemote = new RemoteControl(aBoat);

 9.4 Proper Testing

As you know now, object-oriented programming requires you to define
and implement many objects and to get them to work together in
meaningful ways. Often, the object class definitions that you write
can be re-used in many applications. It is therefore a good idea to
ensure that these objects are robust and that their methods provide
proper results. To do this, you should perform proper testing of your
objects.

Unfortunately, testing is often tedious. It is therefore poorly done and
ignored by many programmers. Companies that hire programmers
do not like laziness … and even worse … they hate code with bugs
or errors in it. To avoid disappointing your boss, possibly losing your job, and just to feel good
about the quality of your work … you should properly test your code.

Normally, it is not common to test your constructors nor get/set methods, but it is certainly
important to test methods that perform computations, search, sort, etc… For problems that
require numerical parameters, it is a good idea to test different values that could potentially
cause problems. For example, if we were to fully test the deposit() method for the
BankAccount class, we would want to test depositing the following amounts:

• 0.0 // deposit nothing
• 0.67 // a cents amount
• 100.57 // a typical positive amount
• 100.2234343 // an amount with many decimal places
• -34 // an invalid amount

We could create a simple test program to do this, making sure that we properly display the
results to confirm that they are correct as follows …

COMP1005/1405 – Proper Coding Style Fall 2009

 - 279 -

class BankAccountTestProgram {
 public static void main(String args[]) {
 BankAccount acc;

 acc = new BankAccount("Rusty Can");
 System.out.println("Account at start: " + acc);
 acc.deposit(0.0f);
 System.out.println("Account after depositing $0.00: " + acc);
 acc.deposit(0.67f);
 System.out.println("Account after depositing $0.67: " + acc);
 acc.deposit(100.57f);
 System.out.println("Account after depositing $100.57: " + acc);
 acc.deposit(100.2234343f);
 System.out.println("Account after depositing $100.2234343:" + acc);
 acc.deposit(-34);
 System.out.println("Account after depositing $-34: " + acc);
 }
}

Here is the output:

Account at start: Account #100000 with $0.0
Account after depositing $0.00: Account #100000 with $0.0
Account after depositing $0.67: Account #100000 with $0.67
Account after depositing $100.57: Account #100000 with $101.24
Account after depositing $100.2234343:Account #100000 with $201.46344
Account after depositing $-34: Account #100000 with $167.46344

Notice the careful use of System.out.println() in the program to provide a kind of “log”
showing exactly what we tested and the order that things were tested in. If you were to read
the output, you should be able to follow along as the deposit transactions were made to
confirm the correct balance each time.

From the output, you may notice a few things that you would like to change. First, you may
feel that the toString() method would be better if it displayed the money amounts properly with
2 decimal places. You can then change your code accordingly and re-run the test:

Account at start: Account #100000 with $0.00
Account after depositing $0.00: Account #100000 with $0.00
Account after depositing $0.67: Account #100000 with $0.67
Account after depositing $100.57: Account #100000 with $101.24
Account after depositing $100.2234343:Account #100000 with $201.46
Account after depositing $-34: Account #100000 with $167.46

Second, you may decide to disallow depositing negative amounts of money. You might do
this by changing the code to generate an exception or perhaps simply perform a check and
ignore deposits of negative amounts.

COMP1005/1405 – Proper Coding Style Fall 2009

 - 280 -

It really depends on the application and whether or not it is tied-in with the user interface. For
example, at a bank machine, it is impossible to deposit a negative amount of money because
the machine does not allow you to enter a negative sign. In such a situation, you may choose
simply to ignore the problem altogether, since it would never occur. However, a simple check
may be best, in case you port your code into a different program:

void deposit(float amount) {
 if (amount > 0)
 balance += amount;
}

Then we would re-run the same test code to see whether or not it worked:

Account at start: Account #100000 with $0.00
Account after depositing $0.00: Account #100000 with $0.00
Account after depositing $0.67: Account #100000 with $0.67
Account after depositing $100.57: Account #100000 with $101.24
Account after depositing $100.2234343:Account #100000 with $201.46
Account after depositing $-34: Account #100000 with $201.46

Now this was a simple test program which is often known as a “Test Unit”. In larger, more
complicated, real-word programs, in order to keep organized, it would be necessary to create
multiple simple test units that test particular aspects of the program. For example,

class BankAccountTestUnit1 {
 public static void main(String args[]) {
 BankAccount acc = new BankAccount("Rusty Can");

 System.out.println("Account before depositing $100.57: " + acc);
 acc.deposit(100.57f);
 System.out.println("Account after depositing $100.57: " + acc);
 }
}

class BankAccountTestUnit2 {
 public static void main(String args[]) {
 BankAccount acc = new BankAccount("Rusty Can");

 System.out.println("Account before withdrawing $100.57: " + acc);
 acc.withdraw(100.57f);
 System.out.println("Account after withdrawing $100.57: " + acc);
 }
}

COMP1005/1405 – Proper Coding Style Fall 2009

 - 281 -

In fact, it is often the case that we would like to perform transactions and test cases on a
particular bank account. In this case, we can breakdown the separate test units as test
methods in a larger test program:

class BankAccountTestUnit3 {
 static void deposit1(BankAccount acc) {
 System.out.println("Account before depositing $100.57: " + acc);
 acc.deposit(100.57f);
 System.out.println("Account after depositing $100.57: " + acc);
 }
 static void deposit2(BankAccount acc) {
 System.out.println("Account before depositing $0.01: " + acc);
 acc.deposit(0.01f);
 System.out.println("Account after depositing $0.01: " + acc);
 }
 static void withdraw1(BankAccount acc) {
 System.out.println("Account before withdrawing $100.57: " + acc);
 acc.withdraw(100.57f);
 System.out.println("Account after withdrawing $100.57: " + acc);
 }
 static void withdraw2(BankAccount acc) {
 System.out.println("Account before withdrawing $0.01: " + acc);
 acc.withdraw(0.01f);
 System.out.println("Account after withdrawing $0.01: " + acc);
 }

 public static void main(String args[]) {
 BankAccount acc;

 acc = new BankAccount("Rusty Can");
 deposit1(acc);
 deposit2(acc);
 withdraw1(acc);
 withdraw2(acc);

 acc = new BankAccount("Rusty Door", 10.00f);
 deposit1(acc);
 deposit2(acc);
 withdraw1(acc);
 withdraw2(acc);

 acc = new BankAccount("Rusty Pail", -200.00f);
 deposit1(acc);
 deposit2(acc);
 withdraw1(acc);
 withdraw2(acc);
 }
}

There are actually principles and guidelines for writing test cases for large systems. However,
it is beyond the scope of this course. You will learn more about proper testing next year.

