
 

Chapter 10 

Code Efficiency 
 

 

What is in This Chapter ? 
In this set of notes, we concentrate on aspects of programming that can make our code more 
efficient.   We begin by explaining how to exit our loops when we have found what we needed 
from them.   Then we discuss how to simplify our IF statements through a proper 
understanding of booleans.  We further discuss enumerated types and when they should be 
used.   Further, we discuss the notion of objects equality vs. identity and how understanding 
the differences can allow us to efficiently share objects without problems, thereby reducing 
store space and run time.  This topic brings up the need to write an equals() method to 
compare two objects.   Finally, we discuss arrays and how they can be used to write code that 
is a little more efficient than ArrayLists. 
 

 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 283 - 

 

 10.1 Exiting Loops Efficiently 

 
Consider a piece of code that loops through an ArrayList of Strings to find a specific item.  
We may need to do this, for example, when we look up someone’s name in a list to see 
whether or not they are registered.   Here is a simple method that does such a search: 

 
boolean isRegistered(String searchName) { 
    for (String name: registeredList) { 
        if (name.equals(searchName)) 
            return true; 
    } 
    return false; 
} 
 
 
Notice that  the method returns true the moment it finds the name that it is searching for.   In 
the case where the name is not in the list, then the FOR loop must iterate through the entire 
list, returning false afterwards.   This code is efficient, because it stops searching as soon as it 
finds what it is looking for.   However, consider now a method that contains this search loop, 
but then needs to do something afterwards: 
 
 
void doSomething(String searchName) { 
    boolean found = false; 
 
    for (String name: registeredList) { 
        if (name.equals(searchName)) 
            found = true; 
    } 
    if (found) 
        // do something ... 
    else  
        // do something else ... 
} 
 
 
This looping code is no longer time-efficient.   Do you know why ?   Imagine that the 
registeredList has 100,000 names in it.   Assume that the first name is the one that matches 
the searchName.   The FOR loop will still continue checking the remaining 99,999 names, 
even though it has already found what it is looking for! 
 
There is an efficient way to exit a loop when we know that we no longer need to keep 
checking.   The break keyword in JAVA will “break out of” (i.e., exit) the loop that it is inside of.   
Hence, we can insert into the above code a break statement as follows … 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 284 - 

 
void doSomething(String searchName) { 
    boolean found = false; 
 
    for (String name: registeredList) { 
        if (name.equals(searchName)) { 
            found = true;  
            break; 
        } 
    } 
    if (found) 
        // do something ... 
    else  
        // do something else ... 
} 
 
 
Another situation that we may want to exit from a loop is when a certain condition occurs.  For 
example, we may want to loop until the user enters a valid number: 

 
int    num = 0; 
boolean valid = false; 
 
while(!valid) {  
    System.out.println("Enter the percentage: ");  
    num = new Scanner(System.in).nextInt(); 
    if ((num >= 0) && (num <= 100)) 
        valid = true;  
    else  
        System.out.println("Invalid Entry");  
} 
 
 
In the code above, we use the valid boolean variable to indicate whether or not the number 
entered by the user was in the valid range of 0 to 100.   The while loop simply repeats until this 
boolean (known as a “flag”) changes its state from false to true.    

We can actually eliminate the need for the boolean variable by making use of the break 
statement as follows: 

 
int   num = 0; 
 
while(true) {  
    System.out.println("Enter the percentage: ");  
    num = new Scanner(System.in).nextInt(); 
    if ((num >= 0) && (num <= 100)) 
       break;  
    System.out.println("Invalid Entry");  
} 
 

Jumps out of loop. 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 285 - 

Notice that the code above uses a potentially infinite while loop.   However, the loop will exit 
when the break statement is reached, provided that the user enters a valid number.   This is 
equally efficient in terms of the number passes through the loop, but certainly the use of the 
break statement reduces and simplifies the code.  
 
In addition to the break statement (which exits a loop), JAVA offers a continue statement 
which does not exit the loop, but instead goes back to the top of the loop to do another 
iteration.   This is useful if we need to do something like ignore certain entries in a list.   For 
example, assume that we wanted to go through a list of people and process information for all 
people in the list that are 21 years of age or older: 
 
 
for (Person   p: people) { 
    if (p.age < 21) 
        continue; 
    else 
        // do some processing... 
} 
 
 
In the above code, the continue statement goes back and gets the next person, evaluating the 
loop again.   Of course, we could have done this without the continue as follows: 
 
 
for (Person   p: people) { 
    if (p.age >= 21) { 
        // do some processing... 
    } 
} 
 
 
However, sometimes the code is more complicated.  For example, assume that we want to 
ignore all people under 21 or whose health risk factor is below 50%: 
 
 
for (Person   p: people) { 
    if (p.age < 21) 
        continue; 
    else { 
        System.out.print("Adult found, computing health risk ..."); 
        float risk = p.calculateHealthRisk(); 
        if (risk < 50) { 
            System.out.println(" low risk, ignored."); 
            continue; 
        } 
        else { 
            System.out.println(" high risk, futher processing ..."); 
            // do some more processing... 
        } 
    } 
} 
 

Goes back to top 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 286 - 

Notice above that the continue statement may be used as many times as necessary to 
abandon this particular “round” through the loop and move onto the next person.   This saves 
processing time, which may be significant if the list of people is large. 
 
We can also add labels in JAVA to indicate which loop we want to get out of in the case of 
multiple/nested loops.  Consider searching a table with rows and columns of potentially large 
amounts of data at each (row/column) cell.   We may want to abandon the processing of a cell 
in the table if we find that further processing of the cell, row, or column is not needed: 
 
 
    rows: 
    for (int row=0; row<1000; row++) { 
 
        columns: 
        for (int col=0; col<1000; col++) { 
            ... 
            if (someConditionOccursThatMakesThisColumnUseless()) 
                continue columns; 
 
            if (someConditionOccursThatMakesThisRowUseless()) 
                continue rows;    // same as break columns; 
 
            if (someConditionOccursThatRequiresStoppingAltogether()) 
                break rows; 
            ... 
        } 
    } 
 

 

 

 10.2 Proper Use of Booleans 

 
Another aspect of proper coding style pertains to simplifying your code by 
making proper use of booleans.  Although the IF statement is quite easy to use, 
it is often the case that some students do not fully understand its logic when 
booleans are being used.  As a result, many students end up writing overly 
complex and inefficient code.   Also, the IF statement is often used when it is not 
even required !!    
 
To illustrate this, consider the following examples of "BAD" coding style.   Try to determine why 
the code is inefficient and how to improve it.   If it is your desire to be a good programmer, pay 
careful attention to these examples.  
   



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 287 - 

 
Example 1:  
 

boolean male = ...;  
 
if (male == true) {  
    System.out.println("male");  
else  
    System.out.println("female"); 
 

 
Here, the boolean value of male is already true or false, we can make use of this fact:  

 
boolean male = ...; 
 
if (male) {  
    System.out.println("male");  
else  
    System.out.println("female"); 
 

 

Example 2:  
 

boolean adult = ...;  
 
if (adult == false)  
    discount = 3.00;  
 

 
Here is a similar situation as above, but with a negated boolean.  Below is better code. 

 
boolean adult = ...; 
 
if (!adult) {  
    discount = 3.00; 
 

 

Example 3: 

boolean tired = ...; 
 
if (tired)  
    result = true;  
else  
    result = false;  
 
 
Above, we are actually returning the identical boolean as tired.   No if statement is 
needed:   



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 288 - 

 
boolean tired = ...; 
 
result = tired; 
 

 

Example 4:  
 

boolean discount; 
  
if ((age < 6) || (age > 65))  
    discount = true;  
else  
    discount = false; 
 

 
The discount is solely determined by the age.  No if statement is needed: 
 
boolean discount; 
 
discount = (age < 6) || (age > 65); 
 

 

Example5:  
 

boolean fullPrice;  
 
if ((age < 6) || (age > 65))  
    fullPrice = false;  
else  
    fullPrice = true; 
 
 
Just like above, we do not need the if statement: 
 
boolean fullPrice;  
 
fullPrice = !((age < 6) || (age > 65)); 
 

 
or … 
 
boolean fullPrice;  
 
fullPrice = (age >= 6) && (age <= 65); 
 

 
 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 289 - 

 

 10.3 Enumerated Types 

 
Consider writing a program that evaluates certain code depending on the day of the week: 
 
 
String dayOfWeek = ...; 
 
if (dayOfWeek.equals("SATURDAY") || dayOfWeek.equals("SUNDAY")) 
    // do something ... 
else 
    // do something else ... 
 
 
Each time we make a String comparison using the equals() method, this takes time because 
JAVA needs to compare the characters from the strings.   However, comparing integers is 
fast.   So we could define some integer constants for the days of the week, store our day of 
the week as an integer and then and simply compare the constants using == as follows: 
 
 
static final int MONDAY = 1; 
static final int TUESDAY = 2; 
static final int WEDNESDAY = 3; 
static final int THURSDAY = 4; 
static final int FRIDAY = 5; 
static final int SATURDAY = 6; 
static final int SUNDAY = 7; 
 
... 
... 
int dayOfWeek = ...; 
 
if ((dayOfWeek == SATURDAY) || (dayOfWeek == SUNDAY)) 
    // do something ... 
else 
    // do something else ... 
 
 
This comparison is very fast since it merely compares two integers as opposed to a sequence 
of characters.   We should use this strategy whenever we have a set of fixed constant values 
such as the days of the week, planets in the solar system, choices on a menu, command-line 
flags, etc.. 
 

Rather than clutter up our code with these constants, we can define them in their own publicly 
accessible class as follows … 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 290 - 

 
public class Day { 
    public static final int MONDAY = 1; 
    public static final int TUESDAY = 2; 
    public static final int WEDNESDAY = 3; 
    public static final int THURSDAY = 4; 
    public static final int FRIDAY = 5; 
    public static final int SATURDAY = 6; 
    public static final int SUNDAY = 7; 
} 
 
 
Then we can make use of this class in our code: 
 
... 
int dayOfWeek = ...; 
 
if ((dayOfWeek == Day.SATURDAY) || (dayOfWeek == Day.SUNDAY)) 
    // do something ... 
else 
    // do something else ... 
 
 
JAVA provides a useful keyword called enum that can be used for this exact situation.   The 
enum keyword can be used in place of the class keyword to define a set of constant symbols 
such as the days of the week.   It makes the code much simpler: 
 
 
public enum Day { 
    MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY 
} 
 
 
I’m sure you will agree that this is much shorter than the class definition.   In fact, we can 
define as many of these enumerated types as we would like … each in their own file: 
 
public enum Gender { 
    MALE, FEMALE 
} 
 
public enum Size { 
    TINY, SMALL, MEDIUM, LARGE, HUGE 
} 
 
public enum Direction { 
    NORTH, NORTH_EAST, EAST, SOUTH_EAST, SOUTH,  
    SOUTH_WEST, WEST, NORTH_WEST 
} 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 291 - 

These would be saved, compiled and then used in our programs just as we would use any 
other class or interface definition.   Once the type is defined, we can even define variables with 
these types, assigning them one of the values in the list specified in the enum declaration: 
 
 
Gender     gender; 
Size       orderSize; 
Weekday    payday; 
Direction  homePosition; 
 
gender = Gender.MALE; 
orderSize = Size.MEDIUM; 
payday = Weekday.FRIDAY; 
homePosition = Direction.NORTH_WEST; 
 
 
Notice that the variable type matches the enum type.  Also notice that when assigning a value 
to the variable, we must again specify the enum type followed by the dot . operator and then 
by one of the fixed constant values. 
 
If we wanted to, we could have defined the enum types right inside of our class (but then they 
may not be declared public and would only be useable within that class’s code).   It would 
however, allow us to reduce the number of classes that we write.   To use the enum types in 
your own class definition, you should place them directly under the class definition (or above 
it).   You are not allowed to place the declarations in the executable (i.e., running) part of your 
program (i.e., in the main method, nor in other methods).  Note that when you display an enum 
type value (as in the code above), the symbol value is printed out just as it appears in the type 
declaration.  
  
 
public class EnumTestProgram { 
 
    enum Gender {MALE, FEMALE}; 
    enum Size {TINY, SMALL, MEDIUM, LARGE, HUGE}; 
    enum Weekday {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,  
                  SATURDAY, SUNDAY}; 
    enum Direction {NORTH, NORTH_EAST, EAST, SOUTH_EAST,  
                    SOUTH, SOUTH_WEST, WEST, NORTH_WEST}; 
 
    public static void main(String args[]) { 
        Gender     gender = Gender.MALE; 
        Size       orderSize = Size.MEDIUM; 
        Weekday    payday = Weekday.FRIDAY; 
        Direction  homePosition = Direction.NORTH_WEST; 
 
        System.out.println(gender);  // displays MALE 
        System.out.println(orderSize);  // displays MEDIUM 
        System.out.println(payday);  // displays FRIDAY 
        System.out.println(homePosition); // displays NORTH_WEST 
    } 
} 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 292 - 

 

jimsCar 

 

 

dadsCar 

 

 

jimsCar 

 

dadsCar 

 

 

jimsCar 
 

 

dadsCar 

 

jimsCar is 
identical & equal 

to dadsCar 

jimsCar is 
equal but not identical 

to dadsCar 

jimsCar is 
not equal & not identical 

to dadsCar 

 10.4 Equality Vs. Identity 

 
From childhood, all of us have been taught to share with one another.   Not only does this 
instill proper moral values in us, but it also saves on costs (e.g., one toy can be shared by 
many children, instead of buying them each their own).  Sharing is even a good idea when 
programming.   Since created objects use up memory space, it is often desirable to share 
objects (or information) whenever possible.    

Since objects can be shared, it is important to know whether or not the same object is being 
used in two or more places.   This brings up the notion of equality vs. identity.   In JAVA, two 
objects are considered to be equal if they are of the "same type" and have the "same attribute 
values".  That is, if the values of the instance variables of the two objects are the same, then 
the objects are equal.   Two objects are identical if and only if they are the exact same 
object.    

For example, here is how equality and identity differ in the situations where Jim and his dad 
share a family car, buy two cars of the same kind or buy two different kinds of cars: 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 293 - 

So the word identical means the "exact same object" in JAVA (i.e., the two objects point to the 
same memory location).   Note that this is different from the English 
language definition of identity. 
 
Equality actually is very subjective.   For example, if you lose a 5 
year old child's teddy bear and then buy her/him a new one of the 
same type, the child will likely agree that they are not equal.  In 
JAVA, we will spend a lot of time defining our own objects, so we 
are the ones that will decide what it actually means for two of our 
objects to be equal.   

Consider this code which creates three people: 

Person  p1, p2, p3; 
 
p1 = new Person("Hank", "Urchif", 19, 'M', false); 
p2 = new Person("Hank", "Urchif", 19, 'M', false); 
p3 = new Person("Holly", "Day", 67, 'F', true); 
 
 
If we want to ask whether or not two of these people are equal, intuitively we would use the == 
operator as follows: 
 
 
if (p1 == p2)  
    System.out.println("p1 and p2 are the same two people"); 
else 
    System.out.println("p1 and p2 are different people"); 
 
if (p1 == p3)  
    System.out.println("p1 and p3 are the same two people"); 
else 
    System.out.println("p1 and p3 are different people"); 
 
 
But if we evaluate the following code, we would get the following result: 

 
p1 and p2 are different people  
p1 and p3 are different people 
 

 
Why is p1 not equal to p2 ?   Clearly both people are equal since they have the same 
firstName, lastName, age, gender and retirement status.   However, in JAVA, when the == 
operator is used with objects, it means "identity" ... not "equality".   That is, the == operator 
determines whether or not the two variables are pointing to the exact same object.  Here is a 
diagram showing how the variables are related to the objects … 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 294 - 

 
 

Notice that p1 and p2 are pointing to different objects, although the objects have the same 
attribute values.   As it turns out, whenever we make a new instance of an object, we actually 
get a unique object every time, thus that new object can only be identical to itself.    
 
So what kind of coding situation would allow (p1 == p2) to return true ?   Well, we would have 
to have code that allows the two variables to refer to the same object as follows:  
 

 
 

“Urchif” 

“Hank”  
lastName 

firstName 

p1 
 Person object 

p2 
 

age 19

gender 'M'

retired false

 

“Urchif” 

“Hank”  
lastName 

firstName  

p1 
 Person object 

“Day” 

“Holly”  
lastName 

firstName  

p3 
 Person object 

age 19 

gender 'M' 

retired false 

age 67 

gender 'F' 

retired true 

“Urchif” 

“Hank” 

 
lastName

firstName 

Person object 

age 19

gender 'M'

retired false

p2



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 295 - 

We can do this with the following code: 
 
Person  p1, p2; 
 
p1 = new Person("Hank", "Urchif", 19, 'M', false); 
p2 = p1; 
 
 
Now p1 is identical to p2 and so (p1 == p2) will return true. 
 
The above code is just an example to illustrate how to make two variables point to the same 
object.   A more realistic example may be to copy over the contents of an ArrayList.   For 
example, consider the following method which creates and returns a copy of an ArrayList 
containing Person objects: 

 
public ArrayList<Person> makeCopy(ArrayList<Person> people) { 
    ArrayList<Person>   newList = new ArrayList<Person>(); 
 
    for(Person  p: people) 
       newList.add(p); 
 
    return newList; 
} 
 
 
Consider testing this method as follows: 

 
ArrayList<Person>   p, copy; 
 
p = new ArrayList<Person>(); 
p.add(new Person("Hank", "Urchif", 19, 'M', false)); 
p.add(new Person("Holly", "Day", 67, 'F', true)); 
p.add(new Person("Bobby", "Socks", 8, 'M', false)); 
 
copy = makeCopy(p); 
 
 
Here is what we accomplish with this code … 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 296 - 

 
 
Notice that when we add the Person objects to the copy, they are actually shared between the 
two ArrayLists. This is known as a shallow copy.  Normally this is not a problem when writing 
code as long as we know that the items are shared.   Consider what happens here: 

 
Person    last; 
ArrayList<Person> p, copy; 
 
p = new ArrayList<Person>(); 
p.add(new Person("Hank", "Urchif", 19, 'M', false)); 
p.add(new Person("Holly", "Day", 67, 'F', true)); 
p.add(last = new Person("Bobby", "Socks", 8, 'M', false)); 
 
copy = makeCopy(p); 
 
copy.set(1, new Person("Jen", "Tull", 42, 'F', false)); 
copy.get(0).setFirstName("Steve"); 
copy.remove(last); 
 
 
Notice the use of the set() method for ArrayLists.  This method will replace the object in the 
list at the given index (specified by the first parameter .. .in this case 1) with the new object 
(given as the second parameter … in this case Jen).   When replacing Holly with Jen in the 
copy list, the original list remains unchanged.   However, when modifying Hank from the copy, 
then the original list is affected since the object that they were sharing has now been altered.  
Finally, when we remove Bobby from the copy, the original remains unchanged. 

    copy 

 

0 1 2

 firstName 

“Hank” 

… etc …
 firstName

“Holly”

… etc …
 firstName

“Bobby” 

… etc …

    
p 

 

0 1 2



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 297 - 

  Here is the diagram showing what happened: 

 

So you can see, by replacing, adding or removing items to a copied list, the original list 
remains intact.   However, when we access a shared object from the copy and go into it to 
make changes to its attributes, then the original list will be affected.    

To make a more separated copy, we could make what is known as a deep copy of the 
ArrayList so that the Person objects are not shared between them (i.e., each list had their 
own copies of the Person objects), then we would have to create new Person objects with the 
same attributes as follows: 

 
public ArrayList<Person> makeCopy(ArrayList<Person> people) { 
    ArrayList<Person>   newList = new ArrayList<Person>(); 
 
    for(Person  p: people) { 
        Person  x = new Person(); 
        x.firstName = p.firstName; 
        x.lastName = p.lastName; 
        x.age = p.age; 
        x.gender = p.gender; 
        x.retired = p.retired; 
        newList.add(x); 
 
    return newList; 
} 

  

   copy 

 

0 1

 firstName 

“Steve” 

… etc …
 firstName

“Holly”

… etc …
 firstName

“Bobby”

… etc …

  
p 

 

0 1 2

 
 firstName

“Jen”

… etc …



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 298 - 

Here is what the ArrayLists would look like if we did copy = makeCopy(p); 

 

Notice that the Strings are still shared!   To make a truly separated copy of the list, we would 
need to copy the strings as well like this: 

x.firstName = new String(p.firstName); 
x.lastName = new String(p.lastName); 

In fact, in order to make a truly deep copy, we would need to ensure that all objects of all 
attributes are themselves copied. 

You should now understand what it means for two objects to be identical and you should 
understand how to make two or more variables point to identical objects as well as how to 
make sure that they point to unique objects by copying them.    

Recall, that we use == to determine whether or not two objects are identical: 

Person  p1 = new Person("Hank", "Urchif", 19, 'M', false); 
Person  p2 = new Person("Hank", "Urchif", 19, 'M', false); 
 
if (p1 == p2)  
    System.out.println("p1 and p2 are the same two people"); 
else 
    System.out.println("p1 and p2 are different people"); 

    copy 

 

0 1 2

 firstName 

“Hank” 

… etc …
 firstName 

“Holly” 

… etc …
 firstName

“Bobby” 

… etc …

   
p 

 

0 1 2

 firstName 

… etc …
 firstName 

… etc …
 firstName

… etc …



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 299 - 

If we want to ask whether or not these two people are equal, instead of identical, we replace 
the == operator with a call to equals() as follows: 
 
 
Person  p1, p2; 
 
p1 = new Person("Hank", "Urchif", 19, 'M', false); 
p2 = new Person("Hank", "Urchif", 19, 'M', false); 
 
if (p1.equals(p2)) 
    System.out.println("p1 and p2 are equal"); 
else 
    System.out.println("p1 and p2 are not equal"); 
 
 
As it turns out, all objects understand the equals(Object x) method in JAVA.   That is, there is 
an equals() method defined in the Object class that all objects will inherit.   However, in the 
above code, the call to equals() still returns false, even though all of the attributes are the 
same for both Person objects!!   Why ?   Well, here is what the code does inside the equals() 
method that all objects inherit: 

 
public boolean equals(Object x) {  
   return this == x;  
} 
 
 
So, when we call equals(),JAVA simply returns true if the objects are identical and false 
otherwise.   So, the default equals() method checks whether two objects are identical, not just 
equal.  But this does not help us at all since it is no different from simply using the == operator.  

As a standard programming convention, when we define our own objects, we should also 
define our own equals() method for that object which overrides the default equals() method 
from the Object class.   Many existing JAVA classes already have a different implementation 
of the equals() method that properly checks for equality.    

Let us look at how to write an equals() method for our Person object.   First of all, the equals() 
method MUST be written in the Person class, it must be public, it must return a boolean and 
it must take a single Object parameter as follows: 

 
public class Person { 
    ... 
    public boolean equals(Object x) {  
        ... 
    } 
    ... 
} 
 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 300 - 

If we make a mistake in the method’s signature (e.g., we make a mistake in the return type, 
name or parameter), then the method will not be called by JAVA and it will use the old (i.e., 
default) one instead of ours.    
 
So, now what do we write in the method ?    Well, it must return true if the objects are equal 
and false otherwise.   Notice that the parameter is of type Object.   That means, we can pass 
in ANY type of object whatsoever.   So, we can actually ask if Person objects are equal to 
other Person objects or Car objects or Apple objects or String objects etc...   

 
Person  p1; 
Apple  a; 
Car   c; 
 
p1 = new Person("Hank", "Urchif", 19, 'M', false);  
a = new Apple("Red");  
c = new Car("Red", 1991, "Porsche", "959"); 
 
if (p1.equals(a)) {...}   // false 
if (p1.equals(c)) {...}  // false 
if (p1.equals("Hank")) {...}  // false 
  
 
Of course, it should always return false if the parameter object is not a Person object.   We 
would need to first check to make sure that the object passed in is a Person.   We can do this 
by using the instanceof keyword in JAVA: 

public boolean equals(Object x) {  
    if (!(x instanceof Person))  
        return false; 
    ... 
} 
 
Notice that the 'o' in "of" is not capitalized.  The instanceof keyword actually checks whether 
or not the object on the left (i.e., the x parameter in this case) is the same type as a particular 
class which is specified on the right (i.e., Person in this case).   As it turns out, objects that 
belong to a subclass of Person will also work here, so you should be aware of that if you feel 
that special subclasses of person should not be considered equal for some reason. 
 
The next step is to type-cast the parameter object into a Person object.   This will tell the 
JAVA compiler that we would like to treat the incoming object as a Person object.   That is, we 
want to call methods for it from the Person class: 
 
public boolean equals(Object x) {  
    if (!(x instanceof Person)) 
        return false; 
 
    Person  p = (Person)x; 
    ... 
} 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 301 - 

At this point, we have ensured that the incoming object is indeed a Person object and we now 
have a variable (i.e., p) that represents this Person. We now just need to decide what we think 
it means for two Person objects to be equal.   To do this, we need to look at the attributes of 
our Person object.   Our Person objects all have an firstName, lastName, age, gender and 
retired status.   The equality of two people depends on the application.    

For example, if we are searching for a particular person in a list, it may be sufficient just to 
confirm that the first and last names are equal to the one we are looking for.  However, in 
some cases, two people may have the same name but different ages and retired status (e.g., 
John Doe, Jane Doe).   In that case we should check for more information.   As a rule of 
thumb, it may be best to simply check all attributes for equality. 

So in our method, we check each attribute and only return true if all attributes are equal: 

 
public boolean equals(Object x) {  
    if (!(x instanceof Person)) 
        return false; 
 
    Person  p = (Person)x; 
    if ((this.firstName.equals(p.firstName)) && 
        (this.lastName.equals(p.lastName)) && 
        (this.age == p.age) && 
        (this.gender == p.gender) && 
        (this.retired == p.retired)) 
       return true; 
    else 
       return false; 
} 
 
 
Notice that we check each attribute from the receiver Person (i.e., this, which represents the 
Person for which we call the equals() method) to make sure that it is equal to the attribute 
from the parameter Person (i.e., p).    We use && to ensure that ALL attributes are equal 
before we return true.   Notice that the age, gender and retired attributes are all checked 
using the == operator.   This is because they are primitives, not objects.   The firstName and 
lastName attributes are compared using the equals() method because they are String objects 
and == would only check identity … which is not what we want.   Of course, we want to reduce 
and simplify the code above by noticing the poor use of booleans in the if statement: 

public boolean equals(Object x) {  
    if (!(x instanceof Person)) 
        return false;  
 
    Person  p = (Person)x; 
    return ((this.firstName.equals(p.firstName)) && 
            (this.lastName.equals(p.lastName)) && 
            (this.age == p.age) && 
            (this.gender == p.gender) && 
            (this.retired == p.retired));  
} 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 302 - 

Assuming that the above method is implemented within the Person class, then the following 
code will now return "p1 and p2 are equal": 

 
Person  p1, p2; 
 
p1 = new Person("Hank", "Urchif", 19, 'M', false); 
p2 = new Person("Hank", "Urchif", 19, 'M', false); 
 
if (p1.equals(p2)) 
    System.out.println("p1 and p2 are equal"); 
else 
    System.out.println("p1 and p2 are not equal"); 
 
 
Now you should understand how to write an equals() method for your own objects.    

The equals() method is often called automatically by JAVA when you are searching for 
something in a collection.   For example, consider searching for a particular Person in an 
ArrayList of Person objects.   Assume that we wrote a method that takes an 
ArrayList<Person> as well as a particular Person to search for within the list.   The method 
may look as follows: 
 
 
boolean contains(ArrayList<Person> people, Person personToLookFor) { 
    for (Person  p: people) { 
       if (p.equals(personToLookFor)) 
            return true; 
    } 
    return false; 
} 
 
 
Notice that the code makes use of the equals() method to find a Person object in the list that 
matches the one we are looking for.   As it turns out, the standard contains() method for 
ArrayLists does exactly this.   Hence, for example, if we wanted to write a method that added 
a particular person p to the people list, as long as p was not already there, we could do it as 
follows: 
 
 
void add(ArrayList<Person> people, Person p) { 
    if (!people.contains(p)) 
        people.add(p);  
} 
 
 
If we do not write an equals() method in the Person class (i.e., we inherit the default one from 
Object), then the above method will allow multiple people to be added to the list with the same 
attribute values.    
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 303 - 

However, if we write our own equals() method, then no two people in the people list will have 
the same attributes … they will all be unique.   Hence, it is important for you to understand that 
other methods (such as contains()) will make use of the equals() method, whether or not you 
created one.   The results will be different. 
 

 

 10.5 Arrays 

 
We have already discussed a collection class called an ArrayList which is capable of storing 
multiple objects.   The objects are all stored in order and we can access or modify the contents 
of the list through various methods by referring to the objects inside it or by their integer index 
location. 

 

 
 

In JAVA, there is a more restrictive kind of list called an Array. In general, arrays are more 
efficient in terms of run-time usage, but they are less flexible in the way that they are used.   
We will discuss here the similarities and differences between arrays and ArrayLists.    
 
Like an ArrayList, an array is a collection of elements (i.e., data types or objects) which are 
stored in a particular order and accessible by their index.  However, unlike ArrayLists, the 
elements of an array must ALL be of the same type (e.g., all Strings, ints, Person objects, 
Car objects, etc…)  That is, all the elements must have a common type.   In real life, an array 
could represent a grouped collection of similar "things" such as: 

• a list of names 
• a list of grades 
• a set of hockey cards 
• a shelf of books 
• etc.. 

 

    

an ArrayList myList 

 

"Hello"
25   

0 1 2 3 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 304 - 

   

an Array 
names 

"Bob" "Jen" 

0 1 2 

"Max"

   

   
 

an Array 
cars 

 
0 1 2 3 

     

   
 

friends 

 
0 1 2 3 4

an Array 

In the pictures to the left, there are 
three array variables called names, 
cars and friends.   Array variables are 
declared just like any other variable, 
except that we need to include square 
brackets [ ] alongside the type as 
follows: 
 
   String[]       names; 
   Car[]          cars; 
   Person[]       friends; 
 
The type can either be an object (as the 
three above variables show) or a data 
type.   So we can make arrays of ints, 
double, booleans etc..: 

   int[]          sickDays; 
   double[]       weights; 
   boolean[]      retired; 

Alternatively, we could put the brackets 
after the variable's name: 

   int          sickDays[];  
   double       weights[]; 
   boolean      retired[];  
   String       names[];  
   Car          cars[];  
   Person       friends[]; 

 
 
All of the above 6 variables here are object variables in that they all point to an Array object.   
Looking at the code above, it may seem like sickDays, weights and retired each store "a 
data type", but actually they each store "an array of data types".    So the following two lines of 
code have very different meanings: 

 
int      sickDays;  // variable holds a single int primitive 
int[]    sickDays;  // variable holds an array object that contains ints 

 
Now these array variable declarations simply reserve space to store array objects, but it 
actually does not create the array object.   So, the following code would print out null because 
the variable is not yet initialized: 

 
int[]   sickDays; 
System.out.println(sickDays); 

 
Notice above that we did not use the square brackets [] when you are using the array variable 
in your code ... you only use the brackets when we define the variable.    



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 305 - 

0 0 0 

an Array sickDays 

0 1 2

null 
 

an Array cars 

0 1 2 3

 

friends 

0 1 2 3 4

an Array 

null null null 

null null null null null 

To use this variable (which is just like any other variable), we must give it a value.  What kind 
of value should it have ?  An array of course.  But it may surprise you to know that we do not 
call a constructor to create Array objects.   Instead, we use a special (similar) syntax as 
follows: 

new Person[10] 
 
This will create an array that can hold up to 10 Person objects.  Unlike ArrayLists, arrays are 
fixed size.   That means we cannot enlarge them later.   So if you are unsure how many items 
we want to put into the array, you should chose an over-estimate (i.e., a maximum bound) for 
its size.   Here are some examples of how to give a value to our 6 array variables by creating 
some fixed-size arrays: 
 
int[]          sickDays;  
double[]       weights;  
String[]       names;  
Car[]          cars;  
Person[]       friends; 
 
sickDays = new int[30];   // creates array that can hold 30 ints 
weights = new double[100];// creates array that can hold 100 doubles  
names = new String[3];    // creates array that can hold 3 String objects 
rentals = new Car[500];   // creates array that can hold 500 Car objects 
friends = new Person[50]; // creates array that can hold 50 Person objects 

 
Once we create arrays using the code above, the arrays themselves simply reserve enough 
space to hold the number of objects (or data types) that you specified.   However, it does not 
create any of those objects!!   Newly created arrays are filled with:  

• 0 for numbered arrays 
• character 0 (i.e., the null character) for char arrays 
• false for boolean arrays 
• null for Object-type arrays 

So, when you create an array to 
hold objects, only the array 
itself is created.  The array is 
NOT initialized with new objects 
in each location. 
 
Hence, the following code 
produces the result shown in 
the picture  
 
int[]   sickDays; 
Car[]   cars; 
Person[]   friends; 
 
sickDays = new int[3]; 
cars = new Car[4]; 
friends = new Person[5]; 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 306 - 

 

 

cars 

0 1 2 3 

   

 
 

friends 

0 1 2 3 4 

12 65 34

sickDays 

0 1 2 

null null 

null null

Notice that the arrays which hold object types are simply filled with null values … there are no 
Car objects nor Person objects created in the above code. 
 
At any time, if we would like to ask an array how big it is (i.e., its size or capacity), we can 
access one of its special attributes called length as follows: 
 
System.out.println(sickDays.length);  // displays 3 
System.out.println(cars.length);  // displays 4 
System.out.println(friends.length);  // displays 5 

 
Note that the length attribute is NOT a method (i.e., notice that there are no brackets).   Also, 
the length attribute ALWAYS returns the exact same size value for the array regardless of the 
number of elements that you put into the array.    
 
How do we put things into the array ?   Values are actually assigned to an array using the = 
operator just as with other variables.   However, since the array holds many objects together, 
we must also specify the location in the array that we want to access or modify.   As with 
ArrayLists, the index numbering starts with 0 for the first item and (length -1) is the index of 
the last item.    
 
Here is an example of how to fill in our arrays: 

  
int[]    sickDays; 
Car[]  cars; 
Person[] friends; 
 
sickDays = new int[3]; 
cars = new Car[4]; 
friends = new Person[5]; 
 
sickDays[0] = 34;  
sickDays[1] = 12; 
sickDays[2] = 65; 
cars[1] = new Car("Red"); 
cars[3] = new Car("Blue"); 
friends[0] = new Person(...); 
friends[1] = new Person(...); 
friends[2] = new Person(...); 
 

The picture to the right shows the result from 
this code.   Notice that we can insert an object 
at any location in the array, provided that the 
index is valid.   
 
The following two lines of code would produce 
an ArrayIndexOutOfBoundsException: 
 

sickDays[3] = 87;   // Error: index 3 is out of range 
cars[10] = new Car("Yellow"); // Error: index 10 is out of range 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 307 - 

A very common mistake made when learning to use arrays is to declare the array variable, but 
forget to create the array and then try to use it.    For example, look at this code:  
 

Person[]  friends = new Person[100];  
System.out.println(friends[0].firstName); // Error! 
System.out.println(friends[0].age);  // Error! 
System.out.println(friends[0].gender);  // Error! 

 
Although the above code does create an array that can hold Person objects, it actually never 
creates any Person objects.   Hence, the array is filled with 100 values of null.   The code will 
produce a NullPointerException because friends[0] is null here and we are trying to access 
the attributes of a null object.   We are really doing this:  null.firstName   … which makes no 
sense. 

How do we remove something from an array ?   Well, as with a program 
recorded on a videotape, we cannot actually remove the item but we can 
overwrite it (i.e., replace it) with a new value.  

So, to delete information from an array, you usually replace its value with 0 or null.   The array 
will stay the same size, but the data will be deleted.   For example, to remove the sick day at 
position 2 in sickDays from our previous example, we might replace it with 0, -1, or anything 
else that tells us that the data is invalid.   To remove the blue car from the cars array, we 
would replace it with null.   

sickDays[2] = -1; 
cars[3] = null; 

 
Here is the result: 
 

 
 
What happened to the blue car ?   In the array, the Car object has been replaced by null, and 
so the array is no longer pointing to the Car object.   Therefore, the Car object is garbage 
collected (unless some other object is still pointing to it).    
 

 

 
 

an Array cars 

0 1 2 3 

12 -1 34 

an Array sickDays 

0 1 2 

null null null



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 308 - 

Lets get back to adding items to an array.   Since arrays are of fixed size and cannot grow, 
what do we do if we run out of room ?   For example, the code below will keep asking for 
integers from the user, adding them to the array as they come in until -1 is entered: 
 
 
int  aNumber = 0; 
int  currentIndex = 0; 
int[]    numbers = new int[5]; 
Scanner keyboard = new Scanner(System.in); 
 
// Get contents for the array, one number at a time until -1 entered 
while(aNumber != -1) { 
    aNumber = keyboard.nextInt(); 
    if (aNumber != -1)  
        numbers[currentIndex++] = aNumber; 
} 
 
// Now print the array out 
for(int i=0; i<currentIndex; i++) 
    System.out.println(numbers[i]+", "); 
 
 
 
Notice that each number coming in is added to the array according to the currentIndex 
position, which is incremented each time a valid number arrives.   When the loop has 
completed, currentIndex represents the number of integers that were entered and added to 
the array.   Can you foresee any problems with the above code ?    
 
When attempting to add the 6th number to the array, an ArrayIndexOutOfBoundsException 
will occur, because the array has only been declared to hold 5 integers.   The array has filled 
up and we must either stop adding to it or make more room for the new numbers.    
 
However, we cannot make more room with the existing array.  Rather, a new bigger array must 
be created and all elements must be copied into the new array.   But how much bigger ?   Its 
up to us.    
 
Here is how we could change the code to increase the array size by 5 each time it gets full … 
 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 309 - 

 
int  aNumber = 0; 
int  currentIndex = 0; 
int[]    numbers = new int[5]; 
Scanner keyboard = new Scanner(System.in); 
 
// Get contents for the array, one number at a time until -1 entered 
while(aNumber != -1) { 
    aNumber = keyboard.nextInt(); 
    if (aNumber != -1) { 
        // If at max capacity, make new array and copy contents over 
        if (currentIndex == numbers.length) { 
            int[] temp = new int[numbers.length + 5]; 
            for(int i=0; i<numbers.length; i++) 
                temp[i] = numbers[i]; 
            numbers = temp; 
        } 
        numbers[currentIndex++] = aNumber; 
    } 
} 
// Now print the array out 
for(int i=0; i<currentIndex; i++) 
    System.out.println(numbers[i]+", "); 
 
 
 
Of course, we can increase by any amount each time, perhaps even doubling the size.  In a 
similar situation, it may be that less space is needed in the array, for example if elements are 
removed from the array and we don’t need as much space anymore.   In this case, we could 
similarly copy the elements over into a smaller array and discard the original array. 
 
Assigning individual values to an array like this can be quite tedious, especially when the array 
is large.   Sometimes, in fact, we already know the numbers that we want to place in an array 
(e.g., we are using some fixed table or matrix of data that is pre-defined).   In this case, to save 
on coding time JAVA allows us to assign values to an array at the time that we create it.  This 
is done by using braces { }.   In this case, neither the new keyword, the type nor the size of 
the array are specified.   Instead, we supply the values on the same line as the declaration of 
the variable.   Here are some examples: 
 

int[]       ages = {34, 12, 45};  
double[]    weights = {4.5, 23.6, 84.124, 78.2, 61.5};  
boolean[]   retired = {true, false, false, true};  
String[]    names = {"Bill","Jennifer","Joe"};  
char[]      vowels = {'a', 'e', 'i', 'o', 'u'}; 

Here, the array’s size is automatically determined by the number of values that you specify 
within the braces, each value separated by a comma.   So the sizes of the arrays above are  3, 
5, 4, 3 and 5, respectively.   

Objects may also be created and assigned during this initialization process as follows … 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 310 - 

Person[]   people = {new Person("Hank", "Urchif", 19, 'M', false), 
                     new Person("Don", "Beefordusk", 23, 'M', false), 
                     new Person("Holly", "Day", 67, 'F', true), 
                     null, 
                     null};  

 
Here we are actually creating three specific Person objects and inserting them into the first 
three positions in the people array.   Notice that you can even supply a value of null, for 
example if you wish to leave some extra space at the end for future information.   Hence the 
people array above has a capacity (i.e., length) of 5. 
 
As an example, here is an interesting method that uses an array to convert an integer 
representing a day of the week into the name of the day of the week.  For example, the 3rd 
day of the week is Tuesday (assuming that we start the week on a Sunday): 

 
public static String dayOfWeek(int dayNumber) { 
    String days[] = {"Sunday", "Monday", "Tuesday", "Wednesday", 
                     "Thursday", "Friday", "Saturday"}; 
    if ((dayNumber < 1) || (dayNumber > 7)) 
        return "Invalid"; 
 
    return days[dayNumber-1]; 
} 
 
 
Do you understand why we are subtracting 1 from the dayNumber ?   I hope so.   To use this 
method, we would have to write it in some class and then call it ... although the details have 
been left out here. 

Lets look at some simple examples that use arrays to make sure that you understand how to 
use them.   First of all, given an array of integers, here is a program to find their average: 
 
 
int  nums[] = {23, 54, 88, 98, 23, 54, 7, 72, 35, 22}; 
int  sum = 0;  
 
for (int i=0; i<nums.length; i++) 
    sum += nums[i]; 
 
System.out.println("The average is " + sum/(double)nums.length);  
 
 

Recall that we need to divide by a float or double in order to get a more accurate result, 
hence the type cast to double here.   If we would have left out the type cast, the result would 
have discarded the fractional portion of the computation, giving only a truncated integer result. 
 
What if we were to create a method to compute the average of an arbitrary array ?   We would 
need to place this code in some class, perhaps called ArrayCalculator as follows … 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 311 - 

 
public class ArrayCalculator { 
    static double calculateAverage(int[] nums) { 
        int sum = 0; 
        for (int i=0; i<nums.length; i++) 
            sum += nums[i]; 
        return sum/(double)nums.length; 
    } 
} 
 
 
Notice that the method takes an int array as a parameter and returns a double as the result.   
Here is a test program that we can use to try out the method: 

 
public class ArrayCalculatorTestProgram { 
    public static void main(String args[]) { 
        int ages[] = {23, 54, 88, 98, 23, 54, 7, 72, 35, 22}; 
        System.out.print("The average is "); 
        System.out.println(ArrayCalculator.calculateAverage(ages)); 
    } 
} 
 
 
Notice that when passing an array as a parameter, we DO NOT use the square brackets:  
 

arrayCalc.calculateAverage(ages[]);     // WRONG!! 
 
and we DO NOT specify the type either:  
 

arrayCalc.calculateAverage(int ages[]); // WRONG!! 
 
Here is another example. Given an array of 10 numbers, how do we write a method that can 
find the maximum ?   The method should take in an int array parameter and return an int as 
the result: 

 
public static int findMaximum(int[] nums) { 
    int max = 0; 
    for (int i=0; i<nums.length; i++) { 
        if (nums[i] > max)  
            max = nums[i]; 
    } 
    return max; 
} 
 
 
Notice that the code goes through the numbers in the array and simply replaces the value of 
the max variable with any number that it finds to be larger.   It is important to note that the 
return must occur after the loop, that is, after you have checked all of the numbers.   A 
common mistake by students is to put the return in the IF statement (as shown below) but this 
would not work.   Do you know why ? 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 312 - 

 
public static int findMaximum(int[] nums) { 
    int max = 0; 
    for (int i=0; i<nums.length; i++) { 
        if (nums[i] > max)  
            return nums[i];   // WRONG! 
    } 
} 
 
In the above example, the initial value for max was set to 0.   Could you foresee any situations 
in which this could pose a problem ?    

Well, if all of the integers are negative, then the code will return 0 as the maximum, which is an 
error.  If however, you are certain that at least one number is positive or 0, then the code will 
work fine.  However, a safer way to do this is to set the value of max initially to 
Integer.MIN_VALUE, which is a constant which represents the smallest int that can be 
stored in JAVA.  Another option is to set max to be the first element in the array (i.e., 
nums[0]), which would always produce correct results as well. 
 
Let us write one more method.   This time we will write one that modifies the elements of an 
array.   We will write a method, called scale() that will take an array of integers and multiply 
them by the some scale factor, which will also be passed as a parameter. 

 
public static void scale(int[] nums, int factor) { 
    for (int i=0; i<nums.length; i++) 
        nums[i] = nums[i] * factor; 
} 
 
 
The method is quite straight forward.   Each element of the array is simply replaced by that 
same element multiplied by the factor.   As a result, the original array that was passed in would 
now be changed.   We can actually simplify the code a little by making use of the “for each” 
loop that we used with ArrayLists.  Here is how we could use it on the calculateAverage() 
and findMaximum() methods … 

public static double calculateAverage(int[] nums) { 
    int sum = 0; 
    for (int i:  nums) 
        sum += i; 
    return sum/(double)nums.length; 
} 
 
public static int findMaximum(int[] nums) { 
    int max = 0; 
    for (int i: nums) { 
        if (i > max)  
            max = i; 
    } 
    return max; 
} 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 313 - 

Notice that i now represents the number from the array, NOT its index!   Interestingly, we 
cannot use the “for each” loop for the scale() method: 
 
 
static void scale(int[] nums, int factor) { 
    for (int i: nums) 
        i = i * factor; // WRONG!  
} 
 
 
Why not ?   This will not work because  i  is a temporary loop variable that points to the item in 
the array.   The code above simply re-assigns the value of i * factor to the loop variable i, but 
does not affect the element from the array.   So, we would need to use the regular “for” loop 
where i represents the index, so that we can do nums[i] = nums[i] * factor; 

 
Multi-Dimensional Arrays 
 
JAVA allows arrays of multiple dimensions (2 or more).   2-dimensional (i.e., 2D) arrays are 
often used to represent data tables, game boards, mazes, pictures, terrains, displays etc…    
 

    
 

    
 
In these cases, the information in the array is arranged by rows and columns.  Hence, to 
access or modify something in the table/grid, we need to specify which row and column the 
item lies in.   Therefore, instead of using just one index as with simple arrays, a 2D array 
requires that we always supply two indices … row and column. 
 
Therefore, in JAVA, we specify a 2D array by using two sets of square brackets [ ] [ ].   
Therefore, our variables should have both sets of brackets when we declare them: 
 

int[][] schedule; // a 2D array 
int[]  list;  // a 1D array 
int  age;  // not an array, just an int 

 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 314 - 

Also, when creating the arrays, we must specify the number of rows as well as the number of 
columns.   Remember, the arrays cannot grow, so these should represent the maximum 
number of rows and columns that we want to have: 
 

schedule = new int[10][10];  // table with 10 rows and 10 columns 
image = new Pixel[1024][768]; // a 1024x768 pixel image 
parkingLot = new Car[12][4]; // 12x4 lot that can hold 48 cars 
 

Usually, intuitively, the first length given represents the number of rows while the second 
represents the number of columns, but this need not be the case.   For example, the following 
line of code creates an array that can hold 15 items: 
 
 grid1 = new int[3][5];  
 
You can think of it as being either a 3x5  
array or a 5x3 array.   It is up to you as  
to whether the 3 is the rows or the 5 is 
the rows.   You just need to make sure 
that you are consistent.    
 
As with regular arrays, the elements each have a location.  However, 
for 2D arrays, the location is a pair of indices instead of a single index. 
The rows and columns are all numbered starting with 0.  Therefore, we access and modify 
elements from the array by specifying both row and column indices as follows: 
 

schedule[0][0] = 34;    // row 0, column 0 
schedule[0][1] = 15;    // row 0, column 1 
schedule[1][3] = 26;    // row 1, column 3 

 
Sometimes, there is confusion, for example, when we create  
grids with (x,y) coordinates because when dealing with  
coordinates we always specify x before y.   But visually,  
x represents the number of columns in a grid, while y  
represents the number of rows … hence (x,y) corresponds  
to (columns,rows) which seems counter-intuitive. 
 

points[0][0] = 34;    // (x,y)=(0,0) = row 0, column 0 
points[0][1] = 15;    // (x,y)=(0,1) = row 1, column 0 
points[1][3] = 26;    // (x,y)=(1,3) = row 3, column 1 

 

5 columns 

3 
rows 

5 
rows 

3 columns 

x 

y 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 315 - 

As an example that uses 2D arrays, let us write code that will create and display the following 
maze: 
 

 
We could represent this maze by using an array of ints indicating whether or not there is a wall 
at each location in the array (i.e., 1 for wall, 0 for open space).   Notice how we can do this by 
using the quick array declaration with the braces { } as we did with 1D arrays: 

int[][]      maze = {{1,1,1,1,1,1,1,1,1,1}, 
                     {1,0,0,1,0,0,0,0,0,1}, 
                     {1,0,1,1,1,0,1,1,0,1}, 
                     {1,0,1,0,0,0,1,0,0,1}, 
                     {1,0,1,0,1,1,1,0,1,1}, 
                     {1,0,0,0,1,0,1,1,1,1}, 
                     {1,0,1,0,0,0,0,0,0,1}, 
                     {1,1,1,1,1,1,1,1,1,1}}; 
 

Notice that there are more brace characters than with 1D arrays.  Each row is specified by its 
own unique braces and each row is separated by a comma.  In fact, each row is itself a 1D 
array.   Interestingly, the length field of a multi-dimensional array returns the length of the first 
dimension only.  Consider this code: 
 

int[][] ages = new int[4][7];  
System.out.println(ages.length);  // displays 4, not 28! 

In fact, we can actually access the separate arrays for each dimension:  

 int[][] ages = new int[4][7];  
 int[] firstArray = ages[0];          // gets 1st row from ages array 
 System.out.println(ages.length * firstArray.length);  // displays 28 

Therefore, as you can see, a 2D array is actually an array of 1D arrays.    

Iterating through a 2D array is similar to a 1D array except that we usually use 2 nested for 
loops.   Here is some code to print out the maze that we created above: 

for (int row=0; row<8; row++) { 
    for (int col=0; col<10; col++) 
        System.out.print(maze[row][col]); 

0 1 2 3 4 5 6 7 8 9 

0 
1 
2 
3 
4 
5 
6 
7 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 316 - 

    System.out.println(); 
} 

And here would be the result: 

 
1111111111 
1001000001 
1011101101 
1010001001 
1010111011 
1000101111 
1010000001 
1111111111 
 

 
Of course, we can make the maze look however we want.   Here is how we can display a 
different wall character.  Notice how we switched the loops (just for fun) to use the “for each” 
style: 

for (int[] row:  maze) { 
    for (int item:  row) { 
        if (item == 1)                  
            System.out.print('*'); 
        else 
            System.out.print(' '); 
    } 
    System.out.println(); 
} 
 

And here would be the result: 

 
********** 
*  *     * 
* *** ** * 
* *   *  * 
* * *** ** 
*   * **** 
* *      * 
********** 
 

 
 
 
 
PRACTICE:  Assuming that you set one location in the  
array to 2 and another location to 3, could you write a  
program that would determine how long it would take  
(i.e., steps) to get from 2 to 3 ? 
 

1 1 1 1 1 1 1 1

1 0 0 0
1 0 1 0

1 0 1 1
0 0 0 0

1 1 1 1
1 2 0 1
1 0 1 1
1 0 1 0
1 0 1 0

1 1 1 1
0 0 0 0
1 0 1 1
0 0 1 0
1 1 1 3

0 1 2 3 4 5 6 
1

1
0

1
0
0
0
1

1

1
1

1
1
1
1
1

7 8 9 

0 
1 
2 
3 
4 
5 
6 
7 



COMP1005/1405 – Code Efficiency  Fall 2009 
 

 - 317 - 

Interestingly, you can create even higher dimensional arrays.  For example, an array as follows 
may be used to represent a cube of colored blocks: 

int cube[][][] = new Color[3][3][3];  
 
Notice that there are now 3 sets of square brackets.  Using 3D arrays works the same way as 
with 2D arrays except that we now use 3 sets of brackets and 3 indices when referring to the 
elements of the array. 
 
3-dimensional arrays are often used in the real world to model various objects: 
 

    
 

 


