

Chapter 11

Saving and Loading Information

What is in This Chapter ?
In computer science, all data eventually gets stored onto storage devices such as hard drives,
diskettes, USB flash drives, CDs, DVDs, etc... This set of notes explains how to save
information from your program to a file that sits on one of these backup devices. It also
discusses how to load that information back into your program. The saving/loading of data
from files can be done using different formats. We discuss here the notion of text vs. binary
formats. Note as well that the techniques presented here also apply to sending and receiving
information from Streams (e.g., networks). We will look at the way in which Stream objects
are used to do data I/O in JAVA. We will also look at how to use ObjectStreams to read/write
entire objects easily and finally investigate the File class which is useful for querying files and
folders on your computer.

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 319 -

 11.1 Introduction to Files and Streams

File processing is very important since eventually, all data must be stored externally from the
machine so that it will not be erased when the power is turned off. Here are some of the terms
related to file processing:

In JAVA, we can store information from our various objects by extracting their attributes and
saving these to the file. To use a file, it must be first opened. When done with a file, it MUST
be closed. We use the terms read to denote getting information from a file and write to
denote saving information to a file. The contents of a file is ultimately reduced to a set of
numbers from 0 to 255 called bytes.

In JAVA, files are represented as Stream objects. The idea is that
data “streams” (or flows) to/from the file … similar to the idea of
streaming video that you may have seen online. Streams are
objects that allow us to send or receive information in the form of
bytes. The information that is put into a stream, comes out in the
same order.

It is similar to those scrolling signs where the letters scroll from right
to left, spelling out a sentence:

Field
A group of characters that
reflects the value of a
single object attribute
(e.g., name, phone
number, age, gender).

Record
A composition of several
related fields. (e.g.,
represents group of all
attribute values for a
particular object such as
a single employee’s info).

File
A group of related records
(e.g., all employees in a
company, products at a
store)

Database
A group of possibly
unrelated files (e.g., police
database containing all
criminals, DMV records,
phone records)

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 320 -

Streams are actually very general in that they provide a way to send or receive information to
and from:

• files
• networks
• different programs
• any I/O devices (e.g., console and keyboard)

When we first start executing a JAVA program, 3 streams are automatically created:

• System.in // for inputting data from the keyboard
• System.out // for outputting data to the screen
• System.err // for outputting error messages to the screen

In fact, there are many stream-related classes in JAVA. We will look at a few and how they
are used to do file I/O. The various Streams differ in the way that data is “entered into” and
“extracted from” the stream. As with Exceptions, Streams are organized into different
hierarchies. JAVA contains four main stream-related hierarchies for transferring data as binary
bytes or as text bytes:

It is interesting to note that there is no common Stream class from which these main classes
inherit. Instead, these 4 abstract classes are the root of more specific subclass hierarchies.
A rather large number of classes are provided by JAVA to construct streams with the desired
properties. We will examine just a few of the common ones here.

Typically I/O (i.e., input/output) is a bottleneck in many applications. That is, it is very time
consuming to do I/O operations when compared to internal operations. For this reason,
buffers are used. Buffered output allows data to be collected for output before it is actually
sent to the output device. Only when the buffer gets full does the actual data get sent. This
reduces the amount of actual output operations, but each output operation would usually send
more data.

InputStream

Object

OutputStream Reader Writer

Binary Text (e.g., ASCII)

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 321 -

(Note: The flush() command can be sent to buffered streams in order to empty the buffer and cause the data to
be sent "immediately" to the output device. Input data can also be buffered.)

By the way, what is System.in and System.out exactly ? We can determine their respective
classes with the following code:

System.out.print("System.in is an instance of ");
System.out.println(System.in.getClass());
System.out.print("System.out is an instance of ");
System.out.println(System.out.getClass());

This code produces the following output:

System.in is an instance of class java.io.BufferedInputStream
System.out is an instance of class java.io.PrintStream

So we have been using these streams for displaying information and getting information from
the user through the keyboard. We will now look at how the classes are arranged in the
different stream sub-hierarchies.

 11.2 Reading and Writing Binary Data

First, let us examine a portion of JAVA's OutputStream sub-hierarchy:

FileOutputStream

Object

OutputStream

…

DataOutputStream

ObjectOutputStream FilterOutputStream

PrintStream …

Output bytes
to a file

System.out is
one of these

Output primitives
to a file

Output objects
to a file

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 322 -

The streams in this sub-hierarchy are responsible for outputting binary data. That is, data
which is in the form of bytes or data types. OutputStreams have a write() method that allows
us to output a single byte of data at a time.

To open a file for binary writing, we can create an instance of FileOutputStream using one of
the following constructors:

new FileOutputStream(String fileName);
new FileOutputStream(String fileName, boolean append);

The first constructor opens a new file output stream with that name. If one exists already with
that name, it is overwritten (i.e., erased). The second constructor allows you to determine
whether you want an existing file to be overwritten or appended to. If the file does not exist, a
new one with the given name is created. If the file already exists prior to opening then the
following rules apply:

• if append = false the existing file's contents is discarded and the file will be overwritten.
• if append = true the new data to be written to the file is appended to the end of the file.

We can output simple bytes to a FileOutputStream by using the write() method, which takes
a single byte (i.e., a number from 0 to 255) as follows:

FileOutputStream out;

out = new FileOutputStream("myFile.dat");
out.write('H');
out.write(69);
out.write(76);
out.write('L');
out.write('O');
out.write('!');
out.close();

This code outputs the characters HELLO! to a file called "myFile.dat". The file will be
created (if not existing already) in the current directory/folder (i.e., the directory/folder that your
JAVA program was run from). Alternatively, you can specify where to create the file by
specifying the whole path name instead of just the file name as follows:

FileOutputStream out;
out = new FileOutputStream("F:\\My Documents\\myFile.dat");

Notice the use of "two" backslash characters within the String constant (because the backslash
character is a special character which requires it to be preceded by a backslash ... just like \n
is used to create a new line).

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 323 -

Using this strategy, we can output either characters or positive integers in the range from 0 to
255. Notice in the code that we closed the file stream when done. This is important to
ensure that the operating system (e.g., Windows 7) releases the file handles correctly).

When working with files in this way, two exceptions may occur:

• opening a file for reading or writing may generate a java.io.FileNotFoundException
• reading or writing to/from a file may generate a java.io.IOException

You should handle these exceptions with appropriate try/catch blocks:

import java.io.*;

public class FileOutputStreamTestProgram {
 public static void main(String args[]) {
 try {
 FileOutputStream out;
 out = new FileOutputStream("myFile.dat");
 out.write('H'); out.write(69);
 out.write(76); out.write('L');
 out.write('O'); out.write('!');
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

Since all streams are a part of the java.io package we need to import them.

The code above allows us to output any data as long as it is in byte format. This can be
tedious. For example, if we have the integer 7293901 and we want to output it, we have a few
choices:

• break up the integer into its 7 digits and output these digits one at a time (very tedious)
• output the 4 bytes corresponding to the integer itself (recall that an int is stored as 4

bytes)

Either way, these are not fun. Fortunately, JAVA provides a DataOutputStream class which
allows us to output whole primitives (e.g., ints, floats, doubles) as well as whole Strings to a
file! Here is an example of how to use it to output information from a BankAccount object …

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 324 -

import java.io.*;

public class DataOutputStreamTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 DataOutputStream out;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 out = new DataOutputStream(new FileOutputStream("myAcc.dat"));
 out.writeUTF(aBankAccount.getOwner());
 out.writeInt(aBankAccount.getAccountNumber());
 out.writeFloat(aBankAccount.getBalance());
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

The DataOutputStream acts as a “wrapper” class around the FileOutputStream. It takes
care of breaking our primitive data types and Strings into separate bytes to be sent to the
FileOutputStream.

There are methods to write each of the primitives as well as Strings:

writeUTF(String aString)
writeInt(int anInt)
writeFloat(float aFloat)
writeLong(long aLong)
writeDouble(double aDouble)

writeShort(short aShort)
writeBoolean(boolean aBool)
writeByte(int aByte)
writeChar(char aChar)

The output from a DataOutputStream is not very nice to look at (i.e., it is in binary format).
The myAcc.dat file would display as follows if we tried to view it with Windows Notepad:

�Rob Banks † BÈ

This is the binary representation of the data, which usually takes up less space than text files.
The disadvantage of course, is that we cannot make sense of the data if we try to read it with
our eyes as text. However, rest assured that the data is saved properly.

Let us now examine how we could read that information back in from the file with a different
program. To start, we need to take a look at the InputStream sub-hierarchy as follows …

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 325 -

Notice that it is quite similar to the OutputStream hierarchy. In fact, its usage is also very
similar. We can read back in the byte data from our file by using FileInputStream now as
follows:

import java.io.*;

public class FileInputStreamTestProgram {
 public static void main(String args[]) {
 try {
 FileInputStream in = new FileInputStream("myFile.dat");
 while(in.available() > 0)
 System.out.print(in.read() + " ");
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (EOFException e) {
 System.out.println("Error: EOF encountered, file may be corrupt");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Notice that we now use read() to read in a single byte from the file. Notice as well that we can
use the available() method which returns the number of bytes available to be read in from the
file (i.e., the file size minus the number of byte as already read in).

Also, notice now that we are forced to handle an EOFException which can occur if the file is
corrupted and the end of the file character is reached before the number of available bytes has
been read in.

FileInputStream

Object

InputStream

…

DataInputStream

ObjectInputStream FilterInputStream

BufferedInputStream …

Input bytes
from a file

System.in is
one of these

Input primitives
from a file

Input objects
from a file

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 326 -

Recall that the order in which you catch your exceptions is important! Catch the most specific
ones first. Since IOException is a superclass of EOFException, it must go afterwards.

The code reads the data back in from our file (i.e., the characters HELLO!) and outputs their
ASCII (i.e., byte) values to the console:

72 69 76 76 79 33

Try changing in.read() to (char)in.read() (i.e., type-cast the byte to a char) and see what
happens...

That was fairly simple ... but what about getting back those primitives ? You guessed it! We
will use DataInputStream:

import java.io.*;

public class DataInputStreamTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 DataInputStream in;

 in = new DataInputStream(new FileInputStream("myAccount.dat"));

 String name = in.readUTF();
 int acc = in.readInt();
 float bal = in.readFloat();

 aBankAccount = new BankAccount(name, bal, acc);
 System.out.println(aBankAccount);
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (EOFException e) {
 System.out.println("Error: EOF encountered, file may be corrupt");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Notice that we re-create a new BankAccount object and "fill-it-in" with the incoming file data.
Note, that in order for the above code to compile, we would need to write a public constructor
for the BankAccount class that takes an owner name, balance and account number (i.e.,
previously, in our BankAccount class, we had no way of specifying the accountNumber
since it was set automatically) …

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 327 -

BankAccount(String initName, float initBal, int num) {
 ownerName = initName;
 accountNumber = num;
 balance = initBal;
}

As with the output streams, there are methods to read in the other primitives:

String readUTF()
int readInt()
float readFloat()
long readLong()
double readDouble()

short readShort()
boolean readBoolean()
int readByte()
char readChar()

 11.3 Reading and Writing Text Data

Here is the Writer class sub-hierarchy which is used for writing text data to a stream:

Notice that there are 3 main classes we will use for writing characters, lines of characters
and general objects to a text file. When objects are written to the text file, the toString()
method for the object is called and the resulting String is saved to the file.

We can output (in text format) to a file using simply the print() or println() methods with the
PrintWriter class as follows …

BufferedWriter

Object

Writer

…PrintWriter OutputStreamWriter

Output lines of
text to a file

Output objects to a
file using toString()

FileWriter

Output characters
to a file

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 328 -

import java.io.*;

public class PrintWriterTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 PrintWriter out;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 out = new PrintWriter(new FileWriter("myAccount2.dat"));

 out.println(aBankAccount.getOwner());
 out.println(aBankAccount.getAccountNumber());
 out.println(aBankAccount.getBalance());
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

Wow! Outputting text to a file is as easy as outputting it to the console window ! But what
does it look like ? If we opened the file with Windows Notepad, we would notice that the result
is a “pleasant looking” text format:

Rob Banks
100000
100.0

In fact, we can actually write any object using the println() method. JAVA will use that
object's toString() method. So if we replaced this code:

 out.println(aBankAccount.getOwner());
 out.println(aBankAccount.getAccountNumber());
 out.println(aBankAccount.getBalance());

with this code:

 out.println(aBankAccount);

we would end up with the following saved to the file:

Account #100000 with $100.0

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 329 -

BufferedReader

Object

Reader

…

FileReader

InputStreamReader

Input lines of text
from a file

Input characters
from a file

So it actually does behave just like the System.out console. We would need to be careful
though, because you will notice that the BankAccount’s toString() method in the example
above did not display the owner’s name. So the file does not record that owner’s name and
therefore we could never read that name back in again … it would be lost forever. Notice as
well how the PrintWriter wraps the FileWriter class just as the DataOutputStream wrapped
the FileOutputStream.

It is also easy to read back in
the information that was
saved to a text file. Here is
the hierarchy of classes for
reading text files

Notice that we can only read
in characters and lines of
characters from the text file,
but NOT general objects.
We will see later how we
can re-build read-in
objects.

Most of the time, we will make
use of the BufferedReader
class by using the readLine() method as follows:

import java.io.*;

public class BufferedReaderTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 BufferedReader in;

 in = new BufferedReader(new FileReader("myAccount2.dat"));
 String name = in.readLine();
 int acc = Integer.parseInt(in.readLine());
 float bal = Float.parseFloat(in.readLine());

 aBankAccount = new BankAccount(name, bal, acc);
 System.out.println(aBankAccount);
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (EOFException e) {
 System.out.println("Error: EOF encountered, file may be corrupt");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 330 -

Note the use of "primitive data type" wrapper classes to read data types. We could have used
the Scanner class here to simplify the code:

import java.io.*;
import java.util.*; // Needed for use of Scanner and NoSuchElementException

public class BufferedReaderTestProgram2 {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;

 Scanner in = new Scanner(new FileReader("myAccount2.dat"));
 String name = in.nextLine();
 int acc = in.nextInt();
 float bal = in.nextFloat();
 aBankAccount = new BankAccount(name, bal, acc);
 System.out.println(aBankAccount);
 in.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for reading");
 } catch (NoSuchElementException e) {
 System.out.println("Error: EOF encountered, file may be corrupt");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Notice here that we now catch a NoSuchElementException instead of an EOFException.
This is how the Scanner detects the end of the file. The main advantage of using this
Scanner class is that we do not have to use any wrapper classes to convert the input strings
to primitives.

 11.4 Reading and Writing Whole Objects

So far, we have seen ways of saving and loading bytes and characters to a file. Also, we
have seen how DataOutputStream/DataInputStream and PrintWriter/BufferedReader
classes can make our life simpler since they deal with larger (more manageable) chunks of
data such as primitives and Strings. We also looked at how we can save a whole object (i.e.,
a BankAccount) to a file by extracting its attributes and saving them individually.

Now we will look at an even simpler way to save/load a whole object to/from a file using the
ObjectInputStream and ObjectOutputStream classes:

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 331 -

These classes allow us to save or load entire JAVA objects with one method call, instead of
having to break apart the object into its attributes. Here is how we do it:

import java.io.*;

public class ObjectOutputStreamTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 ObjectOutputStream out;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 out = new ObjectOutputStream(new FileOutputStream("myAcc.dat"));
 out.writeObject(aBankAccount);
 out.close();

 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot write to file");
 }
 }
}

Wow! It is VERY easy to write out an object. We simply supply the object that we want to
save to the file as a parameter to the writeObject() method. Notice that the
ObjectOutputStream class is a wrapper around the FileOutputStream. That is because
ultimately, the object is reduced to a set of bytes by the writeObject() method, which are then
saved to the file. The process of breaking down the object into bytes is called serialization.
Thus, when an object is saved to a file, it is automatically de-constructed into bytes, these
bytes are then saved to a file, and then the bytes are read back in later and the object is re-
constructed again. This is all done automatically by JAVA, so we don’t have to be too
concerned about it.

In order to be able to save an object to a file using the ObjectOutputStream, the object must
be serializable (i.e., able to be serialized…or reduced to a set of bytes). To do this, we need
to inform JAVA that our object implements the java.io.Serializable interface as follows …

Object

OutputStream

ObjectOutputStream

InputStream

ObjectInputStream

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 332 -

public class BankAccount implements java.io.Serializable {
 ...
}

This particular interface does not actually have any methods within it that we need to
implement. Instead, it merely acts as a “flag” that indicates your permission for this object to
be serialized. It allows a measure of security for our objects (i.e., only serializable objects
are able to be broken down into bytes and sent to files or over the network).

Most standard JAVA classes are serializable by default and so they can be saved/loaded
to/from a file in this manner. When allowing our own objects to be serialized, we must make
sure that all of the “pieces” of the object are also serializable. For example, assume that our
BankAccount is defined as follows:

public class BankAccount implements java.io.Serializable {
 Customer owner;
 float balance;
 int accountNumber;
 ...
}

In this case, since owner is not a String but a Customer object, then we must make sure that
Customer is also Serializable:

public class Customer implements java.io.Serializable
{
 ...
}

We would need to then check whether Customer itself uses other
objects and ensure that they too are serializable … and so on.
To understand this, just think of a meat grinder. If some hard
marbles were placed within out meat, we cannot expect it to come
out through the grinder since they cannot be reduced to a smaller
form. Similarly, if we have any non-serializable objects in our original object, we cannot
properly serialize the object.

So what does a serialized object look like anyway ? Here is what the file would look like from
our previous example if opened in Windows Notepad:

� � � �¬í sr BankAccount“ÈSòñ úä I accountNumberF �b �alanceL ownert

� �Ljava/lang/String;xp † BÈ t Rob Banks

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 333 -

Weird … it seems to be a mix of binary and text. As it turns out, JAVA saves all the attribute
information for the object, including their types and values, as well as some other information.
It does this in order to be able to re-create the object when it is read back in.

The object can be read back in by using the readObject() method in the ObjectInputStream
class as follows:

import java.io.*;

public class ObjectInputStreamTestProgram {
 public static void main(String args[]) {
 try {
 BankAccount aBankAccount;
 ObjectInputStream in;

 aBankAccount = new BankAccount("Rob Banks");
 aBankAccount.deposit(100);

 in = new ObjectInputStream(new FileInputStream("myAcc.dat"));
 aBankAccount = (BankAccount)in.readObject();

 System.out.println(aBankAccount);
 in.close();

 } catch (ClassNotFoundException e) {
 System.out.println("Error: Object'c class does not match");
 } catch (FileNotFoundException e) {
 System.out.println("Error: Cannot open file for writing");
 } catch (IOException e) {
 System.out.println("Error: Cannot read from file");
 }
 }
}

Note, that the ObjectInputStream wraps the FileInputStream. Also, notice that once read in,
the object must be type-casted to the appropriate type (in this case BankAccount). Also, if
there is any problem trying to re-create the object according to the type of object that we are
loading, then a ClassNotFoundException may be generated, so we have to handle it.
Finally, in order for this to work, you must also make sure that your object (i.e., BankAccount)
has a zero-parameter constructor, otherwise an IOException will occur when JAVA tries to
rebuild the object. Although not shown in our example above, you may also make use of the
available() method to determine whether or not the end of the file has been reached.

Although this method is extremely easy to use, there is a potentially disastrous
disadvantage. The object that is saved to the file using this strategy is actually
saved in binary format which depends on the class name, the object’s attribute
types and names as well as the method signatures and their names. So if you
change the class definition after it has been saved to the file, it may not be able
to be read back in again !!! Some changes to the class do not cause problems
such as adding an attribute or changing its access modifiers.

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 334 -

So as a warning, when saving objects to a file using this strategy, you should always keep a
backed-up version of all of your code so that you will be able to read these files with this
backed-up code in the future.

 Supplemental Information (Disguising Serialized Data)
You can actually write your own methods for serializing your objects. One
reason for doing this may be to encrypt some information beforehand (such as a
password). You can decide which parts of the object will be serialized and which parts will not.
You can declare any object attribute as being transient (which means that it will not be
serialized) as follows:

 transient String password;

This will tell JAVA that you do not want the password saved automatically upon serialization.
That way you can write your own method to encrypt it before it is serialized.

To do this, you would need to write two methods called writeObject(ObjectOutputStream)
and readObject(ObjectInputStream). These methods will automatically be called by JAVA
upon serialization and they override the default writing behavior. In fact, there are
defaultWriteObject() and defaultReadObject() methods which do the default serialization
behavior (i.e., the serializing before you decided to do your own). Here are examples of what
you can do:

void writeObject(ObjectOutputStream out) throws IOException {
 out.defaultWriteObject();
 // ... do extra stuff here to append to end of file
 out.writeObject(myField.encrypt());
}
void readObject(ObjectInputStream in) throws IOException,
 ClassNotFoundException {
 in.defaultReadObject();
 // ... do extra stuff here to read from end of file
 myField = ((myFieldType)in.readObject()).decrypt();
}

 11.5 Saving and Loading the Autoshow

Let us now consider a real example that shows how to save and load information from the
Autoshow example that we implemented earlier in the course. We will save the autoshow’s
information in a text file so that we can print it out or read it easily. So, we will be using the
PrintWriter and BufferedReader classes. We need to decide how to format the text in the
file.

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 335 -

The Autoshow class had these attributes:

public class Autoshow {
 String name;
 ArrayList<Car> cars;
 ...
}

where as the Car object had these attributes:

public class Car {
 String make;
 String model;
 String color;
 int topSpeed;
 boolean has4Doors;
 ...
}

So, to save the autoshow, we need to save the name of the autoshow as well as the individual
cars in the show. For each car, the file should show the make, model, color, topSpeed and
has4Doors. Perhaps we will separate the cars by a blank line to indicate that one car's data
ends and another's begins as follows:

AutoRama 2009

Porsche
959
Red
240
false

Pontiac
Grand-Am
White
160
true

Ford
Mustang
White
230
false

…

This seems like a reasonable way to save the autoshow so that the data is readable in a text
program. You will notice that each Car object is saved the same way. Hence, it would be
good to start by writing some methods that can save/load Car objects.

We can write the following method in the Car class to begin…

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 336 -

public void saveTo(PrintWriter aFile) {
 ...
}

Notice that the method will take a single parameter which is a PrintWriter object to represent
the file that we are saving to. Where does this file come from ? It actually does not matter.
When writing this method, we should just assume that someone opened a file and handed it to
us and now it is our job to write the Car information to the file specified through this incoming
parameter. Note as well, that since we did not open the file (i.e., the PrintWriter was handed
to us), we should also not close the file. It is the opener’s responsibility to close it.

So, now how do we write the Car information to the file ? We simply do it as if we were
writing to the System console:

public void saveTo(PrintWriter aFile) {
 aFile.println(make);
 aFile.println(model);
 aFile.println(color);
 aFile.println(topSpeed);
 aFile.println(has4Doors);
}

That was easy. Remember though, that in order for JAVA to recognize the PrintWriter object,
we will need to import java.io.PrintWriter at the top of our Car class. In fact, as you will see
soon, we will need more classes from the java.io package, so it would be best to simply
import java.io.*;

The method for loading a Car back in from the file is also quite easy. Again, it should read
from a file (i.e., a BufferedReader object) that is passed in as a parameter, not a file that we
open or close. Then all we need to do is to read the information from the file. But what do we
“do” with the information once it has been read in ? Probably, we return it from the method so
that whoever called this “load” method can decide what to do with the loaded car information.
So, the method should probably return a Car object. Here is the method that we will write:

public static Car loadFrom(BufferedReader aFile) {

...
}

Notice that the method is static. This is not required, but it allows us to call the method as
follows:

Car c = Car.loadFrom(aFile);

instead of doing this:

Car c = new Car().loadFrom(aFile);

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 337 -

That is the only difference. The static version is more logical. So … now … what goes into
the method ? Well, we need to at least create and return a new Car object, so we can start
with that:

public static Car loadFrom(BufferedReader aFile) {
 Car loadedCar = new Car();
 // ...
 return loadedCar;
}

To read in the car, we should recall that we use readLine() to read a single line of text from a
BufferedReader file. We need to read the lines of text in the same order that they were
outputted (i.e., make, model, color, topSpeed and then has4Doors). Then we can set the
attributes of the Car to the data that was read in. Here is the code:

public static Car loadFrom(BufferedReader aFile) throws IOException {
 Car loadedCar = new Car();

 loadedCar.make = aFile.readLine();
 loadedCar.model = aFile.readLine();
 loadedCar.color = aFile.readLine();
 loadedCar.topSpeed = Integer.parseInt(aFile.readLine());
 loadedCar.has4Doors = Boolean.parseBoolean(aFile.readLine());

 return loadedCar;
}

Notice that the method may throw an IOException (due to the fact that JAVA's readLine()
method declares that it throws an IOException). We could have caught the exception here
and handled it. However, since this method is just a helper method in a larger application, we
are unsure what to do here if an error occurs. Therefore, by declaring that this method throws
an IOException, we will be forced to handle that exception from the place where we call this
loadFrom() method. Also notice that we are calling the zero-parameter constructor for the
Car here … we would need to make sure that such a constructor is available.

Now we will write some test code to see if it works. Notice in the following code how we
separated the write and read tests …

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 338 -

import java.io.*;

public class CarSaveLoadTestProgram {
 private static void writeTest() throws IOException {
 PrintWriter file1, file2;
 Car car1, car2;

 file1 = new PrintWriter(new FileWriter("car1.txt"));
 file2 = new PrintWriter(new FileWriter("car2.txt"));
 car1 = new Car("Pontiac", "Grand-Am", "White", 160, true);
 car2 = new Car("Ford", "Mustang", "White", 230, false);
 car1.saveTo(file1);
 car2.saveTo(file2);
 file1.close();
 file2.close();
 }

 private static void readTest() throws IOException {
 BufferedReader file1, file2;
 Car car1, car2;

 file1 = new BufferedReader(new FileReader("car1.txt"));
 file2 = new BufferedReader(new FileReader("car2.txt"));
 car1 = Car.loadFrom(file1);
 car2 = Car.loadFrom(file2);
 System.out.println(car1);
 System.out.println(car2);
 file1.close();
 file2.close();
 }

 public static void main(String args[]) throws IOException {
 writeTest();
 readTest();
 }
}

Notice that we simply ignored handling any IOExceptions by declaring that the test methods
and the main() method all throw the IOException. If we now look at the "car1.txt" and
"car2.txt" files, we see that it seems to have saved properly:

car1.txt looks like this:

Pontiac
Grand-Am
White
160
true

car2.txt looks like this:

Ford
Mustang
White
230
false

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 339 -

Now for the fun part. Lets make this work with the Autoshow. We will make saveTo() and
loadFrom() methods in the Autoshow class as well. This time, we need to save ALL the Car
objects from the autoshow's cars list.

Recall that we need to first save the autoshow’s name to the file:

public void saveTo(PrintWriter aFile) {
 aFile.println(name);
 ...
}

Now we can iterate through the cars and save them one by one, leaving a blank line in
between each, to make the file more readable:

public void saveTo(PrintWriter aFile) {
 aFile.println(name);
 for (Car c: cars) {
 aFile.println(); // Leave a blank line before writing the next one
 c.saveTo(aFile);
 }
}

Notice that we are making use of the Car class's saveTo() method. This is important, since it
makes good use of pre-existing code and is more modular. Again, we should import java.io.*
at the top of our Autoshow class.

The method for loading an Autoshow from the file is also quite easy. It should create and
return an Autoshow object whose name is the name that is the first line of the file. We will
make it a static method as well:

public static Autoshow loadFrom(BufferedReader aFile) throws IOException {
 Autoshow aShow = new Autoshow(aFile.readLine());
 ...
 return aShow;
}

Again, we will need to make sure that a zero-parameter constructor is available in the
Autoshow class. Now we now need to read in the name at the top of the file and then read in
each car individually. How do we know how many cars to read ? Well, we can simply read
until there are no more cars left. The ready() method in the BufferedReader class returns
true as long as there is another line to be read in the file, otherwise it returns false. We can
simply keep reading in cars until we get a !ready() as follows …

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 340 -

public static Autoshow loadFrom(BufferedReader aFile) throws IOException {
 Autoshow aShow = new Autoshow(aFile.readLine());

 while (aFile.ready()) { //read until no more available (i.e., not ready)
 aFile.readLine(); //read the blank line
 aShow.getCars().add(Car.loadFrom(aFile)); //read & add the car
 }
 return aShow;
}

Notice that each time we load a new car from the file, we must not forget to add it to the new
autoshow object’s cars collection. Here is a method for testing out our saving and loading:

import java.io.*;
public class AutoshowSaveLoadTestProgram {
 // This method tests the writing of an autoshow to a file
 private static void writeTest() throws IOException {
 // First make an Autoshow and add lots of cars to the show
 Autoshow show = new Autoshow("AutoRama 2009");
 show.getCars().add(new Car("Porsche", "959", "Red", 240, false));
 show.getCars().add(new Car("Pontiac", "Grand-Am", "White", 160, true));
 show.getCars().add(new Car("Ford", "Mustang", "White", 230, false));
 show.getCars().add(new Car("Volkswagon", "Beetle", "Blue", 140, false));
 show.getCars().add(new Car("Volkswagon", "Jetta", "Silver", 180, true));
 show.getCars().add(new Car("Geo", "Storm", "Yellow", 110, true));
 show.getCars().add(new Car("Toyota", "MR2", "Black", 220, false));
 show.getCars().add(new Car("Ford", "Escort", "Yellow", 10, true));
 show.getCars().add(new Car("Honda", "Civic", "Black", 220, true));
 show.getCars().add(new Car("Nissan", "Altima", "Silver", 180, true));
 show.getCars().add(new Car("BMW", "5", "Gold", 260, true));
 show.getCars().add(new Car("Prelude", "Honda", "White", 90, false));
 show.getCars().add(new Car("Mazda", "RX7", "Red", 240, false));
 show.getCars().add(new Car("Mazda", "MX6", "Green", 160, true));
 show.getCars().add(new Car("Pontiac", "G6", "Black", 140, false));

 // Now open the file and save the autoshow
 PrintWriter aFile;
 aFile = new PrintWriter(new FileWriter("autoshow.txt"));
 show.saveTo(aFile);
 aFile.close();
 }

 // This method tests the reading of an autoshow from a file
 private static void readTest() throws IOException {
 BufferedReader aFile;

 aFile = new BufferedReader(new FileReader("autoshow.txt"));
 Autoshow aShow = Autoshow.loadFrom(aFile);
 aShow.printByMake();
 aFile.close();
 }

 public static void main(String args[]) throws IOException {
 writeTest(); // Write an autoshow to the file
 readTest(); // Read an autoshow from the file
 }
}

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 341 -

From running the test, we can see that the Autoshow does indeed load properly.

Storing Data on a Single Line:

What if we want to store the Car data on a single line as follows:

Porsche 959 Red 240 false
Pontiac Grand-Am White 160 true
Ford Mustang White 230 false

Well, saving a Car is easy:

public void saveTo(PrintWriter aFile) {
 aFile.println(make + " " + model + " " + color + " " +
 topSpeed + " " + has4Doors);
}

For reading however, we will need to alter the load method to use a StringTokenizer to
extract the pieces:

public static Car loadFrom(BufferedReader aFile) throws IOException {
 Car loadedCar = new Car();

 StringTokenizer wholeLine = new StringTokenizer(aFile.readLine());
 loadedCar.make = wholeLine.nextToken();
 loadedCar.model = wholeLine.nextToken();
 loadedCar.color = wholeLine.nextToken();
 loadedCar.topSpeed = Integer.parseInt(wholeLine.nextToken());
 loadedCar.has4Doors = Boolean.parseBoolean(wholeLine.nextToken());

 return loadedCar;
}

The methods for saving and loading the Autoshow would not change much, except that the
blank line need not be written nor read in after each Car.

But what if the Car make has two words like this ?

PT Cruiser Chrysler Silver 120 true

Now its tougher since the name requires two tokens, not one. We can save and load using
commas as our delimiters and then extract the pieces of data one at a time …

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 342 -

PT Cruiser,Chrysler,Silver,120,true

This solves the problem.

 11.6 The File Class

The File class allows us to retrieve information about a file or folder on our
computer. However, it has nothing to do with reading and writing
information to and from the files.

To make a File object, there are three commonly used constructors:

File file1 = new File("C:\\Data\\myFile.dat");
File file2 = new File("C:\\Data\\", "myFile.dat");
File file3 = new File(new File("."), "myFile.dat");

In the first constructor, we supply the entire file name as a string which includes the path to the
file. (A path is a sequence of folders on the computer that lead to the file … starting with the
root drive letter).

In the second constructor, we can supply the pathname as a separate string from the file
name. The third constructor actually uses another File object as a parameter which must
represent a folder/directory on the computer. The “.” as a filename indicates the current
directory/folder. The “..” as a filename indicates the directory/folder above the current
directory/folder. Alternatively we could supply any path name here.

Once we create this File object, there are a set of methods that we can use to ask questions
about this file or folder. Here are just some of the available methods:

boolean canRead()
 Returns whether or not this file is readable.

boolean canWrite()
 Returns whether or not this file is writable.

boolean exists()
 Returns whether or not this file or directory exists in the specified path.

boolean isFile()
 Returns whether or not this represents a file (as opposed to a directory/folder).

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 343 -

boolean isDirectory()
 Returns whether or not this represents a directory/folder (as opposed to a file).

boolean isAbsolute()
 Returns whether or not this represents an absolute path to a file or directory.

Here are other methods for accessing components (i.e., filenames and pathnames) of a file or
directory:

String getAbsolutePath()
 Return a String with the absolute path of the file or directory.

String getName()
 Return a String with the name of the file or directory.

String getPath()
 Return a String with the path of the file or directory.

String getParent()
 Return a String with the parent directory of the file or directory.

Here are some other user useful methods:

long length()
 Return the length of the file in bytes. If the File object is a directory, return 0.

long lastModified()
 Return a system-dependent representation of the time at which the file or
 directory was last modified. The value returned is only useful for comparison
 with other values returned by this method.

String[] list()
 Return an array of Strings representing the contents of a directory.

For the purpose of demonstration, here is a program that gives a directory listing of the files
and folders on the root of your C: drive, but it does not go into each folder recursively …

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 344 -

import java.io.*;

public class FileClassTestProgram {
 public static void main(String args[]) {
 // The dot means the current directory
 File currDir = new File("C:\\");
 System.out.println("The directory name is: " + currDir.getName());
 System.out.println("The path name is: " + currDir.getPath());
 System.out.println("The actual path name is: " +
 currDir.getAbsolutePath());

 System.out.println("Here are the files in the current directory: ");
 String[] files = currDir.list();
 for (int i=0; i<files.length; i++) {
 if (new File("C:\\", files[i]).isDirectory())
 System.out.print("*** ");
 System.out.println(files[i]);
 }
 }
}

Here is the output (which differs of course depending where you run your code from):

The directory name is:
The path name is: C:\
The actual path name is: C:\
Here are the files in the current directory:
*** 1eceb6cd306883b5737c1dbf5404e4
a-1049-1-7C23.zip
AUTOEXEC.BAT
BOOT.BAK
boot.ini
*** Config.Msi
CONFIG.SYS
*** CtDriverInstTemp
*** Documents and Settings
*** Downloaded Videos
*** Downloads
*** drivers
hiberfil.sys
*** i386
INFCACHE.1
IO.SYS
IPH.PH
*** java

… etc …

*** System Volume Information
*** temp
*** TempArchive
*** Users
*** WINDOWS

COMP1005/1405 – Saving and Loading Information Fall 2009

 - 345 -

File Separators:

Depending on which type of computer you have, folders are specified in different ways. For
example, windows uses a ‘\’ character to separate folders in a pathname, whereas Unix/Linux
uses ‘/’ and Classic Mac OS uses “:”.

If we were to hard-code out pathnames into our programs, then our code would not be portable
to different machines. For example, this pathname:

String fileName = "C:\\FunInc\\models\\BankAccount.java";

would be ok for a windows-based machine, but for a Unix/Linux machine, the pathname would
be invalid. We would need to use something like this for Linux:

String fileName = "usr/FunInc/models/BankAccount.java";

… and further…something like this for Mac OS:

String fileName = "C:FunInc:models:BankAccount.java";

In order to make our code portable, JAVA has defined a static constant called separator in
the File class which will represent the appropriate file separation character depending on the
machine that our code is running on. Hence, the following code will be portable for all
machines:

String fileName = File.separator + "FunInc" + File.separator +
 "models" + File.separator + "BankAccount.java";

If you do this in your programs, your code will always be portable and you will save time when
porting your code to other machines.

