

Chapter 12

Some Useful Tools

What is in This Chapter ?
There are many useful classes in JAVA. We take a look here at some of the commonly used
ones. It is important to know some of these available classes so that we don’t end up re-
creating a method that already exists in JAVA. We begin with a discussion of the String and
StringBuilder classes and describe how to use some of their methods. Then we discuss the
Date and Calendar classes and how they can be used to represent time and date information.
Lastly, we discuss the use of Iterators as a means of traversing through items in a list.
Obviously, there are many more classes in JAVA and you should refer to the API to get more
information.

COMP1005/1405 – Some Useful Tools Fall 2009

 - 347 -

 12.1 The String Class

Strings are one of the most commonly used
concepts in all programming languages. They are
used to represent text characters and are
fundamental in allowing a user to interact with the
program. In JAVA, Strings are actually objects, not
primitives and any text between double quotes
represents a literal String in our programs:

String name = "Stan Dupp";
String empty = "";

However, since Strings are also objects, we can
create one by using one of many available
constructors. Here are two examples:

String nothing = new String(); // makes an empty String
String copy = new String(name); // makes copy of the name String

A String has a length corresponding to the number of characters in the String. We can ask a
String for its length by using the length() method:

String name = "Stan Dupp";
String empty = "";
name.length(); // returns 9
empty.length(); // returns 0

This length remains unchanged for the string at all times. That is, once a string has been
created we cannot change the size of the string, nor can we append to the string.

Even though we cannot append to a String, we can still make use of the + operator to join two
of them together. Recall, for example, the use of the + operator within the toString() method
for the Person class:

public String toString() {
 return (this.age + " year old Person named " +
 this.firstName + " " + this.lastName);
}

Here, we are actually combining 5 String objects to form a new String object containing the
result … the original 5 String objects remain unaltered.

Each character in a String is assigned an imaginary integer index that represents its order in
the sequence. The first character in the String has an index of 0, the second character has

COM

an in
meth

Stri
name
name
name
name
name

The
rang
para
than

Stri
name
name
name
name

In al
obje

The
(e.g
that
wind
obje

Stri
Stri
s1.t
s2.t

Also
form
toUp
char
alph

MP1005/1405

ndex of 1, a
hod which r

ing name
e.charAt(
e.charAt(
e.charAt(
e.charAt(
e.charAt(

re are also
ge) of chara
ameters s a
n the ending

ing name
e.substri
e.substri
e.substri
e.substri

ll cases abo
ect, the orig

re is also a
., spaces, t
get String

dows. The
ect but with

ing s1 =
ing s2 =
trim() ;
trim() ;

o, sometime
matted as ei
ppercase()
racters con

habetic char

– Some Usef

and so on.
requires us

= "Hank U
0);
1);
name.leng
name.leng
100);

some meth
acters from
and e, wher
g character

= "Hank U
ing(0, 4);
ing(5, 11)
ing(1, nam
ing(3, 6);

ove, the res
inal name

 very usefu
tabs, newlin
input (e.g.,
trim() meth
no leading

= " I ne
= "
 // retu
 // retu

es when ge
ither upperc
) and toLow
verted to u
racters … a

ful Tools

 We can ac
s to specify

Urchif";

gth() - 1)
gth());

hods in the
the String.

re s specifie
r index:

Urchif";
;
;

me.length(
;

sulting Strin
object rema

ul method fo
nes and car
name, add

hod returns
and trailing

eed a shav
 ";

urns "I ne
urns empty

etting input f
case or low
wercase() w
ppercase o
all other cha

- 34

ccess any c
the index o

// ret
// ret

); // ret
// cau
// cau

String clas
 The subs
es the start

());

ng is a new
aining unch

or eliminatin
rriage retur
dress, emai
s a new Str
g space, ta

ve ";

eed a sha
y string

from the us
wercase cha
will generat

or lowercase
aracters rem

48 -

character fr
of the chara

turns cha
turns cha
turns cha
uses Stri
uses Stri

ss that allow
string(s,e)
ting charact

// return
// return
// return
// return

w
hanged.

ng unwante
ns). This c
l etc..) from

ring object t
b, newline

ave"
""

ser we wou
aracters. T
te a copy o
e, respectiv
main the sa

rom a Strin
acter that w

aracter 'H
aracter 'a
aracter 'f
ingIndexOu
ingIndexOu

w us to extr
method do

ter index an

ns charact
ns charact
ns charact
ns charact

ed leading a
can be usef

m the user t
that repres
or carriage

ld like to fo
Two useful
of the string
vely. The m
ame.

ng by using
we want to g

H'
a'
f'
utOfBounds
utOfBounds

ract a sequ
oes just that
nd e specifi

ter "Hank
ter "Urch
ter "ank
ter "k U"

and trailing
ful when w
hrough text
ents the or
return cha

rce the info
methods ca
but with al

methods on

Fall

 the charA
get:

sExceptio
sExceptio

uence (or
t. It takes
es one mo

k"
hif"
Urchif"

"

characters
riting progr
t fields on
iginal string
racters.

ormation to
alled
l alphabetic

nly affect the

 2009

At()

on
on

two
re

s
ams

g

be

c
e

COMP1005/1405 – Some Useful Tools Fall 2009

 - 349 -

String s = "Tea For 2!";
s.toUpperCase() ; // returns "TEA FOR 2!"
s.toLowerCase() ; // returns "tea for 2!"

A final important topic that we will discuss regarding strings is that of comparing strings with
one another. String comparison is a fundamental tool used in many programs. For example,
whenever we want to search for a person’s name in a list, we must compare the name of the
person (i.e., a String) with all of the names in a list of some sort.

JAVA has two useful methods for comparing Strings. The equals(s) method compares one
String with another String, s, and then returns true if the two strings have the exact same
characters in them and false otherwise. A similar comparison method called
equalsIgnoreCase(s) is used to compare the two strings but in a way such that lowercase and
uppercase characters are considered equal.

String apple1 = "apple";
String apple2 = "APPLE";
String apple3 = "apples";
String orange = "orange";

apple1.equals(orange); // returns false
apple1.equals(apple2); // returns false
apple1.equals(apple3); // returns false
apple1.equals(apple2.toLowercase()); // returns true

apple1.equalsIgnoreCase(apple2); // returns true

In regards to sorting strings, the compareTo(s) method will compare one string with another
(i.e., parameter s) and return information about their respective alphabetical ordering. The
method returns an integer which is:

• negative if the first string is alphabetically before s
• positive if the first string is alphabetically after s, or
• zero if the first string equals s

String apple = "Apple";
String orange = "Orange";
String banana = "Banana";

banana.compareTo(orange); // returns -13, Banana comes before Orange
banana.compareTo(apple); // returns 1, Banana comes after Apple
apple.compareTo("Apple"); // returns 0, Apple equals Apple
"Zebra".compareTo("apple"); // returns -7, uppercase chars are before lower!
"apple".compareTo("Apple"); // returns 32, lowercase chars are after upper!

COMP1005/1405 – Some Useful Tools Fall 2009

 - 350 -

You may notice, in the last two cases, that uppercase characters always come alphabetically
before lowercase characters. You should always take this into account when sorting data.
To avoid sorting problems, it may be best to use toUpperCase() on each String before
comparing them:

if (s1.toUpperCase().compareTo(s2.toUpperCase()) < 0)
// s1 comes first

else
// s2 comes first

Another very useful method in the String class is the split() method because it allows you to
break up a String into individual substrings (called tokens) based on some separation
criteria. For example, we can extract

• words from a sentence, one by one
• fields from a database or text file, separated by commas or other chars

The term delimiter is used to indicate the character(s) that separate the tokens (i.e., individual
words or data elements).

Consider for example, the following String data which has been read in from a file:

"Mark,Lanthier,41,M,false"

Perhaps this is data for a particular person and we want to extract the information from the
string in a way that we can use it. If we consider the comma ',' character as the only delimiter,
then we can use the split method to obtain an array of Strings which we can then parse one
by one to extract the needed data:

String s1 = "Mark,Lanthier,41,M,false";

String[] tokens = s1.split(",");
for(String token: tokens)
 System.out.println(token);

The code above will produce the following output:

Mark
Lanthier
41
M
false

Each token is an individual String that can be used afterwards. If, for example, we wanted to
have just the 3rd piece of data (i.e., 41) and use it in a math expression, we could split the
string and access just that piece of data, converting it to an integer as necessary …

COMP1005/1405 – Some Useful Tools Fall 2009

 - 351 -

String s1 = "Mark,Lanthier,41,M,false";
String[] tokens;
int age;

tokens = s1.split(",");
age = Integer.parseInt(tokens[2]);
if (age > 21) ...

The "," parameter to the split() method above indicates that the ',' character is the delimiter.
If we had the following String, however, we may want to include the ':' character as a delimiter
as well:

"Mark,Lanthier:41:M,false"

We cannot simply use the parameter string ",:" because that will only consider consecutive
comma colon characters as delimiters (i.e., a 2-char delimiter). We want to allow the comma
OR the colon to be delimiters, but not necessarily together. To accomplish this, the
expression in the string becomes more complex. We basically have to indicate that we want
all non-alphanumeric characters to be part of the tokens and everything else to be delimiters.
So the following code would do what we want:

String s1 = "Mark,Lanthier:41:'M',false";

String[] tokens = s1.split("[^a-zA-Z0-9]");
for(String token: tokens)
 System.out.println(token);

Notice the square brackets [] in the parameter string. This indicates that we are about to list
a sequence of characters to be the delimiters. The ^ character negates the list of characters
to indicate that we are about to list all the non-delimiter characters (i.e., the token characters).
Then we list the alphanumeric ranges a-z, A-Z and 0-9 to indicate that any alphanumeric
character is part of a token, while everything else is to be considered a delimiter.

The parameter string is considered to be a regular expression (not discussed here) and can
be quite complex. You may look in JAVA’s API for more information. In some cases, the
token strings will be of size 0. For example, consider the following code:

String s1 = "Mark, Lanthier , 41 ,,, M , false";

String[] tokens = s1.split("[,]"); // comma or space delimiter
for(String token: tokens)
 System.out.println(token);

The following output would be obtained …

COMP1005/1405 – Some Useful Tools Fall 2009

 - 352 -

Mark

Lanthier

41

M

false

Notice that there are many spaces in between. These spaces are empty strings. We should
check for the empty strings in our code:

String s1 = "Mark, Lanthier , 41 ,,, M , false";

String[] tokens = s1.split("[,]"); // comma or space delimiter
for(String token: tokens)
 if (token.length() > 0)
 System.out.println(token);

Then we obtain the output as before:

Mark
Lanthier
41
M
false

COMP1005/1405 – Some Useful Tools Fall 2009

 - 353 -

 Supplemental Information (StringTokenizers)

There is another (perhaps simpler) way of extracting tokens from a String through use of the
StringTokenizer class (imported from the java.util package). However, for some reason,
the JAVA guys “suggest” that you use the split() method instead.

String s = "Mark, Lanthier , 41 ,,, M , false";

StringTokenizer tokens = new StringTokenizer(s,", ");
System.out.println("The string has " + tokens.countTokens() + " tokens");

while(tokens.hasMoreTokens()) {
 System.out.println(tokens.nextToken());
}

This code will produce the same result as above, but with an extra line of output indicating the
number of tokens in total, which is 5 in this example.

Interestingly, the Scanner class that we used for getting keyboard input can also be used to
get tokens from a String. The list of delimiters however is actually a pattern sequence, not a
list of separate delimiter characters. That means, whatever is listed as the delimiter string
must match exactly (i.e., in the example below, a single comma must be followed by a single
space character):

String sentence = "Banks, Rob, 34, Ottawa, 12.67";
Scanner s = new Scanner(sentence).useDelimiter(", ");
System.out.println(s.next());
System.out.println(s.next());
System.out.println(s.nextInt());
System.out.println(s.next());
System.out.println(s.nextFloat());
s.close();

Notice that the Scanner should be closed, we did not do this earlier but it is common
practice.

 12.2 The StringBuilder & Character Classes

Strings cannot be changed once created. Instead, when we try to
manipulate them, we always get back a "brand new" String object.
This is not normally a problem in most cases when programming,
however, sometimes we would like to be able to modify a String by
inserting/removing characters. For example, when we open a file in
a text editor or word processor, we usually append, cut and insert
text “on the fly”.
It would be memory-inefficient and time-inefficient to continually

COMP1005/1405 – Some Useful Tools Fall 2009

 - 354 -

create new strings and copy over characters from an old string to a new one.

The StringBuilder class in JAVA is useful for such a purpose. You may think of it simply as a
String that can be modified. The StringBuilder methods run a little slower that their String
equivalent methods, so if you plan to create strings that will not need to change, use String
objects instead.

Here are two constructors for the StringBuilder class:

new StringBuilder();
new StringBuilder(s); // s is a String

The first creates a StringBuilder with no characters to begin with and the second creates one
with the characters equal to the ones in the given String s.

As with Strings, the length() method can be used to return the number of characters in the
StringBuilder as follows:

StringBuilder sb1, sb2;

sb1 = new StringBuilder();
sb2 = new StringBuilder("hello there");
sb1.length(); // returns 0
sb2.length(); // returns 11

Unlike Strings, you can actually modify the length of the StringBuilder to any particular length
by using a setLength(int newLength) method. If the newLength is less than the current
length, the characters at the end of the StringBuilder are truncated. If the size is greater, null
characters are used to fill in the extra places at the end as follows:

StringBuilder sb;

sb = new StringBuilder("hello there");
sb.setLength(9);
System.out.println(sb); // displays "hello the"

As with Strings, the charAt(int index) method is used to access particular characters based
on their index position (which starts at position 0). Unlike Strings though, a setCharAt(int
index, char c) method is also available which allows you to change the character at the given
index to become the specified character c.

Here is how these methods work …

COMP1005/1405 – Some Useful Tools Fall 2009

 - 355 -

StringBuilder name;

name = new StringBuilder("Chip Electronic");
name.charAt(3); // returns 'p'
name.setCharAt(4,'+');
System.out.println(name); // displays "Chip+Electronic"

However, a more commonly used method in the StringBuilder class is the append(Object x)
method which allows you to append a bunch of characters to the end of the StringBuilder. If
x is a String object, the entire string is appended to the end. If x is any other object, JAVA
will call the toString() method for that object and append the resulting String to the end of the
StringBuilder:

StringBuilder sb = new StringBuilder();
sb.append("Mark has ");
sb.append(new BankAccount("Mark"));
System.out.println(sb); // displays "Mark has Account #10000 with $0.0"

The resulting output may differ, of course, depending on the BankAccount’s toString()
method. Similar methods also exist for appending an int, long, float, double, boolean or
char as follows:

append(int x), append(long x), append(float x),
append(double x), append(boolean x), append(char x)

The final two methods that we will mention allow you to remove characters from the
StringBuilder. The deleteCharAt(int index) method will remove the character at the given
index while the delete(int start, int end) method will delete all the characters within the indices
ranging from start to end-1 as follows:

StringBuilder sb;

sb = new StringBuilder("Miles Perlyter");
sb.delete(3,11); // changes sb to "Milter"
sb.deleteCharAt(sb.length()-1); // changes sb to "Milte"
sb.deleteCharAt(sb.length()-1); // changes sb to "Milt"

Sometimes, it is useful to use a StringBuilder to go through a String and make changes to it.
For example, consider using a StringBuilder to remove all the non-alphabetic characters from
a String as follows (of course the result would have to be a new String, since the original
cannot be modified) …

COMP1005/1405 – Some Useful Tools Fall 2009

 - 356 -

String original, result = "";
StringBuilder sb;
Character c;

original = "Hello, my 1st name ... is Mark !!";
sb = new StringBuilder();
for (int i=0; i<original.length(); i++) {
 c = original.charAt(i);
 if (Character.isLetter(c))
 sb.append(c);
}
result = new String(sb);
System.out.println(result);

Notice a couple of things from this code. First, the StringBuilder is used as a
temporary object for creating the result string but is no longer useful after the
method has completed. We use one of the String class’ constructors to create
the new String … passing in the StringBuilder. Second, we are checking for
non-alphabetic characters by using Character.isLetter(). Here, isLetter() is a
static function in the Character class that determines whether or not the given
character is alphabetic or not.

Side note: Character is a class in JAVA known as a wrapper class because it is an object wrapper for
the char primitive. Essentially, the class can be used to “convert” (i.e., wrap up) a char into an object that
can then be used as a regular object. There is a wrapper class for each of the primitives in JAVA (i.e.,
Integer, Long, Float, Double, Character, Boolean, Short and Byte). Since JAVA 1.5, primitives are
automatically wrapped into objects, and so we need not worry about this.

There are other useful methods in the Character class. Here are just a few:

Character.isLetter(c) // checks if c is a letter in the alphabet
Character.isDigit(c) // checks if c is a digit (i.e., '0' - '9')
Character.isLetterOrDigit(c) // … this one is obvious …
Character.isWhiteSpace(c) // checks if c is the space character
Character.isLowerCase(c) // checks if c is lowercase (e.g., ‘a’)
Character.isUpperCase(c) // checks if c is uppercase (e.g., ‘A’)
Character.toLowerCase(c) // returns lowercase equivalent of c
Character.toUpperCase(c) // returns uppercase equivalent of C

Here are some examples of how they are used:

Character.isLetter('A') // returns true
Character.isDigit('6') // returns true
Character.isLetterOrDigit('@') // returns false
Character.isWhiteSpace(' ') // returns true
Character.isLowerCase('a') // returns true
Character.isUpperCase('A') // returns true
Character.toLowerCase('B') // returns 'b'
Character.toUpperCase('b') // returns 'B'

COMP100

Note tha
are all s
another

 12.3

It is ofte
class pro
data obj
represen
happens
GMT.

New dat

D

The resu
when dis

Thu Ma

Notice th
and yea
useful m

• getT
• afte
• befo

Most oth

In the cl
Instead,
Calenda
an abstr
fields su

Although
we cann
specific

The java
of the av

05/1405 – So

at none of t
tatic/class
primitive.

The Da

n necessar
ovided in th
ects that in
nt BOTH da
s to be the

tes are crea

ate to

ult is an obj
splayed (of

ar 26 14:39

hat it shows
ar of the Da
methods in t

Time() - Re
er(Date d)
ore(Date d

her method

ass Date it
 we must u
ar objects a
ract base cl
uch as YEA

h this Calen
not make in
kind of cale

a.util.Greg
vailable con

ome Useful To

hese metho
methods th

ate and

ry to use da
he java.util
ncorporate t
ate and tim
number of

ated with a

oday = new

ject that rep
f course it w

9:17 EDT 2

s the day, m
ate object.
the Date cla

eturns a lon
) - Returns
d) - Return

s have bee

self, there i
use a differe
are used to
lass for con

AR, MONTH

ndar class
stances of
endar called

orianCalen
nstructors …

ools

ods require
hat take a c

d Calen

ates and tim
 package.
time as wel
e. Dates a
millisecond

call to a co

w Date();

presents th
will vary dep

2009

month, day
This is def

ass:

ng represen
whether or
s whether o

en depreca

is no easy w
ent class to
represent

nverting bet
H, DAY, HO

has many
it (i.e., we c
d a Gregor

ndar class
…

- 357 -

e you to ma
char as a p

ndar C

mes when p
The Date c
l. The java

are stored s
ds since Jan

onstructor a

e current d
pending on

y-of-month
fault behavi

nting this tim
r not receiv
or not recei

ated (which

way to crea
 do this. In
dates, inste
tween a Da

OUR, and so

useful cons
cannot say
rianCalend

is used to q

ke an insta
arameter (i

lasses

programmin
class allows
a.util.Date
imply as a
nuary 1, 19

as follows:

ate and tim
the day yo

h, hours, m
ior for this c

me in millis
ver date com
iver date co

means the

ate a specif
n the curren
ead of Date
ate object a
o on.

stants and m
new Calen

dar is used

query and m

ance of a Ch
int in some

ng. Let us t
s us to mak
class is use
number, w

970, 00:00:0

me and it loo
ou run your

minutes, se
class. Ther

seconds.
mes after th
omes befor

ey should no

fic date (e.g
nt version o
e objects.
and a set of

methods (a
ndar()). In

d.

manipulate

haracter ob
e cases) and

take a look
ke
ed to
hich
00

oks someth
code):

econds, tim
re are only

he given da
e the given

ot be used

g., Feb. 13,
of JAVA,
Calendar i
integer

as you will s
nstead, the

dates. Her

Fall 2009

bject. They
d return

at the Date

hing like this

mezone
three other

ate d.
n date d.

anymore).

1992).

s

soon see),
more

re are some

9

y

e

s

r

e

COMP1005/1405 – Some Useful Tools Fall 2009

 - 358 -

new GregorianCalendar() // today’s date
new GregorianCalendar(1999, 11, 31) // year,month,day
new GregorianCalendar(1968, 0, 8, 11, 55) // year, month, day, hours, mins

Notice that:

• the year is specified as 4-digits (e.g., 1968)
• months are specified from 0 to 11 (January being 0)
• days must be from 1 to 31
• hours and minutes are at the end of the constructor

Calendars do not display well. Here is what you would see if you tried displaying a
GregorianCalendar:

java.util.GregorianCalendar[time=1178909251343,areFieldsSet=true,
areAllFieldsSet=true,lenient=true,zone=sun.util.calendar.ZoneInfo[id=
"America/New_York",offset=-18000000,dstSavings=3600000,useDaylight=true,
transitions=235,lastRule=java.util.SimpleTimeZone[id=America/New_York,
offset=-18000000,dstSavings=3600000,useDaylight=true,startYear=0,
startMode=3,startMonth=3,startDay=1,startDayOfWeek=1,startTime=7200000,
startTimeMode=0,endMode=2,endMonth=9,endDay=-1,endDayOfWeek=1,endTime=
7200000,endTimeMode=0]],firstDayOfWeek=1,minimalDaysInFirstWeek=1,ERA=1,
YEAR=2007,MONTH=4,WEEK_OF_YEAR=19,WEEK_OF_MONTH=2,DAY_OF_MONTH=11,
DAY_OF_YEAR=131,DAY_OF_WEEK=6,DAY_OF_WEEK_IN_MONTH=2,AM_PM=1,HOUR=2,
HOUR_OF_DAY=14,MINUTE=47,SECOND=31,MILLISECOND=343,ZONE_OFFSET=
-18000000,DST_OFFSET=3600000]

Obviously, this is not pleasant. To display a Calendar in a friendlier manner, we must used
the getTime() method, which actually returns a Date object (... not very intuitive … I know).
Consider these examples:

System.out.println(new GregorianCalendar().getTime()); // today
System.out.println(new GregorianCalendar(1999,11,31).getTime());
System.out.println(new GregorianCalendar(1968,0,8,11,55).getTime());

Here is the output (which of course varies with the current date):

Thu Mar 26 14:48:40 EDT 2009
Fri Dec 31 00:00:00 EST 1999
Mon Jan 08 11:55:00 EST 1968

The isLeapYear(int year) method returns whether or not the given year is a
leap year for this calendar:

 new GregorianCalendar().isLeapYear(2008)); // returns true
 new GregorianCalendar().isLeapYear(2009)); // returns false

There are many other methods that we can use to query or alter the date which are inherited
from the Calendar class.

COMP100

For exam
informat
notes th

T

Conside
should u
constant

C

t
t
t
t
t
t
t
t
t
t
t
t
t

The valu
constant

i
i

Here are

Calenda
Calenda
Calenda
Calenda
Calenda
Calenda
Calenda

There is
date fiel

a
a
a

Other se

05/1405 – So

mple, the g
tion about t
e date was

hu Mar 26

er the result
use import
ts:

alendar t

oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(
oday.get(

ue returned
ts. For exa

f (aCalen
f (aCalen

e some of t

ar.SUNDAY
ar.MONDAY
ar.TUESDAY
ar.WEDNESD
ar.THURSDA
ar.FRIDAY
ar.SATURDA

s also a set
ds:

Calendar.
Calendar.
Calendar.

et methods

ome Useful To

get(int field)
he particula

s:

6 15:05:35

ts (shown to
java.util.C

today = Ca

(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.
(Calendar.

d from the g
ample,

ndar.get(C
ndar.get(C

he useful c

Y
DAY
AY

AY

Cale
Cale
Cale
Cale
Cale
Cale
Cale

(int field, in

set(Calen
set(Calen
set(Calen

allow the d

ools

) method is
ar calendar

5 EDT 200

o the right)
Calendar at

alendar.g

.YEAR);

.MONTH);

.DAY_OF_M

.DAY_OF_W

.DAY_OF_W

.DAY_OF_Y

.WEEK_OF_

.WEEK_OF_

.HOUR);

.AM_PM);

.HOUR_OF_

.MINUTE);

.SECOND);

get(int field

Calendar.
Calendar.

constants:

endar.JANU
endar.FEBR
endar.MARC
endar.APRI
endar.MAY
endar.JUNE
endar.AM

nt value) m

ndar.MONT
ndar.YEAR
ndar.AM_P

date and tim

- 359 -

s used along
r date. For

9

of each ge
t the top of

etInstanc

MONTH);
WEEK);
WEEK_IN_MO
EAR);

_MONTH);
_YEAR);

_DAY);

) method c

MONTH) ==
DAY_OF_WE

UARY
RUARY
CH
IL

E

Ca
Ca
Ca
Ca
Ca
Ca
Ca

method that

H, Calend
R, 1999);
M, Calend

me to be ch

g with som
r example,

et method c
your code s

ce();

 /
 /
 /
 /

ONTH); /
 /
 /
 /
 /
 /
 /
 /
 /

an be comp

= Calendar
EEK) == Ca

alendar.JU
alendar.AU
alendar.SE
alendar.OC
alendar.NO
alendar.DE
alendar.PM

can be use

dar.JANUAR

dar.AM);

anged …

e static co
at the time

call in the co
so that you

// 2009
// 2
// 26
// 5
// 4
// 85
// 4
// 13
// 3
// 1
// 15
// 5
// 35

pared with

r.APRIL)
alendar.S

ULY
UGUST
EPTEMBER
CTOBER
OVEMBER
ECEMBER
M

ed to set the

RY);

nstants to a
of updating

ode below.
 can use th

other Calen

{...}
ATURDAY)

e values for

Fall 2009

access
g these

 You
hese

ndar

{...}

r certain

9

COMP1005/1405 – Some Useful Tools Fall 2009

 - 360 -

aCalendar.set(1999, Calendar.AUGUST, 15);
aCalendar.set(1999, Calendar.AUGUST, 15, 6, 45);

We can also format dates when we want to print them nicely. There is a SimpleDateFormat
class (in the java.text package) that formats a Date object using one of many predefined
formats. It does this by generating a String representation of the date. The constructor
takes a String which indicates the desired format:

new SimpleDateFormat("MMM dd,yyyy");

The parameter in the method is a format string that specifies “how you want the date to look”
when it is printed. By using different characters in the format string, you get different output
for the date. The format(Date d) method in the SimpleDataFormat class is then used to
actually do the work by applying the format to the given date. Here is an example:

import java.text.SimpleDateFormat;
// ...

SimpleDateFormat dateFormatter = new SimpleDateFormat("MMM dd,yyyy");
Date today = new Date();
String result = dateFormatter.format(today);

System.out.println(result);

Here is the result (which would vary, depending on the date):

Mar 26,2009

Here are examples of format Strings and their effect on the date April 30th 2001 at 12:08 PM:

Format String Resulting output

without formatting

"yyyy/MM/dd"
"yy/MM/dd"
"MM/dd"
"MMM dd,yyyy"
"MMMM dd,yyyy"
"EEE. MMMM dd,yyyy"
"EEEE, MMMM dd,yyyy"
"h:mm a"
"MMMM dd, yyyy (hh:mma)"

Tue Apr 10 15:07:52 EDT 2001

2001/04/30
01/04/30
04/30
Apr 30, 2001
April 30, 2001
Mon. April 30, 2001
Monday, April 30, 2001
12:08 PM
April 30, 2001 (12:08PM)

For additional formatting information, check out the JAVA API specification. Here is a simple
example that creates two dates. One representing today, the other representing a future date:

COMP1005/1405 – Some Useful Tools Fall 2009

 - 361 -

import java.util.*;
import java.text.SimpleDateFormat;

public class DateTestProgram {
 public static void main (String args[]) {

 Calendar today = Calendar.getInstance();
 Calendar future;
 int difference;

 // Display Information about today's date and time
 System.out.println("Here is today:");
 System.out.println(today.getTime());
 System.out.println(today.get(Calendar.YEAR));
 System.out.println(today.get(Calendar.MONTH));
 System.out.println(today.get(Calendar.DAY_OF_MONTH));

 // Display Information about a future day's date and time
 future = Calendar.getInstance();
 future.set(2010, Calendar.MARCH, 5);
 System.out.println("Here is the future:");
 System.out.println(future.getTime());
 System.out.println(future.get(Calendar.YEAR));
 System.out.println(future.get(Calendar.MONTH));
 System.out.println(future.get(Calendar.DAY_OF_MONTH));

 // Test the formatting
 Date aDate = new Date();
 System.out.println(aDate);
 System.out.println(new SimpleDateFormat("yyyy/MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("yy/MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("MM/dd").format(aDate));
 System.out.println(new SimpleDateFormat("MMM dd,yyyy").format(aDate));
 System.out.println(new SimpleDateFormat("MMMM dd,yyyy").format(aDate));
 }
}

Here is the output from running this code on March 26, 2009:

Here is today:
Thu Mar 26 15:24:11 EDT 2009
2009
2
26
Here is the future:
Fri Mar 05 15:24:11 EST 2010
2010
2
5
Thu Mar 26 15:24:11 EDT 2009
2009/03/26
09/03/26
03/26
Mar 26,2009
March 26,2009

COMP1005/1405 – Some Useful Tools Fall 2009

 - 362 -

Notice that the months start at 0, and so March is month #2.

Although we can create and display simple dates, we have not done any manipulation at all.
For instance, we may want to know how many working days there are between two dates.
There are many more functions in the Calendar and Date classes, but we will not discuss
them any further here. You would have to look at the API for the Date, Calendar,
GregorianCalendar and SimpleDateFormat classes.

 Supplemental Information (Formatting Dates with Strings)
We can also use the String.format() method to format dates and times. There are many
flags that can be used (see the API for details) but here are some commonly used ones for
displaying dates and times:

Date aDate = new Date();

System.out.println(String.format("%tc", aDate));
System.out.println(String.format("%tF", aDate));
System.out.println(String.format("%tR", aDate));
System.out.println(String.format("%tr", aDate));
System.out.println(String.format("%tD", aDate));

Here was the output when it was ran on March 26, 2009 at 3:26pm:

Thu Mar 26 15:26:56 EDT 2009
2009-03-26
15:26
03:26:56 PM
03/26/09

 12.4 Iterators

The simplest way to traverse elements of a collection using a FOR EACH loop is as follows:

for (Person p: people) {
 System.out.println(p.getName());
}

Sometimes however, we want to remove certain elements of a collection (e.g., ArrayList) as
we traverse through it. For example, consider removing from an ArrayList all people who are
under the age of 21 as follows …

COMP1005/1405 – Some Useful Tools Fall 2009

 - 363 -

import java.util.ArrayList;

public class IteratorTestProgram1 {
 public static void main(String args[]) {
 ArrayList<Person> people = new ArrayList<Person>();
 people.add(new Person("Pete", "Zaria", 12, 'M', false));
 people.add(new Person("Rita", "Book", 20, 'F', false));
 people.add(new Person("Willie", "Maykit",65, 'M', true));
 people.add(new Person("Patty", "O'Furniture", 41, 'M', false));
 people.add(new Person("Sue", "Permann", 73, 'F', true));
 people.add(new Person("Sid", "Down", 19, 'M', false));
 people.add(new Person("Jack", "Pot", 4, 'M', false));

 for (Person p: people) {
 if (p.getAge() < 21)
 people.remove(p);
 }
 for (Person p: people) {
 System.out.println(p);
 }
 }
}

If we were to run the above code, this would be the output:

Exception in thread "main" java.util.ConcurrentModificationException
 at java.util.AbstractList$Itr.checkForComodification(AbstractList.java:372)
 at java.util.AbstractList$Itr.next(AbstractList.java:343)
 at IteratorTestProgram1.main(IteratorTestProgram1.java:15)

A ConcurrentModificationException occurs on line 13 (i.e., when we do remove(p)). Why
? The exception’s name indicates that we are trying to modify something at the same time as
doing something else (i.e., concurrently). As it turns out, JAVA does NOT want us removing
elements from a collection while we are looping through it using a FOR EACH loop. But why
does JAVA do this ? Well, consider using a regular FOR loop in place of the FOR EACH loop
as in the following code …

public class IteratorTestProgram2 {
 public static void main(String args[]) {
 ArrayList<Person> people = ...;
 ...
 for (int i=0; i<people.size(); i++) {
 Person p = people.get(i);
 if (p.getAge() < 21)
 people.remove(p);
 }
 for (Person p: people)
 System.out.println(p);
 }
}

COMP1005/1405 – Some Useful Tools Fall 2009

 - 364 -

If we were to run the above code, it would generate this output:

20 year old non-retired person named Rita Book
65 year old retired person named Willie Maykit
41 year old non-retired person named Patty O'Furniture
73 year old retired person named Sue Permann
4 year old non-retired person named Jack Pot

Notice that it properly removed Pete Zaria (who was under 21), but did not remove Rita Book,
nor Jack Pott who were both under 21. What happened ?

When we remove an element from our list, all elements after it in the list are shifted up in the
list. That is, they move locations so that their index is one smaller than it used to be.
However, our FOR loop specifies the index to look at each time through the loop. Since we
removed the element at index i, the item at position i+1 is moved into that location so that it
now has index i. We would need to re-check position i next time through the loop so as not to
skip over the item that was just shifted into that position. Therefore, we would need to adjust i
accordingly as follows:

 ...

 for (int i=0; i<people.size(); i++) {
 Person p = people.get(i);
 if (p.getAge() < 21) {
 people.remove(p);
 i--;
 }
 }

Then our output will be correct. However, this is a little messy and sometimes hard to catch.

JAVA therefore provides us with a way of removing elements from a
collection of which we are traversing, by use of an Iterator. Iterators are
"middle-man" objects that are used to help us to traverse through the objects
of a collection in an organized "in-order" manner. It is similar to the idea of a
doorman at a night club who lets one person into the club at a time when
instructed by someone inside to do so. It makes sure that nobody “slips
through the cracks” as the expression goes. Or, the iterator can be thought
of as someone at the front of the line at a bank, instructing individuals to go to the teller, one at
a time when instructed to do so.

Basically, an iterator actually works by "handing you" one
object at a time from the collection until there are no more
remaining. It also allows you to discard an object from the
collection, as long as it was the object that was just handed
to you. The iterators are meant to traverse (i.e., enumerate
through) the elements of a collection exactly one time only.

COMP1005/1405 – Some Useful Tools Fall 2009

 - 365 -

Many methods in JAVA return Iterators instead of collections like ArrayLists. Hence,
Iterators are widely used in JAVA.

Iterators need a collection of objects to iterate through. It should not be surprising then that to
make an iterator, we simply call the iterator() method on an ArrayList (or any other Collection
type). This method returns an Iterator object that can be stored in an Iterator type variable:

ArrayList<Person> people;
Iterator<Person> lineup;
...
lineup = people.iterator();

Notice that we did not call any constructors to make the Iterator object. Remember, that you
must import java.util.ArrayList to use the ArrayList class and you must also import
java.util.Iterator in order to use the Iterator object type. You can simply do import
java.util.*; to import both at the same time.

Notice as well that we specified the type of object that the Iterator will loop through (i.e.,
Person). This is not required, but it prevents us from having to type-cast everything when we
take them out later. Once we have the iterator, there are three methods that we can use on it:

• hasNext() ... returns a boolean indicating whether there are any more items left.
• next() ... returns the next item (automatically type-casted to specified type)
• remove() ... removes the latest item that was obtained from the last call to next().

To use the iterator, we just need to make successive calls to next() to obtain the elements
from the ArrayList. Normally we use a while loop with hasNext() as the sole condition. Here
is the “iterator version” of our previous example:

import java.util.Iterator;
import java.util.ArrayList;

public class IteratorTestProgram3 {
 public static void main(String args[]) {
 ArrayList<Person> people;
 Iterator<Person> lineup;

 people = ... // same code as before … omitted to save space

 lineup = people.iterator();
 while (lineup.hasNext()) {
 Person p = lineup.next();
 if (p.getAge() < 21)
 lineup.remove();
 }
 for (Person p: people)
 System.out.println(p);
 }
}

COMP1005/1405 – Some Useful Tools Fall 2009

 - 366 -

Notice a few things here. First, we do not need to type-cast to Person once we retrieve the
next item from the iterator, provided that we declared the Iterator object to use Person objects
(i.e., Iterator<Person>). Also, in order to remove the item from the ArrayList, we actually call
the Iterator's remove() method, not the ArrayList's remove()
method!!! This is not so intuitive. You may think of it as follows.
Assume that you asked the doorman at the nightclub to let the next
person through, but then you decide for some reason that this person
is not allowed in (perhaps under age). You then ask the doorman to
remove that person, we don’t remove the person by ourselves.

In JAVA, it is the same situation. we don't specify anywhere the
actual object that we want removed because JAVA will actually remove (from the ArrayList),
the item that was last obtained from the Iterator. So we cannot remove arbitrary objects, only
the last one that we just looked at from using the next() method.

A common mistake when using iterators is to call next() twice during a single pass through the
loop. For example, when printing out the items using an iterator:

while (lineup.hasNext()) {
 System.out.println(lineup.next().getFirstName() + " " +
 lineup.next().getLastName());
}

The above code causes two items to be extracted each time through the loop, which usually
causes the Iterator to run out of objects too quickly and may also result in mixed data (e.g.,
first name of one person displayed with second name of a different person). You would get a
NoSuchElementException with the above code if the number of people is odd. Try to be
careful that you do not do this.

Even in situations where we simply want to iterate through the elements of a collection, there is
another advantage of using an Iterator as opposed to just looping through the elements. An
Iterator maintains indexing information about the collection (i.e., it remembers the position that
it last looked at in the collection). Therefore, we need not iterate through the entire collection
in one shot. We could iterate through a few items and then stop (e.g., if interrupted) and
continue later on in our program, provided that we still have the iterator object.

For example, imagine processing, in some way, the Person objects in an ArrayList. Perhaps
while processing, we find a situation that requires us to stop processing (i.e., an exception
occurred or something arose with a higher priority).

With iterators, the code may look as follows …

COMP1005/1405 – Some Useful Tools Fall 2009

 - 367 -

public boolean doProcessing(Iterator<Person> list) {
 try {
 while (list.hasNext())
 process(list.next());
 return true; // return true since done now
 }
 catch(SomethingBadHappenedException ex) {
 return false; // return false since not done yet
 }
}

Notice that the method returns a boolean that simply indicates whether or not we were done
processing the list of people. We could then examine this boolean value and decide later
whether or not to call the method again to do further processing.

We could accomplish the same thing without using an Iterator. However, a bit more “book
keeping” is involved, in that we must remember ourselves the position in the list that we left off
at when we are interrupted:

public int doProcessing(ArrayList<Person> list, int startingPosition) {
 try {
 for (int i=startingPosition; i<list.size(); i++) {
 process((Person)list.get(i));
 }
 return list.size(); // all done, return maximum index
 }
 catch(SomethingBadHappenedException ex) {
 return i+1; // return the index of the next item to process
 }
}

Notice that we must now return an integer to represent the position that we were at when we
quit the method. We would then need to examine the position to see if it reached the end of
the list. Notice that we must also pass in this startingPosition to the method each time so
that we start in the correct spot. So, the code is more complex, but certainly do-able. The
Iterator solution is simpler and cleaner.

 Supplemental Information (Enumerations)

There is an older interface type in JAVA called an Enumeration, which works similarly to the
Iterator, but without a remove() method. It has two similar methods available:

• hasMoreElements() ... are there any more left ?
• nextElement() ... get me the next one

