

Chapter 13

Other Collections

What is in This Chapter ?
We have already looked collections called ArrayLists and Arrays. There are actually other
collections in JAVA which are useful for certain purposes. We will look here at the
organization of some of the collection-related classes as well as explain the differences
between the various List classes. We will look at two examples of how to use Stacks as well
as how to Sort objects in a collection easily using the tools provided in JAVA’s Collections
class. Finally, we will show how we can remove duplicate objects by using Sets.

COMP1005/1405 – Other Collections Fall 2009

 - 369-

 13.1 Collection Organization

Collections are a vital part of any programming language. As we have already seen with
ArrayLists and Arrays, they allow many objects to be collected together, stored and passed
around as one object (i.e., the collection itself). Just about every useful application of any kind
requires collections for situations such as:

• storing products on shelves in a store
• maintaining information on customers
• keeping track of cars for sale, for rental or for servicing
• a personal collection of books, CDs, DVDs, cards, etc...
• maintaining a shopping cart of items to be purchased from a website

In JAVA, there is a small variety of collection-related classes that can be used to represent
these various programming needs. These collections are located in the java.util.Collection
package, along with some other useful tools. In this set of notes, we investigate (very briefly)
some of these JAVA collections in a way that will help a programmer understand which
collection is best for their particular programming application.

Collections are organized into a “seemingly complicated” hierarchy of JAVA interfaces and
classes. Here is a diagram showing part of this hierarchy:

Vector

Stack

AbstractCollection

SortedSet

LinkedList

Set

List

AbstractList

AbstractSet

AbstractSequentialList ArrayList

HashSet TreeSet

Queue

Deque AbstractQueue

PriorityQueue ArrayDeque

 Interface

 Abstract Class

 Concrete Class

Collection

COMP1005/1405 – Other Collections Fall 2009

 - 370-

Notice that there are 8 concrete classes, and that all of them indirectly implement the
Collection interface. Recall that an interface just specifies a list of method signatures ... not
any code. That means, all of the concrete collection classes have something in common and
that they all implement a common set of methods. The main commonality between the
collection classes is that they all store objects called their elements, which may be
heterogeneous objects (i.e., the elements may be a mix of various (possibly unrelated)
objects). Storing mixed kinds of objects in a Collection is allowed, but not often done unless
there is something in common with the objects (i.e., they extend a common Abstract class or
implement a common Interface).

The Collection interface defines common methods for querying (i.e., getting information from)
and modifying (i.e., changing) the collection in some way. Here is a list of some of the
common functionality available from all collections:

Querying methods (returns some kind of value):

size() returns the number of elements in the collection

isEmpty() returns whether or not size() == 0

contains(Object obj) returns whether or not given object obj is in the collection
 (uses equals() method for comparison)

containsAll(Collection c) same as above but looks for ALL elements specified

 in the given collection c.

Modifying methods (changes the collection in some way):

add(Object obj) adds the given object as an element to the collection
 (its location is not specified)

addAll(Collection c) same as above but adds ALL elements specified in the
 given collection c.

remove(Object obj) removes the given object from the collection
 (uses equals() method for comparison)

removeAll(Collection c) same as above but removes ALL elements specified in
 the given collection c.

retainAll(Collection c) same as above but removes all elements EXCEPT
 THOSE specified in the given collection c.

clear() empties out the collection by removing all elements.

Now although the various collection types implement these methods, there are various
restrictions for each of the collection classes that when followed, produce more efficient code.

COMP1005/1405 – Other Collections Fall 2009

 - 371-

For example, lets consider the differences between a List, a Queue, a Deque and a Stack:

Insert/remove Insert/remove anywhere anytime

from top

23

23 15 9 12 … 37 83

23 15 9 12 … 37 83

23 15 9 12 … 37 83

83

37

…

12

9

15

STACK

QUEUE

DEQUE

LIST

Insert/remove from front or back

Insert at back, remove from front

A List (e.g., an ArrayList) allows us to access any of its elements at any time as well as
insert or remove elements anywhere in the list at any time. The list
will automatically shift the elements around in memory to make the
needed room or reduce the unused space. The general List is the
most flexible kind of list in terms of its capabilities. We use a
general List whenever we have elements coming in and being
removed in a random order. For example, when we have a shelf of
library books, we may need to remove a book from anywhere on the
shelf and we may insert books back into their proper location when
they are returned. Typical methods for Lists are:

• add(int index, Object x)
• remove(int index)
• get(int index)
• set(int index, Object x)

Consider the Queue. A queue is used to store elements
in a First-in-First-out (FIFO) order. In other words, the first
element to be added to the queue is the first element to be
taken out of the queue. This is analogous to a line-up that
we see every day. The first person in line is the first
person served (i.e., first-come-first-served). When people
come, they go to the back of the line. People get served

COMP1005/1405 – Other Collections Fall 2009

 - 372-

from the front of the line first. Therefore, with a queue, we add to the back and remove from
the front. We are not allowed to insert or remove elements from the middle of the queue.
Why is this restriction a good idea ? Well, depending on how the queue is implemented, it can
be more efficient (i.e., faster) to insert and remove elements since we know that all such
changes will occur at the front or back of the queue. Removing from the front may then simply
require moving the “front-of-the-line pointer” instead of shifting elements over. Also, adding to
the back may require extending the “back-of-the-line pointer”. Typical methods for Queues
are:

• add(Object x)
• remove()
• peek()

What about a Deque ? A deque is a “Double-Ended-QUEue”. It allows us to add/remove
from the front or the back of the queue at any time, but no modifications to the middle. It has
the same advantages of a regular single-ended Queue, but is a
little more flexible in that it allows removal from the back of the
queue and insertion at the front. An example of where we
might use a deque is when we implement “Undo” operations
in a piece of software. Each time we do an operation, we
add it to the front of the deque. When we do an undo, we
remove it from the front of the deque. Since undo
operations usually have a fixed limit defined somewhere in the
options (i.e., maximum 20 levels of undo), we remove from
the back of the deque when the limit is reached. Typical methods for Deques are:

• addFirst(Object x)
• addLast(Object x)
• removeFirst()
• removeLast()
• getFirst()
• getLast()

Finally, a Stack is used to store elements in a Last-in-First-out
(LIFO) order. That is, we store information like a stack of items one on
top of the other. When a new item comes in, we place it on the top of
the stack and when we want to remove an item, we take the top one
from the stack. Stacks are used for many applications in computer
science such as syntax parsing, memory management, reversing data,
backtracking, etc.. Typical methods for Stacks are:

• push(Object x)
• pop()
• isEmpty()
• peek()

COMP1005/1405 – Other Collections Fall 2009

 - 373-

It is not the purpose of this course to describe in detail various kinds of collections and data
structures. You will gain a deeper understanding of the advantages and disadvantages
between the various data structures in your second year COMP2402 course. For fun
however, we will do a couple of examples to help you understand how to use a couple of these
JAVA classes.

 13.2 Example: Bracket Matching

Lets look at an example of using a data structure to
solve a simple problem of matching brackets. Consider
a math expression that contains numbers, operators
and parentheses (i.e., round brackets). How could we
write a program that takes a String representing a
math expression and then determines whether or not
the brackets match properly (i.e., each opening bracket
has a matching closing bracket in the right order) ?

"((23 + 4 * 5) - 34) + (34 - 5))" // no match
"((23 + 4 * 5) - 34) + ((34 - 5)" // no match
"((23 + 4 * 5) - 34) + (34 - 5)" // match

How would we approach solving this problem? Well, we need to understand the process. I’m
sure that you realize that we need to look at all the String’s characters. Perhaps from start to
end with a loop, but then what do we do ?

Lets assume that we are not interested in determining whether the formula makes sense but
rather that each opening bracket is matched by a closing bracket. Therefore, we are
interested in the bracket characters (and), but not the other characters. When encountering
an open bracket as we go through the characters of the string, we need to do something. We
might think right away of trying to find the matching closing bracket for each open bracket, but
that is not as easy as it sounds. There are many special cases that can be tricky.

A simpler approach would be to make sure that whenever we find a closing bracket, we just
need to make sure that we already encountered an open bracket to match with it. This can
be done by keeping a count of the number of open brackets. When encountering an opening
bracket we increment the counter and when encountering a closing bracket we decrement the
counter. If, when all done, the counter is not zero, there is no match. Otherwise the brackets
match. Consider these cases:

"()" // counter = 0, match
"()(" // counter = 1, no match
"(((" // counter = 3, no match
"((())())" // counter = 0, match
"(()))" // counter = -1, no match
"" // counter = 0, match

COMP1005/1405 – Other Collections Fall 2009

 - 374-

There is a special case that we did not consider. If the counter ever becomes negative before
we are done, then we must have encountered a closing bracket before an open bracket … and
there is no match:

")(" // counter = -1, no match
"())(" // counter = -1, no match

So, how do we write the code ? We can use a FOR loop and some IF statements to check for
brackets as follows:

public static boolean bracketsMatch(String s) {
 int count = 0;
 char c;

 for (int i=0; i<s.length(); i++) {
 c = s.charAt(i);
 if (c == '(') count++;
 if (c == ')') count--;
 if (count < 0)
 return false;
 }
 return count == 0;
}

Here is a test program to try it out:

import java.util.*;

public class BracketMatchingTestProgram {

 public static boolean bracketsMatch(String s) { /* code as above */ }

 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String aString;

 do {
 System.out.println("Please enter expression: (<cr> to quit)");
 aString = keyboard.nextLine();

 if (bracketsMatch(aString))
 System.out.println("The brackets match");
 else
 System.out.println("The brackets do not match");
 } while (aString.length() > 0);
 }
}

COMP1005/1405 – Other Collections Fall 2009

 - 375-

Here are some testing results:

Please enter expression: (<cr> to quit)
((23 + 4 * 5) - 34) + (34 - 5))
The brackets do not match
Please enter expression: (<cr> to quit)
((23 + 4 * 5) - 34) + ((34 - 5)
The brackets do not match
Please enter expression: (<cr> to quit)
((23 + 4 * 5) - 34) + (34 - 5)
The brackets match
Please enter expression: (<cr> to quit)
()
The brackets match
Please enter expression: (<cr> to quit)
()(
The brackets do not match
Please enter expression: (<cr> to quit)
(((
The brackets do not match
Please enter expression: (<cr> to quit)
((())())
The brackets match
Please enter expression: (<cr> to quit)
(()))
The brackets do not match
Please enter expression: (<cr> to quit)
)(
The brackets do not match
Please enter expression: (<cr> to quit)
())(
The brackets do not match
Please enter expression: (<cr> to quit)

The brackets match

I think that our solution works fine. The bracket-matching example above is not very difficult,
but what if we have 3 kinds of brackets (, [, and { ? Consider this example:

"{2 +(3 *[4 - 5}])" // not supposed to match

Maybe we can keep 3 counters ? If we just keep three counters separately, we cannot tell
whether the brackets are well formed with respect to one another. We somehow need to
know the ordering of each type of bracket so that we can ensure the reverse ordering when we
find the closing brackets.

The need for backtracking may seem a little clearer if we consider a different application of the
bracket matching program.

Suppose that we want to match the brackets in our JAVA code…

COMP1005/1405 – Other Collections Fall 2009

 - 376-

public class PrintWriterTestProgram {
public static void main(String args[]) {

try {
BankAccount aBankAccount;
PrintWriter out;

aBankAccount = new BankAccount("Rob Banks");
aBankAccount.deposit(100);
out = new PrintWriter(new FileWriter("myAccount2.dat"));
out.println(aBankAccount.getOwner());
out.println(aBankAccount.getAccountNumber());
out.println(aBankAccount.getBalance());
out.close();

} catch (FileNotFoundException e) {
System.out.println("Error: Cannot open file for writing");

} catch (IOException e) {
System.out.println("Error: Cannot write to file");

}
}

}

Here we see, for example, that the portion of code inside the class definition must have all of
its brackets matching, and that involves matching the code inside the main method’s body and
then within the try block etc… The compiler does this kind of bracket matching to make sure
that your code is well-formed.

The stack data structure is designed for this purpose. It allows us to back-track … which is
essentially what we need to do when finding a closing bracket. Here is how we can use a
stack. When we find an open bracket, we put it on the top of the stack, regardless of its type.
When we find a closing bracket, we take the top opening bracket from the stack and check to
see if it is the same type as the closing bracket. If not, the brackets are in the wrong order,
otherwise all is fine and we continue onwards. If, when encountering a closing bracket, we
find that the stack is empty, then there is no match either.

Lets look at the code. In JAVA, we make a Stack by simply calling its constructor:

Stack aStack = new Stack();

However, in our case, we are going to be placing bracket character on the Stack. Therefore
we should specify this as follows:

Stack<Character> aStack = new Stack<Character>();

Then, we need to use the following Stack methods:

• push(Object obj) – to place a given object on the top of the stack
• pop() – to remove and return the top element of the stack.
• empty() – to determine whether or not there are any elements in the stack.

COMP1005/1405 – Other Collections Fall 2009

 - 377-

Here is the resulting code:

public static boolean bracketsMatch(String s) {
 Stack<Character> aStack;
 char c, top;

 aStack = new Stack<Character>();
 for (int i=0; i<s.length(); i++) {
 c = s.charAt(i);

 if ((c == '(') || (c == '[') || (c == '{')) // got open bracket
 aStack.push(c);

 if ((c == ')') || (c == ']') || (c == '}')) { // got closed bracket
 if (aStack.empty())
 return false; // no open bracket for this closed one

 top = aStack.pop(); // get the last opening bracket found
 if (((c == ')') && (top != '(')) ||
 ((c == ']') && (top != '[')) ||
 ((c == '}') && (top != '{')))
 return false; // wrong closing bracket for last opened one
 }
 }
 return aStack.empty(); // No match if brackets are left over
}

Notice in the above code that it never has return true anywhere. In fact, it is only at the very
end, once we have checked all characters that there is a chance for the method to return true.
This will happen if the stack is empty (i.e., all open brackets have been matched with closing
ones). If desired, you can simplify the above code by replacing the IF statements with a
SWITCH statement as follows:

switch(c) {
 case '(':
 case '[':
 case '{':
 aStack.push(c); // got open bracket
 break;
 case ')':
 if (aStack.empty() || (aStack.pop() != '('))
 return false;
 break;
 case ']':
 if (aStack.empty() || (aStack.pop() != '['))
 return false;
 break;
 case '}':
 if (aStack.empty() || (aStack.pop() != '{'))
 return false;
 break;
}

COMP1005/1405 – Other Collections Fall 2009

 - 378-

Here are some testing results that we would obtain if we replaced our previous
bracketsMatch() method with this new method:
Here are some testing results that we would obtain if we replaced our previous
bracketsMatch() method with this new method:

Please enter the expression: (just <cr> to quit)
](){}[
The brackets do not match
Please enter the expression: (just <cr> to quit)
()[]{}
The brackets match
Please enter the expression: (just <cr> to quit)
{{(([[]]))}}
The brackets match
Please enter the expression: (just <cr> to quit)
{{{{{{
The brackets do not match
Please enter the expression: (just <cr> to quit)
}}}}}}
The brackets do not match
Please enter the expression: (just <cr> to quit)
((()[]{})[()[]{])
The brackets do not match
Please enter the expression: (just <cr> to quit)
The brackets match

Challenge: Could you adjust the code above to read in a JAVA file instead of using a fixed
string and have it ensure that the brackets match ?

 13.3 Example: Maze Search

Recall the practice question from our discussion of 2D arrays. We had a maze, represented
as an array of integers (where 0 meant an open space and 1 meant a wall was there). We
wanted to know if we could find a path from a start location in the maze to an end location:

1 1 1 1 1 1 1 1

1 0 0 0
1 0 1 0

1 0 1 1
0 0 0 0

1 1 1 1
1 2 0 1
1 0 1 1
1 0 1 0
1 0 1 0

1 1 1 1
0 0 0 0
1 0 1 1
0 0 1 0
1 1 1 3

0 1 2 3 4 5 6
1

1
0

1
0
0
0
1

1

1

1
1

1
1
1
1

7 8 9

0
1
2
3
4
5
6
7
6
7

I’m sure you will agree if you were in the maze searching for the goal location, that you would
occasionally encounter a dead-end and have to back track a little bit, trying another direction.

COMP1005/1405 – Other Collections Fall 2009

 - 379-

Since we are doing backtracking, could we use a stack to find a solution ? What would we
even put in the stack ?

Well, the stack could keep track of the locations that we’ve been at. So, we
could put locations on the stack. A location could be stored as an (x,y)
Point.

There is a Point class in the java.awt package that we could use.
Therefore, the start location in the above picture (i.e., the green 2) would be
represented as (1,1) and the end location (i.e., the red 3) would be
(7,4).

Here are our starting variables:

int[][] maze = {{1,1,1,1,1,1,1,1,1,1},
 {1,0,0,1,0,0,0,0,0,1},
 {1,0,1,1,1,0,1,1,0,1},
 {1,0,1,0,0,0,1,0,0,1},
 {1,0,1,0,1,1,1,0,1,1},
 {1,0,0,0,1,0,1,1,1,1},
 {1,0,1,0,0,0,0,0,0,1},
 {1,1,1,1,1,1,1,1,1,1}};
Point currentLoc = new Point(1,1);
Point goalLoc = new Point(4,7); // Here x=rows, y=cols
Stack<Point> possibilities = new Stack<Point>();

The maze variable maintains information about open space and walls.
The currentLoc represents our current location in the maze. The
goalLoc represents the location that we are trying to reach.

The possibilities stack will contain all the possible locations that we
have been close to, but have not yet explored. Here is how it should
work:

We start by placing the starting location currentLoc onto the stack. Then we go through a
continuous loop that does the following:

REPEAT {
 IF (the stack is empty) THEN
 We cannot reach the goal, quit.
 Get a location from the top of the stack and move to it.
 IF (the location is the goal location) THEN
 We have reached the goal, quit.
 OTHERWISE
 Check all “open” locations around the current location
 and add them to the stack.
}

COMP1005/1405 – Other Collections Fall 2009

 - 380-

The above code will keep adding potential paths to the stack, but there is a problem. It is
possible that we will add the same location to the stack multiple times. That is, we might end
up circling back to the same locations over and over again. We need to add some
breadcrumbs so that we don’t get stuck on the same locations.

To do this, we need to change the values in the maze array so that we can distinguish
between an “open” location that we have never been to and an “open” spot that we have
been to before.

Perhaps we can use -1 to mark a location as having been visited.
So, here are the changes to the algorithm:

REPEAT {
 IF (the stack is empty) THEN
 We cannot reach the goal, quit.
 Get a location from the top of the stack and move to it.
 Mark current location as having been visited (breadcrumb)
 IF (the location is the goal location) THEN
 We have reached the goal, quit.
 OTHERWISE
 Check all “open” locations around the current location
 that have not been visited and add them to the stack.
}

How do we leave a breadcrumb in the maze ?

We mark the current location in the array with a -1 as follows:

maze[currentLoc.x][currentLoc.y] = -1;

How do we add potential paths (i.e., the OTHERWISE part of the algorithm) ?

COMP1005/1405 – Other Collections Fall 2009

 - 381-

We just check the locations above, below, left and right of the current location to see if there is
an unvisited location (i.e., with a value of 0 in that location of the maze) . Here is how we
would handle checking the location above the current location:

if (maze[currentLoc.x-1][currentLoc.y] == 0)
 possibilities.push(new Point(currentLoc.x-1, currentLoc.y));

Can you come up with the other 3 cases ?

Be aware that the rows of the array correspond to the x values of the locations …and the
columns correspond to the y values of the locations.

Here is the resulting code:

possi ilitb ies.push(currentLoc);
while(true) {

if (possibilities.isEmpty()) {
 System.out.println("Cannot Reach Goal");
 break;
 }
 currentLoc = possibilities.pop(); // get the next location
 printMaze(maze, currentLoc, goalLoc);
 maze[currentLoc.x][currentLoc.y] = -1; // place the breadcrumb
 if (currentLoc.equals(goalLoc)) {
 System.out.println("Reached Goal");
 break;
 }
 if (maze[currentLoc.x-1][currentLoc.y] == 0) // above
 possibilities.push(new Point(currentLoc.x-1, currentLoc.y));

if (maze[currentLoc.x+1][currentLoc.y] == 0) // below
 possibilities.push(new Point(currentLoc.x+1, currentLoc.y));
 if (maze[currentLoc.x][currentLoc.y-1] == 0) // left
 possibilities.push(new Point(currentLoc.x, currentLoc.y-1));

if (maze[currentLoc.x][currentLoc.y+1] == 0) // right
 possibilities.push(new Point(currentLoc.x, currentLoc.y+1));
}

You should be able to understand this code as it directly follows from the algorithm. For
debugging purposes, a call to printMaze() has been inserted. This method will display the
maze so that we can see how the program runs each time through the loop. It is similar to the
code we used when we discussed 2D arrays.

Here is all of the code as it appears in a test program…

import java.awt.Point;
import java.util.Stack;

public class MazeTestProgram {

COMP1005/1405 – Other Collections Fall 2009

 - 382-

 static void printMaze(int[][] maze, Point currentLoc, Point goalLoc) {
 for (int row=0; row<maze.length; row++) {
 for (int col=0; col<maze[0].length; col++) {
 if ((currentLoc.x == row) && (currentLoc.y == col))
 System.out.print('C');
 else if ((goalLoc.x == row) && (goalLoc.y == col))
 System.out.print('G');
 else if (maze[row][col] == 1)
 System.out.print('*');
 else if (maze[row][col] == 0)
 System.out.print(' ');
 else
 System.out.print('.');
 }
 System.out.println();
 }
 System.out.println();
 }
 public static void main(String args[]) {
 int[][] maze = {{1,1,1,1,1,1,1,1,1,1}, {1,0,0,1,0,0,0,0,0,1},
 {1,0,1,1,1,0,1,1,0,1}, {1,0,1,0,0,0,1,0,0,1},
 {1,0,1,0,1,1,1,0,1,1}, {1,0,0,0,1,0,1,1,1,1},
 {1,0,1,0,0,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1,1}};
 Point currentLoc = new Point(1,1);
 Point goalLoc = new Point(4,7); // Here x=rows, y=cols
 Stack<Point> possibilities = new Stack<Point>();

 possibilities.push(currentLoc);
 while(true) {
 if (possibilities.isEmpty()) {
 System.out.println("Cannot Reach Goal");
 break;
 }
 currentLoc = possibilities.pop(); // get next location
 printMaze(maze, currentLoc, goalLoc);
 maze[currentLoc.x][currentLoc.y] = -1; // place breadcrumb
 if (currentLoc.equals(goalLoc)) {
 System.out.println("Reached Goal");
 break;
 }
 if (maze[currentLoc.x-1][currentLoc.y] == 0) // above
 possibilities.push(new Point(currentLoc.x-1, currentLoc.y));
 if (maze[currentLoc.x+1][currentLoc.y] == 0) // below
 possibilities.push(new Point(currentLoc.x+1, currentLoc.y));
 if (maze[currentLoc.x][currentLoc.y-1] == 0) // left
 possibilities.push(new Point(currentLoc.x, currentLoc.y-1));
 if (maze[currentLoc.x][currentLoc.y+1] == 0) // right
 possibilities.push(new Point(currentLoc.x, currentLoc.y+1));
 }
 }
}

Here is the output when we run the code (placed in a table to save space, read left to right):

COMP1005/1405 – Other Collections Fall 2009

 - 383-

The * represent the walls, the small dots . represent the “breadcrumbs” (i.e., visited locations).
The C represents the current location and the G represents the goal location. The numbers
in the maze from 1 through 4 indicate the locations that are on the stack after each round
through the loop. A 1 indicates the top of the stack (i.e., the next to be popped off), while the
largest number indicates the bottom of the stack. You will notice how the stack grows and
shrinks, with 2 items left on it (i.e., 2 unexplored path portions) after the program completes.

C1 *
*2*** ** *
* * * *
* * ***G**
* * ****
* * *

Stack:
 (1,2)
 (2,1)

.C *
*1*** ** *
* * * *
* * ***G**
* * ****
* * *

Stack:
 (2,1)

.. *
*C*** ** *
1 * *
* * ***G**
* * ****
* * *

Stack:
 (3,1)

.. *
* ** * .***
C * *
1 ***G**
* * ****
* * *

Stack:
 (4,1)

.. *
*.*** ** *
* * * * .
C ***G**
*1 * ****
* * *

Stack:
 (5,1)

.. *
*.*** ** *
. * *
. ***G**
*C1 * ****
2 *

Stack:
 (5,2)
 (6,1)

.. *
*.*** ** *
. * *
. ***G**
.C1 ****
2 *

Stack:
 (5,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*2***G**
..C ****
*3*1 *

Stack:
 (6,3)
 (4,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*2***G**
*.. * **** .
*3*C1 *

Stack:
 (6,4)
 (4,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*2***G**
*... **** *
3.C1 *

Stack:
 (6,5)
 (4,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*3***G**
... 2****
4..C1 *

Stack:
 (6,6)
 (5,5)
 (4,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*3***G**
*...*2 *** *
4...C1 *

Stack:
 (6,7)
 (5,5)
 (4,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*3***G**
*...*2****
4....C1*

Stack:
 (6,8)
 (5,5)
 (4,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*2***G**
*...*1****
3.....C*

Stack:
 (5,5)
 (4,3)
 (6,1)

.. *
*.*** ** *
. * *
*.*1***G**
*...*C****
2......*

Stack:
 (4,3)
 (6,1)

.. *
*.*** ** *
*.*1 * *
*.*C***G**
....****
2......*

Stack:
 (3,3)
 (6,1)

.. *
*.*** ** *
*.*C1 * *
..***G**
....****
2......*

Stack:
 (3,4)
 (6,1)

.. *
*.*** ** *
..C1* *
..***G**
....****
2......*

Stack:
 (3,5)
 (6,1)

.. *
*.***1** *
...C* *
..***G**
....****
2......*

Stack:
 (2,5)
 (6,1)

.. 1 *
*.***C** *
....* *
..***G**
....****
2......*

Stack:
 (1,5)
 (6,1)

*..*2C1 *
*.***.** *
....* *
..***G**
....****
3......*

Stack:
 (1,6)
 (1,4)
 (6,1)

*..*2.C1 *
*.***.** *
....* *
..***G**
....****
3......*

Stack:
 (1,7)
 (1,4)
 (6,1)

*..*2..C1*
*.***.** *
....* *
..***G**
....****
3......*

Stack:
 (1,8)
 (1,4)
 (6,1)

*..*2...C*
*.***.**1*
....* *
..***G**
....****
3......*

Stack:
 (2,8)
 (1,4)
 (6,1)

*..*2....*
*.***.**C*
....* 1*
..***G**
....****
3......*

Stack:
 (3,8)
 (1,4)
 (6,1)

*..*2....*
*.***.** * .
....*1C*
..***G**
....****
3......*

Stack:
 (3,7)
 (1,4)
 (6,1)

*..*2....*
*.***.* .* *
....*C.*
..***1**
....****
3......*

Stack:
 (4,7)
 (1,4)
 (6,1)

*..*1....*
*.***.**.*
....*..*
..***C**
....****
2......*

Stack:
 (1,4)
 (6,1)

Reached Goal

COMP1005/1405 – Other Collections Fall 2009

 - 384-

 13.4 Sorting Objects

So far, we have examined some List classes and we did a couple of examples that used a
Stack. In each of these cases, we added objects to a collection in some manner that was
predictable according to the order that the items were added in. For some data structures, this
is not the case. One example of this is the PriorityQueue.

A PriorityQueue is a Queue in which the elements also maintain a priority. That is, we
still add to the back of the queue and remove from the front, but elements with higher priority
are automatically shifted closer to the front before lower priority elements.

As a real life example, when we go to the hospital for an
“emergency”, we wait in line (6 to 8 hours typically). We
normally get served in the order that we came in at. However,
if someone comes in after us who is bleeding or unconscious,
they automatically get bumped up ahead of us since their injuries
are likely more serious and demand immediate attention. We
may think of a PriorityQueue as a sorted queue.

Typical methods for PriorityQueues are:

• add(int priority, Object x) // just add(Object x) in JAVA
• remove()
• isEmpty()

In a PriorityQueue, when we add items, they usually get shuffled around inside according to
their priority. Therefore, we may not necessarily know the order of the items afterwards …
except that they will be in some sort of prioritized order. Consider adding some Person
objects to an ArrayList:

import java.util.*;

public class SortTestProgram1 {
 public static void main(String args[]) {
 ArrayList<Person> people = new ArrayList<Person>();
 people.add(new Person("Pete", "Zaria", 12, 'M', false));
 people.add(new Person("Rita", "Book", 20, 'F', false));
 people.add(new Person("Willie", "Maykit",65, 'M', true));
 people.add(new Person("Patty", "O'Furniture", 41, 'M', false));
 people.add(new Person("Sue", "Permann", 73, 'F', true));
 people.add(new Person("Sid", "Down", 19, 'M', false));
 people.add(new Person("Jack", "Pot", 4, 'M', false));

 for (Person p: people)
 System.out.println(p);
 }
}

COMP1005/1405 – Other Collections Fall 2009

 - 385-

The people are displayed in the order that they are added:

12 year old non-retired person named Pete Zaria
20 year old non-retired person named Rita Book
65 year old retired person named Willie Maykit
41 year old non-retired person named Patty O'Furniture
73 year old retired person named Sue Permann
19 year old non-retired person named Sid Down
4 year old non-retired person named Jack Pot

What would happen if we added them to a priority queue instead ? Assume that we changed
the variable type from ArrayList to PriorityQueue as follows:

PriorityQueue <Person> people = new PriorityQueue<Person>();

If we tried running the code, we would get the following Exception:

 java.lang.ClassCastException: Person cannot be cast to java.lang.Comparable

The problem is that JAVA does not know how to compare Person objects in order to be able
to sort them. It is telling us that Person must implement the Comparable interface. Instead
of supplying a priority when we add the objects to the queue, the items are sorted by means of
a Comparator interface. That means, each object that we store in the PriorityQueue,
must implement methods compare() and equals() … which are used determine the sort order
(i.e., priority).

So, we should add implements Comparable<Person> to the Person class definition:

public class Person implements Comparable<Person> {
 ...
}

Interestingly, the additional <Person> at the end of Comparable indicates to JAVA that we will
only be comparing Person objects, not Person objects with other types of objects.

Then we can easily write an equals() method … we did this previously when we discussed
“Code Efficiency”. But how do we write a compare() method ? It is similar to the equals()
method in that it takes a single object parameter:

public int compareTo(Person p) { ... }

However, you will notice that the return type is not a boolean, but an
int instead. This integer reflects the ordering between the receiver
and t he parameter. If a negative value is returned from the method,
this informs JAVA that the receiver has higher priority (i.e., comes
before in the ordering) than the incoming parameter object.

COMP1005/1405 – Other Collections Fall 2009

 - 386-

Likewise, a positive value indicates lower priority and a zero value indicates that they are equal
priority.

Lets now give it a try for Person objects. If we want to sort by means of their increasing ages
(i.e., younger first), this would be the compareTo() method:

public int compareTo(Person p) {
 return (this.age – p.age);
}

Assume now that we ran the following program:

import java.util.*;

public class SortTestProgram2 {
 public static void main(String args[]) {
 PriorityQueue<Person> people = new PriorityQueue<Person>();
 people.add(new Person("Pete", "Zaria", 12, 'M', false));
 people.add(new Person("Rita", "Book", 20, 'F', false ;))
 people.add(new Person("Willie", "Maykit",65, 'M', true));
 people.add(new Person("Patty", "O'Furniture", 41, 'M', false));
 people.add(new Person("Sue", "Permann", 73, 'F', true));
 people.add(new Person("Sid", "Down", 19, 'M', false));
 people.add(new Person("Jack", "Pot", 4, 'M', false));

 // Display the queue
 System.out.println("Here is what the queue looks like:");
 for(Person p: people)
 System.out.println(p);

 // Extract them from the queue
 System.out.println("\nHere are items as extracted from queue:");
 while(!people.isEmpty())
 System.out.println(people.remove());
 }
}

Interestingly, the output from the for loop is as follows:

Here is what the queue looks like:
4 year old non-retired person named Jack Pot
20 year old non-retired person named Rita Book
12 year old non-retired person named Pete Zaria
41 year old non-retired person named Patty O'Furniture
73 year old retired person named Sue Permann
65 year old retired person named Willie Maykit
19 year old non-retired person named Sid Down

COMP1005/1405 – Other Collections Fall 2009

 - 387-

Notice that the items do not seem sorted at all ! That is because a PriorityQueue does not
actually sort the items, it simple makes sure that the item at the front of the queue is the one
with highest priority. In this case, that is the youngest person … which is indeed at the front of
the queue.

To get the items in sorted order, we simply extract them from the queue one at a time as
shown in the while loop from the code above. Here is the output from the while loop:

Here are items as extracted from queue:
4 year old non-retired person named Jack Pot
12 year old non-retired person named Pete Zaria
19 year old non-retired person named Sid Down
20 year old non-retired person named Rita Book
41 year old non-retired person named Patty O'Furniture
65 year old retired person named Willie Maykit
73 year old retired person named Sue Permann

Indeed, you can see that as we extract the items one at a time, they are sorted. More about
these kinds of queue will be discussed in a later course.

What if we wanted to sort the people by their last names ? To do this, we would need to alter
the compareTo() method to compare names, not ages. Lets make a subclass of Person
called AlphaPerson that has a different compareTo() method:

public class AlphaPerson extends Person {
 // This is a 5-parameter constructor
 public AlphaPerson(String fn, String ln, int a, char g, boolean r) {
 super(fn, ln, a, g, r);
 }

 // Used to compare Persons by alphabetical order of last names
 public int compareTo(Person p) {
 return this.lastName.compareTo(p.lastName); // assumes that lastName
 } // is declared protected
} // in the Person class

Notice that the parameter is Person, not AlphaPerson. This is because Person implements
the Comparable<Person> interface, which specifies type Person and AlphaPerson inherits
from Person.

Consider the output then from the following program …

COMP1005/1405 – Other Collections Fall 2009

 - 388-

import java.util.*;

public class SortTestProgram3 {
 public static void main(String args[]) {
 PriorityQueue<AlphaPerson> people;
 people = new PriorityQueue<AlphaPerson>();

 people.add(new AlphaPerson("Pete", "Zaria", 12, 'M', false));
 people.add(new AlphaPerson("Rita", "Book", 20, 'F', false));
 people.add(new AlphaPerson("Willie", "Maykit",65, 'M', true));
 people.add(new AlphaPerson("Patty", "O'Furniture", 41, 'M', false));
 people.add(new AlphaPerson("Sue", "Permann", 73, 'F', true));
 people.add(new AlphaPerson("Sid", "Down", 19, 'M', false));
 people.add(new AlphaPerson("Jack", "Pot", 4, 'M', false));

 System.out.println("\nHere are items as extracted from queue:");
 while (!people.isEmpty())
 System.out.println(people.remove());
 }
}

Here is the output now … notice that they are sorted by their last names:

Here are items as extracted from queue:
20 year old non-retired person named Rita Book
19 year old non-retired person named Sid Down
65 year old retired person named Willie Maykit
41 year old non-retired person named O'Furniture Patty
73 year old retired person named Sue Permann
4 year old non-retired person named Jack Pot
12 year old non-retired person named Pete Zaria

So, we can decide how to sort the items and make the appropriate compareTo() method.

As you will learn in a later course, the PriorityQueue is very efficient. However, the above
code required us to extract all the items from the queue in order to get them in sorted order …
thereby leaving the queue empty. This is often undesirable. Sometimes we just want to
leave the elements in the collection and sort them so that we can then use the collection as we
normally would, but maintain all items in sorted order.

JAVA provides a nice tool-kit class called Collections that contains a bunch of useful methods
that we can take advantage of. One of these is a sort() method which will sort an arbitrary
collection.

Examine the following code to see how easy it is to sort our ArrayList of Person objects using
this sort() method …

COMP1005/1405 – Other Collections Fall 2009

 - 389-

import java.util.*;

public class SortTestProgram4 {
 public static void main(String args[]) {
 ArrayList<Person> people = new ArrayList<Person>();

 people.add(new Person("Pete", "Zaria", 12, 'M', false));
 people.add(new Person("Rita", "Book", 20, 'F', false));
 people.add(new Person("Willie", "Maykit",65, 'M', true));
 people.add(new Person("Patty", "O'Furniture", 41, 'M', false));
 people.add(new Person("Sue", "Permann", 73, 'F', true));
 people.add(new Person("Sid", "Down", 19, 'M', false));
 people.add(new Person("Jack", "Pot", 4, 'M', false));

 Collections.sort(people); // do the sorting

 for (Person p: people)
 System.out.println(p);
 }
}

The output is as expected with all people sorted by their age.

Of course, we could use AlphaPerson to sort them alphabetical instead, if so desired. For
the above code to work, we still need to have the compareTo() methods written. Hopefully
you noticed how easy this sort() method is to use.

There is also a class called Arrays which has some useful methods for manipulating arrays.
For example, if our code had arrays of Person objects instead of ArrayLists, here is what the
code would look like to sort:

import java.util.*;

public class SortTestProgram4b {
 public static void main(String args[]) {
 Person[] people = {new Person("Pete", "Zaria", 12, 'M', false),
 new Person("Rita", "Book", 20, 'F', false),
 new Person("Willie", "Maykit",65, 'M', true),
 new Person("Patty", "O'Furniture", 41, 'M', false),
 new Person("Sue", "Permann", 73, 'F', true),
 new Person("Sid", "Down", 19, 'M', false),
 new Person("Jack", "Pot", 4, 'M', false)};

 Arrays.sort(people); // do the sorting

 for (Person p: people)
 System.out.println(p);
 }
}

COMP1005/1405 – Other Collections Fall 2009

 - 390-

There are similar sort methods for the primitive data types, so you can sort simple arrays of
numbers such as this:

int[] nums = {23, 54, 76, 1, 29, 89, 45, 76};

Arrays.sort(nums); // do the sorting

Interestingly, there are other useful methods in the Collections class such as reverse(),
shuffle(), max() and min(). Can you guess what they do by looking at the output of the
following program ?

import java.util.*;

public class SortTestProgram5 {
 public static void main(String args[]) {
 ArrayList<Person> people = new ArrayList<Person>();

 people.add(new Person("Pete", "Zaria", 12, 'M', false));
 people.add(new Person("Rita", "Book", 20, 'F', false));
 people.add(new Person("Willie", "Maykit",65, 'M', true));
 people.add(new Person("Patty", "O'Furniture", 41, 'M', false));
 people.add(new Person("Sue", "Permann", 73, 'F', true));
 people.add(new Person("Sid", "Down", 19, 'M', false));
 people.add(new Person("Jack", "Pot", 4, 'M', false));

 System.out.println("The list reversed:");
 Collections.reverse(people);
 for(Person p: people)
 System.out.println(p);

 uff d:"); System.out.println("\nThe list sh le
 Collections.shuffle(people);
 for(Person p: people)
 System.out.println(p);

 System.out.println("\nThe list shuffled again:");
 Collections.shuffle(people);
 for(Person p: people)
 System.out.println(p);

 System.out.println("\nOldest person: " + Collections.max(people));
 System.out.println("Youngest person:" + Collections.min(people));
 }
}

Here is the output … was it as you expected? …

COMP1005/1405 – Other Collections Fall 2009

 - 391-

The list reversed:
4 year old non-retired person named Jack Pot
19 year old non-retired person named Sid Down
73 year old retired person named Sue Permann
41 year old non-retired person named Patty O'Furniture
65 year old retired person named Willie Maykit
20 year old non-retired person named Rita Book
12 year old non-retired person named Pete Zaria

The list shuffled:
12 year old non-retired person named Pete Zaria
4 year old non-retired person named Jack Pot
19 year old non-retired person named Sid Down
20 year old non-retired person named Rita Book
41 year old non-retired person named Patty O'Furniture
73 year old retired person named Sue Permann
65 year old retired person named Willie Maykit

The list shuffled again:
4 year old non-retired person named Jack Pot
73 year old retired person named Sue Permann
19 year old non-retired person named Sid Down
12 year old non-retired person named Pete Zaria
41 year old non-retired person named Patty O'Furniture
20 year old non-retired person named Rita Book
65 year old retired person named Willie Maykit

Oldest person: 73 year old retired person named Sue Permann
Youngest person:4 year old non-retired person named Jack Pot

There are additional methods in the Collections class. Have a look at the API and see if you
find anything useful.

 13.5 Removing Duplicates

One more interesting tool for collections that we will look at is one that will allow us to remove
duplicates. In the real world, it is often necessary to reduce the amount of data you have by
eliminating the duplicate information. We have already had some practice at preventing
duplicate information when we created the differentMakes() method in the Autoshow class
when we discussed ArrayLists:

ArrayList<String> differentMakes() {
 ArrayList<String> answer = new ArrayList<String>();

for (Car c: this.cars) {
 if (!answer.contains(c.make))
 answer.add(c.make);

}
return answer;

}

COMP1005/1405 – Other Collections Fall 2009

 - 392-

Recall that we simply checked (with the contains() method) to see whether or not the make of
the car was already in the answer collection before we added it. If already there, we did not
add it. The code was straight forward. However, sometimes we want to have duplicates in
our collections, we just may not want to show them all of the time. For example, a video store
might be interested in producing a list of all its unique moves … nothing is gained by listing a
move 15 times if the store, for example, has 15 copies of that movie.

Consider the following code which simulates some inventory at a video store. The code
makes use of a simple Movie object, which contains only one attribute corresponding to its
title. The code adds 10 movies from among 5 unique titles … hence many duplicates. The
code makes us of Math.random() so that the inventory is different each time we run the
program.

import java.util.*;

public class SetTestProgram1 {
 public static void main(String args[]) {
 Movie[] dvds = {new Movie("Bolt"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Marley & Me"),
 new Movie("Hotel For Dogs"),
 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 20 random movies from the list of dvds
 for (int i=0; i<10; i++) {
 inventory.add(dvds[(int)(Math.random()*5)]);
 }

 for (Movie m: inventory)
 System.out.println(m);
 }
}

public class Movie {
 private String title;

 public Movie(String t) { title = t; }
 public String getTitle() { return title; }
 public String toString() { return "Movie: \"" + title + "\""; }
}

Here is an example of the output (will differ each time you run though) …

COMP1005/1405 – Other Collections Fall 2009

 - 393-

Movie: "Hotel For Dogs"
Movie: "Hotel For Dogs"
Movie: "Hotel For Dogs"
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Marley & Me"
Movie: "Hotel For Dogs"
Movie: "Marley & Me"
Movie: "Hotel For Dogs"
Movie: "Bolt"

Can we adjust the for loop so that it only displays unique movies ? No. We would have to do
some extra work of making a new list with the duplicates removed. So, we could replace the
for loop with the following:

ArrayList<Movie> uniqueList = new ArrayList<Movie>();

for (Movie m: inventory) {
 if (!uniqueList.contains(m))
 uniqueList.add(m);
}
for (Movie m: uniqueList) {
 System.out.println(m);
}

This would produce the following output (according to the earlier results):

Movie: "Hotel For Dogs"
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Marley & Me"

However, there is an easier way to do this … by making use of the Set classes in JAVA.

A Set is a collection that does not allow duplicates. That is, there
cannot be two elements e1 and e2 such that e1.equals(e2). Any attempt
to add duplicate elements is ignored. Sets differ from Lists in that the
elements are not kept in the same order as when they were added.
Sets are generally unordered, which means that the particular location
of an element may change according to the particular set implementation.
Typical methods for Sets are:

• add(Object x)
• remove(Object x)

COMP1005/1405 – Other Collections Fall 2009

 - 394-

There are two Set classes in JAVA. A HashSet is a set in which the order of the items is
arbitrary, whereas a TreeSet keeps the items in sorted order (according to how the
compareTo() method is written).

Consider what would happen if we changed the inventory from an ArrayList to a HashSet as
follows:

HashSet<Movie> inventory = new HashSet<Movie>();

Our code would produce the following output (according to the earlier results):

Movie: "Hotel For Dogs"
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Marley & Me"

Notice that the duplicates were removed. The HashSet prevented any duplicates from being
added. Therefore, we have lost all duplicate copies from our inventory, which can be bad.
Perhaps it would be better to only use a HashSet when displaying the inventory, so that we
don’t destroy the duplicate movies. This is easily done by creating an extra HashSet variable
(displayList in this case) and using the HashSet constructor that takes a Collection
parameter:

import java.util.*;

public class SetTestProgram2 {
 public static void main(String args[]) {
 Movie[] dvds = {new Movie("Bolt"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Marley & Me"),
 new Movie("Hotel For Dogs"),
 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

 // Add 10 random movies from the list of dvds
 for (int i=0; i<10; i++) {
 inventory.add(dvds[(int)(Math.random()*5)]);
 }

 System.out.println("Here are the unique movies:");
 HashSet<Movie> displayList = new HashSet<Movie>(inventory);
 for (Movie m: displayList)
 System.out.println(m);

 System.out.println("\nHere is the whole inventory:");
 for (Movie m: inventory)
 System.out.println(m);
 }
}

COMP1005/1405 – Other Collections Fall 2009

 - 395-

Notice the parameter to the HashSet constructor. This constructor will ensure to add all the
elements from the inventory collection to the newly create HashSet. Then, in the for loop, we
use this new HashSet for display purposes, while the original inventory remains unaltered.
Here is the output:

Here are the unique movies:
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Monsters Vs. Aliens"
Movie: "Hotel For Dogs"

Here is the whole inventory:
Movie: "Bolt"
Movie: "Bolt"
Movie: "Bolt"
Movie: "Monsters Vs. Aliens"
Movie: "The Day the Earth Stood Still"
Movie: "Hotel For Dogs"
Movie: "Bolt"
Movie: "Monsters Vs. Aliens"
Movie: "Monsters Vs. Aliens"
Movie: "Bolt"

So, it is easy to remove duplicates from any collection … we simply create a new HashSet
from the collection and it removes the duplicates for us.

However, there is one point that should be mentioned. In the above code, the duplicates
movies all represented the same exact object in memory … that is … all duplicates were
identical to one another. However, it is more common to have two equal movies which are not
identical.

So, consider this code … notice the equal (but not identical) movies:

import java.util.*;

public class SetTestProgram3 {
 public static void main(String args[]) {
 Movie[] dvds = {new Movie("Bolt"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Marley & Me"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("Hotel For Dogs"),
 new Movie("Hotel For Dogs"),
 new Movie("Monsters Vs. Aliens"),
 new Movie("The Day the Earth Stood Still"),
 new Movie("The Day the Earth Stood Still"),
 new Movie("The Day the Earth Stood Still"),
 new Movie("The Day the Earth Stood Still")};

 ArrayList<Movie> inventory = new ArrayList<Movie>();

COMP1005/1405 – Other Collections Fall 2009

 - 396-

 // Add 10 random movies from the list of dvds
 for (int i=0; i<10; i++) {
 inventory.add(dvds[(int)(Math.random()*11)]);
 }

 System.out.println("Here are the unique movies:");
 HashSet<Movie> displayList = new HashSet<Movie>(inventory);
 for (Movie m: displayList)
 System.out.println(m);

 System.out.println("\nHere is the whole inventory:");
 for (Movie m: inventory)
 System.out.println(m);
 }
}

Here is the result:

Here are the unique movies:
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "Bolt"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "Monsters Vs. Aliens"

Here is the whole inventory:
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "The Day the Earth Stood Still"
Movie: "Monsters Vs. Aliens"
Movie: "Bolt"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"

Notice that there are many duplicates still in the Set. What if we were to add the following
equals() method to the Movie class:

public boolean equals(Object obj) {

if (!(obj instanceof Movie)) return false;
return title.equals(((Movie)obj).title);

}

Logically, that should solve the problem. However, it does not quite.

COMP1005/1405 – Other Collections Fall 2009

 - 397-

As it turns out, in JAVA, Sets make use of a programming technique called hashing.
Hashing is used as a way of quickly comparing and sorting objects because it
quickly identifies objects that cannot be equal to one another, without needing
to go deep down inside the object to make comparisons. For example, if
you had an apple and a pineapple, they are clearly not equal. You need
not compare them closely because a simple quick glance tells you that they
are not the same.

In real life, hashing is used by post offices when sorting mail at
various levels. First, they look at the destination country and
make two piles … domestic mail vs. international mail. That is a
quick “hash” in that the postmen do not need to examine any
further details at that time … such as street names and recipient
names etc… Then they hash again later by using the postal
code to determine "roughly" and “quickly” the area of a city that
your mail needs to be delivered to. This allows them to make a
pile of mail for all people living in the same area. At each level
of “sorting” the mail (i.e., country, city, postal code, street), the
postmen must make a quick decision as to which pile to place
the mail item into. This quick decision is based on something
called a hash function (or hash code).

In JAVA, for Sets to work properly, we must also write a hashCode() method for our objects.
These methods return an int which represents the “pile” that the object belongs to. Similar
objects will have similar hash codes, and therefore end up in the same “pile”. Here is the
hashCode() method for our Movie object:

public int hashCode() {
 return title.hashCode();
}

It must be public, return an int and have no parameters. The code simply returns the hash
code of the title string for the movie. We do not wish to go into details here as to “how” to
produce a proper hash code. Instead, let us simply use this “rule of thumb”: the hash code for
our objects should return a sum of all the hash codes of its attributes. If an attribute is a
primitive, just convert it to an integer in some way and use that value in the hashCode()
method’s total value.

By adding the above method, therefore, the HashSet will work properly to eliminate the
duplicates. You will notice however, that the HashSet does not sort the items. Also, the
items don’t even appear in the order that they were added. Instead, the order seems
somewhat random and arbitrary.

If you want the items in sorted order, you can use a TreeSet instead of a HashSet:

TreeSet<Movie> displayList = new TreeSet<Movie>(inventory);

COMP1005/1405 – Other Collections Fall 2009

 - 398-

Of course, as we did with PriorityQueues, we will need to make sure that our Movie class
implements the Comparable<Movie> interface and thus has a compareTo() method. Here is
the completed Movie class that will work with both HashSet and TreeSet:

public class Movie implements Comparable<Movie> {
 private String title;

 public Movie(String t) { title = t; }
 public String getTitle() { return title; }
 public String toString() { return "Movie: \"" + title + "\""; }

 public boolean equals(Object obj) {
 if (!(obj instanceof Movie)) return false;
 return title.equals(((Movie)obj).title);
 }

 public int hashCode() {
 return title.hashCode();
 }

 public int compareTo(Movie m) {
 return title.compareTo(m.title);
 }
}

Here is the output from our SetTestProgram3 when using TreeSet instead of HashSet:

Here are the unique movies:
Movie: "Bolt"
Movie: "Hotel For Dogs"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "The Day the Earth Stood Still"

Here is the whole inventory:
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "The Day the Earth Stood Still"
Movie: "Marley & Me"
Movie: "Monsters Vs. Aliens"
Movie: "Hotel For Dogs"
Movie: "Monsters Vs. Aliens"
Movie: "Marley & Me"
Movie: "Bolt"

Notice the sorted order of the movies from the TreeSet.

TO BE CONTINUED…

	Other Collections
	What is in This Chapter ?

