Editorial Manager(tm) for Algorithmica
 Manuscript Draft

Manuscript Number:

Title: Computing the greedy spanner in near-quadratic time

Article Type: Original Research

Keywords: spanner, dilation, stretch factor, greedy algorithm

Corresponding Author: Dr Mohammad Farshi, Ph.D.

Corresponding Author's Institution: Computational Geometry Lab.

First Author: Prosenjit Bose, Ph.D.

Order of Authors: Prosenjit Bose, Ph.D.; Paz Carmi, Ph.D.; Mohammad Farshi, Ph.D.; Anil Maheshwari, Ph.D.; Michiel Smid, Ph.D.

Manuscript

Computing the greedy spanner in near-quadratic time*

Prosenjit Bose $^{\dagger} \quad$ Paz Carmi ${ }^{\dagger} \quad$ Mohammad Farshi ${ }^{\dagger}$ Anil Maheshwari ${ }^{\dagger}$
Michiel Smid ${ }^{\dagger}$

May 30, 2008

Abstract

The greedy algorithm produces high-quality spanners and, therefore, is used in several applications. However, even for points in d-dimensional Euclidean space, the greedy algorithm has near-cubic running time. In this paper, we present an algorithm that computes the greedy spanner for a set of n points in a metric space with bounded doubling dimension in $\mathcal{O}\left(n^{2} \log n\right)$ time. Since computing the greedy spanner has an $\Omega\left(n^{2}\right)$ lower bound, the time complexity of our algorithm is optimal within a logarithmic factor.

1 Introduction

A network on a point set V is a connected graph $G(V, E)$. When designing a network, several criteria are taken into account. For example, in many applications, it is important to ensure a short connection between every pair of points. For this it would be ideal to have a direct connection between every pair of points - the network would then be a complete graphbut in most applications, this is unacceptable due to the very high costs associated with constructing such a network. This leads to the concept of a spanner, as defined below.

Let (V, \mathbf{d}) be a finite metric space and let $G(V, E)$ be a network on V such that the weight of each edge (u, v) of E is equal to the distance $\mathbf{d}(u, v)$ between its endpoints u and v. For any two points u and v in V, we denote by $\mathbf{d}_{G}(u, v)$ the weight of a path in G between u and v of minimum weight. For a real number $t>1$, we say that G is a t-spanner of V if for each pair of points $u, v \in V$, we have $\mathbf{d}_{G}(u, v) \leq t \cdot \mathbf{d}(u, v)$. Any path in G between u and v having weight at most $t \cdot \mathbf{d}(u, v)$ is called a t-path. The dilation or stretch factor of G is the minimum t for which G is a t-spanner of V.

Spanners were introduced by Peleg and Schäffer [20] in the context of distributed computing, and by Chew [5] in the geometric context. Since then, spanners have received a lot of attention; see the survey papers $[10,13,22]$ and the books $[18,19]$.

A classical algorithm for computing a t-spanner for any finite metric space (V, \mathbf{d}) and for any real number $t>1$ is the greedy algorithm, proposed independently by Bern in 1989 and Althöfer et al. [1]. The main steps of this algorithm are the following (see Algorithm 1.1

[^0]for more details): First, sort all pairs of distinct points in V in non-decreasing order of their distances, and initialize a graph G with vertex set V whose edge set is empty. Then, process the pairs in sorted order. Processing a pair (u, v) entails a shortest path query in G between u and v. If there is no t-path between u and v in G, then the edge (u, v) is added to G, otherwise this pair is discarded. We will refer to the graph G computed by this algorithm as the greedy spanner. The focus of this paper is to compute the greedy spanner efficiently.

```
Algorithm 1.1: Original-Greedy \((V, t)\)
    Input: metric space ( \(V, \mathbf{d}\) ) and real number \(t>1\).
    Output: the greedy \(t\)-spanner \(G\left(V, E^{\prime}\right)\).
    \(E:=\) list of all pairs of distinct points in \(V\), sorted in non-decreasing order of their distances;
    \(E^{\prime}:=\emptyset ;\)
    \(G:=\left(V, E^{\prime}\right) ;\)
    foreach \((u, v) \in E\) (in sorted order) do
        if \(\mathbf{d}_{G}(u, v)>t \cdot \mathbf{d}(u, v)\) then
            \(E^{\prime}:=E^{\prime} \cup\{(u, v)\} ;\)
        end
    end
    return \(G=\left(V, E^{\prime}\right)\);
```

The shortest-path length $\mathbf{d}_{G}(u, v)$ in line 5 can be obtained from a single-source shortestpath (SSSP) computation with source u. Recall that such a computation yields, for each point $w \in V$, the value $\mathbf{d}_{G}(u, w)$. Using Dijkstra's algorithm [9], an SSSP computation takes $\mathcal{O}(n \log n+m)$ time, where n is the number of vertices and m is the number of edges in G, see also [6, Section 24.3].

Thus, since the greedy algorithm performs $\binom{n}{2}$ shortest path queries, the time complexity of the entire algorithm is $\mathcal{O}\left(m n^{2}+n^{3} \log n\right)$, where n is the number of points in V and m is the number of edges in the (final) spanner G.

The greedy algorithm has been subject to considerable research [3, 4, 7, 8, 14, 23]. It has been shown that for any set V of n points in the Euclidean space \mathbb{R}^{d} and for any fixed $t>1$, the greedy spanner has $\mathcal{O}(n)$ edges, maximum degree $\mathcal{O}(1)$, and total weight $\mathcal{O}(w t(\operatorname{MST}(V)))$, where $\operatorname{wt}(M S T(V))$ is the weight of a minimum spanning tree of V; see $[8,18]$. Thus, in \mathbb{R}^{d}, the naïve implementation of the greedy algorithm runs in near-cubic time.

Due to the high time complexity of the greedy algorithm, researchers have proposed algorithms for computing other types of sparse t-spanners, see [18]. For Euclidean space \mathbb{R}^{d}, there are several algorithms that construct t-spanners with $\mathcal{O}(n)$ edges in $\mathcal{O}(n \log n)$ time. All these algorithms use geometric properties of the input point set. It turns out, however, that the greedy algorithm produces t-spanners of higher quality in comparison to other spanner algorithms; see $[11,12]$. The greedy algorithm produces graphs whose size, weight, maximum degree and number of crossings are superior to the graphs produced by the other approaches. For example, if $t=2, t=1.1$ and $t=1.05$, the number of edges in the greedy t-spanner is approximately $2 n, 4 n$ and $6 n$, respectively, which is surprisingly small. For comparison, it is interesting to note that the Delaunay triangulation has approximately $3 n$ edges and dilation bounded by 2.42 [17]. The maximum degree of the greedy 1.1 -spanner, generated on a uniformly distributed set of 8000 points, is 14 and its weight is 11 times the weight of a minimum spanning tree of the point set. To have a rough comparison, the Θ-graph algorithm, which runs in $\mathcal{O}(n \log n)$ time, generates a 1.1 -spanner for the same point set
containing 370K edges, its maximum degree is 144 and its weight is 327 times the weight of a minimum spanning tree.

In the geometric case, there is an algorithm with $\mathcal{O}(n \log n)$ running time, which approximates the greedy spanner; see $[8,14]$. The graph generated by this approximate greedy algorithm has the same theoretical properties as the greedy spanner. The experiments showed, howevere, that the graphs generated by this approximation algorithm are much worse in practice; see [12]. To illustrate the difference, for $t=1.1$ and on a set of 8000 uniformly distributed points in the plane, the approximate greedy algorithm generates a graph with 852 K edges and maximum degree 403. This is much higher than the size and maximum degree of the greedy spanner on the same point set.

Since low size and low weight spanners are important, the greedy spanner is used in several applications, despite its high time complexity. For example, it has been used for protein visualization as a low-weight data structure, which is used as a contact map, that allows approximate reconstruction of the full distance matrix; see [21]. In this context, the authors need a low weight spanner that consists of short edges because the interaction in a protein is local which means long edges are hard to assign biological meaning and therefore the greedy spanner is a suitable choice. They used heuristics based on the A^{*}-search algorithm, which, in practice, improves the computation.

For points in the plane under the Euclidean metric, Farshi and Gudmundsson [11, 12] introduced a speed-up strategy that generates the greedy spanner much faster in practice. For values of t that are close to 1 , their algorithm runs even faster than the near-linear time algorithm which approximates the greedy t-spanner. For example, for constructing a 1.1-spanner on a set of 8000 uniformly distributed points, their fast greedy algorithm runs 3 times faster than the $\mathcal{O}\left(n \log ^{2} n\right)$ algorithm which approximates the greedy spanner. They conjectured that their algorithm runs in $\mathcal{O}\left(n^{2} \log n\right)$ time. However, as we will show in this paper, this conjecture is incorrect.

For general metric spaces, there are cases when the complete graph is the only t-spanner of a point set. For example, assume V is a set of points from a metric space in which the distance between any two distinct points is equal to 1 . Then for any t with $1<t<2$, the complete graph is the only t-spanner of V. Therefore, for general metric spaces, we cannot guarantee that the greedy spanner is sparse. As we will show in this paper, however, if the metric space has bounded doubling dimension, then the number of edges in the greedy spanner is linear in the number of points. The doubling dimension of a metric space is defined as follows. Let λ be the smallest integer such that for each real number r, any ball of radius r can be covered by at most λ balls of radius $r / 2$. The doubling dimension of V is defined to be $\log \lambda$. The doubling dimension is a generalization of the Euclidean dimension, as the doubling dimension of d-dimensional Euclidean space is $\Theta(d)$.

1.1 Main results and organization of the paper

The main result of this paper is that for any metric space V of bounded doubling dimension, the greedy spanner of V has a linear number of edges and can be computed in $\mathcal{O}\left(n^{2} \log n\right)$ time, where $n=|V|$. The organization of the remainder of this paper is as follows. In Section 2, we review the FG-greedy algorithm of $[11,12]$ and give a counterexample to the conjecture that this algorithm performs only $\mathcal{O}(n)$ SSSP computations. In fact, we show that this algorithm performs $\Omega\left(n^{2}\right)$ SSSP computations in the worst case. In Section 2.2, we modify the FG-greedy algorithm and show that the new algorithm performs $\Omega(n \log n)$ SSSP
computations in the worst case. In Section 3, we present an algorithm that computes the greedy spanner in near-quadratic time for some special cases. These results are generalized to metric spaces of bounded doubling dimension in Section 4.

Throughout this paper, we assume that the (upper bound on the) stretch factor of the greedy spanner is a real number $t>1$ which is close to one.

2 The FG-greedy algorithm

As mentioned before, the running time of a naïve implementation of the greedy algorithm is $\mathcal{O}\left(m n^{2}+n^{3} \log n\right)$, where n is the number of points and m is the number of edges in the greedy spanner. Farshi and Gudmundsson $[11,12]$ introduced a variant of the greedy algorithm and showed that, in practice, it improves the running time for constructing the greedy spanner considerably on point sets in the plane with the Euclidean metric. We will refer to this algorithm as the FG-greedy algorithm. The FG-greedy algorithm is the same as the original greedy algorithm (Algorithm 1.1), except that it uses a matrix to store the length of the shortest path between every two points. The algorithm updates the matrix only when it is required. Thus, the weights in the matrix are not always equal to the actual shortest path lengths in the current graph. Instead of computing the shortest path length for each pair (u, v) (see line 5 of Algorithm 1.1), it first checks the matrix to see if there is a t-path between u and v. If the answer is "no", then it performs an SSSP computation and updates the matrix. Thus, the algorithm answers the distance queries correctly. The algorithm is presented below as Algorithm 2.1. Farshi and Gudmundsson conjectured that the FG-greedy algorithm performs only $\mathcal{O}(n)$ SSSP computations, which would imply a total running time of $\mathcal{O}\left(n^{2} \log n\right)$ for the case when the greedy spanner has $\mathcal{O}(n)$ edges.

```
Algorithm 2.1: FG-Greedy \((V, t)\)
    Input: metric space \((V, \mathbf{d})\) and real number \(t>1\).
    Output: the greedy \(t\)-spanner \(G\left(V, E^{\prime}\right)\).
    foreach \(u \in V\) do \(\operatorname{weight}(u, u):=0\);
    foreach \((u, v) \in V^{2}\) with \(u \neq v\) do \(\operatorname{weight}(u, v):=\infty\);
    \(E:=\) list of all pairs of distinct points in \(V\), sorted in non-decreasing order of their distances;
    \(E^{\prime}:=\emptyset ;\)
    \(G:=\left(V, E^{\prime}\right) ;\)
    foreach \((u, v) \in E\) (in sorted order) do
        if weight \((u, v)>t \cdot \mathbf{d}(u, v)\) then
            perform an SSSP computation in \(G\) with source \(u\);
            foreach \(w \in V\) do
                weight \((u, w):=\operatorname{weight}(w, u):=\min \left(w \operatorname{eight}(u, w), \mathbf{d}_{G}(u, w)\right) ;\)
            end
            if weight \((u, v)>t \cdot \mathbf{d}(u, v)\) then
                    \(E^{\prime}:=E^{\prime} \cup\{(u, v)\} ;\)
            end
        end
    end
    return \(G\left(V, E^{\prime}\right)\);
```


2.1 A Counterexample

We give an example which shows that the FG-greedy algorithm (Algorithm 2.1) performs $\Theta\left(n^{2}\right)$ SSSP computations in the worst-case, i.e., line 8 may be executed $\Theta\left(n^{2}\right)$ times.

Consider the set $S=\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ of n points on the real line, where $p_{i}=2^{i}$ for $0 \leq i<n$. The algorithm sorts all pairs of points based on their distances. We assume that for each pair $\left(p_{i}, p_{j}\right)$ in the sorted list, the index of the first point in the pair is less than the index of the second point, i.e., $i<j$. The claim is that the algorithm performs an SSSP computation for each pair of points.

To show this, we split the sorted list of pairs into blocks $B_{i}, 1 \leq i \leq n-1$, such that $B_{i}=\left\{\left(p_{i-1}, p_{i}\right),\left(p_{i-2}, p_{i}\right), \ldots,\left(p_{0}, p_{i}\right)\right\}$. Obviously, the algorithm starts with the pairs in B_{1}, then continues with the pairs in B_{2}, and so on. For arbitrary i, the first pair in B_{i} that the algorithm considers is $\left(p_{i-1}, p_{i}\right)$. Since, at that moment, the point p_{i} is disconnected in the current graph from all other points, all entries in the weight matrix that involve p_{i} are ∞. Processing the pair $\left(p_{i-1}, p_{i}\right)$ thus entails performing an SSSP computation with source p_{i-1}, updating all entries in the weight matrix that involve p_{i-1}, and then adding the edge (p_{i-1}, p_{i}) to the graph. Note that because the algorithm updates the row and the column in the weight matrix corresponding to p_{i-1}, the value of $\operatorname{weight}\left(p_{j}, p_{i}\right)$ is still ∞ for all j with $j \leq i-2$. The algorithm then processes $\left(p_{i-2}, p_{i}\right)$. Because the entry for p_{i-2} and p_{i} in the matrix is ∞, the algorithm performs an SSSP computation with source p_{i-2}, and updates the row and column corresponding to p_{i-2}. Afterwards, weight $\left(p_{j}, p_{i}\right)$ is still ∞ for all j with $j \leq i-3$. Continuing this argument shows that the algorithm performs an SSSP computation for each pair of points.

2.2 A variant of the FG-greedy algorithm

In this section, we make the following modification to the FG-greedy algorithm: Each time the algorithm has just added an edge (u, v) to the greedy spanner, see line 13 , it performs one SSSP computation in the current graph with source u, one SSSP computation in the current graph with source v, and updates the rows and columns in the weight matrix that correspond to u and v.

We will show that this new algorithm still performs a superlinear number of SSSP computations, even in the one-dimensional Euclidean case. Observe, however, that the new algorithm performs only $\mathcal{O}(n)$ SSSP computations on the counterexample in the previous section.

Let n be a sufficiently large power of 2 . We define (refer to Figure 1) $V_{0}=\{0,1\}$ and, for $i \geq 0$,

$$
V_{i+1}=V_{i} \cup\left(V_{i} \oplus 3 \cdot 4^{i}\right) .
$$

Thus, V_{i+1} is the union of V_{i} and a copy of V_{i} translated to the right by the amount of $3 \cdot 4^{i}$.
A straightforward induction proof shows that the set V_{i} consists of 2^{i+1} elements, $\min \left(V_{i}\right)=$ 0 , and $\max \left(V_{i}\right)=4^{i}$.

Let $V=V_{\log n-1}$. Then V is a set of n points on the real line. We claim that the variant of the FG-greedy algorithm mentioned above performs $\Omega(n \log n)$ SSSP computations when it is run on the set V.

To prove this claim, observe that V is the union of $V_{L}:=V_{\log n-2}$, which is contained in the interval $\left[0, n^{2} / 16\right]$, and $V_{R}:=V_{\log n-2} \oplus \frac{3}{16} n^{2}$, which is contained in the interval $\left[\frac{3}{16} n^{2}, n^{2} / 4\right]$,

Figure 1: The set V_{i+1}.
and that $\left|V_{L}\right|=\left|V_{R}\right|=n / 2$. We number the points of V_{L} in decreasing order as $l_{1}, l_{2}, \ldots, l_{n / 2}$, and we number the points of V_{R} in increasing order as $r_{1}, r_{2}, \ldots, r_{n / 2}$; see Figure 2.

Figure 2: The sets V_{L} and V_{R}.

The set of all pairs of distinct points in V can be split into three categories:

1. Pairs with both points in V_{L}.
2. Pairs with both points in V_{R}.
3. Pairs with one point in V_{L} and the other point in V_{R}.

Observe that the greedy algorithm processes all pairs in the first two categories before it processes any pair in the third category. We claim that the variant of the FG-greedy algorithm performs at least $n / 2$ SSSP computations to process the pairs in the third category.

The first pair in the third category which the algorithm processes is $\left(l_{1}, r_{1}\right)$. Since, at this moment, weight $\left(l_{1}, r_{1}\right)=\infty$, the algorithm performs an SSSP computation with source l_{1}, adds the edge $\left(l_{1}, r_{1}\right)$ to the graph, performs two SSSP computations with sources l_{1} and r_{1}, and updates the weight matrix. When processing $\left(l_{1}, r_{2}\right)$, the algorithm does not perform an SSSP computation, because weight $\left(l_{1}, r_{2}\right)$ contains the correct shortest-path length between l_{1} and r_{2} in the current graph G. Similarly, when processing $\left(l_{2}, r_{1}\right)$, the algorithm does not perform an SSSP computation. When processing $\left(l_{2}, r_{2}\right)$, however, we have weight $\left(l_{2}, r_{2}\right)=\infty$ and, therefore, the algorithm performs one SSSP computation (observe that the edge $\left(l_{2}, r_{2}\right)$ is not added to G). By repeating this argument, it follows that for each i with $1 \leq i \leq n / 2$, the algorithm performs one SSSP computation when processing the pair $\left(l_{i}, r_{i}\right)$.

If we denote by $N_{s p}(n)$ the number of SSSP computations performed by the algorithm on the point set V, then we have shown that

$$
N_{s p}(n)=2 \cdot N_{s p}(n / 2)+n / 2,
$$

which implies that $N_{s p}(n)=\Omega(n \log n)$.

3 A preliminary algorithm

Let V be a set of n points in a metric space with distance function \mathbf{d}. Recall that the greedy t-spanner is obtained by starting with the graph $G(V, E=\emptyset)$, and then processing all pairs of distinct points in V in non-decreasing order of their distances. For each pair (u, v), we decide if there exists a t-path between u and v in G; if not, we add the edge (u, v) to E.

In this section, we present a variant of the greedy algorithm. We show that for (i) point sets with polynomial aspect ratio and bounded doubling dimension, and (ii) Euclidean point sets that are uniformly distributed in the unit-cube, this algorithm computes the greedy spanner in near-quadratic time.

The new algorithm is similar to the FG-greedy algorithm (Algorithm 2.1) in the sense that, before doing an SSSP computation, it uses the weight matrix to decide if the currently processed pair has to be added to the graph. The new ingredients are the following:

- We choose a real number $L>0$ and process the pairs (u, v) whose distances are less than L by performing an SSSP computation with source u.
- We divide the remaining pairs into buckets such that the i-th bucket contains all pairs whose distances are between $2^{i-1} L$ and $2^{i} L$.
- We process the buckets one after another. When processing the pairs in the i-th bucket, we take care that, at any moment, weight (u, v) is equal to the shortest-path distance between u and v in the current graph G, for all pairs (u, v) that are contained in the i-th bucket.

We assume without loss of generality that the diameter of the set V is equal to one. We fix a real number L with $0<L<1$, and partition the set of all pairs of distinct points in V into $l+1=\mathcal{O}(\log (1 / L))$ buckets $E_{0}, E_{1}, \ldots, E_{l}$, where E_{0} contains all pairs with distance less than L and, for $1 \leq i \leq l$, the i th bucket E_{i} contains all pairs whose distances are in the interval $\left[2^{i-1} L, 2^{i} L\right)$.

The algorithm starts by processing the pairs in E_{0}. Each of these pairs (u, v) is processed by performing an SSSP computation with source u in the current graph G.

Assume that the algorithm has already processed all pairs in the buckets $E_{0}, E_{1}, \ldots, E_{i-1}$. The pairs in bucket E_{i} are processed as follows: In a preprocessing step, we perform, for each point u in V, an SSSP computation with source u in the current graph G, and update the weight matrix. Thus, afterwards, we have weight $(u, v)=\mathbf{d}_{G}(u, v)$ for all pairs of points in V. Now the actual processing of bucket E_{i} starts. For each pair (u, v) in this bucket, we check if weight $(u, v)>t \cdot \mathbf{d}(u, v)$. If the answer is "yes", we add the edge (u, v) to the graph G and make "local" updates in the weight matrix in order to guarantee that all entries that correspond to pairs in E_{i} are equal to the shortest-path distance in the new graph G. As we will show below, it is sufficient to run an SSSP computation with source p for each point $p \in V$ for which $\mathbf{d}(p, u)<\left(t-\frac{1}{2}\right) 2^{i-1} L$ or $\mathbf{d}(p, v)<\left(t-\frac{1}{2}\right) 2^{i-1} L$. A formal description of the algorithm is given in Algorithm 3.1.

Before we consider the running time of this algorithm, we prove that it computes the greedy spanner.

Lemma 1 Algorithm 3.1 computes the greedy t-spanner of the input set V.

```
Algorithm 3.1: Preliminary-Greedy \((V, t, L)\)
    Input: metric space \((V, \mathbf{d})\) and real numbers \(t>1\) and \(L>0\).
    Output: the greedy \(t\)-spanner \(G\left(V, E^{\prime}\right)\).
    foreach \(u \in V\) do \(\operatorname{weight}(u, u):=0\);
    foreach \((u, v) \in V^{2}\) with \(u \neq v\) do \(\operatorname{weight}(u, v):=\infty\);
    \(E:=\) list of all pairs of distinct points in \(V\), sorted in non-decreasing order of their distances;
    \(E_{0}:=\) sorted list of all pairs in \(E\) whose distances are in \([0, L)\);
    \(i:=1\);
    while \(E \backslash\left(\bigcup_{k=0}^{i-1} E_{k}\right) \neq \emptyset\) do
        \(E_{i}:=\) sorted list of all pairs in \(E \backslash\left(\bigcup_{k=0}^{i-1} E_{k}\right)\) whose distances are in \(\left[2^{i-1} L, 2^{i} L\right)\);
        \(i:=i+1\);
    end
    \(l:=i-1\);
    \(E^{\prime}:=\emptyset ;\)
    \(G:=\left(V, E^{\prime}\right) ;\)
    process the pairs in \(E_{0}\) in the same way as in the original greedy algorithm;
    for \(i:=1, \ldots, l\) do
        \(L_{i}:=2^{i-1} L\);
        foreach \(u \in V\) do
            perform an SSSP computation in \(G\) with source \(u\) and update all entries in the weight
            matrix that correspond to \(u\);
        end
        foreach \((u, v) \in E_{i}\) (in sorted order) do
            if weight \((u, v)>t \cdot \mathbf{d}(u, v)\) then
                \(E^{\prime}:=E^{\prime} \cup\{(u, v)\} ;\)
                foreach \(p \in V\) do
                            if \(\mathbf{d}(p, u)<\left(t-\frac{1}{2}\right) L_{i}\) or \(\mathbf{d}(p, v)<\left(t-\frac{1}{2}\right) L_{i}\) then
                                    perform an SSSP computation in \(G\) with source \(p\) and update all entries in
                                    the weight matrix that correspond to \(p\);
                    end
                    end
            end
        end
    end
    return \(G\left(V, E^{\prime}\right)\);
```

Proof. It follows from line 20 in Algorithm 3.1 that it is sufficient to prove the following for each i with $1 \leq i \leq l$ and for each pair (p, q) in E_{i} : At the moment when the algorithm processes (p, q), we have weight $(p, q)>t \cdot \mathbf{d}(p, q)$ if and only if $\mathbf{d}_{G}(p, q)>t \cdot \mathbf{d}(p, q)$.

Let (p, q) be an arbitrary pair in E_{i}. Thus, $\mathbf{d}(p, q) \in\left[L_{i}, 2 L_{i}\right)$. Assume that (p, q) is just about to be processed by the algorithm. Let G be the graph at this moment. Observe that, again at this moment, weight $(p, q) \geq \mathbf{d}_{G}(p, q)$. Therefore, if $\mathbf{d}_{G}(p, q)>t \cdot \mathbf{d}(p, q)$, then we have $\operatorname{weight}(p, q)>t \cdot \mathbf{d}(p, q)$. We assume from now on that $\mathbf{d}_{G}(p, q) \leq t \cdot \mathbf{d}(p, q)$. Thus, we have to show that weight $(p, q) \leq t \cdot \mathbf{d}(p, q)$. We distinguish two cases.
Case 1: The shortest path between p and q in G does not contain any edge that has been added to G during the processing of pairs in E_{i} (prior to the processing of (p, q)).

In this case, it follows from line 17 that $\operatorname{weight}(p, q)=\mathbf{d}_{G}(p, q)$, which implies that weight $(p, q) \leq t \cdot \mathbf{d}(p, q)$.
Case 2: The shortest path π between p and q in G contains at least one edge of E_{i}.
Among all edges of $E_{i} \cap \pi$, let (u, v) be the one that was added last by the algorithm. We may assume without loss of generality that, when starting at p, the path π goes to u, then traverses (u, v), and then continues to q. We define

$$
S_{(u, v)}=\left\{x \in V: \mathbf{d}(x, u)<\left(t-\frac{1}{2}\right) L_{i} \text { or } \mathbf{d}(x, v)<\left(t-\frac{1}{2}\right) L_{i}\right\} .
$$

We claim (and show below) that p or q belongs to $S_{(u, v)}$. This will imply that, in the iteration in which (u, v) is added to the graph, the algorithm computes the exact shortest-path length between p and all vertices of V, or between q and all vertices of V. Therefore, at the moment when (p, q) is processed, the value of $\operatorname{weight}(p, q)$ is equal to the shortest-path length in G between p and q and, therefore, weight $(p, q) \leq t \cdot \mathbf{d}(p, q)$.

It remains to prove the claim. Assume that neither p nor q is contained in $S_{(u, v)}$. Then $\mathbf{d}(p, u) \geq\left(t-\frac{1}{2}\right) L_{i}$ and $\mathbf{d}(q, v) \geq\left(t-\frac{1}{2}\right) L_{i}$. Thus, we have

$$
\begin{aligned}
\mathbf{d}_{G}(p, q) & =\mathbf{d}_{G}(p, u)+\mathbf{d}(u, v)+\mathbf{d}_{G}(v, q) \\
& \geq \mathbf{d}(p, u)+\mathbf{d}(u, v)+\mathbf{d}(v, q) \\
& \geq 2\left(t-\frac{1}{2}\right) L_{i}+L_{i} \\
& =2 t L_{i} \\
& >t \cdot \mathbf{d}(p, q)
\end{aligned}
$$

which contradicts our assumption that $\mathbf{d}_{G}(p, q) \leq t \cdot \mathbf{d}(p, q)$.

3.1 The running time of Algorithm 3.1

Before we can analyze the running time of Algorithm 3.1, we recall the well-separated pair decomposition (WSPD) [2]. Consider the metric space (V, \mathbf{d}). For subsets A and B of V, we define

$$
\operatorname{diam}(A)=\max \{\mathbf{d}(a, b): a, b \in A\}
$$

and

$$
\mathbf{d}(A, B)=\min \{\mathbf{d}(a, b): a \in A, b \in B\} .
$$

Definition 1 Let $s>0$ be a real number, referred to as the separation constant. We say that two subsets A and B of V are s-well-separated, if

$$
\mathbf{d}(A, B) \geq s \cdot \max \{\operatorname{diam}(A), \operatorname{diam}(B)\}
$$

The following lemma follows from the definition above.
Lemma 2 Let A and B be two subsets of V that are s-well-separated, let x and p be points of A, and let y and q be points of B. Then

1. $\mathbf{d}(p, x) \leq(1 / s) \cdot \mathbf{d}(p, q)$ and
2. $\mathbf{d}(x, y) \leq(1+2 / s) \cdot \mathbf{d}(p, q)$.

Definition 2 Consider the metric space (V, \mathbf{d}) and let $s>0$ be a real number. A wellseparated pair decomposition (WSPD) for V with respect to s is a sequence

$$
\left(A_{1}, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)
$$

of pairs of non-empty subsets of V such that

1. A_{i} and B_{i} are s-well-separated for all $i=1, \ldots, m$, and
2. for any two distinct points p and q of V, there is exactly one pair $\left(A_{i}, B_{i}\right)$ in the sequence, such that (i) $p \in A_{i}$ and $q \in B_{i}$ or (ii) $q \in A_{i}$ and $p \in B_{i}$.

The number m of pairs is called the size of the WSPD.
The WSPD was developed by Callahan and Kosaraju [2] for d-dimensional Euclidean space. They showed that for any set V of n points in \mathbb{R}^{d}, a WSPD of size $m=\mathcal{O}\left(s^{d} n\right)$ exists. Talwar [24] transfered the definition to an arbitrary metric space and proved that any set of n points from a metric space with doubling dimension d admits a WSPD of size $\mathcal{O}\left(s^{\mathcal{O}}{ }^{(d)} n \log \alpha\right)$, where α is the aspect ratio of the point set. Har-Peled and Mendel [16] improved the size in the latter result to $\mathcal{O}\left(s^{\mathcal{O}(d)} n\right)$.

Observation 1 Let A and B be two subsets of V that are s-well-separated for $s=\frac{2 t}{t-1}$. The greedy t-spanner contains at most one edge between A and B.

Proof. Assume that the greedy t-spanner contains two edges $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$, where $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$. We may assume without loss of generality that the greedy algorithm processes the pair $\left(a_{1}, b_{1}\right)$ before the pair $\left(a_{2}, b_{2}\right)$. Thus, we have $\mathbf{d}\left(a_{1}, b_{1}\right) \leq \mathbf{d}\left(a_{2}, b_{2}\right)$.

Since A and B are s-well-separated, it follows from Lemma 2 that

$$
\mathbf{d}\left(a_{1}, a_{2}\right) \leq \frac{1}{s} \cdot \mathbf{d}\left(a_{2}, b_{2}\right)<\mathbf{d}\left(a_{2}, b_{2}\right)
$$

and

$$
\mathbf{d}\left(b_{1}, b_{2}\right) \leq \frac{1}{s} \cdot \mathbf{d}\left(a_{2}, b_{2}\right)<\mathbf{d}\left(a_{2}, b_{2}\right)
$$

Let G be the graph just before the pair $\left(a_{2}, b_{2}\right)$ is processed by the greedy algorithm. This graph contains (i) a t-path between a_{1} and a_{2}, (ii) the edge (a_{1}, b_{1}), and (iii) a t-path between b_{1} and b_{2}. This, together with Lemma 2, implies that

$$
\begin{aligned}
\mathbf{d}_{G}\left(a_{2}, b_{2}\right) & \leq \mathbf{d}_{G}\left(a_{2}, a_{1}\right)+\mathbf{d}\left(a_{1}, b_{1}\right)+\mathbf{d}_{G}\left(b_{1}, b_{2}\right) \\
& \leq t \cdot \mathbf{d}\left(a_{2}, a_{1}\right)+\mathbf{d}\left(a_{1}, b_{1}\right)+t \cdot \mathbf{d}\left(b_{1}, b_{2}\right) \\
& \leq \frac{t}{s} \cdot \mathbf{d}\left(a_{2}, b_{2}\right)+\mathbf{d}\left(a_{2}, b_{2}\right)+\frac{t}{s} \cdot \mathbf{d}\left(a_{2}, b_{2}\right) \\
& =t \cdot \mathbf{d}\left(a_{2}, b_{2}\right) .
\end{aligned}
$$

Thus, the greedy algorithm does not add $\left(a_{2}, b_{2}\right)$ as an edge to the spanner, which is a contradiction.

By combining Observation 1 and the result of Har-Peled and Mendel [16], we obtain the following result:

Corollary 1 For every metric space V with doubling dimension d, and for every real number $t>1$, the greedy t-spanner contains $\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}} n\right)$ edges, where $n=|V|$.

In the rest of the paper, we assume that V is a set of n points from a metric space with doubling dimension d.

Lemma 3 Consider the variable l that is computed in line 10 of Algorithm 3.1. Let i be an integer with $1 \leq i \leq l$, and let p be a point of V. During the processing of the pairs in E_{i}, the number of SSSP computations with source p is $\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}}\right)$. That is, during the processing of E_{i}, the number of times that line 24 in Algorithm 3.1 is executed for p is $\mathcal{O}\left(\frac{1}{(t-1)^{O(d)}}\right)$.

Proof. Recall from the algorithm that for each pair (u, v) in $E_{i}, \mathbf{d}(u, v)$ is in the interval $\left[L_{i}, 2 L_{i}\right)$. Let B be the ball with center p and radius $\left(t+\frac{3}{2}\right) L_{i}$. The algorithm performs an SSSP computation with source p, each time an edge (u, v) is added to the graph for which $\mathbf{d}(p, u)<\left(t-\frac{1}{2}\right) L_{i}$ or $\mathbf{d}(p, v)<\left(t-\frac{1}{2}\right) L_{i}$. Since $\mathbf{d}(u, v)<2 L_{i}$, it follows that both u and v are contained in B. Thus, the number of times that line 24 is executed for the point p (during the processing of E_{i}) is bounded from above by the number of edges in the greedy t-spanner whose lengths are in the interval $\left[L_{i}, 2 L_{i}\right)$ and both of whose endpoints are contained in B.

Let $R=\left(t+\frac{3}{2}\right) L_{i}$ and

$$
k=\left\lceil\log \left(\frac{(4 t+6)(2 t-1)}{t-1}\right)\right\rceil .
$$

Observe that $2^{k} \geq \frac{(4 t+6)(2 t-1)}{t-1}$. By repeatedly applying the definition of doubling dimension, we can cover the ball B by $2^{k d}$ balls $B_{1}, B_{2}, \ldots, B_{2^{k d}}$ of radius $R / 2^{k}$.

Let (u, v) be an edge in the greedy t-spanner such that $\mathbf{d}(u, v) \in\left[L_{i}, 2 L_{i}\right), u \in B$, and $v \in B$. We may assume without loss of generality that $u \in B_{1}$ and $v \in B_{2}$. We have

$$
\operatorname{diam}\left(B_{1}\right) \leq R / 2^{k-1} \leq \frac{R(t-1)}{(2 t+3)(2 t-1)}=\frac{t-1}{4 t-2} L_{i}
$$

and

$$
\operatorname{diam}\left(B_{2}\right) \leq \frac{t-1}{4 t-2} L_{i} .
$$

Also,

$$
\mathbf{d}\left(B_{1}, B_{2}\right) \geq \mathbf{d}(u, v)-4 R / 2^{k} \geq L_{i}-\frac{R(t-1)}{\left(t+\frac{3}{2}\right)(2 t-1)}=\frac{t}{2 t-1} L_{i}
$$

By combining these inequalities, it follows that

$$
\mathbf{d}\left(B_{1}, B_{2}\right) \geq \frac{2 t}{t-1} \cdot \max \left\{\operatorname{diam}\left(B_{1}\right), \operatorname{diam}\left(B_{2}\right)\right\}
$$

i.e., the balls B_{1} and B_{2} are s-well-separated for $s=\frac{2 t}{t-1}$. Thus, by Observation $1,(u, v)$ is the only edge in the greedy t-spanner such that $\mathbf{d}(u, v) \in\left[L_{i}, 2 L_{i}\right), u \in B_{1}$, and $v \in B_{2}$.

It follows that the number of edges in the greedy t-spanner whose lengths are in $\left[L_{i}, 2 L_{i}\right)$ and both of whose endpoints are contained in B is at most $\left(2^{k d}\right)^{2}$, which is $\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}}\right)$.

Now we are ready to estimate the time complexity of Algorithm 3.1. Clearly lines $1-12$ take $\mathcal{O}\left(n^{2} \log n\right)$ time. Let β be the number of pairs in E_{0} and let m be the number of edges in the greedy t-spanner. Then line 13 takes $\mathcal{O}(\beta(m+n \log n))$ time, because for each pair in E_{0}, the algorithm performs an SSSP computation.

For each of the $\mathcal{O}(\log (1 / L))$ sets E_{i}, lines $16-17$ take $\mathcal{O}\left(m n+n^{2} \log n\right)$ time, whereas by Lemma 3, lines 19-28 take $\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}}\left(m n+n^{2} \log n\right)\right)$ time.

Since, by Corollary $1, m=\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}} n\right)$, the overall running time of the algorithm is

$$
\mathcal{O}\left(\beta\left(\frac{n}{(t-1)^{\mathcal{O}(d)}}+n \log n\right)+\frac{\log (1 / L)}{(t-1)^{\mathcal{O}(d)}} n^{2} \log n\right)
$$

Recall that we assumed that the diameter of V is equal to one, and that β is the number of pair-wise distances in V that are less than L. If there exists a real number L such that $1 / L$ is polynomial in n and β is near-linear in n, then the running time of Algorithm 3.1 is near-quadratic.

3.1.1 Points sets with polynomial aspect ratio

The aspect ratio of a set V is defined to be the ratio of its diameter and closest-pair distance. If the aspect ratio of V is less than n^{c}, for some constant c, then, after a scaling so that the diameter is equal to one, we can set $L=1 / n^{c}$. In this case, there is no pair of points whose distance is less than L and, thus, $\beta=0$. As a result, the running time of Algorithm 3.1 is $\mathcal{O}\left(\frac{n^{2} \log ^{2} n}{(t-1)^{\mathcal{O}(d)}}\right)$.

3.1.2 Uniformly distributed point set

Consider the Euclidean distance in \mathbb{R}^{d}, and assume that the n points of V are uniformly distributed in the unit-cube $[0,1]^{d}$. Let L be equal to some constant times $n^{-1 / d}$. For each point p in V, the expected number of points inside the ball with center p and radius L is at most $c_{d} L^{d} n$, where c_{d} is a constant depending on the dimension d. Thus, the expected value of β is at most $c_{d} L^{d} n^{2}$, which is $\mathcal{O}(n)$. As a result, the expected running time of Algorithm 3.1 is $\mathcal{O}\left(\frac{n^{2} \log ^{2} n}{(t-1)^{\mathcal{O}(d)}}\right)$.

4 The final algorithm

In this section, we show how the approach of the previous section can be modified such that for any metric space of bounded doubling dimension, the greedy spanner can be computed in $\mathcal{O}\left(n^{2} \log n\right)$ time.

Before we present the details, we recall Dijkstra's SSSP algorithm. Let G be an edgeweighted graph and let u be a vertex of G. Dijkstra's algorithm computes the shortest pathdistance in G between u and each vertex of G. For each vertex v, the algorithm maintains a tentative distance tent_dist (v), whose value is the length of the shortest path between u and v found so far. Initially, $\operatorname{tent_ dist}(u)=0$ and $\operatorname{tent_ dist}(v)=\infty$ for all $v \neq u$. The vertices v of G for which $\mathbf{d}_{G}(u, v)$ has not been determined yet are maintained in a priority queue $P Q$, where the key of each such v is the value tent_dist (v). This priority queue can be implemented either as a heap or as a Fibonacci heap.

In one iteration, the algorithm takes the vertex v in $P Q$ whose key is minimum. It is well-known that, at this moment, the value of $\operatorname{tent_ dist}(v)$ is equal to $\mathbf{d}_{G}(u, v)$ and, thus, v can be deleted from $P Q$. The algorithm considers all edges (v, w) with $w \in P Q$, sets

$$
\text { tent_dist }(w)=\min \left(t e n t _d i s t(w), \text { tent_dist }(v)+\mathbf{d}(v, w)\right)
$$

and, in case tent_dist (w) has a new value now, updates $P Q$ to reflect the decrease in value of the key of w. The algorithm terminates as soon as the priority queue is empty.

Dijkstra's algorithm with source u computes the sequence of all shortest-path distances $\mathbf{d}_{G}(u, v)$ in non-decreasing order of their values. This implies that, given a real number $L>0$, we obtain all values $\mathbf{d}_{G}(u, v)$ which are at most L, by running Dijkstra's algorithm with source u and terminating as soon as the minimum key in $P Q$ is larger than L. We will refer to the modification algorithm as the bounded Dijkstra's algorithm with source u and distance L.

Our final greedy spanner algorithm uses the following ingredients:

- We partition the $\binom{n}{2}$ pairs of distinct points in V into a linear number of buckets, such that within each bucket, distances differ by at most a factor of two.
- We process the buckets one after another. Consider the current bucket containing all pairs whose distances are in the interval $[L, 2 L)$. For each point u of V, we maintain a stack storing all operations performed by the bounded Dijkstra's algorithm with source u and distance $2 t L$. Thus, for each vertex v such that $\mathbf{d}_{G}(u, v) \leq 2 t L$, we know the value of $\mathbf{d}_{G}(u, v)$, which is stored as weight (u, v) in the distance matrix. When we add an edge (u, v) to the greedy spanner, we take all points p for which $\mathbf{d}(p, u)<\left(t-\frac{1}{2}\right) L$ or $\mathbf{d}(p, v)<\left(t-\frac{1}{2}\right) L$. Instead of running the bounded Dijkstra's algorithm with source p and distance $2 t L$ from scratch (as we did in Algorithm 3.1), we do the following: We use the stack stored with p to undo the execution of the bounded Dijkstra's algorithm (in the graph prior to the insertion of the edge (u, v)) until the minimum key in the priority queue is at most $\operatorname{weight}(p, u)+\mathbf{d}(u, v)$. Then, we restart Dijkstra's algorithm from this state, using the graph that contains the new edge (u, v), and terminate as soon as the minimum key in the priority queue is larger than $2 t L$; during the execution, we store the sequence of all operations in the stack associated with p.

Consider again the bucket containing all pairs whose distances are in the interval $[L, 2 L)$. Why is it sufficient to run the bounded Dijkstra's algorithm with length $2 t L$? Assume $\mathbf{d}(p, q)$ is in $[L, 2 L)$ and consider the moment when the algorithm processes the pair (p, q). Obviously,
if $\mathbf{d}_{G}(p, q) \geq 2 t L$, then $\mathbf{d}_{G}(p, q)>t \cdot \mathbf{d}(p, q)$. As a result, it is sufficient in this case to have a value weight (p, q) which is equal to the shortest-path distance between p and q in an old version of the graph (see also the proof of Lemma 1). This value weight (p, q) will allow us to make the correct decision of not adding (p, q) to the greedy spanner.

A detailed description of the algorithm is given in Algorithms 4.1-4.3.
Lemma 4 Algorithm 4.1 computes the greedy t-spanner of the input set V.
Proof. Let i be an integer with $1 \leq i \leq l$ and consider the iteration of the algorithm when the edges of E_{i} are processed. The algorithm starts in lines 18-20 by computing all shortest-path distances in the current graph G that are at most $2 t L_{i}$. Since all distances in E_{i} are less than $2 L_{i}$, there is no need to compute shortest-path distances that are larger than $2 t L_{i}$.

Let (u, v) be a pair in E_{i} and assume that the algorithm adds the edge (u, v) to the graph. Let G be the graph prior to the addition of this edge, and let G^{\prime} denote the graph just after this edge has been added. The algorithm considers all points p in V for which $\mathbf{d}(p, u)<\left(t-\frac{1}{2}\right) L_{i}$ or $\mathbf{d}(p, v)<\left(t-\frac{1}{2}\right) L_{i}$. We have seen in the proof of Lemma 1 that it is sufficient to consider only these points. Recall that Algorithm 3.1 performs an SSSP computation in G^{\prime} with source p. We have to show that lines $26-37$ have the same effect (up to shortest-path distances that are at most $2 t L_{i}$). If neither of the conditions in lines 26 and 32 hold, then the addition of (u, v) does not change the behavior of Dijkstra's algorithm with source p up to shortest-path distances that are at most $2 t L_{i}$. Assume that the condition in line 26 holds. Then the first time that Dijkstra's algorithm with source p behaves differently on G and G^{\prime} is the moment when v is the element with the minimum key in the corresponding priority queue. Therefore, it is sufficient to undo Dijkstra's algorithm on G up to the distance weight $(p, u)+\mathbf{d}(u, v)$, decrease the key in p 's priority queue to weight $(p, u)+\mathbf{d}(u, v)$, and continue Dijkstra's algorithm with G^{\prime} up to the distance $2 t L_{i}$. This is exactly what Algorithm 4.1 does.

4.1 The running time of Algorithm 4.1

In this section, we show that Algorithm 4.1 runs in $\mathcal{O}\left(n^{2} \log n\right)$ time. To this end, we show that for each point $p \in V$, the overall time spent for p is proportional to the time for running Dijkstra's SSSP algorithm with source p on the entire greedy spanner (which, using Corollary 1 , is $\mathcal{O}(n \log n))$. Recall that we assume that the value of t is close to one. In particular, we have $t<2$.

Recall that Dijkstra's algorithm on a graph G with source p computes shortest-path distances $\mathbf{d}_{G}(p, q)$ (for $q \in V$) in non-decreasing order of their values. For real numbers $L^{\prime}>L>0$, the portion of Dijkstra's algorithm in the interval $\left[L, L^{\prime}\right)$ is defined to be the part of the computation in which all shortest-path distances $\mathbf{d}_{G}(p, q)$ are computed that satisfy $L \leq \mathbf{d}_{G}(p, q)<L^{\prime}$.

We fix a point p in V. Consider the iteration in which the algorithm processes the pairs in E_{i}. Let (u, v) be a pair in E_{i} that is added as an edge to the greedy spanner, and assume that the condition in line 25 holds. Also, assume that one of the conditions in lines 26 and 32 holds, say the one in line 26. The algorithm calls Diskstra-Undo, which runs Dijkstra's algorithm backwards as long as the minimum key in $P Q_{p}$ is at least weight $(p, u)+\mathbf{d}(u, v)$, which is at least $\mathbf{d}(u, v) \geq L_{i}$. Then, the algorithm calls DijkstraBounded, which continues Dijkstra's algorithm as long as the minimum key in $P Q_{p}$ is at

```
Algorithm 4.1: NEW-Greedy \((V, t)\)
    Input: metric space ( \(V, \mathbf{d}\) ) and real number \(t>1\).
    Output: the greedy \(t\)-spanner \(G\left(V, E^{\prime}\right)\).
    foreach \(u \in V\) do \(\operatorname{weight}(u, u):=0\);
    foreach \((u, v) \in V^{2}\) with \(u \neq v\) do weight \((u, v):=\infty\);
    \(E:=\) list of all pairs of distinct points in \(V\), sorted in non-decreasing order of their distances;
    \(i:=1\);
    while \(E \backslash\left(\bigcup_{k=1}^{i-1} E_{k}\right) \neq \emptyset\) do
        \(L_{i}:=\) distance of the shortest pair in \(E \backslash\left(\bigcup_{k=1}^{i-1} E_{k}\right)\);
        \(E_{i}:=\) sorted list of all pairs in \(E \backslash\left(\bigcup_{k=1}^{i-1} E_{k}\right)\) whose distances are in \(\left[L_{i}, 2 L_{i}\right)\);
        \(i:=i+1 ;\)
    end
    \(l:=i-1\);
    \(E^{\prime}:=\emptyset ;\)
    \(G:=\left(V, E^{\prime}\right) ;\)
    foreach \(u \in V\) do
        \(P Q_{u}:=\) priority queue storing all \(v \in V\) with key \(\operatorname{weight}(u, v) ;\)
        \(\tau_{u}:=\) empty stack;
    end
    for \(i:=1, \ldots, l\) do
        foreach \(u \in V\) do
            Dijkstra-Bounded \(\left(G, u, 2 t L_{i}, P Q_{u}, \tau_{u}\right)\);
        end
        foreach \((u, v) \in E_{i}\) (in sorted order) do
            if weight \((u, v)>t \cdot \mathbf{d}(u, v)\) then
                \(E^{\prime}:=E^{\prime} \cup\{(u, v)\} ;\)
                foreach \(p \in V\) do
                        if \(\mathbf{d}(p, u)<\left(t-\frac{1}{2}\right) L_{i}\) or \(\mathbf{d}(p, v)<\left(t-\frac{1}{2}\right) L_{i}\) then
                    if weight \((p, u)+\mathbf{d}(u, v)<\operatorname{weight}(p, v)\) then
                            DiJkstra-Undo \(\left(\tau_{p}, P Q_{p}\right.\), weight \(\left.(p, u)+\mathbf{d}(u, v)\right)\);
                            in \(P Q_{p}\), decrease the key of \(v\) to \(\operatorname{weight}(p, u)+\mathbf{d}(u, v)\) and add all
                    changes made in \(P Q_{p}\) to the stack \(\tau_{p}\);
                    weight \((p, v):=\) weight \((p, u)+\mathbf{d}(u, v)\) and add this change to \(\tau_{p}\);
                    Dijkstra-Bounded \(\left(G, p, 2 t L_{i}, P Q_{p}, \tau_{p}\right)\)
                end
                if weight \((p, v)+\mathbf{d}(u, v)<\) weight \((p, u)\) then
                    DiJkstra-Undo \(\left(\tau_{p}, P Q_{p}\right.\), weight \(\left.(p, v)+\mathbf{d}(u, v)\right)\);
                    in \(P Q_{p}\), decrease the key of \(u\) to \(\operatorname{weight}(p, v)+\mathbf{d}(u, v)\) and add all
                    changes made in \(P Q_{p}\) to the stack \(\tau_{p}\);
                    weight \((p, u):=\) weight \((p, v)+\mathbf{d}(u, v)\) and add this change to \(\tau_{p}\);
                    Dijkstra-Bounded \(\left(G, p, 2 t L_{i}, P Q_{p}, \tau_{p}\right)\)
                        end
                        end
                end
            end
        end
    end
    return \(G\left(V, E^{\prime}\right)\);
```

```
Algorithm 4.2: DiJkstra-Bounded (G, s,L,PQ,\tau)
    Input: graph G, vertex s, real number L>0, priority queue PQ, stack \tau}\mathrm{ .
    Output: using PQ, continue Dijkstra's algorithm with source s until all shortest-path
                    distances in G which are at most L have been computed; the algorithm stores all
                    operations in }\tau\mathrm{ (the pseudocode does not explicitly mention this).
    while the minimum key in PQ is at most L do
        delete the element }u\mathrm{ with minimum key from PQ;
        weight(s,u):= key of u;
        foreach node v adjacent to u}\mathrm{ in }G\mathrm{ do
            if weight (s,u)+\mathbf{d}(u,v)<weight (s,v) then
                in PQ, decrease the key of v to weight (s,u)+\mathbf{d}(u,v);
                weight (s,v):= weight (s,u)+\mathbf{d}(u,v)
            end
        end
    end
```

```
Algorithm 4.3: DiJkstra- \(\operatorname{Undo}(\tau, P Q, L)\)
    Input: stack \(\tau\), priority queue \(P Q\), real number \(L>0\).
    while the minimum key in \(P Q\) is larger than \(L\) do
        pop the top element \(c\) from \(\tau\);
        undo the changes based on the information in \(c\);
    end
```

most $2 t L_{i}$, which is less than $4 L_{i}$. Thus, when the edge (u, v) is added, the time spent for p is at most twice the time spent by Dijkstra's algorithm with source p in the interval $\left[L_{i}, 4 L_{i}\right)$ (once backwards and once forwards). By Lemma 3, the number of times that this happens for p, during the processing of E_{i}, is $\mathcal{O}\left(\frac{1}{\left.(t-1)^{\mathcal{O}(d)}\right)}\right.$.

It follows from the algorithm that $L_{i} \geq 2 L_{i-1}$. This implies that, over the entire algorithm and for the point p, Dijkstra's algorithm with source p in the interval $\left[L_{i}, 2 L_{i}\right)$ is run $\mathcal{O}\left(\frac{1}{(t-1)^{O(d)}}\right)$ times. During the course of the algorithm, edges are added to the graph. Therefore, the total time spent for p is $\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}}\right)$ times the time for one complete SSSP computation with source p in the final greedy spanner. Since, by Corollary 1, this spanner has $\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}} n\right)$ edges, it follows that the total time spent for point p is $\mathcal{O}\left(\frac{1}{(t-1)^{\mathcal{O}(d)}} n \log n\right)$.

To complete the proof of the running time of Algorithm 4.1, we need the following lemma, which gives an upper bound on the number of buckets E_{i} :

Lemma 5 The value of l computed in line 10 of Algorithm 4.1 is $\mathcal{O}(n)$.
Proof. The proof follows from the fact that, for a metric space of bounded doubling dimension, a well-separated pair decomposition with $\mathcal{O}(n)$ pairs exists; see [16]. In fact, the lemma holds for any metric space; see [15].

This lemma implies that the time spent by the algorithm, besides the shortest-path computations, is $\mathcal{O}\left(n^{2}\right)$. We have proved the main result of this paper:

Theorem 1 Let (V, \mathbf{d}) be a metric space of size n having doubling dimension d and let $t>1$ be a real number. The greedy t-spanner of V can be computed in $\mathcal{O}\left(\frac{1}{(t-1)^{O(d)}} n^{2} \log n\right)$ time.

5 Conclusion

We have presented an algorithm which, when given a set V of n points from a metric space of bounded doubling dimension, computes the greedy spanner of V in $\mathcal{O}\left(n^{2} \log n\right)$ time. Observe that in the greedy spanner, every point is connected to its nearest neighbor in V. Therefore, given the greedy spanner, we can solve the all-nearest-neighbors problem on V in $\mathcal{O}(n)$ time. Har-Peled and Mendel [16] have shown that the latter problem has an $\Omega\left(n^{2}\right)$ lower bound for metric spaces of bounded doubling dimension. This implies that computing the greedy spanner also has an $\Omega\left(n^{2}\right)$ lower bound. We leave open the problem of closing the logarithmic gap between the running time of our algorithm and this lower bound.

Another open problem is to decide whether the greedy spanner can be computed in $o\left(n^{2}\right)$ time for point sets in Euclidean space \mathbb{R}^{d}. Finally, consider an arbitrary metric space of size n. Is it possible to compute the greedy spanner in $o\left(m n^{2}\right)$ time, where m denotes the number of edges in the spanner?

References

[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete and Computational Geometry, 9(1):81-100, 1993.
[2] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM, 42:67-90, 1995.
[3] B. Chandra. Constructing sparse spanners for most graphs in higher dimensions. Information Processing Letters, 51(6):289-294, 1994.
[4] B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners. International Journal of Computational Geometry and Applications, 5:124-144, 1995.
[5] L. P. Chew. There is a planar graph almost as good as the complete graph. In SCG '86: Proceedings of the 2nd Annual ACM Symposium on Computational Geometry, pages 169-177, 1986.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press and McGraw-Hill, second edition, 2001.
[7] G. Das, P. J. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional Euclidean space. In SCG '93: Proceedings of the 9th Annual ACM Symposium on Computational Geometry, pages 53-62, 1993.
[8] G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners. International Journal of Computational Geometry and Applications, 7:297-315, 1997.
[9] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.
[10] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 425-461. Elsevier Science Publishers, Amsterdam, 2000.
[11] M. Farshi and J. Gudmundsson. Experimental study of geometric t-spanners. In ESA '05: Proceedings of the 13th Annual European Symposium on Algorithms, volume 3669 of Lecture Notes in Computer Science, pages 556-567. Springer-Verlag, 2005.
[12] M. Farshi and J. Gudmundsson. Experimental study of geometric t-spanners: A running time comparison. In WEA '07: Proceedings of the 6th Workshop on Experimental Algorithms, volume 4525 of Lecture Notes in Computer Science, pages 270-284. Springer-Verlag, 2007.
[13] J. Gudmundsson and C. Knauer. Dilation and detour in geometric networks. In T. Gonzalez, editor, Handbook on approximation algorithms and metaheuristics. Chapman \& Hall/CRC, Amsterdam, 2007.
[14] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Improved greedy algorithms for constructing sparse geometric spanners. SIAM Journal on Computing, 31(5):1479-1500, 2002.
[15] S. Har-Peled. A simple proof?, 2006. http://valis.cs.uiuc.edu/blog/?p=441.
[16] S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM Journal on Computing, 35(5):1148-1184, 2006.
[17] J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean graph. Discrete and Computational Geometry, 7:13-28, 1992.
[18] G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge University Press, 2007.
[19] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia, PA, 2000.
[20] D. Peleg and A. Schäffer. Graph spanners. Journal of Graph Theory, 13:99-116, 1989.
[21] D. Russel and L. J. Guibas. Exploring protein folding trajectories using geometric spanners. Pacific Symposium on Biocomputing, pages 40-51, 2005.
[22] M. Smid. Closest point problems in computational geometry. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry, pages 877-935. Elsevier Science Publishers, Amsterdam, 2000.
[23] J. Soares. Approximating Euclidean distances by small degree graphs. Discrete and Computational Geometry, 11:213-233, 1994.
[24] K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In STOC '04: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 281-290, New York, NY, USA, 2004. ACM.

[^0]: *An extended abstract of this paper will appear in the Proceedings of the 11th Scandinavian Workshop on Algorithm Theory (SWAT), Lecture Notes in Computer Science, Springer-Verlag, 2008.
 ${ }^{\dagger}$ School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. Research supported in part by NSERC and MRI.

 Email: jit@scs.carleton.ca, \{paz,mfarshi\}@cg.scs.carleton.ca, \{anil,michiel\}@scs.carleton.ca

