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Computing the greedy spanner in near-quadratic time∗

Prosenjit Bose† Paz Carmi† Mohammad Farshi† Anil Maheshwari†

Michiel Smid†

May 30, 2008

Abstract

The greedy algorithm produces high-quality spanners and, therefore, is used in several
applications. However, even for points in d-dimensional Euclidean space, the greedy
algorithm has near-cubic running time. In this paper, we present an algorithm that
computes the greedy spanner for a set of n points in a metric space with bounded doubling
dimension in O(n2 log n) time. Since computing the greedy spanner has an Ω(n2) lower
bound, the time complexity of our algorithm is optimal within a logarithmic factor.

1 Introduction

A network on a point set V is a connected graph G(V,E). When designing a network, several
criteria are taken into account. For example, in many applications, it is important to ensure
a short connection between every pair of points. For this it would be ideal to have a direct
connection between every pair of points—the network would then be a complete graph—
but in most applications, this is unacceptable due to the very high costs associated with
constructing such a network. This leads to the concept of a spanner, as defined below.

Let (V , d) be a finite metric space and let G(V,E) be a network on V such that the
weight of each edge (u, v) of E is equal to the distance d(u, v) between its endpoints u and v.
For any two points u and v in V , we denote by dG(u, v) the weight of a path in G between u
and v of minimum weight. For a real number t > 1, we say that G is a t-spanner of V if for
each pair of points u, v ∈ V , we have dG(u, v) ≤ t · d(u, v). Any path in G between u and v
having weight at most t · d(u, v) is called a t-path. The dilation or stretch factor of G is the
minimum t for which G is a t-spanner of V .

Spanners were introduced by Peleg and Schäffer [20] in the context of distributed com-
puting, and by Chew [5] in the geometric context. Since then, spanners have received a lot
of attention; see the survey papers [10, 13, 22] and the books [18, 19].

A classical algorithm for computing a t-spanner for any finite metric space (V , d) and
for any real number t > 1 is the greedy algorithm, proposed independently by Bern in 1989
and Althöfer et al. [1]. The main steps of this algorithm are the following (see Algorithm 1.1

∗An extended abstract of this paper will appear in the Proceedings of the 11th Scandinavian Workshop on
Algorithm Theory (SWAT), Lecture Notes in Computer Science, Springer-Verlag, 2008.
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for more details): First, sort all pairs of distinct points in V in non-decreasing order of their
distances, and initialize a graph G with vertex set V whose edge set is empty. Then, process
the pairs in sorted order. Processing a pair (u, v) entails a shortest path query in G between
u and v. If there is no t-path between u and v in G, then the edge (u, v) is added to G,
otherwise this pair is discarded. We will refer to the graph G computed by this algorithm as
the greedy spanner. The focus of this paper is to compute the greedy spanner efficiently.

Algorithm 1.1: Original-Greedy(V, t)

Input: metric space (V , d) and real number t > 1.
Output: the greedy t-spanner G(V, E′).
E := list of all pairs of distinct points in V , sorted in non-decreasing order of their distances;1

E′ := ∅;2

G := (V, E′);3

foreach (u, v) ∈ E (in sorted order) do4

if dG(u, v) > t · d(u, v) then5

E′ := E′ ∪ {(u, v)};6

end7

end8

return G = (V, E′);9

The shortest-path length dG(u, v) in line 5 can be obtained from a single-source shortest-
path (SSSP) computation with source u. Recall that such a computation yields, for each
point w ∈ V , the value dG(u,w). Using Dijkstra’s algorithm [9], an SSSP computation takes
O(n log n + m) time, where n is the number of vertices and m is the number of edges in G,
see also [6, Section 24.3].

Thus, since the greedy algorithm performs
(

n
2

)

shortest path queries, the time complexity
of the entire algorithm is O(mn2 + n3 log n), where n is the number of points in V and m is
the number of edges in the (final) spanner G.

The greedy algorithm has been subject to considerable research [3, 4, 7, 8, 14, 23]. It has
been shown that for any set V of n points in the Euclidean space R

d and for any fixed t > 1, the
greedy spanner has O(n) edges, maximum degree O(1), and total weight O(wt(MST (V ))),
where wt(MST (V )) is the weight of a minimum spanning tree of V ; see [8, 18]. Thus, in R

d,
the näıve implementation of the greedy algorithm runs in near-cubic time.

Due to the high time complexity of the greedy algorithm, researchers have proposed
algorithms for computing other types of sparse t-spanners, see [18]. For Euclidean space R

d,
there are several algorithms that construct t-spanners with O(n) edges in O(n log n) time. All
these algorithms use geometric properties of the input point set. It turns out, however, that
the greedy algorithm produces t-spanners of higher quality in comparison to other spanner
algorithms; see [11, 12]. The greedy algorithm produces graphs whose size, weight, maximum
degree and number of crossings are superior to the graphs produced by the other approaches.
For example, if t = 2, t = 1.1 and t = 1.05, the number of edges in the greedy t-spanner
is approximately 2n, 4n and 6n, respectively, which is surprisingly small. For comparison,
it is interesting to note that the Delaunay triangulation has approximately 3n edges and
dilation bounded by 2.42 [17]. The maximum degree of the greedy 1.1-spanner, generated
on a uniformly distributed set of 8000 points, is 14 and its weight is 11 times the weight
of a minimum spanning tree of the point set. To have a rough comparison, the Θ-graph
algorithm, which runs in O(n log n) time, generates a 1.1-spanner for the same point set
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containing 370K edges, its maximum degree is 144 and its weight is 327 times the weight of
a minimum spanning tree.

In the geometric case, there is an algorithm with O(n log n) running time, which ap-
proximates the greedy spanner; see [8, 14]. The graph generated by this approximate greedy
algorithm has the same theoretical properties as the greedy spanner. The experiments showed,
howevere, that the graphs generated by this approximation algorithm are much worse in prac-
tice; see [12]. To illustrate the difference, for t = 1.1 and on a set of 8000 uniformly distributed
points in the plane, the approximate greedy algorithm generates a graph with 852K edges
and maximum degree 403. This is much higher than the size and maximum degree of the
greedy spanner on the same point set.

Since low size and low weight spanners are important, the greedy spanner is used in
several applications, despite its high time complexity. For example, it has been used for
protein visualization as a low-weight data structure, which is used as a contact map, that
allows approximate reconstruction of the full distance matrix; see [21]. In this context, the
authors need a low weight spanner that consists of short edges because the interaction in a
protein is local which means long edges are hard to assign biological meaning and therefore the
greedy spanner is a suitable choice. They used heuristics based on the A∗-search algorithm,
which, in practice, improves the computation.

For points in the plane under the Euclidean metric, Farshi and Gudmundsson [11, 12]
introduced a speed-up strategy that generates the greedy spanner much faster in practice.
For values of t that are close to 1, their algorithm runs even faster than the near-linear
time algorithm which approximates the greedy t-spanner. For example, for constructing a
1.1-spanner on a set of 8000 uniformly distributed points, their fast greedy algorithm runs 3
times faster than the O(n log2 n) algorithm which approximates the greedy spanner. They
conjectured that their algorithm runs in O(n2 log n) time. However, as we will show in this
paper, this conjecture is incorrect.

For general metric spaces, there are cases when the complete graph is the only t-spanner of
a point set. For example, assume V is a set of points from a metric space in which the distance
between any two distinct points is equal to 1. Then for any t with 1 < t < 2, the complete
graph is the only t-spanner of V . Therefore, for general metric spaces, we cannot guarantee
that the greedy spanner is sparse. As we will show in this paper, however, if the metric space
has bounded doubling dimension, then the number of edges in the greedy spanner is linear in
the number of points. The doubling dimension of a metric space is defined as follows. Let λ
be the smallest integer such that for each real number r, any ball of radius r can be covered
by at most λ balls of radius r/2. The doubling dimension of V is defined to be log λ. The
doubling dimension is a generalization of the Euclidean dimension, as the doubling dimension
of d-dimensional Euclidean space is Θ(d).

1.1 Main results and organization of the paper

The main result of this paper is that for any metric space V of bounded doubling dimension,
the greedy spanner of V has a linear number of edges and can be computed in O(n2 log n)
time, where n = |V |. The organization of the remainder of this paper is as follows. In
Section 2, we review the FG-greedy algorithm of [11, 12] and give a counterexample to the
conjecture that this algorithm performs only O(n) SSSP computations. In fact, we show
that this algorithm performs Ω(n2) SSSP computations in the worst case. In Section 2.2, we
modify the FG-greedy algorithm and show that the new algorithm performs Ω(n log n) SSSP

3
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computations in the worst case. In Section 3, we present an algorithm that computes the
greedy spanner in near-quadratic time for some special cases. These results are generalized
to metric spaces of bounded doubling dimension in Section 4.

Throughout this paper, we assume that the (upper bound on the) stretch factor of the
greedy spanner is a real number t > 1 which is close to one.

2 The FG-greedy algorithm

As mentioned before, the running time of a näıve implementation of the greedy algorithm
is O(mn2 + n3 log n), where n is the number of points and m is the number of edges in
the greedy spanner. Farshi and Gudmundsson [11, 12] introduced a variant of the greedy
algorithm and showed that, in practice, it improves the running time for constructing the
greedy spanner considerably on point sets in the plane with the Euclidean metric. We will
refer to this algorithm as the FG-greedy algorithm. The FG-greedy algorithm is the same as
the original greedy algorithm (Algorithm 1.1), except that it uses a matrix to store the length
of the shortest path between every two points. The algorithm updates the matrix only when
it is required. Thus, the weights in the matrix are not always equal to the actual shortest
path lengths in the current graph. Instead of computing the shortest path length for each
pair (u, v) (see line 5 of Algorithm 1.1), it first checks the matrix to see if there is a t-path
between u and v. If the answer is “no”, then it performs an SSSP computation and updates
the matrix. Thus, the algorithm answers the distance queries correctly. The algorithm is
presented below as Algorithm 2.1. Farshi and Gudmundsson conjectured that the FG-greedy
algorithm performs only O(n) SSSP computations, which would imply a total running time
of O(n2 log n) for the case when the greedy spanner has O(n) edges.

Algorithm 2.1: FG-Greedy(V, t)

Input: metric space (V , d) and real number t > 1.
Output: the greedy t-spanner G(V, E′).
foreach u ∈ V do weight(u, u) := 0;1

foreach (u, v) ∈ V 2 with u 6= v do weight(u, v) := ∞;2

E := list of all pairs of distinct points in V , sorted in non-decreasing order of their distances;3

E′ := ∅;4

G := (V, E′);5

foreach (u, v) ∈ E (in sorted order) do6

if weight(u, v) > t · d(u, v) then7

perform an SSSP computation in G with source u;8

foreach w ∈ V do9

weight(u, w) := weight(w, u) := min(weight(u, w),dG(u, w));10

end11

if weight(u, v) > t · d(u, v) then12

E′ := E′ ∪ {(u, v)};13

end14

end15

end16

return G(V, E′);17

4
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2.1 A Counterexample

We give an example which shows that the FG-greedy algorithm (Algorithm 2.1) performs
Θ(n2) SSSP computations in the worst-case, i.e., line 8 may be executed Θ(n2) times.

Consider the set S = {p0, p1, . . . , pn−1} of n points on the real line, where pi = 2i for
0 ≤ i < n. The algorithm sorts all pairs of points based on their distances. We assume that
for each pair (pi, pj) in the sorted list, the index of the first point in the pair is less than
the index of the second point, i.e., i < j. The claim is that the algorithm performs an SSSP
computation for each pair of points.

To show this, we split the sorted list of pairs into blocks Bi, 1 ≤ i ≤ n − 1, such that
Bi = {(pi−1, pi), (pi−2, pi), . . . , (p0, pi)}. Obviously, the algorithm starts with the pairs in B1,
then continues with the pairs in B2, and so on. For arbitrary i, the first pair in Bi that the
algorithm considers is (pi−1, pi). Since, at that moment, the point pi is disconnected in the
current graph from all other points, all entries in the weight matrix that involve pi are ∞.
Processing the pair (pi−1, pi) thus entails performing an SSSP computation with source pi−1,
updating all entries in the weight matrix that involve pi−1, and then adding the edge (pi−1, pi)
to the graph. Note that because the algorithm updates the row and the column in the weight
matrix corresponding to pi−1, the value of weight(pj , pi) is still ∞ for all j with j ≤ i − 2.
The algorithm then processes (pi−2, pi). Because the entry for pi−2 and pi in the matrix is
∞, the algorithm performs an SSSP computation with source pi−2, and updates the row and
column corresponding to pi−2. Afterwards, weight(pj , pi) is still ∞ for all j with j ≤ i − 3.
Continuing this argument shows that the algorithm performs an SSSP computation for each
pair of points.

2.2 A variant of the FG-greedy algorithm

In this section, we make the following modification to the FG-greedy algorithm: Each time
the algorithm has just added an edge (u, v) to the greedy spanner, see line 13, it performs one
SSSP computation in the current graph with source u, one SSSP computation in the current
graph with source v, and updates the rows and columns in the weight matrix that correspond
to u and v.

We will show that this new algorithm still performs a superlinear number of SSSP com-
putations, even in the one-dimensional Euclidean case. Observe, however, that the new
algorithm performs only O(n) SSSP computations on the counterexample in the previous
section.

Let n be a sufficiently large power of 2. We define (refer to Figure 1) V0 = {0, 1} and, for
i ≥ 0,

Vi+1 = Vi ∪
(

Vi ⊕ 3 · 4i
)

.

Thus, Vi+1 is the union of Vi and a copy of Vi translated to the right by the amount of 3 · 4i.
A straightforward induction proof shows that the set Vi consists of 2i+1 elements, min(Vi) =

0, and max(Vi) = 4i.
Let V = Vlog n−1. Then V is a set of n points on the real line. We claim that the variant

of the FG-greedy algorithm mentioned above performs Ω(n log n) SSSP computations when
it is run on the set V .

To prove this claim, observe that V is the union of VL := Vlog n−2, which is contained in the
interval [0, n2/16], and VR := Vlog n−2 ⊕

3
16n2, which is contained in the interval [ 3

16n2, n2/4],

5
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0 4
i

3 · 4
i 4

i+1

Vi Vi ⊕ 3 · 4
i

Vi+1

Figure 1: The set Vi+1.

and that |VL| = |VR| = n/2. We number the points of VL in decreasing order as l1, l2, . . . , ln/2,
and we number the points of VR in increasing order as r1, r2, . . . , rn/2; see Figure 2.

VL VR

l1ln/2 r1
rn/2

· · · · · · · · · · · ·

Figure 2: The sets VL and VR.

The set of all pairs of distinct points in V can be split into three categories:

1. Pairs with both points in VL.

2. Pairs with both points in VR.

3. Pairs with one point in VL and the other point in VR.

Observe that the greedy algorithm processes all pairs in the first two categories before it
processes any pair in the third category. We claim that the variant of the FG-greedy algorithm
performs at least n/2 SSSP computations to process the pairs in the third category.

The first pair in the third category which the algorithm processes is (l1, r1). Since, at this
moment, weight(l1, r1) = ∞, the algorithm performs an SSSP computation with source l1,
adds the edge (l1, r1) to the graph, performs two SSSP computations with sources l1 and r1,
and updates the weight matrix. When processing (l1, r2), the algorithm does not perform an
SSSP computation, because weight(l1, r2) contains the correct shortest-path length between
l1 and r2 in the current graph G. Similarly, when processing (l2, r1), the algorithm does not
perform an SSSP computation. When processing (l2, r2), however, we have weight(l2, r2) = ∞
and, therefore, the algorithm performs one SSSP computation (observe that the edge (l2, r2)
is not added to G). By repeating this argument, it follows that for each i with 1 ≤ i ≤ n/2,
the algorithm performs one SSSP computation when processing the pair (li, ri).

If we denote by Nsp(n) the number of SSSP computations performed by the algorithm on
the point set V , then we have shown that

Nsp(n) = 2 · Nsp(n/2) + n/2,

which implies that Nsp(n) = Ω(n log n).

6
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3 A preliminary algorithm

Let V be a set of n points in a metric space with distance function d. Recall that the greedy
t-spanner is obtained by starting with the graph G(V,E = ∅), and then processing all pairs of
distinct points in V in non-decreasing order of their distances. For each pair (u, v), we decide
if there exists a t-path between u and v in G; if not, we add the edge (u, v) to E.

In this section, we present a variant of the greedy algorithm. We show that for (i) point
sets with polynomial aspect ratio and bounded doubling dimension, and (ii) Euclidean point
sets that are uniformly distributed in the unit-cube, this algorithm computes the greedy
spanner in near-quadratic time.

The new algorithm is similar to the FG-greedy algorithm (Algorithm 2.1) in the sense
that, before doing an SSSP computation, it uses the weight matrix to decide if the currently
processed pair has to be added to the graph. The new ingredients are the following:

• We choose a real number L > 0 and process the pairs (u, v) whose distances are less
than L by performing an SSSP computation with source u.

• We divide the remaining pairs into buckets such that the i-th bucket contains all pairs
whose distances are between 2i−1L and 2iL.

• We process the buckets one after another. When processing the pairs in the i-th bucket,
we take care that, at any moment, weight(u, v) is equal to the shortest-path distance
between u and v in the current graph G, for all pairs (u, v) that are contained in the
i-th bucket.

We assume without loss of generality that the diameter of the set V is equal to one. We
fix a real number L with 0 < L < 1, and partition the set of all pairs of distinct points in
V into l + 1 = O(log(1/L)) buckets E0, E1, . . . , El, where E0 contains all pairs with distance
less than L and, for 1 ≤ i ≤ l, the ith bucket Ei contains all pairs whose distances are in the
interval [2i−1L, 2iL).

The algorithm starts by processing the pairs in E0. Each of these pairs (u, v) is processed
by performing an SSSP computation with source u in the current graph G.

Assume that the algorithm has already processed all pairs in the buckets E0, E1, . . . , Ei−1.
The pairs in bucket Ei are processed as follows: In a preprocessing step, we perform, for each
point u in V , an SSSP computation with source u in the current graph G, and update the
weight matrix. Thus, afterwards, we have weight(u, v) = dG(u, v) for all pairs of points in V .
Now the actual processing of bucket Ei starts. For each pair (u, v) in this bucket, we check
if weight(u, v) > t · d(u, v). If the answer is “yes”, we add the edge (u, v) to the graph G
and make “local” updates in the weight matrix in order to guarantee that all entries that
correspond to pairs in Ei are equal to the shortest-path distance in the new graph G. As
we will show below, it is sufficient to run an SSSP computation with source p for each point
p ∈ V for which d(p, u) < (t− 1

2 )2i−1L or d(p, v) < (t− 1
2 )2i−1L. A formal description of the

algorithm is given in Algorithm 3.1.
Before we consider the running time of this algorithm, we prove that it computes the

greedy spanner.

Lemma 1 Algorithm 3.1 computes the greedy t-spanner of the input set V .

7
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Algorithm 3.1: Preliminary-Greedy(V, t, L)

Input: metric space (V , d) and real numbers t > 1 and L > 0.
Output: the greedy t-spanner G(V, E′).
foreach u ∈ V do weight(u, u) := 0;1

foreach (u, v) ∈ V 2 with u 6= v do weight(u, v) := ∞;2

E := list of all pairs of distinct points in V , sorted in non-decreasing order of their distances;3

E0 := sorted list of all pairs in E whose distances are in [0, L);4

i := 1;5

while E \ (
⋃i−1

k=0
Ek) 6= ∅ do6

Ei := sorted list of all pairs in E \ (
⋃i−1

k=0
Ek) whose distances are in [2i−1L, 2iL);7

i := i + 1;8

end9

l := i − 1;10

E′ := ∅;11

G := (V, E′);12

process the pairs in E0 in the same way as in the original greedy algorithm;13

for i := 1, . . . , l do14

Li := 2i−1L;15

foreach u ∈ V do16

perform an SSSP computation in G with source u and update all entries in the weight17

matrix that correspond to u;
end18

foreach (u, v) ∈ Ei (in sorted order) do19

if weight(u, v) > t · d(u, v) then20

E′ := E′ ∪ {(u, v)};21

foreach p ∈ V do22

if d(p, u) < (t − 1

2
)Li or d(p, v) < (t − 1

2
)Li then23

perform an SSSP computation in G with source p and update all entries in24

the weight matrix that correspond to p;
end25

end26

end27

end28

end29

return G(V, E′);30

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Proof. It follows from line 20 in Algorithm 3.1 that it is sufficient to prove the following
for each i with 1 ≤ i ≤ l and for each pair (p, q) in Ei: At the moment when the algorithm
processes (p, q), we have weight(p, q) > t · d(p, q) if and only if dG(p, q) > t · d(p, q).

Let (p, q) be an arbitrary pair in Ei. Thus, d(p, q) ∈ [Li, 2Li). Assume that (p, q) is just
about to be processed by the algorithm. Let G be the graph at this moment. Observe that,
again at this moment, weight(p, q) ≥ dG(p, q). Therefore, if dG(p, q) > t · d(p, q), then we
have weight(p, q) > t · d(p, q). We assume from now on that dG(p, q) ≤ t · d(p, q). Thus, we
have to show that weight(p, q) ≤ t · d(p, q). We distinguish two cases.
Case 1: The shortest path between p and q in G does not contain any edge that has been
added to G during the processing of pairs in Ei (prior to the processing of (p, q)).

In this case, it follows from line 17 that weight(p, q) = dG(p, q), which implies that
weight(p, q) ≤ t · d(p, q).
Case 2: The shortest path π between p and q in G contains at least one edge of Ei.

Among all edges of Ei ∩π, let (u, v) be the one that was added last by the algorithm. We
may assume without loss of generality that, when starting at p, the path π goes to u, then
traverses (u, v), and then continues to q. We define

S(u,v) = {x ∈ V : d(x, u) < (t −
1

2
)Li or d(x, v) < (t −

1

2
)Li}.

We claim (and show below) that p or q belongs to S(u,v). This will imply that, in the iteration
in which (u, v) is added to the graph, the algorithm computes the exact shortest-path length
between p and all vertices of V , or between q and all vertices of V . Therefore, at the moment
when (p, q) is processed, the value of weight(p, q) is equal to the shortest-path length in G
between p and q and, therefore, weight(p, q) ≤ t · d(p, q).

It remains to prove the claim. Assume that neither p nor q is contained in S(u,v). Then

d(p, u) ≥ (t − 1
2 )Li and d(q, v) ≥ (t − 1

2)Li. Thus, we have

dG(p, q) = dG(p, u) + d(u, v) + dG(v, q)

≥ d(p, u) + d(u, v) + d(v, q)

≥ 2(t −
1

2
)Li + Li

= 2tLi

> t · d(p, q),

which contradicts our assumption that dG(p, q) ≤ t · d(p, q).

3.1 The running time of Algorithm 3.1

Before we can analyze the running time of Algorithm 3.1, we recall the well-separated pair
decomposition (WSPD) [2]. Consider the metric space (V,d). For subsets A and B of V , we
define

diam(A) = max{d(a, b) : a, b ∈ A}

and
d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}.
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Definition 1 Let s > 0 be a real number, referred to as the separation constant. We say
that two subsets A and B of V are s-well-separated, if

d(A,B) ≥ s · max{diam(A),diam(B)}.

The following lemma follows from the definition above.

Lemma 2 Let A and B be two subsets of V that are s-well-separated, let x and p be points
of A, and let y and q be points of B. Then

1. d(p, x) ≤ (1/s) · d(p, q) and

2. d(x, y) ≤ (1 + 2/s) · d(p, q).

Definition 2 Consider the metric space (V,d) and let s > 0 be a real number. A well-
separated pair decomposition (WSPD) for V with respect to s is a sequence

(A1, B1), . . . , (Am, Bm)

of pairs of non-empty subsets of V such that

1. Ai and Bi are s-well-separated for all i = 1, . . . ,m, and

2. for any two distinct points p and q of V , there is exactly one pair (Ai, Bi) in the sequence,
such that (i) p ∈ Ai and q ∈ Bi or (ii) q ∈ Ai and p ∈ Bi.

The number m of pairs is called the size of the WSPD.
The WSPD was developed by Callahan and Kosaraju [2] for d-dimensional Euclidean

space. They showed that for any set V of n points in R
d, a WSPD of size m = O(sdn) exists.

Talwar [24] transfered the definition to an arbitrary metric space and proved that any set of n
points from a metric space with doubling dimension d admits a WSPD of size O(sO(d)n log α),
where α is the aspect ratio of the point set. Har-Peled and Mendel [16] improved the size in
the latter result to O(sO(d)n).

Observation 1 Let A and B be two subsets of V that are s-well-separated for s = 2t
t−1 . The

greedy t-spanner contains at most one edge between A and B.

Proof. Assume that the greedy t-spanner contains two edges (a1, b1) and (a2, b2), where
a1, a2 ∈ A and b1, b2 ∈ B. We may assume without loss of generality that the greedy algorithm
processes the pair (a1, b1) before the pair (a2, b2). Thus, we have d(a1, b1) ≤ d(a2, b2).

Since A and B are s-well-separated, it follows from Lemma 2 that

d(a1, a2) ≤
1

s
· d(a2, b2) < d(a2, b2),

and

d(b1, b2) ≤
1

s
· d(a2, b2) < d(a2, b2).

10
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Let G be the graph just before the pair (a2, b2) is processed by the greedy algorithm. This
graph contains (i) a t-path between a1 and a2, (ii) the edge (a1, b1), and (iii) a t-path between
b1 and b2. This, together with Lemma 2, implies that

dG(a2, b2) ≤ dG(a2, a1) + d(a1, b1) + dG(b1, b2)

≤ t · d(a2, a1) + d(a1, b1) + t · d(b1, b2)

≤
t

s
· d(a2, b2) + d(a2, b2) +

t

s
· d(a2, b2)

= t · d(a2, b2).

Thus, the greedy algorithm does not add (a2, b2) as an edge to the spanner, which is a con-
tradiction.

By combining Observation 1 and the result of Har-Peled and Mendel [16], we obtain the
following result:

Corollary 1 For every metric space V with doubling dimension d, and for every real number
t > 1, the greedy t-spanner contains O( 1

(t−1)O(d) n) edges, where n = |V |.

In the rest of the paper, we assume that V is a set of n points from a metric space with
doubling dimension d.

Lemma 3 Consider the variable l that is computed in line 10 of Algorithm 3.1. Let i be an
integer with 1 ≤ i ≤ l, and let p be a point of V . During the processing of the pairs in Ei, the
number of SSSP computations with source p is O( 1

(t−1)O(d) ). That is, during the processing of

Ei, the number of times that line 24 in Algorithm 3.1 is executed for p is O( 1
(t−1)O(d) ).

Proof. Recall from the algorithm that for each pair (u, v) in Ei, d(u, v) is in the interval
[Li, 2Li). Let B be the ball with center p and radius (t + 3

2)Li. The algorithm performs an
SSSP computation with source p, each time an edge (u, v) is added to the graph for which
d(p, u) < (t − 1

2)Li or d(p, v) < (t − 1
2)Li. Since d(u, v) < 2Li, it follows that both u and v

are contained in B. Thus, the number of times that line 24 is executed for the point p (during
the processing of Ei) is bounded from above by the number of edges in the greedy t-spanner
whose lengths are in the interval [Li, 2Li) and both of whose endpoints are contained in B.

Let R = (t + 3
2)Li and

k =

⌈

log

(

(4t + 6)(2t − 1)

t − 1

)⌉

.

Observe that 2k ≥ (4t+6)(2t−1)
t−1 . By repeatedly applying the definition of doubling dimension,

we can cover the ball B by 2kd balls B1, B2, . . . , B2kd of radius R/2k.
Let (u, v) be an edge in the greedy t-spanner such that d(u, v) ∈ [Li, 2Li), u ∈ B, and

v ∈ B. We may assume without loss of generality that u ∈ B1 and v ∈ B2. We have

diam(B1) ≤ R/2k−1 ≤
R(t − 1)

(2t + 3)(2t − 1)
=

t − 1

4t − 2
Li

and

diam(B2) ≤
t − 1

4t − 2
Li.

11
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Also,

d(B1, B2) ≥ d(u, v) − 4R/2k ≥ Li −
R(t − 1)

(t + 3
2 )(2t − 1)

=
t

2t − 1
Li.

By combining these inequalities, it follows that

d(B1, B2) ≥
2t

t − 1
· max{diam(B1),diam(B2)},

i.e., the balls B1 and B2 are s-well-separated for s = 2t
t−1 . Thus, by Observation 1, (u, v) is

the only edge in the greedy t-spanner such that d(u, v) ∈ [Li, 2Li), u ∈ B1, and v ∈ B2.
It follows that the number of edges in the greedy t-spanner whose lengths are in [Li, 2Li)

and both of whose endpoints are contained in B is at most
(

2kd
)2

, which is O( 1
(t−1)O(d) ).

Now we are ready to estimate the time complexity of Algorithm 3.1. Clearly lines 1–12
take O(n2 log n) time. Let β be the number of pairs in E0 and let m be the number of edges
in the greedy t-spanner. Then line 13 takes O(β(m + n log n)) time, because for each pair in
E0, the algorithm performs an SSSP computation.

For each of the O(log(1/L)) sets Ei, lines 16–17 take O(mn + n2 log n) time, whereas by
Lemma 3, lines 19–28 take O( 1

(t−1)O(d) (mn + n2 log n)) time.

Since, by Corollary 1, m = O( 1
(t−1)O(d) n), the overall running time of the algorithm is

O

(

β

(

n

(t − 1)O(d)
+ n log n

)

+
log(1/L)

(t − 1)O(d)
n2 log n

)

.

Recall that we assumed that the diameter of V is equal to one, and that β is the number
of pair-wise distances in V that are less than L. If there exists a real number L such that
1/L is polynomial in n and β is near-linear in n, then the running time of Algorithm 3.1 is
near-quadratic.

3.1.1 Points sets with polynomial aspect ratio

The aspect ratio of a set V is defined to be the ratio of its diameter and closest-pair distance.
If the aspect ratio of V is less than nc, for some constant c, then, after a scaling so that the
diameter is equal to one, we can set L = 1/nc. In this case, there is no pair of points whose
distance is less than L and, thus, β = 0. As a result, the running time of Algorithm 3.1

is O( n2 log2 n
(t−1)O(d) ).

3.1.2 Uniformly distributed point set

Consider the Euclidean distance in R
d, and assume that the n points of V are uniformly

distributed in the unit-cube [0, 1]d. Let L be equal to some constant times n−1/d. For each
point p in V , the expected number of points inside the ball with center p and radius L is at
most cdL

dn, where cd is a constant depending on the dimension d. Thus, the expected value
of β is at most cdL

dn2, which is O(n). As a result, the expected running time of Algorithm 3.1

is O( n2 log2 n
(t−1)O(d) ).
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4 The final algorithm

In this section, we show how the approach of the previous section can be modified such that
for any metric space of bounded doubling dimension, the greedy spanner can be computed in
O(n2 log n) time.

Before we present the details, we recall Dijkstra’s SSSP algorithm. Let G be an edge-
weighted graph and let u be a vertex of G. Dijkstra’s algorithm computes the shortest path-
distance in G between u and each vertex of G. For each vertex v, the algorithm maintains a
tentative distance tent dist(v), whose value is the length of the shortest path between u and
v found so far. Initially, tent dist(u) = 0 and tent dist(v) = ∞ for all v 6= u. The vertices v
of G for which dG(u, v) has not been determined yet are maintained in a priority queue PQ ,
where the key of each such v is the value tent dist(v). This priority queue can be implemented
either as a heap or as a Fibonacci heap.

In one iteration, the algorithm takes the vertex v in PQ whose key is minimum. It is
well-known that, at this moment, the value of tent dist(v) is equal to dG(u, v) and, thus, v
can be deleted from PQ . The algorithm considers all edges (v,w) with w ∈ PQ , sets

tent dist(w) = min(tent dist(w), tent dist(v) + d(v,w)),

and, in case tent dist(w) has a new value now, updates PQ to reflect the decrease in value of
the key of w. The algorithm terminates as soon as the priority queue is empty.

Dijkstra’s algorithm with source u computes the sequence of all shortest-path distances
dG(u, v) in non-decreasing order of their values. This implies that, given a real number L > 0,
we obtain all values dG(u, v) which are at most L, by running Dijkstra’s algorithm with source
u and terminating as soon as the minimum key in PQ is larger than L. We will refer to the
modification algorithm as the bounded Dijkstra’s algorithm with source u and distance L.

Our final greedy spanner algorithm uses the following ingredients:

• We partition the
(n
2

)

pairs of distinct points in V into a linear number of buckets, such
that within each bucket, distances differ by at most a factor of two.

• We process the buckets one after another. Consider the current bucket containing all
pairs whose distances are in the interval [L, 2L). For each point u of V , we maintain a
stack storing all operations performed by the bounded Dijkstra’s algorithm with source
u and distance 2tL. Thus, for each vertex v such that dG(u, v) ≤ 2tL, we know the
value of dG(u, v), which is stored as weight(u, v) in the distance matrix. When we add
an edge (u, v) to the greedy spanner, we take all points p for which d(p, u) < (t − 1

2)L
or d(p, v) < (t− 1

2)L. Instead of running the bounded Dijkstra’s algorithm with source
p and distance 2tL from scratch (as we did in Algorithm 3.1), we do the following: We
use the stack stored with p to undo the execution of the bounded Dijkstra’s algorithm
(in the graph prior to the insertion of the edge (u, v)) until the minimum key in the
priority queue is at most weight(p, u) + d(u, v). Then, we restart Dijkstra’s algorithm
from this state, using the graph that contains the new edge (u, v), and terminate as
soon as the minimum key in the priority queue is larger than 2tL; during the execution,
we store the sequence of all operations in the stack associated with p.

Consider again the bucket containing all pairs whose distances are in the interval [L, 2L).
Why is it sufficient to run the bounded Dijkstra’s algorithm with length 2tL? Assume d(p, q)
is in [L, 2L) and consider the moment when the algorithm processes the pair (p, q). Obviously,

13
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if dG(p, q) ≥ 2tL, then dG(p, q) > t · d(p, q). As a result, it is sufficient in this case to have
a value weight(p, q) which is equal to the shortest-path distance between p and q in an old
version of the graph (see also the proof of Lemma 1). This value weight(p, q) will allow us to
make the correct decision of not adding (p, q) to the greedy spanner.

A detailed description of the algorithm is given in Algorithms 4.1—4.3.

Lemma 4 Algorithm 4.1 computes the greedy t-spanner of the input set V .

Proof. Let i be an integer with 1 ≤ i ≤ l and consider the iteration of the algorithm when the
edges of Ei are processed. The algorithm starts in lines 18–20 by computing all shortest-path
distances in the current graph G that are at most 2tLi. Since all distances in Ei are less than
2Li, there is no need to compute shortest-path distances that are larger than 2tLi.

Let (u, v) be a pair in Ei and assume that the algorithm adds the edge (u, v) to the
graph. Let G be the graph prior to the addition of this edge, and let G′ denote the graph
just after this edge has been added. The algorithm considers all points p in V for which
d(p, u) < (t − 1

2 )Li or d(p, v) < (t − 1
2)Li. We have seen in the proof of Lemma 1 that it is

sufficient to consider only these points. Recall that Algorithm 3.1 performs an SSSP com-
putation in G′ with source p. We have to show that lines 26-37 have the same effect (up to
shortest-path distances that are at most 2tLi). If neither of the conditions in lines 26 and 32
hold, then the addition of (u, v) does not change the behavior of Dijkstra’s algorithm with
source p up to shortest-path distances that are at most 2tLi. Assume that the condition in
line 26 holds. Then the first time that Dijkstra’s algorithm with source p behaves differently
on G and G′ is the moment when v is the element with the minimum key in the corresponding
priority queue. Therefore, it is sufficient to undo Dijkstra’s algorithm on G up to the distance
weight(p, u) + d(u, v), decrease the key in p’s priority queue to weight(p, u) + d(u, v), and
continue Dijkstra’s algorithm with G′ up to the distance 2tLi. This is exactly what Algo-
rithm 4.1 does.

4.1 The running time of Algorithm 4.1

In this section, we show that Algorithm 4.1 runs in O(n2 log n) time. To this end, we show
that for each point p ∈ V , the overall time spent for p is proportional to the time for running
Dijkstra’s SSSP algorithm with source p on the entire greedy spanner (which, using Corol-
lary 1, is O(n log n)). Recall that we assume that the value of t is close to one. In particular,
we have t < 2.

Recall that Dijkstra’s algorithm on a graph G with source p computes shortest-path
distances dG(p, q) (for q ∈ V ) in non-decreasing order of their values. For real numbers
L′ > L > 0, the portion of Dijkstra’s algorithm in the interval [L,L′) is defined to be the part
of the computation in which all shortest-path distances dG(p, q) are computed that satisfy
L ≤ dG(p, q) < L′.

We fix a point p in V . Consider the iteration in which the algorithm processes the
pairs in Ei. Let (u, v) be a pair in Ei that is added as an edge to the greedy spanner,
and assume that the condition in line 25 holds. Also, assume that one of the conditions
in lines 26 and 32 holds, say the one in line 26. The algorithm calls Dijkstra-Undo,
which runs Dijkstra’s algorithm backwards as long as the minimum key in PQp is at least
weight(p, u) + d(u, v), which is at least d(u, v) ≥ Li. Then, the algorithm calls Dijkstra-
Bounded, which continues Dijkstra’s algorithm as long as the minimum key in PQp is at
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Algorithm 4.1: New-Greedy(V, t)

Input: metric space (V,d) and real number t > 1.
Output: the greedy t-spanner G(V, E′).
foreach u ∈ V do weight(u, u) := 0;1

foreach (u, v) ∈ V 2 with u 6= v do weight(u, v) := ∞;2

E := list of all pairs of distinct points in V , sorted in non-decreasing order of their distances;3

i := 1;4

while E \ (
⋃i−1

k=1
Ek) 6= ∅ do5

Li := distance of the shortest pair in E \ (
⋃i−1

k=1
Ek);6

Ei := sorted list of all pairs in E \ (
⋃i−1

k=1
Ek) whose distances are in [Li, 2Li);7

i := i + 1;8

end9

l := i − 1;10

E′ := ∅;11

G := (V, E′);12

foreach u ∈ V do13

PQu := priority queue storing all v ∈ V with key weight(u, v);14

τu := empty stack;15

end16

for i := 1, . . . , l do17

foreach u ∈ V do18

Dijkstra-Bounded(G, u, 2tLi,PQu, τu);19

end20

foreach (u, v) ∈ Ei (in sorted order) do21

if weight(u, v) > t · d(u, v) then22

E′ := E′ ∪ {(u, v)};23

foreach p ∈ V do24

if d(p, u) < (t − 1

2
)Li or d(p, v) < (t − 1

2
)Li then25

if weight(p, u) + d(u, v) < weight(p, v) then26

Dijkstra-Undo(τp,PQp, weight(p, u) + d(u, v));27

in PQp, decrease the key of v to weight(p, u) + d(u, v) and add all28

changes made in PQp to the stack τp;

weight(p, v) := weight(p, u) + d(u, v) and add this change to τp;29

Dijkstra-Bounded(G, p, 2tLi,PQp, τp)30

end31

if weight(p, v) + d(u, v) < weight(p, u) then32

Dijkstra-Undo(τp,PQp, weight(p, v) + d(u, v));33

in PQp, decrease the key of u to weight(p, v) + d(u, v) and add all34

changes made in PQp to the stack τp;

weight(p, u) := weight(p, v) + d(u, v) and add this change to τp;35

Dijkstra-Bounded(G, p, 2tLi,PQp, τp)36

end37

end38

end39

end40

end41

end42

return G(V, E′);43
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Algorithm 4.2: Dijkstra-Bounded(G, s, L, PQ, τ)

Input: graph G, vertex s, real number L > 0, priority queue PQ , stack τ .
Output: using PQ , continue Dijkstra’s algorithm with source s until all shortest-path

distances in G which are at most L have been computed; the algorithm stores all
operations in τ (the pseudocode does not explicitly mention this).

while the minimum key in PQ is at most L do1

delete the element u with minimum key from PQ ;2

weight(s, u) := key of u;3

foreach node v adjacent to u in G do4

if weight(s, u) + d(u, v) < weight(s, v) then5

in PQ , decrease the key of v to weight(s, u) + d(u, v);6

weight(s, v) := weight(s, u) + d(u, v)7

end8

end9

end10

Algorithm 4.3: Dijkstra-Undo(τ, PQ,L)

Input: stack τ , priority queue PQ , real number L > 0.
while the minimum key in PQ is larger than L do1

pop the top element c from τ ;2

undo the changes based on the information in c;3

end4

most 2tLi, which is less than 4Li. Thus, when the edge (u, v) is added, the time spent for p
is at most twice the time spent by Dijkstra’s algorithm with source p in the interval [Li, 4Li)
(once backwards and once forwards). By Lemma 3, the number of times that this happens
for p, during the processing of Ei, is O( 1

(t−1)O(d) ).

It follows from the algorithm that Li ≥ 2Li−1. This implies that, over the entire al-
gorithm and for the point p, Dijkstra’s algorithm with source p in the interval [Li, 2Li) is
run O( 1

(t−1)O(d) ) times. During the course of the algorithm, edges are added to the graph.

Therefore, the total time spent for p is O( 1
(t−1)O(d) ) times the time for one complete SSSP

computation with source p in the final greedy spanner. Since, by Corollary 1, this spanner
has O( 1

(t−1)O(d) n) edges, it follows that the total time spent for point p is O( 1
(t−1)O(d) n log n).

To complete the proof of the running time of Algorithm 4.1, we need the following lemma,
which gives an upper bound on the number of buckets Ei:

Lemma 5 The value of l computed in line 10 of Algorithm 4.1 is O(n).

Proof. The proof follows from the fact that, for a metric space of bounded doubling dimen-
sion, a well-separated pair decomposition with O(n) pairs exists; see [16]. In fact, the lemma
holds for any metric space; see [15].

This lemma implies that the time spent by the algorithm, besides the shortest-path com-
putations, is O(n2). We have proved the main result of this paper:

Theorem 1 Let (V,d) be a metric space of size n having doubling dimension d and let t > 1
be a real number. The greedy t-spanner of V can be computed in O( 1

(t−1)O(d) n
2 log n) time.
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5 Conclusion

We have presented an algorithm which, when given a set V of n points from a metric space of
bounded doubling dimension, computes the greedy spanner of V in O(n2 log n) time. Observe
that in the greedy spanner, every point is connected to its nearest neighbor in V . Therefore,
given the greedy spanner, we can solve the all-nearest-neighbors problem on V in O(n) time.
Har-Peled and Mendel [16] have shown that the latter problem has an Ω(n2) lower bound
for metric spaces of bounded doubling dimension. This implies that computing the greedy
spanner also has an Ω(n2) lower bound. We leave open the problem of closing the logarithmic
gap between the running time of our algorithm and this lower bound.

Another open problem is to decide whether the greedy spanner can be computed in o(n2)
time for point sets in Euclidean space R

d. Finally, consider an arbitrary metric space of size n.
Is it possible to compute the greedy spanner in o(mn2) time, where m denotes the number of
edges in the spanner?
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