
A Logical Foundation for Deductive
Object-Oriented Databases

MENGCHI LIU
Carleton University and Wuhan University
GILLIAN DOBBIE
University of Auckland
and
TOK WANG LING
National University of Singapore

Over the past decade, a large number of deductive object-oriented database languages have been
proposed. The earliest of these languages had few object-oriented features, and more and more
features have systematically been incorporated in successive languages. However, a language with
a clean logical semantics that naturally accounts for all the key object-oriented features, is still
missing from the literature. This article takes us another step towards solving this problem. Two
features that are currently missing are the encapsulation of rule-based methods in classes, and
nonmonotonic structural and behavioral inheritance with overriding, conflict resolution and block-
ing. This article introduces the syntax of a language with these features. The language is restricted
in the sense that we have omitted other object-oriented and deductive features that are now well
understood, in order to make our contribution clearer. It then defines a class of databases, called
well-defined databases, that have an intuitive meaning and develops a direct logical semantics
for this class of databases. The semantics is based on the well-founded semantics from logic pro-
gramming. The work presented in this article establishes a firm logical foundation for deductive
object-oriented databases.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-Oriented
Programming; D.1.6 [Programming Techniques]: Logic Programming; D.3.2 [Programming
Languages]: Language Classification—object-oriented languages; H.2.1 [Database Manage-
ment]: Logical Design—data models; schema and subschema; H.2.3 [Database Management]:
Languages—data description languages (DDL); database (persistent) programming languages;
query languages; I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—deduction
(e.g., natural, rule-based); logic programming; nonmonotonic reasoning and belief revision;

M. Liu’s work was partially supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC) under grants RPGIN 193552-00 and EQPEQ 229966-00.
Authors’ addresses: M. Liu, School of Computer Science, Carleton University, 1125 Colonel By
Drive, Ottawa, Ont. K1S 5B6, Canada; email: mengchi@scs.carleton.ca; G. Dobbie, Department
of Computer Science, University of Auckland, Private Bag 92019, Auckland 1020, New Zealand;
email: gill@cs.auckland.ac.nz; T. W. Ling, Department of Computer Science, National University of
Singapore, 3 Science Drive 2, Singapore 117543; email: lingtw@comp.nus.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this worked owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2002 ACM 0362-5915/02/0300–0117 $5.00

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002, Pages 117–151.

118 • M. Liu et al.

I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods—representa-
tion languages

General Terms: Languages, Theory

Additional Key Words and Phrases: Declarative semantics, deductive databases, nonmonotonic
multiple inheritance, object-oriented databases, rule-based languages

1. INTRODUCTION

The objective of deductive object-oriented databases is to combine the best of
the deductive and object-oriented approaches, namely to combine the logical
foundation of the deductive approach with the modeling capabilities of the
object-oriented approach. In the past decade, a large number of deductive object-
oriented database languages have been proposed, such as O-logic [Maier 1986],
revised O-logic [Kifer and Wu 1993], C-logic [Chen and Warren 1989], F-logic
[Kifer et al. 1995], IQL [Abiteboul and Kanellakis 1998], LOGRES [Cacace et al.
1990], LLO [Lou and Ozsoyoglu 1991], COMPLEX [Greco et al. 1992], ORLOG
[Jamil and Lakshmanan 1992], LIVING IN LATTICE [Heuer and Sander
1993], Datalogmeth [Abiteboul et al. 1993], CORAL++ [Srivastava et al. 1993],
Noodle [Mumick and Ross 1993], DTL [Bal and Balsters 1993], Gulog [Dobbie
and Topor 1995], Rock & Roll [Barja et al. 1995], ROL [Liu 1996], Datalog++

[Jamil 1997], ROL2 [Liu and Guo 1998; Liu 1999], Chimera [Guerrini et al.
1998], and DO2 [Ling and Lee 1998]. These proposals can be roughly classified
into two kinds: loosely-coupled and tightly coupled. The first kind mainly
uses or extends Datalog-like language as a query language for object-oriented
databases. This is not a satisfactory approach as the resulting language/system
consists of two clearly distinct parts with no unifying semantics. Typical ex-
amples of this kind are: IQL, Rock & Roll, CORAL++, and Chimera. The other
approach is more fundamental in which new unifying logics are proposed to
formalize the notions underlying object-oriented databases. Typical examples
of this kind are: revised O-logic, C-logic, F-logic, ORLOG, and ROL.

Based on these proposals as well as the work in object-oriented program-
ming languages and data models, such as GemStone [Butterworth et al. 1991],
ONTOS [Soloviev 1992], O2 [Deux et al. 1991], Orion [Kim 1990], Iris [Fishman
et al. 1987], ObjectStore [Lamb et al. 1991], ODMG-93 [Cattell 1996], ODMG
2.0 [Cattell and Barry 1997], it is becoming clear that the key object-oriented
features in deductive object-oriented databases include object identity, complex
objects, typing, rule-based methods, encapsulation of methods, overloading, late
binding, polymorphism, class hierarchy, multiple structural and behavioral in-
heritance with overriding, blocking, and conflict handling. However, a clean
logical semantics that naturally accounts for all these features is still missing
from the literature. In particular, the following two important issues have not
been addressed properly so far. One is rule-based methods and the encapsula-
tion of these methods in classes. The other is nonmonotonic multiple structural
and behavioral inheritance.

In object-oriented programming languages and data models, methods are de-
fined using functions or procedures and are encapsulated in class definitions.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 119

They are invoked through instances of the classes. In deductive databases, we
use rules instead of functions and procedures. By analogy, methods in deduc-
tive object-oriented databases can be defined using rules and encapsulated in
class definitions. Such methods should be invoked through instances of the
classes as well. However, most existing deductive object-oriented database lan-
guages, including F-logic [Kifer et al. 1995], IQL [Abiteboul and Kanellakis
1998], Datalogmeth [Abiteboul et al. 1993], ROL [Liu 1996], Datalog++ [Jamil
1997], do not allow rule-based methods to be encapsulated in the class defini-
tions. The main difficulty is that the logical semantics is based on programs that
are sets of rules. If rules are encapsulated into classes, then it is not clear how
to define their semantics. Several proposals such as Datalogmeth and Datalog++

provide encapsulation but use rewriting-based semantics that do not address
the issue directly. Bugliesi and Jamil [1994] address encapsulation but do not
include other very important object-oriented features, like inheritance, in their
language.

Nonmonotonic multiple structural and behavioral inheritance is a funda-
mental feature of object-oriented data models such as O2 [Deux et al. 1990] and
Orion [Kim 1990]. The user can explicitly redefine (or override) the inherited
attributes or methods and stop (or block) the inheritance of attributes or meth-
ods from superclasses. Ambiguities may arise when an attribute or method is
defined in two or more superclasses, and the conflicts need to be handled (or
resolved). Most systems use the superclass ordering to solve the conflicts. Unfor-
tunately, a logical semantics for multiple inheritance with overriding, blocking
and conflict-handling has not been defined. The main difficulty is that the in-
herited instances of a superclass may not be well typed with respect to its type
definition because of overriding and blocking. Most deductive object-oriented
database languages, including revised O-logic [Kifer and Wu 1993], F-logic,1

LOGRES [Cacace et al. 1990], LIVING IN LATTICE [Heuer and Sander 1993],
COMPLEX [Greco et al. 1992], and Chimera [Guerrini et al. 1998] only al-
low monotonic multiple structural inheritance, which is not powerful enough.
Some deductive object-oriented languages such as Datalogmeth only support
nonmonotonic single inheritance by allowing method overriding. One extreme
case is IQL, which does not support multiple inheritance at the class level at
all. Instead, it indirectly supports it at the instance level via the union type
so that inherited instances of a superclass can still be well-typed with respect
to its type definition which is the union of the type for its direct instances and
the type for its nondirect instances. ROL [Liu 1996] has a semantics that ac-
counts for nonmonotonic multiple structural inheritance with overriding and
conflict-handling in a limited context, but without blocking. Datalog++ [Jamil
1997] takes a quite different approach towards nonmonotonic inheritance. It
disallows the inheritance of conflicting attributes and methods, like in C++.
It provides mechanisms for the user to block the inheritance of attributes and
methods. However, it only provides an indirect, rewriting-based semantics for
such nonmonotonic inheritance.

1F-logic however supports indeterminate nonmonotonic default value inheritance. The value in-
herited depends on which inheritance step is done first at run time.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

120 • M. Liu et al.

This article provides a direct well-defined declarative semantics for a de-
ductive object-oriented database language with encapsulated rule-based meth-
ods and nonmonotonic structural and behavioral inheritance with overriding,
conflict resolution and blocking. In order to keep the setting simple, we omit
some well-understood features that don’t affect the semantics defined, for ex-
ample, set-valued attribute values, and we focus on a static database rather
than a dynamic database, that is, we do not consider updates to the database.
In the language, methods are declared in the class definitions, and the meth-
ods are invoked through instances of the classes. We introduce a special class,
none, to indicate that the inheritance of an attribute or method in a subclass is
blocked, that is, it won’t be inherited from its superclasses. We provide a very
flexible approach to conflict resolution. Our mechanism consists of two parts.
The first, and default part is similar to the method used in Orion, namely
a subclass inherits from the classes in the order they are declared in the
class definition. The second part allows the explicit naming of the class the
attribute or method is to be inherited from. Therefore, a subclass can inherit
attribute or method definitions from any superclasses. We then define a class of
databases, called well-defined databases, that have an intuitive meaning and
develop a direct logical semantics for this class of databases. The semantics
naturally accounts for method encapsulation, multiple structural and behav-
ioral inheritance, overriding, conflict handling and blocking, and is based on
the well-founded semantics [Gelder et al. 1991] from logic programming. How-
ever, our semantics differ from well-founded semantics in a number of ways.
We introduce typing and the concept of a well-typed database, our definition of
“satisfaction” is more complex, and our model has two parts, a two-valued part
representing the extensional database and a three-valued part representing
the intensional database. We define a transformation that has a limit, I∗ for
well-defined databases, and prove that I∗, if it is defined, is a minimal model of
the database.

This article is organized as follows: We introduce the language using an ex-
ample in Section 2. Section 3 introduces the syntax of the language. In Section 4,
the class of well-defined databases and the semantics of well-defined databases
are defined, and the main results are presented. Section 5 concludes the article,
reiterating our results and comparing this work with related work.

2. EXAMPLE

Our language in fact supports many of the important object-oriented features
in a rule-based framework with a well-defined declarative semantics in a style
similar to F-logic [Kifer et al. 1995]. In particular, it supports object identity,
complex objects, typing, rule-based methods, encapsulation of methods, over-
loading, late binding, polymorphism, class hierarchy, and multiple structural
and behavioral inheritance with overriding, blocking, and conflict handling. In
this section, we introduce and demonstrate concepts that are important in the
article.

Figure 1 shows a sample database. Notice that ⇒ is used when types of
attributes or methods are declared, → is used when values are assigned to

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 121

class person [
name⇒ string;
birthyear⇒ integer;
birthyear •→ 2002;
homephone⇒ integer;
spouse⇒ person;
emergencyContact⇒ integer;
emergencyContact •→ 911;
age()⇒ integer {

age()→ A :– birthyear→ B, A = 2002− B}
contactNumber()⇒ integer {

contactNumber()→ X :– homephone→ X }
married to(person) {married to(X) :– spouse→ X }
single() {single() :– ¬married to(X)}
]

class employee isa person [
birthyear •→ 1960;
workphone⇒ integer;
salary⇒ integer;
salary •→ 2000;
homephone⇒ none;
contactNumber()⇒ integer {

contactNumber()→ X :– workphone→ X }
]

class student isa person [
birthyear •→ 1970;
emergencyContact⇒ employee;
major⇒ string ;
major •→ “CS”;
extrasupport()⇒ integer {

extrasupport()→ 1000 :– married to(X), student X ;
extrasupport()→ 500 :– married to(X), ¬student X ;
extrasupport()→ 100 :– single()}

support()⇒ integer {
support()→ S :– extrasupport()→ S1, S = 1000+ S1}

]
class wstudent isa employee, student [

birthyear< student;
support()⇒ none;
extrasupport()⇒ person {

extrasupport()→ X :– spouse→ X }
]

Key
⇒ type declaration
→ value declaration
•→ default value
< explicit inheritance

(a) Schema

employee tom [name→ “Tom”; birthyear→ 1963; spouse→ pam, salary→ 5000]
student sam [name→ “Sam”; major→ “CS”; homephone→ 8751834]
wstudent pam [name→ “Pam”; spouse→ tom; major→ “CS”]

(b) Instance

Fig. 1. Sample database.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

122 • M. Liu et al.

attributes or methods, •→ is used to define default values, and < defines which
class a method or attribute is to be inherited from.

The schema in Figure 1(a) defines four classes, person, employee, student,
and wstudent (working student).

The class person has five attributes, name, birthyear, homephone, spouse, and
emergencyContact, and four methods with signatures: age(), contactNumber(),
married to(person), and single(). The attribute declaration for name gives the
attribute label, name, and the class of the value of the attribute, string.
The attribute birthyear has a default value of 2002, while the attribute
emergencyContact has a default value of 911. The method declaration for
married to(person) has two parts: the method type and the method rule. The
method type married to(person) states the method label, married to, the class
of its argument, person, and the class of the result it returns, which is nothing
in this case. The method rule is the statement in parentheses and is made up of
a head and a body. The part before the :– is the head and the other part is the
body. The method age() returns a person’s age, method contactNumber() returns
a person’s homephone number, method married to(X) is true if the person the
method is applied to has a spouse, X , and method single() is true if the person
is not married.

The class employee inherits from person. The word isa indicates that a class
inherits from another class. We say that class employee is a direct subclass of
person and person is a direct superclass of employee. That is, the class employee
inherits all attribute declarations, default values and method declarations from
class person unless they are blocked or overridden in class employee. New at-
tributes and default values for attributes can also be declared in subclasses, for
example, the attributes workphone and salary with default value of 2000 are de-
clared in employee. The attribute declarations for name, birthyear, spouse and
emergencyContact, and the method declarations for age(), married to(person),
and single() are inherited but the attribute homephone, the default value of
birthyear and method contactNumber() are overridden in employee. When a de-
fault value, an attribute or a method is redefined in a class, we say that the new
declaration in the subclass overrides the definition in the superclass, for exam-
ple, the default value for attribute birthyear is redefined to 1960, and an em-
ployee’s contact number is their workphone number. The attribute homephone
is blocked in employee, that is, the attribute is redefined with a return class of
none. When an attribute or method is blocked in a class, it is not inherited and
is undefined on instances of that class. It is also undefined on subclasses of that
class, unless it is redefined in the subclass.

The class student inherits from person. Because attribute emergencyContact
is redefined with a return class of employee, the default value is not inherited
from person. Two methods are declared in student, namely extrasupport() and
support(). The value of the method support() for a student is the value of their
extrasupport() plus 1000. The value of their extrasupport() is 1000 if they are
married to a student, 500 if they are married and their spouse is not a student,
and 100 if they are single.

The class wstudent inherits from two classes, employee and student. With
multiple inheritance, there can be conflicting declarations, that is, default

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 123

values, attributes and methods may be declared in more than one super-
class. There are three possible conflicts to be resolved in wstudent, attribute
emergencyContact, method contactNumber() and default value birthyear are
defined on both employee and student. There are two ways that conflicts can be
resolved. A conflict resolution declaration indicates explicitly from which class
a property is to be inherited, for example, birthyear< student indicates that the
definition of birthyear and the default value 1970 are inherited from student.
If there is a conflict and there is no conflict resolution declaration, then the
property is inherited from the superclasses in the order the superclasses are
listed in the class declaration, for example, attribute emergencyContact, and
method contactNumber() are inherited from employee. Notice that the method
support() is blocked in wstudent, and the method extrasupport() in wstudent
overrides the method extrasupport() in student. A method declaration in a sub-
class overrides a method declaration in a superclass if the methods have the
same signature but different return values. A method has the same signa-
ture as another method if the method has the same method label and the
same arguments, for example, extrasupport() in student has the same signa-
ture as extrasupport() in wstudent. The method rule in wstudent states that the
extrasupport() of an instance of wstudent is the spouse of wstudent. This over-
rides the extrasupport() method defined in class student. While classes employee
and student are direct superclasses of wstudent, person is an indirect superclass
of wstudent.

The instance in Figure 1(b) contains three objects with oids tom, sam, and
pam. In the database instance, each object is associated with a class and at-
tributes are assigned values. For example, object tom is a direct instance of
employee, and the value of its attribute name is “Tom.” The value of attribute
birthyear is 1963, that is, the default 1960 in employee is not inherited. The
value of its attribute spouse is object identifier pam. We say that employee is
the primary class of object tom, and object tom is an indirect instance of person.
The birthyear of sam is 1970, that is, the default in class student is used be-
cause a value for attribute birthyear is not provided in object sam. The value
of attribute birthyear is not given in object pam, nor in class wstudent. The de-
fault value 1970 is inherited from student because there is a conflict resolution
declaration in wstudent.

We can ask the following queries on the sample database in Figure 1. The
queries demonstrate how methods are encapsulated in classes, that is, a method
is declared in a class and invoked through instances of the class.

(1) Find the birthyear and age of Tom.

?– employee O [name→ “Tom”; birthyear→ Y ; age()→ Z]

In this query, we are asking for the value of one of the attributes and one of
the methods for the object with name “Tom.” The age() method is inherited
from the person class. The answer is {O = tom, Y = 1963, Z = 39}.

(2) Find the birthyear and contact number for Sam.

?– student O [name→ “Sam”; birthyear→ X ; contactNumber()→Y]

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

124 • M. Liu et al.

The default value of birthyear for instances in class student is re-
turned, X = 1970. The method contactNumber() is inherited from person,
Y = 8751834.

(3) Find what support Sam gets.

?– student O [name→ “Sam”; support()→ X]

The support() method in class student invokes the extrasupport() method.
The extrasupport() rules in turn invoke the married to(person) and single()
methods defined in class person. As Sam has no spouse, Sam is not mar-
ried, so Sam is single, and the third rule for extrasupport() is used. The
extrasupport() that Sam receives is 100, so X = 1100 is returned.

(4) Find what support Pam gets.

?– wstudent O [name = “Pam”; support()→ X]

This method support() is blocked on wstudent, an error message indicating
that this method is undefined is returned.

(5) Find what extra support Pam has.

?– wstudent O [name = “Pam”; extrasupport()→ X]

The method extrasupport() in student() is overridden by extrasupport() in
wstudent. The value returned is the oid of the spouse of Pam, namely tom.

(6) Find all the people in the database.

?– person O

The answer to this query includes the oids of all the objects in the class
person and all the subclasses of person. The answers are O = tom; O =
sam; O = pam.

(7) Find all students whose extrasupport is not 500.

?– student O [extrasupport()→ X], X <> 500

This query returns the oids of all the objects that belong to class student or
subclasses of student whose value for method extrasupport is not 500. The
answer is O = sam.

3. SYNTAX

In this section, we define the formal syntax. We use examples from Section 2
to clarify our definitions. We distinguish between values that belong to built-
in values classes and objects that belong to user-defined object identifier (oid)
classes. There are two special value classes, none and void. Class none is used
to indicate that the inheritance of an attribute or method from a superclass
is blocked in a subclass. Class void has only one value, namely nil, which is
returned by a method if no other value is returned. We also differentiate be-
tween attributes and methods. Attributes have a fixed value while the value
of a method is derived at runtime. Like in C++ and Java, we have a special

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 125

variable, This, that is used to refer to the current object. Variables are repre-
sented throughout the article using uppercase alphabetic characters.

We assume the existence of the following pairwise disjoint sets:

(1) a set of value class names B = {integer, string, void, none};
(2) a set C of oid class names;
(3) a set A of attribute labels;
(4) a setM of method names with arity n≥ 0;
(5) a set D of values which is the union of the set I of integers, the set S of

strings, and the set {nil };
(6) a set O of object identifiers (oids);
(7) a set V of variables including This.

Example 3.1. In the example in Section 2, person, employee, student and
wstudent are oid class names, name, birthyear, homephone, spouse, and emer-
gencyContact are examples of attribute labels, contactNumber, married to and
single are examples of method names, tom, sam and pam are object identifiers,
and S, S1 and X are some of the variables.

Oid classes denote collections of objects that share common structural and
behavioral properties. The structural properties are represented in terms of
attributes and default attribute values whereas the behavioral properties are
represented in terms of methods. Two kinds of classes are distinguished: value
classes and oid classes. The collections of instances that value classes denote are
fixed with built-in semantics (see the definition of π∗ in Section 4.2). The col-
lections that oid classes denote depend on the user-defined instances.

Definition 3.1. The classes are defined as follows:

(1) elements of B are value classes;
(2) elements of C are oid classes.

In order to define what a database is, we introduce the following auxiliary
notions.

Definition 3.2. A term is either a value, an oid, or a variable. An oid term
is either an oid or a variable. A term is ground if it has no variables.

For example, “Tom”, tom, and X are terms, where tom is a ground oid term,
and “Tom” is a ground value term.

In the following definition, we distinguish between simple and composite
expressions where composite expressions are composed of simple expressions.

Definition 3.3. The expressions are defined based on terms as follows:

(1) Let c be a class and O an oid term. Then c O is a simple expression, called
a positive oid membership expression.

(2) Let O be an oid term, l an attribute label, and O ′ a term. Then O.l → O ′ is
a simple expression, called a positive attribute expression. When O is This,
we can simply use l → O ′.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

126 • M. Liu et al.

(3) Let O be an oid term, m an n-ary method name with n≥ 0, and O1, . . . , On,
Or terms. Then O.m(O1, . . . , On) → Or is a simple expression, called a
positive method expression. When O is This, we can simply use m(O1, . . . ,
On)→ Or ; when Or is nil , we can simply use O.m(O1, . . . , On); when O is
This and Or is nil, we can simply use m(O1, . . . , On).

(4) Let E be a positive oid membership, attribute or method expression. Then
¬E is a simple expression, called negative oid assignment, attribute or
method expression, respectively.

(5) Let c O be a positive oid membership expression, O.V1, . . . , O.Vn,
¬O.U1, . . . , ¬O.Um attribute or method expressions with n ≥ 0, m ≥ 0.
Then c O [V1; . . . ; Vn;¬U1; . . . ;¬Um] and O [V1; . . . ; Vn;¬U1; . . . ;¬Um] are
composite expressions. When n = 0, O [¬U1; . . . ;¬Um] is called a com-
posite negative expression; when m = 0, it is called a composite positive
expression.

(6) Arithmetic comparison expressions are defined using terms in the usual
way.

Example 3.2. The following are examples of various expressions:

Positive oid membership expressions: person tom, person X
Negative oid membership expressions: ¬person tom, ¬person X
Positive attribute expressions: P.name→ “Tom,” spouse→ P
Negative attribute expressions: ¬P.name→ “Tom,” ¬spouse→ P
Positive method expressions: P.married to(tom), support()→ S
Negative method expressions: ¬P.married to(X), ¬support()→ S
Composite expressions: person P [name→ X ;¬single()]
Arithmetic comparison expressions: A = 2002− B, S = A ∗ 500.

Note that our language supports the omission of the special variable This to
simplify programming as in C++ and Java.

An expression without abbreviation is ground if every term in it is ground.
For example, person tom is a ground expression, but person X is not a ground
expression.

3.1 Schema Syntax

In a database schema, we define the class hierarchy using superclass declara-
tions, attributes of classes using attribute declarations, default attribute values
using default value declarations, methods of classes using method declarations
and conflict resolution declarations are used as part of the conflict resolution
mechanism.

Definition 3.4. If c and c1, . . . , cl are oid classes with l ≥ 0, then c isa
c1, . . . , cl is a superclass declaration that declares c is a direct subclass of c1, . . . ,
and cl and c1, . . . , and cl are direct superclasses of c.

The following is an example of superclass declaration:

wstudent isa employee, student,

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 127

where wstudent is a direct subclass of employee and student, and employee and
student are direct superclasses of wstudent.

Definition 3.5. Let c be an oid class, c′ be a class other than void, and l be
an attribute label. Then c [l ⇒ c′] is an attribute declaration for the class c.
The special case where c′ is none, that is, c [l ⇒ none], is an attribute blocking
declaration for the class c.

For example, person [name⇒ string] is an attribute declaration for the class
person, and employee [homephone⇒ none] is an attribute blocking declaration
for the class employee.

It is more and more common to see software systems provide various de-
faults to ease the use of the systems. A default attribute value holds on an
instance of a class unless a value is specifically assigned to that attribute for
that instance. Oracle supports default attribute values, F-logic [Kifer et al.
1995] and Datalog++ [Jamil 1997] also support default values (by a different
name though). In our language, we use a syntax similar to F-logic for default
values.

Definition 3.6. Let c be an oid class, l an attribute label and o a ground
term. Then c [l •→ o] is a default value declaration for the attribute l of class c.

For example, person [birthyear •→ 2002] is a default value declaration for
the attribute birthyear of class person. If a person was born in 2002, then there
is no need to explicitly specify his/her birthyear in the database.

Behavioral properties are given by class methods. A method consists of two
parts, the method type and method rules.

Definition 3.7. Let c be an oid class, c1, . . . , cn classes other than void and
none, cr a class, and m an n-ary method name with n ≥ 0. Then c [m(c1, . . . , cn)⇒
cr] is a method type for the method m of the class c. The signature of the method
is m(c1, . . . , cn). The method type specifies the class c that the method is at-
tached to, the name m of the method, the classes c1, . . . , cn of the arguments,
and the class cr of the result it returns. When cr is void, we can simply write
c [m(c1, . . . , cn)] instead.

Method rules are used to derive information that is not explicitly stored in
the database.

Definition 3.8. A method rule of the class c is of the form c [A :– L1, . . . , Ln]
where the head A is a simple positive method expression, the body L1, . . . , Ln
with n ≥ 0 is a sequence of expressions. The method name and its arity in A
are also the name and arity of the rule.

A method declaration consists of a method type and a set of method rules.

Definition 3.9. Let c [m(c1, . . . , cn) ⇒ cr] be a method type, r1, . . . , rk
method rules that have name m and arity n with n ≥ 0 and k ≥ 0. Then
c [m(c1, . . . , cn) ⇒ cr {r1; . . . ; rk}] is a method declaration for the class c. Let M
be a method declaration, we use sig(M) to denote its signature. When k= 0, we

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

128 • M. Liu et al.

can simply write c [m(c1, . . . , cn)⇒ cr]. The special case where cr is none, that
is, c [m(c1, . . . , cn)⇒ none], is a method blocking declaration for the class c.

Consider the following example of method declaration:

wstudent [
extrasupport()⇒ person {

extrasupport()→ X :– spouse→ X }
].

The method type is wstudent [extrasupport() ⇒ person], the signature of the
method is extrasupport(), and wstudent [extrasupport() → X :– spouse → X]
is the method rule. The declaration wstudent [support() ⇒ none] is a method
blocking declaration for the class wstudent.

As we have shown, the inheritance hierarchy is defined using superclass
declarations. Note that the order of c1, . . . , cl in a superclass declaration in
our language is significant because the conflict resolution mechanism uses this
ordering to determine the order of structural and behavioral inheritance if there
are no explicit conflict resolution declarations. See the example in Section 2.
Conflict resolution declarations can be used to name explicitly the class from
which a particular attribute or method is to be inherited.

Definition 3.10. Let c, c′ be oid classes, l an attribute and m(c1, . . . , cn) a
method signature. Then c [l < c′] is an attribute conflict resolution declaration
for the class c; and c [m(c1, . . . , cn)< c′] is a method conflict resolution declaration
for the class c.

For example, wstudent [birthyear< student] is an attribute conflict resolution
declaration for the class wstudent.

Based on the above definitions, a class has five kinds of information: direct
superclasses, attribute declarations, default value declarations, method decla-
rations, and conflict resolution declarations.

Definition 3.11. Let c isa c1, . . . , cm be a superclass declaration,
c [C1], . . . , c [Cn] conflict resolution declarations, c [A1], . . . , c [Ao] attribute dec-
larations, c [D1], . . . , c [Dp] default value declarations, and c [M1], . . . , c [Mq]
method declarations with m ≥ 0, n ≥ 0, o ≥ 0, p ≥ 0, and q ≥ 0. Then

class c isa c1, . . . , cm [C1; . . . ; Cn; A1; . . . ; Ao; D1; . . . ; Dp; M1 . . . Mq]

is a class declaration. When m = 0, we shall write as follows instead

class c [C1; . . . ; Cn; A1; . . . , ; Ao; D1, . . . , Dp; M1 . . . Mq]

Note that rules are encapsulated in classes rather than separated from
classes as in other languages, like F-logic [Kifer et al. 1995] and ROL [Liu 1996].

Definition 3.12. A schema K is a set of class declarations, which can be
represented abstractly as a tuple K = (C, isa, α, δ, µ, χ) where C is a finite set
of oid classes, isa is a finite set of superclass declarations, α is a finite set of
attribute declarations, δ is a finite set of default value declarations, µ is a finite

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 129

set of method declarations, andχ is a finite set of conflict resolution declarations.
For simplicity, we assume that there is no abbreviation in α, δ, and µ.

We note α(c), δ(c), µ(c), χα(c), and χµ(c) are the sets of attribute, default
value, method, attribute conflict resolution declarations, and method conflict
resolution declarations in α, δ, µ, and χ for the class c, respectively.

In Section 4.2, we impose constraints on the schema to capture the in-
tended semantics of multiple inheritance with overriding, blocking and conflict
handling.

3.2 Instance Syntax

In a database instance, we define the objects and their attribute values using
object declarations.

Definition 3.13. An object declaration is an expression of the form:

c o [l1 → o1; . . . ; ln→ on]

that has the ground oid membership expression c o and ground positive at-
tribute expressions o.l1 → o1, . . . , o.ln→ on. It specifies that the oid class c is a
primary class of the oid o, o is a direct instance of c, and o has values o1, . . . , on
for its attributes l1, . . . , ln, respectively.

For example, wstudent pam [name → “Pam”; spouse → tom] is an object
declaration, and wstudent is a primary class of pam, pam is a direct instance of
wstudent, and pam has values “Pam” and tom for attributes name and spouse,
respectively.

We require that each oid has a unique primary class. We also require object
declarations to be well typed and consistent with respect to the schema. We
discuss these issues in Section 4.2.

Definition 3.14. An instance I is a set of object declarations, that can be
represented as a tuple I = (π, λ) where π is a set of ground oid membership
expressions called oid assignments and λ is a set of ground positive attribute
expressions called attribute value assignments.

3.3 Database and Query Syntax

A database consists of a schema and an instance, and a query is a sequence of
expressions.

Definition 3.15. A database DB consists of two parts: the schema K and
the instance I , which can be represented abstractly as a tuple DB = (C, isa, α,
δ, µ, χ , π, λ) where K = (C, isa, α, δ, µ, χ) and I = (π, λ).

Definition 3.16. A query is a sequence of expressions prefixed with ?–.

4. SEMANTICS

In this section, we define the semantics of a database and queries. First, we
give the meaning of the schema and instance of the database, we then identify

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

130 • M. Liu et al.

a class of databases, called well-defined databases, and finally, we define the
meaning of the rule based methods of well-defined databases, based on the
meaning of the schema and instance. The semantics of a database is based on
the well-founded semantics except in this case the semantics of the rule-based
methods must take into account the meaning of the schema and the instance
of the database.

Encapsulation is dealt with in Section 4.1; each attribute, default value and
method that are applicable to a class are identified. In order to determine which
attributes, default values, and methods are applicable to a class, it is necessary
to consider inheritance with overriding, blocking and conflict handling.

4.1 Semantics of Schema and Instance

In this section, we define the meaning of the schema and instance of a database.
Recall that α(c), δ(c) and µ(c) are the sets of attribute declarations, default val-
ues and method declarations respectively that are defined on c. We also define
α∗(c), δ∗(c), andµ∗(c), the attribute declarations, default values and method dec-
larations that are applicable to class c, taking inheritance, overriding, conflict
resolution and blocking into account.

Consider the schema in Figure 1. There are no attributes defined on wstudent
soα(wstudent)=∅. However, the attributes that are applicable to objects in class
wstudent are

α∗(wstudent) = {
wstudent [name⇒ string],
wstudent [birthyear⇒ integer],
wstudent [spouse⇒ person],
wstudent [workphone⇒ integer],
wstudent [salary⇒ integer],
wstudent [emergencyContact⇒ integer],
wstudent [major⇒ string]

}.
Definition 4.2 specifies how α∗(c), δ∗(c) and µ∗(c) are calculated using dif-

ference operators to find declarations that are defined in one class but not in
another class. We start by defining the difference operators. There are no restric-
tions on the relationship between the classes on which they operate. However,
they are generally used to find declarations that are defined in a superclass
and not redefined in the subclass. There are different operators to find the dif-
ference between attribute declarations, default value declarations and method
declarations, respectively. For example, we would use the attribute declara-
tion difference operator to find attributes that are declared in person and not
redefined in employee. Note that in this definition and elsewhere in the arti-
cle, the existential quantifier indicates that all variables in the expression are
existentially quantified unless we state otherwise.

Definition 4.1. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a database. For each
c ∈ C, let αDB(c) denote a set of attribute declarations, δDB(c) a set of default

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 131

value declarations, and µDB(c) a set of method declarations for class c. Then for
any c1, c2 ∈ C, the difference between sets αDB(c1) and αDB(c2) is defined as

αDB(c1)− αDB(c2) = {c [l ⇒ d] | c [l ⇒ d] ∈ α(c1) and 6 ∃ c′ [l ⇒ d ′] ∈ α(c2)}.

The difference between sets δDB(c1) and δDB(c2) is defined as

δDB(c1)− δDB(c2) = {c [l •→ o] | c [l •→ o] ∈ δ(c1) and 6 ∃ c′ [l •→ o′] ∈ δ(c2) and
6 ∃ c′′ [l ⇒ cr] ∈ α(c2) and 6 ∃ c′′′ [l < c′r] ∈ χ (c2)}.

The difference between sets µDB(c1) and µDB(c2) is defined as

µDB(c1)− µDB(c2) = {M1 | M1 ∈ µ(c1) and 6 ∃ M2 ∈ µ(c2)
such that sig(M1) = sig(M2)}.

Example 4.1. Consider the database in Figure 1. The difference between
the sets of attribute declarations for person and student is:

α(person)− α(student) = {
person [name⇒ string],
person [birthyear⇒ integer],
person [homephone⇒ integer],
person [spouse⇒ person]

}.

The result is the attribute declarations in person that are not redefined in
student.

In Figure 1, the difference between the default attribute declarations for
person and student is:

δ(person)− δ(student) = ∅.
This is not really surprising because the default value for birthyear and the
attribute emergencyContact are redefined in student.

Recall how overriding, conflict resolution, and blocking are dealt with. An
attribute declaration, default value, or method declaration that redefines a
declaration in a superclass overrides the declaration in the superclass. Con-
flicts can be resolved in one of two ways, either implicitly due to the ordering of
the superclasses in the class declaration, or explicitly by stating the class the
property is to be inherited from. To block the inheritance of a declaration from
a superclass in a subclass, we redefine the attribute or method with a return
class none. In other words, to block the inheritance of an attribute l or method
m(c1, . . . , cn) in subclass c, we include c [l ⇒ none] or c [m(c1, . . . , cn)⇒ none],
respectively, in the class declaration of c.

Definition 4.2 defines the attribute declarations, default values, and method
declarations that are applicable to a class taking inheritance with overriding,
conflict handling and blocking into account. There are two cases considered in
the definition, namely when a class inherits from no superclasses, and when a
class inherits from at least one superclass. In the first case, no inheritance takes

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

132 • M. Liu et al.

place, so the declarations that are defined on the class are the only ones that
apply to that class. In the second case, we must consider inheritance, overriding,
conflict resolution and blocking. We consider each of these factors separately in
the four subparts of the definition. Each part extends the previous part of the
definition. The expressions αbc (respectively, δbc, µbc), and αbci (respectively, δbci,
µbci) are introduced to clarify the definition and only α∗, δ∗, and µ∗ are referred
to outside this section in this article.

Expressions αbc, δbc, and µbc are the resulting sets of declarations when ex-
plicit conflict resolution is considered, αbci, δbci, and µbci are the resulting sets
when inheritance, overriding and implicit conflict resolution have been consid-
ered, and α∗, δ∗, and µ∗ are the sets of resulting rewritten declarations.

We provide some examples, before the formal definition.

Example 4.2. For the class person in Figure 1 that inherits from no other
classes, the properties that are applicable to class person are those that have
been explicitly declared on person:

α∗(person) = αbci(person) = α(person) = {
person [name⇒ string],
person [birthyear⇒ integer],
person [homephone⇒ integer],
person [spouse⇒ person],
person [emergencyContact⇒ integer]

}.
Now consider a class that inherits from at least one other class.

Example 4.3. Consider the class employee in Figure 1, that has two at-
tribute declarations and one attribute blocking declaration.

αbc(employee) = {
employee [workphone⇒ integer],
employee [salary⇒ integer],
employee [homephone⇒ none]

}
δbc(employee) = {

employee [birthyear •→ 1960],
employee [salary•→ 2000]

}.
Consider also the class wstudent that has one attribute conflict resolution

declaration. The conflict resolution declaration states that the definition of
birthyear is to be inherited from student, which in turn has inherited the defi-
nition from person. Due to the conflict resolution declaration, the default value
for birthyear is inherited from student.

αbc(wstudent) = {
person [birthyear⇒ integer]

}
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 133

δbc(wstudent) = {
student [birthyear •→ 1970]

}.
The sets αbci(c), δbci(c), µbci(c) are the sets of declarations that are declared

explicitly on c or inherited from the superclasses of c, taking overriding and
conflict resolution into account.

Example 4.4. Consider the class wstudent in Figure 1, that inherits from
employee and student.

αbci(wstudent) = {
person [birthyear⇒ integer],
employee [workphone⇒ integer],
employee [salary⇒ integer],
employee [homephone⇒ none],
person [emergencyContact⇒ integer],
person [name⇒ string],
person [spouse⇒ person],
student [major⇒ string]

}
δbci(wstudent) = {

person [emergencyContact •→ 911],
employee [salary•→ 2000],
student [birthyear •→ 1970],
student [major •→ “CS”]

}.
In other words, αbci(wstudent) is the set of attributes that are derived from

the set αbc(wstudent), and the attributes that are defined on employee and not
redefined in wstudent, and the attributes that are defined on student and not
redefined in employee or wstudent. Similarly for δbci(wstudent).

The sets α∗(c), δ∗(c), µ∗(c) are the sets of declarations that are implicitly or
explicitly declared on c with the blocked declarations removed, and the name
of the class to which they apply changed.

Example 4.5. Consider the class wstudent in Figure 1:

α∗(wstudent) = {
wstudent [name⇒ string],
wstudent [birthyear⇒ integer],
wstudent [spouse⇒ person],
wstudent [workphone⇒ integer],
wstudent [salary⇒ integer],
wstudent [emergencyContact⇒ integer],
wstudent [major⇒ string]

}
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

134 • M. Liu et al.

δ∗(wstudent) = {
wstudent [emergencyContact •→ 911],
wstudent [salary•→ 2000],
wstudent [birthyear •→ 1970],
wstudent [major •→ “CS”]

}.
Definition 4.2. The semantics of multiple inheritance with overriding, con-

flict handling and blocking are defined using the difference operators as follows:

(1) If there does not exist a class c′ such that c isa c′, then

α∗(c) = αbci(c) = α(c)
δ∗(c) = δbci(c) = δ(c)
µ∗(c) = µbci(c) = µ(c).

In other words, if a class does not have any superclasses, then there is no
inheritance, overriding, conflict resolution or blocking. The declarations in
the class are the only ones that apply to the class.

(2) Otherwise, if c isa c1, . . . , cn, then
(a) we extend the sets of declarations to include new declarations due to

explicit conflict resolution declarations

αbc(c) = α(c) ∪
{c′′ [l ⇒ cr] | ∃ c [l < c′] ∈ χα(c) and c′′ [l ⇒ cr] ∈ αbci(c′)}

δbc(c) = δ(c) ∪
{c′′ [l •→ o] | ∃ c [l < c′] ∈ χα(c) and ∃ c′′ [l •→ o] ∈ δbci(c′)
and 6 ∃ c [l •→ o′] ∈ δ(c)}

µbc(c) = µ(c) ∪
{M | ∃ c [m(c1, . . . , cn)< c′] ∈ χµ(c) and M ∈ µbci(c′) such that
sig(M) = m(c1, . . . , cn)}.

(b) we extend the sets of declarations to include declarations that are in-
herited from both direct and indirect superclasses using the difference
operator in Definition 4.1

αbci(c) = αbc(c) ∪ (αbci(c1)− αbc(c)) ∪ · · · ∪
((· · · ((αbci(cn)− αbci(cn−1))− αbci(cn−2))− · · · − αbci(c1))− αbc(c))

δbci(c) and µbci(c) are defined analogously.

(c) we remove blocked declarations and change the class names in the sets
of declarations

α∗(c) = {c [l ⇒ c′] | ∃ c′′ [l ⇒ c′] ∈ αbci(c) and c′ 6= none}
δ∗(c) = {c [l •→ o] | ∃ c′ [l •→ o] ∈ δbci(c) and 6 ∃ c′′ [l ⇒ none] ∈ αbci(c)}
µ∗(c) = {M ′ | ∃ M ∈ µbci(c), the type of M is c′ [m(c1, . . . , cn)⇒ cr]

cr 6= none, and M ′ is obtained from M by substituting c for c′}.
Definition 4.3. Let DB= (C, isa, α, δ, µ, χ , π, λ) be a database. Then

α∗ = {α∗(c) | c ∈ C}, δ∗ = {δ∗(c) | c ∈ C}, and µ∗ = {µ∗(c) | c ∈ C}.
ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 135

Definition 4.4. LetDB = (C, isa, α, δ, µ, χ , π, λ) be a database. If α∗, δ∗, and
µ∗ are defined, then the semantics of the schema K = (C, isa, α, δ, µ, χ) is given
by α∗, δ∗, and µ∗.

We have dealt with nonmonotonic inheritance within a database schema. We
now define the semantics of inheritance within an instance of a database, by
introducing the notions of isa∗, π∗, and λ∗.

We overload the isa notion so that if c isa c1, . . . , cn, then c isa ci for 1 ≤ i ≤ n.
We define isa∗ as the reflexive transitive closure of isa, that captures the general
inheritance hierarchy. Note that c isa∗ c.

Definition 4.5. LetDB = (C, isa, α, δ, µ, χ , π, λ) be a database, c a class and
o an object. Then o is a nondirect instance of c in DB, denoted by c o ∈ π∗, if and
only if one of the following holds:

(1) c is a value class, o is a value, and o is an element in the collection that c
denotes.

(2) c is an oid class, o is an oid, and there exists a c′ such that c′ isa∗ c and
c′ o ∈ π .

The notion of π∗ captures the semantics of instance inheritance; that is, if an
oid is a direct instance of a subclass c, then it is a nondirect instance of c and
the superclasses of c.

For example, if wstudent pam ∈ π and wstudent isa∗ person, then we have
person pam ∈ π∗. In other words, π contains direct instances while π∗ contains
both direct and nondirect instances.

In the case, where there is a default value declaration for an attribute in a
class, the instances of the class inherits the default value for the attribute. We
extend the notion λ to λ∗ to capture such intended semantics:

λ∗ = λ ∪ {o.l → o′ | c o ∈ π and c [l •→ o′] ∈ δ∗ and 6 ∃ o.l → o′′ ∈ λ}.
Definition 4.6. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a database. If π∗ and λ∗

are defined, then the semantics of the instance I = (π, λ) is given by π∗, λ∗.

4.2 Constraints on a Database

Using the syntax introduced, it is possible to define a database that has no
intuitive meaning. For example it is possible to define a database with a cycle
in its class hierarchy, or an attribute in a class that has two distinct default
values. In this section, we discuss a number of constraints that can be used to
guarantee an intended semantics of the database and queries on the database.
The following definitions introduce constraints on the database schema.

Let DB = (C, isa, α, δ, µ, χ , π, λ) be a database. Recall that C is a finite set
of oid classes, isa is a finite set of superclass declarations, α is a finite set of
attribute declarations, δ is a finite set of default value declarations, χ is a finite
set of conflict resolution declarations, µ is a finite set of method declarations, π
is a set of ground oid membership expressions, and λ is a set of ground positive
attribute expressions.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

136 • M. Liu et al.

Definition 4.7. A set S of superclass declarations is well defined if and only
if there do not exist distinct c and c′ such that c isa∗ c′ and c′ isa∗ c.

Informally, a set of superclass declarations is well defined if there are no
cycles in the inheritance hierarchy. For example, the following set is not well
defined:

{wstudent isa employee, wstudent isa student, student isa wstudent}.
When there are cycles in the inheritance hierarchy, α∗, δ∗ and µ∗ cannot be

defined by Definitions 4.2 and 4.3.

Definition 4.8. The consistency constraint for attribute declarations is de-
fined as follows:

—A set S of attribute declarations is consistent if and only if there do not exist
c [l ⇒ c′] ∈ S and c [l ⇒ c′′] ∈ S such that c′ 6= c′′.

—A set S of attribute declarations is consistent with respect to χ if and only if
there do not exist c [l ⇒ cr] ∈ S and c [l < cl] ∈ χ .

Informally, a set of attribute declarations is consistent if each attribute has
only one return class. For example, the following set is not consistent.

{person [spouse⇒ integer], person [spouse⇒ string]}.
A set of attribute declarations is consistent with respect to a set of conflict

resolution declarations if there does not exist an attribute declaration and a
conflict resolution declaration for the same attribute. Consider now an example
where S = {wstudent [homephone ⇒ string]} and wstudent [homephone <
student] ∈ χ , then S is not consistent with respect to χ .

Definition 4.9. A set S of default value declarations is consistent if and only
if there do not exist c [l •→ o] ∈ S and c [l •→ o′] ∈ S such that o 6= o′.

Informally, a set of default value declarations is consistent if there is at most
one default value for each attribute in a class. For example, the following set is
not consistent.

{student [birthyear •→ 1979], student [birthyear •→ 1980]}.

Definition 4.10. The consistency constraint for method declarations is de-
fined as follows:

—A set S of method declarations is consistent if and only if there do not exist
two distinct method declarations c [M] ∈ S and c [M ′] ∈ S that have the
same signature.

—A set S of method declarations is consistent with respect to χ if and only if
there do not exist c [M] ∈ S and c [sig(M)< c′] ∈ χ .

Informally, a set of method declarations is consistent if each method has only
one return class. This definition is similar to the definition for attribute declara-
tions above, except in this case, we must consider the signature of the methods.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 137

For example, {person [married to(person)], person [married to(person) ⇒
person]} is not consistent because both methods in the set have the same signa-
ture, but the set {person [married to()], person [married to(person)]} is consis-
tent because the two methods in the set do not have the same signature. A set
of method declarations is consistent with respect to a set of conflict resolution
declarations if there does not exist a method declaration and a conflict reso-
lution declaration for the same method. Consider now an example where S =
{wstudent [support()⇒ integer]} and wstudent [support()< student] ∈ χ , then S
is not consistent with respect to χ . The set S = {wstudent [support(integer)⇒
integer]} is consistent with respect to χ because the method support(integer)
declared in S does not have the same signature as support() in χ .

Definition 4.11. The consistency constraint for conflict resolution declara-
tions is defined as follows:

—A set S of attribute conflict resolution declarations is consistent if and only if
there do not exist c [l < c′] ∈ S and c [l < c′′] ∈ S such that c′ 6= c′′.

—A set S of method conflict resolution declarations is consistent if and only if
there do not exist c [m(c1, . . . , cn)< c′] ∈ S and c [m(c1, . . . , cn)< c′′] ∈ S such
that c′ 6= c′′.

—Let S be a set of conflict resolution declarations, such that S = Sα ∪ Sµ
where Sα is a set of attribute conflict resolution declarations and Sµ is a set
of method conflict resolution declarations. The set S is consistent if and only
if both Sα and Sµ are consistent.

Informally, a set of conflict resolution declarations is consistent if each at-
tribute or method in the set is inherited from only one class. For example, the
following set is not consistent:

{wstudent [birthyear< student], wstudent [birthyear< person]}.
Definition 4.12. The definition of well-defined attribute (respectively,

method) declarations is defined as follows:

—An attribute blocking declaration c [l ⇒ none] ∈ α(c) is well defined in DB if
and only if (1) c isa c1, . . . , cl ; (2) ∃ ci [l ⇒ c′] ∈ α∗(ci) for 1 ≤ i ≤ l ; and (3)
6 ∃ c j [l ⇒ c′′] ∈ α∗(c j) for 1 ≤ j ≤ i.

—A method blocking declaration c [m(c′1, . . . , c′n) ⇒ none] ∈ µ(c) is well de-
fined in DB if and only if (1) c isa c1, . . . , cl ; (2) ∃ M ∈ µ∗(ci) for 1≤ i≤ l
such that sig(M)=m(c′1, . . . , c′n); (3) ∃6 M ′ ∈µ∗(c j) for 1 ≤ j ≤ i such that
sig(M)=m(c′1, . . . , c′n).

—A set S of attribute declarations (respectively, method declarations) is well
defined in DB if and only if each attribute (respectively, method) blocking
declaration is well defined in DB.

Informally, a blocking declaration is well defined if it blocks an attribute (or
method) that has been defined on or inherited by a parent class. For example,
if student isa person and person [name ⇒ string] 6∈ α∗(person), the blocking
declaration student [name⇒ none] is not well defined.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

138 • M. Liu et al.

Definition 4.13. The definition of well defined conflict resolution declara-
tions is defined as follows:

—An attribute conflict resolution declaration c [l < c′] is well defined in DB if
and only if (1) c isa c′; and (2) ∃ c′ [l ⇒ c′′] ∈ α∗(c′).

—A method conflict resolution declaration c [m(c1, . . . , cn) < c′] is well defined
in DB if and only if (1) c isa c′; and (2) ∃ M ∈ µ∗(c′) such that sig(M) =
m(c1, . . . , cn).

—A set S of conflict resolution declarations is well defined in DB if and only if
each conflict resolution declaration is well defined in DB.

Informally, a conflict resolution declaration is well defined if the attribute or
method is defined on the class it is to be inherited from, and a set of conflict res-
olution declarations is well defined if every conflict resolution declaration in the
set is well defined. For example, if student [birthyear ⇒ integer] ∈ α∗(student)
and wstudent isa student, then wstudent [birthyear < student] is well defined.
However, if birthyear was not defined on student and was not inherited from
any of the superclasses of student, then wstudent [birthyear < student] would
not be well defined.

Definition 4.14. The definition of well typed default value declarations is
defined as follows:

—A default value declaration c [l •→ o] is well typed in DB if and only if (1)
there exists an attribute declaration c [l ⇒ c′] ∈ α∗(c); and (2) c′ o ∈ π∗.

—A set S of default value declarations is well typed in DB if each default value
declaration in S is well typed in DB.

Informally, a default value declaration is well typed if the default value of
the attribute matches the return class of the attribute, and a set of default
value declarations is well typed if every default value declaration in the set is
well typed. For example, if student [birthyear ⇒ integer] ∈ α∗(student), then
student [birthyear •→ 1970] is well typed, but student [birthyear •→ “1970AD”]
is not well typed.

Based on the previous definitions, we have the following property: The prop-
erties demonstrate that the sets of expressions defined in this section have the
intended semantics.

PROPOSITION 4.1. Let DB= (C, isa, α, δ, µ, χ , π, λ) be a database. If isa is
well defined, α, δ, µ, and χ are consistent, α and µ are consistent with respect to
χ , then α∗, δ∗, µ∗ are defined and consistent.

PROOF. When isa is well defined, it is straightforward that α∗, δ∗, µ∗ are
defined by Definitions 4.2 and 4.3.

For consistency, consider first α∗. Suppose α∗ is not consistent, then for some
c, there exists c [l ⇒ c′] ∈ α∗ and c [l ⇒ c′′] ∈ α∗ such that c′ 6= c′′. For any class
c, α(c) is consistent, so an expression must be added in the evaluation of α∗(c)
to make the above true.

Suppose that c has no superclasses, then α∗(c) = α(c), so α∗(c) is consistent.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 139

Suppose next that c has superclasses c1, . . . , cn, then

(1) because α(c) is consistent with respect to χα(c), αbc(c) cannot contain two
expressions c1 [l ⇒ c2], c′1 [l ⇒ c′2] such that c1 6= c′1,

(2) αbci(c) cannot contain two expressions c1 [l ⇒ c2], c′1 [l ⇒ c′2] such that
c1 6= c′1 by the definition of the difference operator, and

(3) no new expressions are added when α∗(c) is derived from αbci(c).

Thus, α∗, must be consistent.
A similar case can be made for δ∗ and µ∗.

The following three definitions introduce constraints on the database in-
stance. A database instance does not have an intuitive meaning if an object is a
direct instance of more than one class; if an attribute has more than one value
for an object; or if attribute values of objects are not well typed.

Definition 4.15. A set S of oid assignments is consistent if and only if there
do not exist c o ∈ S and c′ o ∈ S such that c 6= c′.

Informally, a set of oids is consistent if each oid belongs directly to at most
one class. For example, the set {person tom, employee tom} is not consistent.

Definition 4.16. A set S of attribute value assignments is consistent if and
only if there do not exist o [l → o′] ∈ S and o [l → o′′] ∈ S such that o′ 6= o′′.

Informally, a set of attribute assignments is consistent if each attribute
has a single value. For example, the set {tom [name → “Tom”], tom [name →
“Thomas”]} is not consistent.

PROPOSITION 4.2. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a database. If π, λ and
δ∗ are consistent, Then λ∗ is defined and consistent.

PROOF. Suppose λ∗ is not consistent, then there exists o [l → o′] ∈ λ∗ and
o [l → o′′] ∈ λ∗ such that o′ 6= o′′. Because λ is consistent, there must be an
expression added when λ∗ is evaluated to make the above true. However, in
the evaluation of λ∗, new expressions are added only when there does not exist
an expression o [l → o′] ∈ λ, or when there is a default value for instances
of the class that the object belongs to. In the latter case, because π and δ∗ are
consistent by Proposition 4.1, only one expression will be added for object o.
Thus, λ∗ must be consistent.

Based on Propositions 4.1 and 4.2, we have the following corollary.

COROLLARY 4.1. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a database. If isa is
well defined, α, δ, µ, and χ are consistent, α and µ are consistent with respect to
χ , then α∗, δ∗, µ∗, λ∗ are defined and consistent.

Definition 4.17. The definition of well typed attribute value assignments
is defined as follows:

—LetDB = (C, isa, α, δ, µ, χ , π, λ) be a database. An attribute value assignment
o [l → o′] is well typed in DB if and only if
—there exists a class c such that c o ∈ π ;

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

140 • M. Liu et al.

—there exists an attribute declaration c [l ⇒ c′] ∈ α∗(c); and
—c′ o′ ∈ π∗.

—Let DB be a database. A set S of attribute value assignments is well typed in
DB if each attribute value assignment in S is well typed in DB.

This constraint is similar to the well typed definition for default value dec-
larations except that in this definition we must also account for the class
of the oid. For example, sam [workphone→ 8742911] is not well typed in
the database in Figure 1, where student sam∈π but student [workphone ⇒
integer] 6∈α∗(student).

Definition 4.18. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a database. Then DB
is well defined if and only if

(1) isa is well defined;
(2) α is consistent, consistent with respect to χ and well defined;
(3) δ is consistent and well typed in DB;
(4) µ is consistent, consistent with respect to χ , and well defined;
(5) χ is consistent and well defined in DB;
(6) π is consistent; and
(7) λ is consistent and well typed in DB.

A well defined databaseDB = (C, isa, α, δ, µ, χ , π, λ) incorporates all the con-
straints discussed above. Therefore, α∗, δ∗ and µ∗ provide intuitive semantics
for the schema, and π∗ and λ∗ provide intuitive semantics for the instance.

In the following section, we are concerned only with well defined databases;
that is, databases with an intuitive meaning.

4.3 Semantics of Databases and Queries

In this article, we focus on static databases rather than dynamic databases, that
is, databases where classes of oids and their attribute values remain the same.
The semantics for dynamic databases can be found in Liu [1998a]. The classes of
oids and their attributes form our extensional database (EDB) in the traditional
deductive database sense. The methods, however, are represented intensionally
by method rules. They define our intensional database (IDB). In this section, we
define the semantics of methods based on the well-founded semantics proposed
in Gelder et al. [1991].

Our definition differs from Gelder et al. [1991] in the following ways: We are
concerned with a typed language with methods rather than an untyped lan-
guage with predicates. We introduce a well-typed concept and take typing into
account when deducing new facts from methods. The definition of satisfaction of
expressions is simple in Gelder et al. [1991] and more complex in our definition
because we define the truth values for our many kinds of expressions. Our def-
inition reflects the fact that our model effectively has two parts, an extensional
database (EDB) that models oid membership and attribute expressions, and
an intensional database (IDB) that models method expressions. The EDB is a
2-valued model, in which oid membership and attribute expressions are true if

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 141

they’re in the model; otherwise, they are false. The IDB is a 3-valued model, in
which method expressions are true if they are in the model, false if their com-
plement belongs to the model; otherwise, they are undefined. When a method
expression is undefined, either the method isn’t defined on the invoking object,
or it isn’t possible to assign a truth value to that expression. The reason we use
a 3-valued model for IDB is that we can infer both positive and negative method
expressions using method rules. On the other hand, EDB only contains positive
oid membership and attribute expressions so we just use a 2-valued model.

In the well-founded semantics, a program may have a partial model. This is
not the case in our definition, in fact we prove that every well-defined program
has a minimal model. We first define terminology that is needed later in this
section.

Definition 4.19. For each simple method expression, ψ or ¬ψ , we say that
ψ is an atom.

Definition 4.20. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base. The Herbrand baseBDB based onDB is the set of all ground simple method
expressions formed using the method names in DB (without abbreviations).

Example 4.6. Consider the following well-defined database DB:

class person [
spouse⇒ person;
married() {

married() :– spouse→ X ;
married() :– X .married(), X .spouse→ This}

single(){
single() :– ¬married()}

canDivorce(){
canDivorce() :– married()}

]

person tom [spouse→ pam]
person pam
person sam.

Consider the following sets of expressions:

E1 = {tom.married(), pam.married(), ¬sam.married(),
¬tom.single(), ¬pam.single(), sam.single(),
tom.canDivorce(), pam.canDivorce(), ¬sam.canDivorce()}

E2 = {tom.spouse→ pam}.
Then E1 ⊂ BDB, but E2 6∈ BDB because the expression in E2 is not a method
expression.

We are interested in compatible, consistent, and well typed subsets of the
Herbrand Base. A set of method expressions is incompatible if it contains an
atom and the complement of that atom.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

142 • M. Liu et al.

Definition 4.21. For a set of method expressions S, we denote the set
formed by taking the complement of each expression in S by ¬S.

—We say expression q is incompatible with S if q ∈ ¬S.
—Sets of expressions R and S are incompatible if some expression in R is

incompatible with S; that is, if R ∩ ¬S 6= ∅ or ¬R ∩ S 6= ∅.
—A set of expressions is incompatible if it is incompatible with itself; otherwise,

it is compatible.

Example 4.7. Consider the following set E3:

E3 = {¬tom.married(), tom.married(), ¬pam.married(), ¬sam.married(),
pam.single(), ¬sam.single(), sam.canDivorce()}.

It is incompatible because {¬tom.married(), tom.married()} ∈ E3, and E3 ∩
¬E3 6= ∅. The set E1 in Example 4.6 is compatible.

Ground method expressions are required to be well typed with respect to the
appropriate class declarations.

Definition 4.22. Let DB= (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base, andψ = o.m(o1, . . . , on)→ or orψ =¬o.m(o1, . . . , on)→ or a ground method
expression. Then ψ is well typed in DB if and only if the following hold:

(1) there exists a class c such that c o ∈ π ; and
(2) there exists a method in µ∗(c) with the method type c [m(c1, . . . , cn) ⇒ cr]

such that ci oi ∈ π∗ for 1 ≤ i ≤ n and cr or ∈ π∗.
A set of ground method expressions is well typed inDB if and only if each ground
method expression is well typed in DB.

Methods can return values. However, for the same arguments, a method
should return only one value. We formalize this using the notion of consistency.

Definition 4.23. A set of ground method expressions are consistent if and
only if there do not exist o.m(o1, . . . , on)→ or ∈ S and o.m(o1, . . . , on)→ o′r ∈ S
such that or 6= o′r .

The set E1 in Example 4.6 is compatible, consistent, and well typed in the
database DB.

Definition 4.24. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base. A partial interpretation of DB is a tuple I = (π, λ, S) where S is a compat-
ible, consistent, and well-typed set of method expressions inDB, and each atom
in S is an element of the Herbrand base. A total interpretation is a partial in-
terpretation that contains every well-typed method atom of the Herbrand base
or its negation. For an interpretation I = (π, λ, S), π and λ form an extensional
database whereas S forms an intensional database.

Note that S contains both positive and negative expressions, and different
interpretations of DB have the same extensional database but different inten-
sional databases.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 143

Example 4.8. The following are two interpretations of the database DB in
Example 4.6:

I1 = ({person tom, person pam, person sam},
{tom.spouse→ pam},
∅)

I2 = ({person tom, person pam, person sam},
{tom.spouse→ pam},
{tom.married(), pam.married(), ¬sam.married(),
¬tom.single(), ¬pam.single(), sam.single(),
tom.canDivorce(), pam.canDivorce(), ¬sam.canDivorce()}.

Definition 4.25. A ground substitution θ is a mapping from V to O ∪ D. It
is extended to terms and expressions in the usual way.

Definition 4.26. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base and I = (π, λ, S) an interpretation of DB. The notion of satisfaction of
expressions, denoted by |=, and its negation, denoted by 6|=, are defined as
follows:

(1) For a ground positive oid membership expression ψ , I |= ψ if and only if
ψ ∈ π∗; I 6|= ψ if and only if ψ 6∈ π∗.

(2) For a ground positive attribute expression ψ , I |= ψ if and only if ψ ∈ λ∗;
I 6|= ψ if and only if ψ 6∈ λ∗.

(3) For a ground negative oid membership expression or attribute expression
¬ψ , I |= ¬ψ if and only if I 6|= ψ ; I 6|= ¬ψ if and only if I |= ψ .

(4) For a ground positive method expression ψ , I |= ψ if and only if ψ ∈ S;
I 6|= ψ if and only if ¬ψ ∈ S.

(5) For a ground negative method expression¬ψ , I |= ¬ψ if and only if¬ψ ∈ S;
I 6|= ¬ψ if and only if ψ ∈ S.

(6) For a ground composite expression ψ = c o [V1; . . . ; Vn],
—I |= ψ if and only if I |= c o, I |= o.Vi for 1 ≤ i ≤ n;
—I 6|= ψ if and only if I 6|= c o or I 6|= o.Vi for some i with 1 ≤ i ≤ n.
For a ground composite expression ψ = o [V1; . . . ; Vn],
—I |= ψ if and only if I |= o.Vi for every 1 ≤ i ≤ n;
—I 6|= ψ if and only if I 6|= o.Vi for some i with 1 ≤ i ≤ n.

(7) For a ground arithmetic comparison expression ψ , I |= ψ if and only if ψ
holds in the standard arithmetic interpretation; I 6|= ψ if and only if ψ does
not hold in the standard arithmetic interpretation.

(8) For a method rule r = c [A :– L1, . . . , Ln], I |= r if and only if for each
ground substitution θ ,
—I |= θA; or
—I 6|= θA and for each ground method rule with head θA there exists an

Li with 1 ≤ i ≤ n such that I 6|= θLi; or
—there exists an Li with 1 ≤ i ≤ n such that neither I |= θLi, nor I 6|= θLi.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

144 • M. Liu et al.

In other words, I |= ψ means that ψ is true in I; I 6|= ψ means that ψ is
false in I; if neither I |= ψ , nor I 6|= ψ , then ψ is unknown in I.

Example 4.9. Consider the database DB in Example 4.6. The following is
part of the ground method rules:

tom.married() :– tom.spouse→ tom
tom.married() :– tom.spouse→ pam
tom.married() :– tom.spouse→ sam
tom.married() :– tom.married(), tom.spouse→ tom
tom.married() :– pam.married(), pam.spouse→ tom
tom.married() :– sam.married(), sam.spouse→ tom
tom.canDivorce() :– tom.married().

We can verify that the interpretation I2 of DB in Example 4.8 satisfies every
ground method rule in DB while the interpretation I1 does not satisfy most of
the rules.

Definition 4.27. LetDB = (C, isa, α, δ, µ, χ , π, λ) be a well-defined database
and I = (π, λ, S) an interpretation of DB. Then I is a model of DB if I satisfies
every method rule in µ∗.

Consider again Example 4.9, the interpretation I2 is a model of DB while the
interpretation I1 is not.

Due to the typing and compatibility constraints as in ROL [Liu 1996], it
is possible that a database has no models. Also, a well-defined database may
have several models. Our intention is to select a proper minimal model as the
intended semantics of the database.

We now define unfounded sets. An unfounded set for a database with re-
spect to an interpretation provides a basis for false method expressions in our
semantics.

Definition 4.28. Let DB = (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base, BDB its Herbrand base, and I = (π, λ, S) be an interpretation. Then U ⊆
BDB is an unfounded set of DB with respect to I if each expression ψ ∈ U
satisfies the following condition:

For each ground method rule r of µ∗ whose head is ψ , at least one of the
following holds:
(1) There is some positive or negative expression Li of the body such that
I 6|= Li.

(2) Some positive expression of the body occurs in U .

Example 4.10. Consider the database DB in Example 4.6 and the following
interpretation:

I = ({person tom, person pam, person sam},
{tom.spouse→ pam},
∅).

The set U = {sam.married(), sam.canDivorce()} is an unfounded set of DB
with respect to I because every ground rule with head sam.married() has an

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 145

expression ψ in the body, such that I 6|= ψ , and the ground rule with the head
sam.canDivorce() has sam.married() in U . The set U ′ = {tom.married()} is not
an unfounded set of DB with respect to I because neither (1) nor (2) (from
Definition 4.26) holds for the method rules with head tom.married().

The greatest unfounded set is the set of all the expressions that are false in a
database with respect to an interpretation and is used to provide the negative
expressions when finding the model of a database.

Definition 4.29. The greatest unfounded set with respect to I (GUS) is the
union of all sets that are unfounded with respect to I.

We now continue to define the semantics of a database.

Definition 4.30. Let DB= (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base. The transformation TDB of DB is a mapping from interpretation to in-
terpretation defined as follows:

TDB(I) =
{

(π, λ,W(I)) ifW(I) is well typed and consistent
undefined otherwise,

where

T (I) = {θA | A :– L1, . . . , Ln is a method rule in DB and there exists a
ground substitution θ such that I |= θL1, . . . , I |= θLn}

U(I) = ¬G, where G is the GUS of DB with respect to I.
W(I) = T (I) ∪ U(I).

Definition 4.31. For all countable ordinals h the tuple Ih for databaseDB =
(C, isa, α, δ, µ, χ , π, λ), the limit of the transformation TDB is defined recursively
by:

(1) For limit ordinal h, Ih = (π, λ, ∪ j<hW(I j)).
(2) For successor ordinal k + 1, Ik+1 = TDB(Ik).

Note that 0 is a limit ordinal, and I0 = (π, λ, ∅). This sequence reaches a
limit I∗.

Example 4.11. Consider the database in Example 4.6.

I0 = (π, λ, ∅).
T (I0) = {tom.married()},
U(I0) = {¬sam.married(), ¬sam.canDivorce()}
W(I0) = T (I0) ∪ U(I0)

I1 = (π, λ, W(I0))
T (I1) = T (I0) ∪ {tom.canDivorce(), pam.married(), sam.single()},
U(I1) = U(I0) ∪ {¬tom.single()},
W(I1) = T (I1) ∪ U(I1)

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

146 • M. Liu et al.

I2 = (π, λ, W(I1))
T (I2) = T (I1) ∪ {pam.canDivorce()},
U(I2) = U(I1) ∪ {¬pam.single()},
W(I2) = T (I2) ∪ U(I2)

I∗ = (π, λ, {tom.married(), pam.married(), ¬sam.married(),
sam.single(), ¬tom.single(), ¬pam.single(),
tom.canDivorce(), pam.canDivorce(), ¬sam.canDivorce()}).

We now prove that I∗ is a model.

THEOREM 4.1. Let DB be a well-defined database. If I∗ = (π, λ, S) is de-
fined, then it is a model of DB.

PROOF. First, we prove that I∗ is an interpretation, that is, S is compatible,
consistent, and well typed in DB. Assume that S is not compatible, then there
is an expression A such that A∈ S and ¬A∈ S. Now, ¬A∈ S only if for every
ground rule A :– L1, . . . , Ln, there is an expression Li for 1≤ i≤n such that
I∗ 6|= Li. Also, A ∈ S if there is a ground rule A :– L′1, . . . , L′m such that I∗ |= L′i
for 1≤ i≤m. This is contradictory, so S is compatible. By Definition 4.30, S is
consistent and well typed in DB. Thus, I∗ is an interpretation.

Next we prove that interpretation I∗ is a model. Assume that I∗ is not a
model, then there is a method rule r in µ∗ that is not satisfied in I∗. By Defi-
nition 4.26, r has a ground instantiation A :– L1, . . . , Ln such that I∗ 6|= A and
I∗ 6|= ¬A, and either

(1) I∗ |= Li for each 1 ≤ i ≤ n, or
(2) there is an Li with 1 ≤ i ≤ n such that I∗ 6|= Li.

If I∗ |= Li for 1 ≤ i ≤ n, then A ∈ I∗ by Definitions 4.30 and 4.31. So
Case (1) cannot occur. If there is an Li with 1≤ i≤n such that I∗ 6|= Li, then
there are two possible situations to consider. One is that there is another ground
rule A :– L′1, . . . , L′m such that I∗ |= L′i with 1 ≤ i ≤ m. In this case, A∈ I∗. The
other is for every other ground rule A :– L′′1, . . . , L′′o, there is an expression L′′i ,
1 ≤ i ≤ o such that I∗ 6|= L′′i . In this case, ¬A ∈ I∗. Thus, both situations result
in contradiction. So Case (2) cannot occur either. Thus, there are no ground
method rules in µ∗ that are not satisfied in I∗. Therefore I∗ is a model ofDB.

Definition 4.32. Let M = (π, λ, S) be a model of a database DB. We say
that model M is minimal if there does not exist an expression ψ in S such that
(π, λ, S − ψ) is still a model.

We now prove that for a well-defined database DB, I∗ is a minimal model of
DB if it is defined.

THEOREM 4.2. Let DB be a well-defined database. If I∗ = (π, λ, S) is
defined, then it is a minimal model of DB.

PROOF. Suppose I∗ is not a minimal model, then there is an expression ψ
in S such that N = (π, λ, S − ψ) is a model of DB.

Suppose ψ is a positive method expression, then ψ ∈ S because there is a
rule A :– L1, . . . , Ln in µ∗ and a ground substitution θ such that ψ = θA and

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 147

I∗ |= θLi for all 1 ≤ i ≤ n. When ψ is removed, N 6|= r. So N is not a model
of DB.

Suppose ψ is a negative method expression, then ψ ∈ S because for each
ground rule r in µ∗ with head ψ , there exists an expression L in the body such
that I∗ 6|= L. When ψ is removed, N 6|= r. So N is not a model of DB.

Since there exists no expression ψ ∈ S such that (π, λ, S − ψ) is a model of
DB, I∗ is a minimal model.

Definition 4.33. Let DB= (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base. The semantics of DB is represented by the limit I∗ if it is defined.

Definition 4.34. Let DB= (C, isa, α, δ, µ, χ , π, λ) be a well-defined data-
base, Q a query of the form ?–L1, . . . , Ln, and θ a ground substitution for vari-
ables of Q . Assume I∗ is defined. Then the answer to Q based on DB is one of
the following:

(1) true if I∗ |= θL1, . . . , I∗ |= θLn,
(2) false if there exists an Li with 1 ≤ i ≤ n such that I∗ 6|= θLi, and
(3) unknown otherwise.

In other words, for a ground expression ψ , if I∗ |= ψ , then ψ is true; if
I∗ 6|= ψ , then ψ is false; and if neither I∗ |= ψ , nor I∗ 6|= ψ , then ψ is undefined.

Consider the database in Example 4.6 and the query:

?–X.canDivorce().

The ground substitutions {X = tom} and {X = pam} make the query true
whereas the ground substitution {X = sam} makes it false.

Let us consider an example with unknown answers.

Example 4.12. Consider the following database:

class person [
spouse⇒ person;
married() {

married() :– ¬single()}
single(){

single() :– ¬married()}
]

person sam [spouse→ pam]
person pam.

Then the limit I∗ = ({person sam, person pam}, {sam.spouse → pam}, ∅) is a
three-valued model, in which the answers to the following queries are unknown.

?–sam.married()
?–sam.single().

There are two reasons why I∗may be undefined, according to Definitions 4.30
and 4.31. One is that the inferred set of method expressions is not well typed.
The other is that it is not consistent. For the first problem, we could define

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

148 • M. Liu et al.

another constraint on method rules using type substitution as in Liu [1998b] to
constrain the database. For the second problem, run-time checking is necessary.

5. CONCLUSION

Logical semantics have played an important role in database research. How-
ever, the object-oriented approach to databases was dominated by “grass-roots”
activity where several systems were built without the accompanying theoret-
ical progress. As a result, many researchers feel the area of object-oriented
databases is misguided [Kifer et al. 1995].

The deductive object-oriented database research, however, has taken quite
a different approach. It has logical semantics as its main objective and there-
fore starts with a small set of simple features taken from the object-oriented
paradigm such as F-logic [Kifer et al. 1995], and gradually incorporates more
and more difficult features that can be given a logical semantics such as
ROL [Liu 1996] and Datalog++ [Jamil 1997].

The main contribution of this article is the addition of two outstanding object-
oriented features to deductive object-oriented databases together with a direct
logical semantics. The two outstanding features were rule-based methods and
the encapsulation of these methods in classes, and multiple structural and be-
havioral inheritance, with overriding, blocking, and conflict handling. In the
language defined in this article, methods are declared within class declara-
tions, and the methods are invoked through instances of the classes. We have
also given a semantics for multiple structural and behavioral inheritance with
overriding, conflict resolution and blocking. We use a special class, none, to
indicate that a method is blocked in a subclass. We provide a flexible conflict
resolution mechanism that consists of two parts. One part allows the explicit
naming of the class a property is be inherited from, using conflict resolution dec-
larations. This part provides a lot of flexibility but it is difficult to check that all
conflicts have been resolved using this mechanism alone. If there is no conflict
resolution declaration, then the order of inheritance is determined by the order
in which the superclasses are listed in the class declaration. This part alone
provides little flexibility. Together, the two parts provide a flexible mechanism
that guarantees that no conflicts will arise at runtime. The trickiest part in
defining a semantics for nonmonotonic multiple inheritance was dealing with
inheritance and conflict handling because the two concepts are inseparable. We
define a class of databases, called well-defined databases, that have an intuitive
meaning. The semantics of methods is based on well-founded semantics but dif-
fers from the well-founded semantics in a number of ways: we introduce typing
and the concept of a well-typed database, the definition for satisfaction of ex-
pressions is more complex, and our model has two parts, a two-valued part that
represents the extensional database and a three-valued part that represents
the intensional database. We define a transformation that has a limit, I∗ for
well-defined databases, and prove that I∗ is a minimal model of the database.

This article has shown that the object-oriented features that are believed
to be difficult to address, can indeed be captured logically. We believe that
the semantics given have a far reaching influence on the design of deductive

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 149

object-oriented languages and even object-oriented languages in general as it is
the first attempt to provide logical semantics for these common object-oriented
features.

Our work differs from the work of others in many ways. Most existing de-
ductive object-oriented database languages do not allow rule-based methods
to be encapsulated in the class definitions. Those that do, do not address the
issue directly. In contrast, we have provided a direct semantics for methods
encapsulated in class definitions. Also, most existing deductive object-oriented
database languages do not allow nonmonotonic multiple structural and behav-
ioral inheritance. ROL does, but deals with conflict handling only in a limited
context and doesn’t have blocking. Datalog++ supports blocking but disallows
the inheritance of conflicting properties. F-logic supports monotonic structural
inheritance and indeterminate nonmonotonic default value inheritance by al-
lowing a database to have multiple possible models. For a class, not only its
subclasses but also its elements can inherit its properties.

We are not recommending the language presented in this article as a practi-
cal database query language, rather the language and semantics defined on the
language would form the theoretical basis for a practical query language. In-
deed, the implemented deductive object-oriented database language ROL2 [Liu
and Guo 1998; Liu 1999] supports all the features discussed here.

We have provided a solid foundation in which other issues can be addressed.
We briefly introduce one outstanding issue here, namely support for object mi-
gration. Object migration is another very important issue that has been ignored
in most deductive object-oriented database languages to date, although it has
been addressed more generally in the literature (e.g., Ling and Teo [1995]). The
semantics of object migration could be studied in this setting.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous referees for their valuable comments
and suggestions, which improved the technical content and the presentation of
the article.

REFERENCES

ABITEBOUL, S. AND KANELLAKIS, P. C. 1998. Object identity as a query language. J. ACM 45, 5,
798–842.

ABITEBOUL, S., LAUSEN, G., UPHOFF, H., AND WALLER, E. 1993. Methods and rules. In Proceedings of
the ACM SIGMOD International Conference on Management of Data (Washington, D.C.). ACM,
New York, pp. 32–41.

BAL, R. AND BALSTERS, H. 1993. A deductive and typed object-oriented language. In Proceedings
of the International Conference on Deductive and Object-Oriented Databases, S. Ceri, K. Tanaka,
and S. Tsur, Eds. (Phoenix, Az.). Lecture Notes in Computer Science, vol. 760. Springer-Verlag,
New York, pp. 340–359.

BARJA, M. L., FERNANDES, A. A. A., PATON, N. W., WILLIAMS, M. H., DINN, A., AND ABDELMOTY, A. I.
1995. Design and implementation of rock & roll: A deductive object-oriented database system.
Inf. Syst. 20, 3, 185–211.

BUGLIESI, M. AND JAMIL, H. M. 1994. A logic for encapsulation in object oriented languages.
In Proceedings of International Symposium on Programming Languages, Implementations,

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

150 • M. Liu et al.

Logics and Programs (PLILP ’94) (Madrid, Spain). Lecture Notes in Computer Science, vol. 844.
Springer-Verlag New York, pp. 213–229.

BUTTERWORTH, P., OTIS, A., AND STEIN, J. 1991. The gemstone object database management system.
Commun. ACM 34, 10, 64–77.

CACACE, F., CERI, S., CREPI-REGHIZZI, S., TANCA, L., AND ZICARI, R. 1990. Integrating object-oriented
data modelling with a rule-based programming paradigm. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (Atlantic City, N.J.). ACM, New York, pp. 225–
236.

CATTELL, R. G. G., Ed. 1996. The Object Database Standard: ODMG-93, Release 1.2. Morgan-
Kaufmann, Los Altos, Calif.

CATTELL, R. G. G. AND BARRY, D., Eds. 1997. The Object Database Standard: ODMG 2.0. Morgan-
Kaufmann, Los Altos, Calif.

CHEN, W., AND WARREN, D. 1989. C-Logic for complex objects. In Proceedings of the ACM Sympo-
sium on Principles of Database Systems (Philadelphia, Pa.). ACM, New York, pp. 369–378.

DEUX, O. ET AL. 1990. The Story of O2. IEEE Trans. Knowl. Data Eng. 2, 1, 91–108.
DEUX, O. ET AL. 1991. The O2 System. Commun. ACM 34, 10, 35–48.
DOBBIE, G. AND TOPOR, R. 1995. On the declarative and procedural semantics of deductive object-

oriented systems. J. Intel. Inf. Syst. 4, 2, 193–219.
FISHMAN, D. H., BEECH, B., CATE, H. P., CHOW, E. C., CONNORS, T., DAVIS, J. W., DERRETT, N., HOCH, C. G.,

KENT, W., LYNGBAEK, P., MAHBOD, B., NEIMAT, M. A., RYAN, T. A., AND SHAN, M. C. 1987. Iris: An
object-oriented database management system. ACM Trans. Office Inf. Syst. 5, 1, 48–69.

GELDER, A. V., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general logic
programs. J. ACM 38, 3, 620–650.

GRECO, S., LEONE, N., AND RULLO, P. 1992. Complex: An object-oriented logic programming system.
IEEE Trans. Knowl. Data Eng. 4, 4, 344–359.

GUERRINI, G., BERTINO, E., AND BAL, R. 1998. A formal definition of the chimera object-oriented
data model. J. Int. Inf. Syst. 11, 1, 5–40.

HEUER, A. AND SANDER, P. 1993. The living in a lattice rule language. Data Knowl. Eng. 9, 4,
249–286.

JAMIL, H. M. 1997. Implementing abstract objects with inheritance in datalogneg. In Proceedings
of the International Conference on Very Large Data Bases (Athens, Greece). Morgan-Kaufmann,
Los Altos, Calif., pp. 46–65.

JAMIL, M. H. AND LAKSHMANAN, L. V. S. 1992. Orlog: A logic for semantic object-oriented models.
In Proceedings of the 1st International Conference on Information and Knowledge Management
(Baltimore, Md.). ACM New York, pp. 584–592.

KIFER, M., LAUSEN, G., AND WU, J. 1995. Logical foundations of object-oriented and frame-based
languages. J. ACM 42, 4, 741–843.

KIFER, M. AND WU, J. 1993. A logic for programming with complex objects. J. Comput. Syst.
Sci. 47, 1, 77–120.

KIM, W. 1990. Introduction to Object-Oriented Databases. The MIT Press, Cambridge, Mass.
LAMB, C., LANDIS, G., ORENSTEIN, J., AND WEINREB, D. 1991. The objectStore system. Commun.

ACM 34, 10, 50–63.
LING, T. W. AND LEE, W. B. T. 1998. DO2: A deductive object-oriented database system. In Proceed-

ings of the 9th International Conference on Database and Expert System Applications (DEXA ’98)
(Vienna, Austria). Lecture Notes in Computer Science, vol. 1460. Springer-Verlag, New York,
pp. 50–59.

LING, T. W. AND TEO, P. K. 1995. Object migration in ISA hierarchies. In Proceedings of the In-
ternational Conference on Database Systems for Advanced Applications (DASFAA ’95). World
Scientific Press, Singapore, pp. 216–225.

LIU, M. 1996. ROL: A deductive object base language. Inf. Syst. 21, 5, 431–457.
LIU, M. 1998a. Incorporating methods and encapsulation into deductive object-oriented database

languages. In Proceedings of the 9th International Conference on Database and Expert System Ap-
plications (DEXA ’98) (Vienna, Austria). Lecture Notes in Computer Science, vol. 1460. Springer-
Verlag, New York, pp. 892–902.

LIU, M. 1998b. Relationlog: A typed extension to Datalog with sets and tuples. J. Logic Prog. 36, 3,
271–299.

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

A Logical Foundation for Deductive Object-Oriented Databases • 151

LIU, M. 1999. Overview of the ROL2 deductive object-oriented database system. In Proceedings
of the 30th International Conference on Technology of Object-Oriented Languages & Systems
(TOOLS USA ’99) (Santa Barbara, Cailf.). IEEE Computer Society Press, Los Alamitos, Cailf.,
pp. 63–72.

LIU, M. AND GUO, M. 1998. ROL2: A real deductive object-oriented database language. In Proceed-
ings of the 17th International Conference on Conceptual Modeling (ER ’98) (Singapore). Lecture
Notes in Computer Science, vol. 1507. Springer-Verlag, New York, pp. 302–315.

LOU, Y. AND OZSOYOGLU, M. 1991. LLO: A deductive language with methods and method inher-
itance. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(Denver, Colo.). ACM, New York, pp. 198–207.

MAIER, D. 1986. A logic for objects. Tech. Rep. CS/E-86-012. Oregon Graduate Institute,
Beaverton, Ore.

MUMICK, I. S. AND ROSS, K. A. 1993. Noodle: A language for declarative querying in an object-
oriented database. In Proceedings of the International Conference on Deductive and Object-
Oriented Databases (Phoenix, Az.). S. Ceri, K. Tanaka, and S. Tsur, Eds. Lecture Notes in Com-
puter Science, vol. 760. Springer-Verlag, New York, pp. 360–378.

SOLOVIEV, V. 1992. An overview of three commercial object-oriented database management
systems: ONTOS, ObjectStore, O2. SIGMOD Rec. 21, 1, 93–104.

SRIVASTAVA, D., RAMAKRISHNAN, R., SRIVASTAVA, D., AND SUDARSHAN, S. 1993. CORAL++: Adding
object-orientation to a logic database language. In Proceedings of the International Conference
on Very Large Data Bases (Dublin, Ireland). Morgan-Kaufmann, Los Altos, Calif., pp. 158–170.

Received August 2001; revised January 2002; accepted February 2002

ACM Transactions on Database Systems, Vol. 27, No. 1, March 2002.

