
Shortest Beer Path Queries in Outerplanar Graphs*

Joyce Bacic� Saeed Mehrabi� Michiel Smid�

August 11, 2022

Abstract

A beer graph is an undirected graph G, in which each edge has a positive weight
and some vertices have a beer store. A beer path between two vertices u and v in G is
any path in G between u and v that visits at least one beer store.

We show that any outerplanar beer graph G with n vertices can be preprocessed in
O(n) time into a data structure of size O(n), such that for any two query vertices u and
v, (i) the weight of the shortest beer path between u and v can be reported in O(α(n))
time (where α(n) is the inverse Ackermann function), and (ii) the shortest beer path
between u and v can be reported in O(L) time, where L is the number of vertices
on this path. Note that the running time for (ii) does not depend on the number of
vertices of G. Both results are optimal, even when G is a beer tree (i.e., a beer graph
whose underlying graph is a tree).

1 Introduction

Imagine that you are going to visit a friend and, not wanting to show up empty handed, you
decide to pick up some beer along the way. In this paper we determine the fastest way to go
from your place to your friend’s place while stopping at a beer store to buy some drinks.

A beer graph is a undirected graph G = (V,E), in which each edge (u, v) has a positive
weight ω(u, v) and some of the vertices are beer stores. For two vertices u and v of G, we
define the shortest beer path from u to v to be the shortest (potentially non-simple) path
that starts at u, ends at v, and visits at least one beer store. We denote this shortest path by
SPB(u, v). The beer distance distB(u, v) between u and v is the weight of the path SPB(u, v),
i.e., the sum of the edge weights on SPB(u, v).

Observe that even though the shortest beer path from u to v may be a non-simple path,
it is always composed of two simple paths: the shortest path from u to a beer store and

*A preliminary version was presented at the 32nd Annual International Symposium on Algorithms and
Computation (ISAAC 2021). JB was supported by an NSERC Undergraduate Student Research Award.
MS was suported by NSERC.

�School of Computer Science, Carleton University, Ottawa, Canada.
�UMass Lowell, USA

1

the shortest path from this same beer store to v. Thus, when looking at the shortest beer
path problem, we often need to consider the shortest path between vertices. We denote the
shortest path in G from u to v by SP(u, v) and we use dist(u, v) to denote the weight of this
path. We also say that dist(u, v) is the distance between u and v in G.

To the best of our knowledge, the problem of computing shortest beer paths has not
been considered before. Let s be a fixed source vertex of G. Recall that Dijkstra’s algorithm
computes dist(s, v) for all vertices v, by maintaining a “tentative distance” δ(v), which is the
weight of the shortest path from s to v computed so far. If we also maintain a “tentative
beer distance” δB(v) (which is the weight of the shortest beer path from s to v that has been
found so far), then a modification of Dijkstra’s algorithm allows us to compute distB(s, v)
for all vertices v, in O(|V | log |V |+ |E|) total time.

As far as we know, no non-trivial results are known for beer distance queries. In this
case, we want to preprocess the beer graph G into a data structure, such that, for any two
query vertices u and v, the shortest beer path SPB(u, v), or its weight distB(u, v), can be
reported.

Observe that, instead of beer stores, we could have used any type of facility, and consider
shortest paths that visit at least one facility. As such, queries of the type considered in
this paper are of relevance for practical applications. For example, when going home from
work, we may have to pick up groceries in the supermarket, in which case we are interested
in “supermarket paths”. In case we want to drop off a parcel at the post office, we are
interested in “post office paths”. As a final example, if we have to charge our electric car,
then we want to determine the “electric vehicle charging station distance”.

1.1 Our Results

We present data structures that can answer shortest beer path queries in outerplanar beer
graphs. Recall that a graph G is outerplanar, if G can be embedded in the plane, such that
all vertices are on the outer face, and no two edges cross.

Our first result is stated in terms of the inverse Ackermann function. We use the definition
as given in [3]: Let A0(i) = i+ 1 and, for ` ≥ 0, A`+1(i) = A

(i+1)
` (i+ 8), where A

(i+1)
` is the

function A` iterated i + 1 times. We define α(m,n) to be the smallest value of ` for which
A`(bm/nc) > n, and we define α(n) = α(n, n).

For example, straightforward induction proofs show that A1(i) > 2i, A2(i) > 2i, and

A3(i) > 22·
··
2i

,

where the number of 2’s is equal to i. Thus, if we let log∗ n denote the number of times
the function “log” must be applied, when starting with the value n, until the result is at
most 1, then α(n log∗ n, n) ≤ 3. Let log∗∗ n be the number of times the function “log∗” must
be applied, again starting with n, until the result is at most 1. Since the function α(m,n) is
non-decreasing in m, and since log∗∗ n ≤ log∗ n, it also follows that α(n log∗∗ n, n) ≤ 3.

2

Theorem 1 Let G be an outerplanar beer graph with n vertices. For any integer m ≥ n,
we can preprocess G in O(m) time into a data structure of size O(m), such that for any two
query vertices u and v, both dist(u, v) and distB(u, v) can be computed in O(α(m,n)) time.

By taking m = n, both the preprocessing time and the space used are O(n), and for any
two query vertices u and v, both dist(u, v) and distB(u, v) can be computed in O(α(n)) time.
As another example, by taking m = n log∗∗ n, we obtain a data structure with space and
preprocessing time O(n log∗∗ n) that can answer both distance and beer distance queries in
O(1) time.

As we mentioned before, beer distance queries have not been considered for any class of
graphs. In fact, the only result on (non-beer) distance queries in outerplanar graphs that we
are aware of is by Djidjev et al. [5]. They show that an outerplanar graph with n vertices
can be preprocessed in O(n log n) time into a data structure of size O(n log n), such that
any distance query can be answered in O(log n) time. Our result in Theorem 1 significantly
improves their result.

We also show that the result in Theorem 1 is optimal for beer distance queries, even if
G is a beer tree (i.e., a beer graph whose underlying graph is a tree). We do not know if the
query time is optimal for (non-beer) distance queries.

Our second result is on reporting the shortest beer path between two query vertices.

Theorem 2 Let G be an outerplanar beer graph with n vertices. We can preprocess G in
O(n) time into a data structure of size O(n), such that for any two vertices u and v, the
shortest beer path from u to v can be reported in O(L) time, where L is the number of vertices
on this beer path.

Observe that the query time in Theorem 2 does not depend on the number n of vertices
of the graph. Again, we are not aware of any previous work on reporting shortest beer paths.
Djidjev et al. [5] show that, after O(n log n) preprocessing and using O(n log n) space, the
shortest (non-beer) path between two query vertices can be reported in O(log n + L) time,
where L is the number of vertices on the path.

1.2 Preliminaries and Organization

Throughout this paper, we only consider outerplanar beer graphs G. The number of vertices
of G is denoted by n. It is well known that G has at most 2n−3 edges. As in [5], we say that
G satisfies the generalized triangle inequality, if for every edge (u, v) in G, dist(u, v) = ω(u, v),
i.e., the shortest path between u and v is the edge (u, v).

The outerplanar graph G is called maximal, if adding an edge between any two non-
adjacent vertices of G results in a graph that is not outerplanar. In this case, the number of
edges is equal to 2n− 3. A maximal outerplanar graph G is 2-connected, each internal face
of G is a triangle and the outer face of G forms a Hamiltonian cycle. In such a graph, edges
on the outer face will be referred to as external edges, where all other edges will be referred
to as internal edges.

3

The weak dual of a maximal outerplanar graph G is the graph D(G) whose node set is
the set of all internal faces of G, and in which (F, F ′) is an edge if and only if the faces F
and F ′ share an edge in G; see Figure 1. For simplicity, we will refer to D(G) as the dual of
G. Observe that D(G) is a tree with n− 2 nodes, each of which has degree at most three.

Figure 1: A maximal outerplanar graph shown in black. Its dual is shown in red.

If H is a subgraph of the beer graph G, and u and v are vertices of H, then dist(u, v,H)
and distB(u, v,H) denote the distance and beer distance between u and v in H, respectively.
The shortest beer path in H between u and v must be entirely within H. Observe that we
use the shorthand dist(u, v) for dist(u, v,G), and distB(u, v) for distB(u, v,G).

It will not be surprising that the algorithms for computing shortest beer paths use the
dual D(G). Thus, our algorithms will need some basic data structures on trees. These data
structures will be presented in Section 2.

In Section 3, we will prove Theorem 1 for maximal outerplanar beer graphs. We also
prove that the result in Theorem 1 is optimal, even for beer trees. The proof of Theorem 2,
again for maximal outerplanar beer graphs, will be presented in Section 4. Both Sections 3
and 4 will use the result in Lemma 4, whose detailed proof will be given in Section 5.

The extensions of Theorems 1 and 2 to arbitrary outerplanar beer graphs will be given
in Section 6. Finally, Section 7 will present an O(n)-time algorithm for computing the
single-source shortest beer path tree for any given source vertex.

2 Query Problems on Trees

Our algorithms for computing beer shortest paths in an outerplanar graph G will use the
dual of G, which is a tree. In order to obtain fast implementations of these algorithms, we
need to be able to solve several query problems on this tree. In this section, we present all
query problems that will be used in later sections.

Lemma 1 Let T be a tree with n nodes that is rooted at an arbitrary node. We can preprocess
T in O(n) time, such that each of the following queries can be answered in O(1) time:

1. Given a node u of T , return its level, denoted by level(u), which is the number of edges
on the path from u to the root.

2. Given two nodes u and v of T , report their lowest common ancestor, denoted by
LCA(u, v).

4

3. Given two nodes u and v of T , decide whether or not u is in the subtree rooted at v.

4. Given two distinct nodes u and v of T , report the second node on the path from u to v.

5. Given three nodes u, v, and w, decide whether or not w is on the path between u and
v.

Proof. The first claim follows from the fact that by performing an O(n)–time pre-order
traversal of T , we can compute level(u) for each node u. A proof of the second claim can
be found in Harel and Tarjan [6] and Bender and Farach-Colton [2]. The third claim follows
from the fact that u is in the subtree rooted at v if and only LCA(u, v) = v. A proof of
the fourth claim can be found in Chazelle [4, Lemma 15]. The fifth claim follows from the
following observations. Assume that u is in the subtree rooted at v. Then w is on the path
between u and v if and only if LCA(u,w) = w and w is in the subtree rooted at v. The case
when v is in the subtree rooted at u is symmetric. Assume that LCA(u, v) 6∈ {u, v}. Then w
is on the path between u and v if and only if w is on the path between u and LCA(u, v) or
w is on the path between v and LCA(u, v).

2.1 Closest-Color Queries in Trees

Let T be a tree with n nodes and let C be a set of colors. For each color c in C, we are given
a path Pc in T . Even though these paths may share nodes, each node of T belongs to at
most a constant number of paths. This implies that the total size of all paths Pc is O(n).
We assume that each node u of T stores the set of all colors c such that u is on the path Pc.

In a closest-color query, we are given two nodes u and v of T , and a color c, such that u
is on the path Pc. The answer to the query is the node on Pc that is closest to v. In other
words, when following the path in T from u to v, the answer to the query is the last node
on this path that is also on Pc. Refer to Figure 2 for an illustration.

u

w

v

Figure 2: A tree T and a collection of colored paths. For a query with nodes u and v, and
color “red”, the answer is the node w.

5

Lemma 2 After an O(n)–time preprocessing, we can answer any closest-color query in O(1)
time.

Proof. We take an arbitrary node of T and make it the root. Then we preprocess T such
that each of the queries in Lemma 1 can be answered in O(1) time.

For each color c, let c1 and c2 be the end nodes of the path Pc, and let ch be the highest
node on Pc in the tree (i.e., the node on Pc that is closest to the root). With each node of
Pc, we store pointers to c1, c2, and ch.

Since each node of T is in a constant number of colored paths, we can compute the
pointers for all the colored paths in O(n) total time.

The query algorithm does the following. Let u and v be two nodes of T , and let c be a
color such that u is on the c-colored path Pc.

If u = v or v is also on Pc, then we return the node v. From now on, assume that u 6= v
and v is not on Pc. Below, we consider all possible cases, which are illustrated in Figure 3.

1. If LCA(u, v) = v, then u is in the subtree rooted at v. In this case, we return ch, the
highest c-colored node.

2. Assume that LCA(u, v) = u. Then v is in the subtree rooted at u.

(a) If level(LCA(v, c1)) ≥ level(LCA(v, c2)), then we return LCA(v, c1).

(b) If level(LCA(v, c1)) < level(LCA(v, c2)), then we return LCA(v, c2).

We only justify the correctness for case (a), because the argument for case (b) is
symmetric. Let u′ be the child of u such that v is in the subtree rooted at u′.

First assume that the path Pc does not contain any node of the subtree rooted at u′.
Then LCA(v, c1) = u, which is the correct answer to the query.

Next assume that c1 is in the subtree rooted at u′, but c2 is not in this subtree. Then
LCA(v, c1) is in this subtree and is the correct answer to the query.

If c1 is not in the subtree rooted at u′, but c2 is in this subtree, then LCA(v, c2) is
also in this subtree, whereas LCA(v, c1) is on the path from u to the root of T . Thus,
level(LCA(v, c1)) < level(LCA(v, c2)) and, therefore, this cannot happen.

We finally observe that c1 and c2 cannot both be in the subtree rooted at u′, because
Pc is a path that contains u, c1, and c2.

3. Assume that LCA(u, v) 6= u and LCA(u, v) 6= v. Then u and v are in different subtrees
of LCA(u, v).

(a) If level(ch) > level(LCA(u, v)), then we return ch.

For the correctness, let u′ be the child of LCA(u, v) whose subtree contains u.
Then ch is on the path in T from u to u′, and ch is the correct answer to the
query.

6

ch

c1

c2

v

u

v

c1

c2

uv

ch

c1

c2

v
u = c1

u = ch

ch = c2

c1

u

c2

ch

v

c2

c1

v

u

(1) (2)

(3.b)(3.a)

(3.c.ii)(3.c.i)

ch

Figure 3: Illustrating all possible cases in the proof of Lemma 2. The path Pc is red and the
blue square indicates the node that is returned by the closest-color query.

(b) If level(ch) < level(LCA(u, v)), then we return LCA(u, v).

For the correctness, let x be the child of ch whose subtree contains u. Then
LCA(u, v) is also in this subtree and LCA(u, v) is on Pc. Since LCA(u, v) is the
only node on the path from v to LCA(u, v) that is on Pc, the node LCA(u, v) is
the correct answer to the query.

(c) Assume that level(ch) = level(LCA(u, v)). Observe that exactly one end node of
Pc is in the subtree rooted at u.

i. If c1 is in the subtree rooted at u, then we return LCA(v, c2).

ii. If c2 is in the subtree rooted at u, then we return LCA(v, c1).

For the correctness, assume that c1 is in the subtree rooted at u. Then LCA(u, v) =
ch. If c2 is on the path from v to LCA(u, v), then LCA(v, c2) = c2, which is the
correct answer to the query. Otherwise, LCA(u, v) has at least three children,

7

and u, v, and c2 are in different subtrees of LCA(u, v). In this case, LCA(v, c2) =
LCA(u, v), which is the correct answer to the query.

Using Lemma 1, each of these case takes O(1) time. Therefore, the entire query algorithm
takes O(1) time.

2.2 Path-Sum Queries in Trees

Let (W,⊕) be a semigroup. Thus, W is a set and ⊕ : W ×W → W is an associative binary
operator. We assume that for any two elements s and s′ in W , the value of s ⊕ s′ can be
computed in O(1) time.

Let T be a tree with n nodes in which each edge e stores a value s(e), which is an
element of W . For any two distinct nodes u and v in T , we define their path-sum PS(u, v)
as follows: Let e1, e2, . . . , ek be the edges on the path in T between u and v. Then we define
PS(u, v) = ⊕k

i=1s(ei).
Chazelle [4] considers the problem of preprocessing the tree T , such that for any two

distinct query nodes u and v, the value of PS(u, v) can be reported. (See also Alon and
Schieber [1], Thorup [9], and Chan et al. [3].) Chazelle’s result is stated in terms of the
inverse Ackermann function; see Section 1.1.

Lemma 3 Let T be a tree with n nodes in which each edge stores an element of the semigroup
(W,⊕). For any integer m ≥ n, we can preprocess T in O(m) time into a data structure of
size O(m), such that any path-sum query can be answered in O(α(m,n)) time.

Remark 1 Assume that (W,⊕) is the semigroup, where W is the set of all real numbers
and the operator ⊕ takes the minimum of its arguments. In this case, we will refer to a
query as a path-minimum query. For this semigroup, the result of Lemma 3 is optimal: Any
data structure that can be constructed in O(m) time has worst-case query time Ω(α(m,n)).
To prove this, assume that we can answer any query in o(α(m,n)) time. Then the on-line
minimum spanning tree verification problem on a tree with n vertices and m ≥ n queries can
be solved in o(m · α(m,n)) time, by performing a path-maximum query for the endpoints
of each edge e and checking that the weight of e is larger than the path-maximum. This
contradicts the lower bound for this problem proved by Pettie [8].

3 Beer Distance Queries in Maximal Outerplanar Graphs

Let G be a maximal outerplanar beer graph with n vertices that satisfies the generalized
triangle inequality. We will show how to preprocess G, such that for any two vertices u
and v, the weight, distB(u, v), of a shortest beer path between u and v can be reported.
Our approach will be to define a special semigroup (W,⊕), such that each element of W
“contains” certain distances and beer distances. With each edge of the dual D(G), we will
store one element of the set W . As we will see later, a beer distance query can then be

8

reduced to a path-sum query in D(G). Thus, by applying the results of Section 2.2, we will
obtain a proof of Theorem 1.

We will need the first claim in the following lemma. The second claim will be used in
Section 4.

Lemma 4 Consider the beer graph G as above.

1. In O(n) total time, we can compute distB(u, u) for each vertex u of G, and distB(u, v)
for each edge (u, v) in G.

2. After an O(n)–time preprocessing of G, we can report,

(a) for any query edge (u, v) of G, the shortest beer path between u and v in O(L)
time, where L is the number of vertices on this path,

(b) for any query vertex u of G, the shortest beer path from u to itself in O(L) time,
where L is the number of vertices on this path.

Proof. We choose an arbitrary face R of G and make it the root of D(G). Let (u, v) be
any edge of G. This edge divides G into two outerplanar subgraphs, both of which contain
(u, v) as an edge. Let GR

uv be the subgraph that contains the face R, and let G¬Ruv denote the
other subgraph. Note that if (u, v) is an external edge, then GR

uv = G and G¬Ruv consists of
the single edge (u, v). By the generalized triangle inequality, the shortest beer path between
u and v is completely in GR

uv or completely in G¬Ruv . The same is true for the shortest beer
path from u to itself. Thus, for each edge (u, v) of G,

distB(u, v) = min
(
distB(u, v,GR

uv), distB(u, v,G¬Ruv)
)
,

distB(u, u) = min
(
distB(u, u,GR

uv), distB(u, u,G¬Ruv)
)
.

By performing a post-order traversal of D(G), we can compute distB(u, v,G¬Ruv) and
distB(u, u,G¬Ruv) for all edges (u, v), in O(n) total time. After these values have been com-
puted, we perform a pre-order traversal ofD(G) and obtain distB(u, v,GR

uv) and distB(u, u,GR
uv),

again for all edges (u, v), in O(n) total time. The details will be given in Section 5.

In the rest of this section, we assume that all beer distances in the first claim of Lemma 4
have been computed.

For any two distinct internal faces F and F ′ of G, let QF,F ′ be the union of the two sets

{(u, v, dist(u, v),D) | u is a vertex of F, v is a vertex of F ′}

and
{(u, v, distB(u, v),BD) | u is a vertex of F, v is a vertex of F ′},

where the “bits” D and BD indicate whether the tuple represents a distance or a beer distance.
In words, QF,F ′ is the set of all shortest path distances and all shortest beer distances between
a vertex in F and a vertex in F ′. Since each internal face has three vertices, the set QF,F ′

has exactly 18 elements.

9

Observation 1 Let u and v be vertices of G, and let F and F ′ be internal faces that contain
u and v as vertices, respectively.

1. If F = F ′, then we can determine both dist(u, v) and distB(u, v) in O(1) time.

2. If F 6= F ′ and we are given the set QF,F ′, then we can determine both dist(u, v) and
distB(u, v) in O(1) time.

Proof. First assume that F = F ′. If u = v, then dist(u, v) = 0 and distB(u, v) has been
precomputed. If u 6= v, then (u, v) is an edge of G and, thus, dist(u, v) = ω(u, v) and
distB(u, v) has been precomputed.

Assume that F 6= F ′. If we know the set QF,F ′ , then we can find dist(u, v) and distB(u, v)
in O(1) time, because these two distances are in QF,F ′ .

In the rest of this section, we will show that Lemma 3 can be used to compute the set
QF,F ′ for any two distinct internal faces F and F ′.

Lemma 5 For any edge (F, F ′) of D(G), the set QF,F ′ can be computed in O(1) time.

Proof. Let u be a vertex of F and let v be a vertex of F ′. Consider the subgraph G[F, F ′]
of G that is induced by the four vertices of F and F ′; this subgraph has five edges. By
the generalized triangle inequality, dist(u, v) = dist(u, v,G[F, F ′]). Thus, dist(u, v) can be
computed in O(1) time.

We now show how distB(u, v) can be computed in O(1) time. If u = v or (u, v) is an edge
of G, then distB(u, v) has been precomputed. Assume that u 6= v and (u, v) is not an edge
of G. Let w and w′ be the two vertices that are shared by F and F ′. Since any path in G
between u and v (and, in particular, any shortest beer path between u and v) contains at
least one of w and w′, distB(u, v) is the minimum of

1. distB(u,w) + ω(w, v),

2. ω(u,w) + distB(w, v),

3. distB(u,w′) + ω(w′, v),

4. ω(u,w′) + distB(w′, v).

Since (u,w), (w, v), (u,w′), and (w′, v) are edges of G, all terms in these four sums have
been precomputed. Therefore, distB(u, v) can be computed in O(1) time.

We have shown that each of the 18 elements of QF,F ′ can be computed in O(1) time.
Therefore, this entire set can be computed in O(1) time.

Lemma 6 Let F , F ′, and F ′′ be three pairwise distinct internal faces of G, such that F ′ is
on the path in D(G) between F and F ′′. If we are given the sets QF,F ′ and QF ′,F ′′, then the
set QF,F ′′ can be computed in O(1) time.

10

Proof. Let u be a vertex of F and let v be a vertex of F ′′. Since G is an outerplanar graph,
any path in G between u and v must contain at least one vertex of F ′. It follows that

dist(u, v) = min{dist(u,w) + dist(w, v) | w is a vertex of F ′}.

Thus, since (u,w, dist(u,w),D) ∈ QF,F ′ and (w, v, dist(w, v),D) ∈ QF ′,F ′′ , the value of
dist(u, v) can be computed in O(1) time.

F

F ′′

F

F ′′

Beer

u

w
v

Beer

u

w
v

F ′ F ′

(a) (b)

Figure 4: Any beer path from u to v contains at least one vertex of F ′. In (a), we consider
the shortest beer path from u to w, followed by the shortest path from w to v. In (b), we
consider the shortest path from u to w, followed by the shortest beer path from w to v.

By a similar argument, distB(u, v) is equal to (refer to Figure 4)

min{min(distB(u,w) + dist(w, v), dist(u,w) + distB(w, v)) : w is a vertex of F ′}.

All values dist(u,w), dist(w, v), distB(u,w), and distB(w, v) are encoded in the sets QF,F ′ and
QF ′,F ′′ . Therefore, we can compute distB(u, v) in O(1) time.

Thus, since each of the 18 elements of QF,F ′′ can be computed in O(1) time, the entire
set can be computed in O(1) time.

We define

W = {QF,F ′ | F and F ′ are distinct internal faces of G} ∪ {⊥},

where ⊥ is a special symbol. We define the operator ⊕ : W ×W → W in the following way.

1. If F and F ′ are distinct internal faces of G, then QF,F ′ ⊕QF,F ′ = QF,F ′ .

2. If F , F ′, and F ′′ are pairwise distinct internal faces of G such that F ′ is on the path
in D(G) between F and F ′′, then QF,F ′ ⊕QF ′,F ′′ = QF,F ′′ .

3. In all other cases, the operator ⊕ returns ⊥.

11

It is not difficult to verify that ⊕ is associative, implying that (W,⊕) is a semigroup. By
Lemma 5, we can compute QF,F ′ for all edges (F, F ′) of D(G), in O(n) total time.

Recall from Lemma 1 that, after an O(n)–time preprocessing, we can decide in O(1)
time, for any three internal faces F , F ′, and F ′′ of G, whether F ′ is on the path in D(G)
between F and F ′′. Therefore, using Lemma 6, the operator ⊕ takes O(1) time to evaluate
for any two elements of W .

Finally, let F and F ′ be two distinct internal faces of G, and let F = F0, F1, F2, . . . , Fk =
F ′ be the path in D(G) between F and F ′. Then QF,F ′ = ⊕k−1

i=0QFi,Fi+1
. Thus, if we store with

each edge of the tree D(G), the corresponding element of the semigroup, then computing
QF,F ′ becomes a path-sum query as in Section 2.2.

To summarize, all conditions to apply Lemma 3 are satisfied. As a result, we have proved
Theorem 1 for maximal outerplanar graphs that satisfy the generalized triangle inequality.

3.1 The Result in Theorem 1 is Optimal

In Section 2.2, see also Remark 1, we have seen path-minimum queries in a tree, in which
each edge e stores a real number s(e). In such a query, we are given two distinct nodes u
and v, and have to return the smallest value s(e) among all edges e on the path between u
and v. Lemma 3 gives a trade-off between the preprocessing and query times when answering
such queries.

Let D be an arbitrary data structure that answers beer distance queries in any beer
tree. Let P (n), S(n), and Q(n) denote the preprocessing time, space, and query time of D,
respectively, when the beer tree has n nodes. We will show that D can be used to answer
path-minimum queries. This reduction, combined with Remark 1, implies that the result of
Theorem 1 is optimal (even for beer trees).

Consider an arbitrary tree T with n nodes, such that each edge e stores a real number
s(e). We may assume without loss of generality that 0 < s(e) < 1 for each edge e of T .

By making an arbitrary node the root of T , the number of edges on the path in T between
two nodes u and v is equal to

level(u) + level(v)− 2 · level(LCA(u, v)).

Thus, by Lemma 1, after an O(n)–time preprocessing, we can compute the number of edges
on this path in O(1) time.

We create a beer tree T ′ as follows. Initially, T ′ is a copy of T . For each edge e = (u, v)
of T ′, we introduce a new node xe and replace e by two edges (u, xe) and (v, xe); we assign
a weight of 1 to each of these two edges. In the current tree T ′, none of the nodes has a
beer store. For every node xe in T ′, we introduce a new node x′e, add the edge (xe, x

′
e),

assign a weight of s(e) to this edge, and make x′e a beer store. Finally, we construct the
data structure D for the resulting beer tree T ′. Since T ′ has n+ 2(n− 1) = 3n− 2 nodes, it
takes P (3n − 2) + O(n) time to construct D from the input tree T . Moreover, the amount
of space used is S(3n− 2) +O(n).

12

Let u and v be two distinct nodes in the original tree T , let π be the path in T between
u and v, and let ` be the number of edges on π. The corresponding path π′ in T ′ between u
and v has weight 2`.

For any edge e of T , let π′e be the beer path in T ′ that starts at u, goes to xe, then goes
to x′e and back to xe, and continues to v.

If e is an edge of π, then the weight of π′e is equal to 2` + 2 · s(e), which is less than
2` + 2. On the other hand, if e is an edge of T that is not on π, then the weight of π′e is at
least 2`+ 2 + 2 · s(e), which is larger than 2`+ 2. It follows that the shortest beer path in T ′

between u and v visits the beer store x′e, where e is the edge on π for which s(e) is minimum.
Thus, by computing ` and querying D for the beer distance in T ′ between u and v, we

obtain the smallest value s(e) among all edges e on the path in T between u and v. The
query time is Q(3n− 2) +O(1).

By combining this reduction with Remark 1, it follows that the result of Theorem 1 is
optimal.

4 Reporting Shortest Beer Paths in Maximal Outer-

planar Graphs

Let G be a maximal outerplanar beer graph with n vertices that satisfies the generalized
triangle inequality. In this section, we show that, after an O(n)–time preprocessing, we can
report, for any two query vertices s and t, the shortest beer path SPB(s, t) from s to t, in
O(L) time, where L is the number of vertices on this path. As before, D(G) denotes the
dual of G.

Observation 2 Let v be a vertex of G. The faces of G containing v form a path of nodes
in D(G).

Define Pv to be the path in D(G) formed by the faces of G containing the vertex v. Let
G[Pv] be the subgraph of G induced by the faces of G containing v. Note that G[Pv] has a
fan shape. Let CW(v) denote the clockwise neighbor of v in G[Pv] and let CCW(v) denote
the counterclockwise neighbor of v in G[Pv]. We will refer to the clockwise path from CW(v)
to CCW(v) in G[Pv] as the v-chain and denote it by ρv. (Refer to Figure 5.)

Lemma 7 After an O(n)–time preprocessing, we can answer the following queries, for any
three query vertices v, u, and w, such that both u and w are on the v-chain ρv:

1. Report the weight dist(u,w, ρv) of the path from u to w along ρv in O(1) time.

2. Report the path SP(u,w, ρv) from u to w along ρv in O(L) time, where L is the number
of vertices on this path.

Proof. For any vertex v and any vertex u on ρv, we store the weight of the path from u to
CW(v) along ρv. Observe that

dist(u,w, ρv) = |dist(u,CW(v), ρv)− dist(w,CW(v), ρv)|.

13

v

u

Pv

Pu

CW(v)

CCW(v)

CCW(u)

CW(u)

Figure 5: A maximal outerplanar graph G. The subgraphs G[Pv] and G[Pu] are shown in
red and blue, respectively. Both the v-chain ρv and the u-chain ρu are shown in bold. Both
paths Pv and Pu are shown in black. Observe that Pu is a single node.

Any exterior edge in G is in exactly one chain and any interior edge in G is in exactly two
chains. Thus, the sum of the number of edges on each chain is proportional to the number
of edges of G, which is O(n).

Lemma 8 After an O(n)–time preprocessing, we can answer the following query in O(1)
time: Given three query vertices v, u, and w, such that both u and w are vertices of G[Pv],
report dist(u,w), i.e., the distance between u and w in G.

Proof. We get the following cases; the correctness follows from the generalized triangle
inequality:

1. If u = w then dist(u,w) = 0.

2. If u = v then (u,w) is an edge and we return ω(u,w). Similarly if w = v, we return
ω(u,w).

3. Otherwise u and w are both on ρv and we return min(dist(u,w, ρv), ω(u, v) + ω(v, w)).

Lemma 9 After an O(n)–time preprocessing, we can report, for any three vertices v, u,
and w, such that both u and w are vertices of G[Pv], SP(u,w) in O(L) time, where L is the
number of vertices on the path.

Proof. Using Lemma 8, we can determine in O(1) if the shortest path from u to w goes
through v or follows the v-chain ρv. (Refer to Figure 6). If it goes through v, then SP(u,w) =
(u, v, w). Otherwise, SP(u,w) takes the path along ρv and by Lemma 7, we can find this
path in O(L) time.

14

v

u

w

v

u

w

(a) (b)

Figure 6: Two possible cases for the shortest path between u and w: (a) it goes through
vertex v (shown in dashed red), or (b) it goes through the vertices of the v-chain between u
and w (shown in dashed blue).

Lemma 10 After an O(n)–time preprocessing, we can report, for any three vertices v, u
and w, such that both u and w are vertices of G[Pv], the beer distance distB(u,w) in O(1)
time. The corresponding shortest beer path SPB(u,w) can be reported in O(L) time, where
L is the number of vertices on the path.

Proof. Recall from Lemma 4 that we can compute distB(u, v) for every edge (u, v) in G,
and distB(v, v) for every vertex v in G, in O(n) time.

Let ρv = (CW(v) = u1, u2, . . . , uN = CCW(v)). Let Av[] be an array of size N − 1. For
i = 1, . . . , N − 1, we set Av[i] = distB(ui, ui+1)− ω(ui, ui+1). Recall that by the generalized
triangle inequality, ω(ui, ui+1) = dist(ui, ui+1). Therefore, A[i] holds the difference between
the weights of the shortest path from ui to ui+1 and the shortest beer path from ui to ui+1.
After preprocessing the array Av[] in O(N) time, we can conduct range minimum queries
in O(1) time. (Bender and Farach-Colton [2] show that these queries are equivalent to LCA-
queries in the Cartesian tree of the array.) Thus, for each v-chain of N nodes, we spend
O(N) time processing the v-chain. Since every edge is in at most two chains, processing all
v-chains takes O(n) time and space.

Given two vertices u and w of G[Pv], we determine the beer distance distB(u,w) as follows:

1. If u = w then distB(u,w) has already been computed by Lemma 4.

2. If u = v or w = v, then there is an edge from v to the other vertex. Thus, distB(u,w)
has already been computed by Lemma 4.

3. Otherwise, u, w and v are three distinct vertices. Assume without loss of generality
that w is clockwise from u on the v-chain. We take the minimum of the following two
cases:

(a) The shortest beer path from u to w that goes through v. Since a beer store
must be visited before or after v, this beer path has a weight of min(distB(u, v) +
ω(v, w), ω(u, v) + distB(v, w)).

15

(b) The shortest beer path through the vertices of the v-chain. Note that this beer
path will visit each vertex on the v-chain between u and w, but may go off the
v-chain to visit a beer store. On SPB(u,w), there is one pair of vertices, ui and
ui+1, such that a beer path is taken between ui and ui+1, and ui and ui+1 are
adjacent on the v-chain; refer to Figure 7. The shortest path is taken between all
other pairs of adjacent vertices on the v-chain. From Lemma 7, we can compute
dist(u,w, ρv) in O(1) time. The shortest beer path through the vertices of the
v-chain has a weight of dist(u,w, ρv)+Av[i], where Av[i] is the additional distance
needed to visit a beer store between ui and ui+1. Let u be the jth vertex on ρv and
let w be the kth vertex in ρv. Then Av[i] is the minimum value in Av[j, . . . , k−1].
We can determine Av[i] in constant time using a range minimum query.

Note that in case 1 and case 2, SPB(u,w) can be constructed in O(L) time by Lemma 4.
For case 3 (a) let p = (u, v, w) and for case 3 (b) let p = SP(u,w, ρv). Let ui, ui+1 be the
pair of adjacent vertices on p between which a beer path was taken. Using Lemma 4 we can
find SPB(ui, ui+1) in O(L) time. We obtain SPB(u,w) by replacing the edge (ui, ui+1) in p
with SPB(ui, ui+1).

Beer Store

v v

Beer Store

(a) (b)

CW(v)

CCW(v)

ui

ui+1

u

w

CW(v)

CCW(v)

u

ui

w = ui+1

Figure 7: Both figures show a shortest beer path from u to w through the vertices on the
v-chain. Thicker edges on the blue beer path are edges that are traversed twice; once in each
direction.

4.1 Answering Shortest Beer Path Queries

Recall that, for any vertex v of G, Pv denotes the path in D(G) formed by the faces of G
containing v. Moreover, G[Pv] denotes the subgraph of G induced by these faces.

Consider two query vertices s and t of G. Our goal is to compute the shortest beer path
SPB(s, t).

16

Let Fs and Ft be arbitrary faces containing s and t, respectively. If t is in G[Ps] then, by
Lemma 10, we can construct SPB(s, t) in O(L) time. For the remainder of this section, we
assume that t is not in G[Ps]. To find SPB(s, t), we start by constructing a directed acyclic
graph (DAG), H. In this DAG, vertices will be arranged in columns of constant size, and
all edges go from left to right between vertices in adjacent columns. In H, each column will
contain one vertex that is on SPB(s, t). First we will construct H and then we will show
how we can use H to construct SPB(s, t). The entire construction is illustrated in Figure 8.

Observation 3 Any interior edge (a, b) of G splits G into two subgraphs such that if s is
in one subgraph and t is in the other, then any path in G from s to t must visit at least one
of a and b.

Let P be the unique path between Fs and Ft in D(G). Consider moving along P from
Fs to Ft. Let F1 be the node on Ps that is closest to Ft, and let F ′1 be the successor of F1 on
P . Note that, by Lemmas 1 and 2, we can find F1 and F ′1 in O(1) time.1 Let e1 = (a1, b1) be
the edge in G shared by the faces F1 and F ′1. Since SPB(s, t) must visit both of these faces,
by Observation 3, at least one of a1 or b1 is on the shortest beer path.

We place s in the first column of H and a1 and b1 in the second column of H. We then
add two directed edges from s to a1, one with weight dist(s, a1) and the other with weight
distB(s, a1). Similarly, we add two directed edges from s to b1 with weights dist(s, b1) and
distB(s, b1).

When i ≥ 2 we construct the (i + 1)th column of H in the following way. Let ei−1 =
(ai−1, bi−1) be the edge shared by the faces Fi−1 and F ′i−1. The ith column of H contains
the vertices ai−1 and bi−1. Note that F ′i−1 is in both Pbi−1

and Pai−1
. Using Lemma 2, we

find the node F b
i on Pbi−1

that is closest to Ft. If the vertex ai−1 is not in F b
i , then we let

Fi = F b
i . Otherwise, we let Fi be the node on Pai−1

that is closest to Ft.
If t is not a vertex of Fi, then let F ′i be the node that follows Fi on P ; we find F ′i

using Lemma 1. Let ei = (ai, bi) be the edge of G shared by the faces Fi and F ′i . In the
(i + 1)th column, we place ai and bi. For each u ∈ {ai−1, bi−1} and each v ∈ {ai, bi} we add
two directed edges (u, v) to the DAG, one with weight dist(u, v) and the other with weight
distB(u, v). If Fi is in Pai−1

, all these vertices are in G[Pai−1
]; otherwise, Fi is in Pbi−1

, and
all these vertices are in G[Pbi−1

]. Thus, by Lemmas 8 and 10, we can find the distances and
beer distances to assign to these edges in constant time.

If t is in Fi, then in the (i + 1)th column we only place the vertex t. In this case, for
each u ∈ {ai−1, bi−1}, we add two directed edges (u, t) to the DAG with weights dist(u, t)
and distB(u, t). At this point we are done constructing H.

We define a beer edge to be an edge of H that was assigned a weight of a beer path
during the construction of H. We find the beer distance from s to t in G using the following
dynamic programming approach in H.

1To apply Lemma 2, we consider each vertex of G to be a color. For each vertex v of G, the v-colored
path in the tree D(G) is the path Pv. The face F1 is the answer to the closest-color query with nodes Fs

and Ft and color s.

17

s

Fs

a1

a2
b2

a3
b3

b1

b4

a4

Ft

t

a1

b1

a2 a3

b2 b3 b4

a4

ts
F1

F ′
1

F2

F ′
2

F3

F ′
3 F4

F ′
4

F5

(b)(a)

Figure 8: An outerplanar graph G (a) and the DAG H constructed for the shortest beer
path query from s to t (b). The path P from Fs to Ft is shown in red. Each edge ei = (ai, bi)
such that ei is shared by Fi and F ′i is shown in blue. The green edges of H represent the
beer edges.

Let M denote the number of columns in H. For i = 3, . . . ,M and for all u in the ith

column of H, compute

distB(s, u) = min

distB(s, ai−2) + dist(ai−2, u),

dist(s, ai−2) + distB(ai−2, u),

distB(s, bi−2) + dist(bi−2, u),

dist(s, bi−2) + distB(bi−2, u)

and

dist(s, u) = min

{
dist(s, ai−2) + dist(ai−2, u),

dist(s, bi−2) + dist(bi−2, u).

The vertices ai−2 and bi−2 occur in the (i−1)th column. Thus, distB(s, ai−2), distB(s, bi−2),
dist(s, ai−2), and dist(s, bi−2) will be computed before computing the values for the ith column.
We get dist(ai−2, u), distB(ai−2, u), dist(bi−2, u) and distB(bi−2, u) from the weights of the
DAG-edges between the (i− 1)th and ith columns of H.

By keeping track of which expression produced distB(s, u) and dist(s, u), we can backwards
reconstruct the shortest beer path in the DAG. Knowing the shortest beer path in the DAG
enables us to construct the corresponding beer path in G as follows.

1. Define Pst to be an empty path.

2. For each edge (w, v) of the shortest beer path in the DAG.

18

(a) If (w, v) was a beer edge, let Pwv = SPB(w, v), which can be constructed in time
proportional to its number of vertices via Lemma 10.

(b) Otherwise, let Pwv = SP(w, v) which can be constructed in time proportional to
its number of vertices as seen in Lemma 9.

Let Pst = Pst ∪ Pwv.

3. Return Pst, which is equal to SPB(w, v).

Let L denote the number of vertices on SPB(s, t). In order for the above query algorithm
to take O(L) time, the size of the DAG must be O(L). The following three lemmas will show
this to be true.

Lemma 11 For 2 ≤ i < M − 1, Fi contains either ai−1 or bi−1, but not both.

Proof. Recall that we defined F b
i to be the last node on P that is also on Pbi−1

. We similarly
define F a

i to be the last node on P that is also on Pai−1
. From the way we choose Fi, Fi is

either F b
i or F a

i . We only choose Fi = F b
i after having checked that ai−1 is not in F b

i ; thus
in this case we can be sure that Fi only contains bi−1.

Assume for the purpose of contradiction that we choose Fi = F a
i and bi−1 is also in Fi.

Let the third vertex of Fi be c. Let the face on P immediately following Fi be F ′i . The edge
shared by Fi and F ′i is either (bi−1, c) or (ai−1, c). If (bi−1, c) is the shared edge, then F ′i is
a face closer to Ft that contains bi−1 and not ai−1, so we would have chosen Fi = F b

i , which
is a contradiction. Otherwise, (ai−1, c) is the edge shared by Fi and F ′i , which implies that
there is a face containing ai−1 closer to Ft in P than F a

i , which contradicts the definition of
F a
i .

Lemma 12 Every vertex of G appears in at most one column of H.

Proof. Since (a1, b1) is an edge shared by both the last face of P containing s and the first
face of P that does not contain s it is not possible for either of these vertices to be the vertex
s. Thus, s will only be represented by the vertex in the first column of H. By stopping the
construction of H as soon as we add a vertex representing t, we ensure that H only contains
one vertex corresponding to the vertex t in G.

For 2 ≤ i ≤ M − 2, consider the vertex ai−1 in G represented by a vertex in the ith

column of H. If Fi = F a
i then by definition of F a

i , F ′i does not contain ai−1. Since (ai, bi) is
an edge of F ′i , ai 6= ai−1 and bi 6= ai−1. Because the face F ′i is closer to Ft than F a

i , ai−1 is
not a vertex on any of the faces on the path from F ′i to Ft. Thus, subsequent columns of H
will not contain vertices representing the vertex ai−1 in G.

If Fi = F b
i then by Lemma 11, ai−1 is not in Fi and since (ai, bi) is an edge of Fi, ai 6= ai−1

and bi 6= ai−1. Because Fi is a face on P closer to Ft than Fi−1 (a face that contains ai−1) it
follows from Observation 2 that none of the faces on P from Fi−1 to Ft will have the vertex
ai−1 on their face and, thus, ai−1 will not be represented by vertices in subsequent columns
of H.

19

By switching the roles of ai−1 with bi−1 in the above reasoning we can see that this also
holds for bi−1.

Lemma 13 The number of vertices and edges of H is O(L).

Proof. Recall that M denotes the number of columns of the DAG H, whereas L denotes the
number of vertices on SPB(s, t). The vertices s and t (which are in the first and last columns
of H, respectively) are obviously on SPB(s, t). By Observation 3, this beer path must contain
at least one vertex from each of the columns 2, 3, . . . ,M−1 of H. By Lemma 12, the vertices
in all columns of H are pairwise distinct. Therefore, L ≥M . Since each column has at most
two vertices, and each of these vertices has at most four outgoing edges, the total number of
vertices and edges of H is O(M), which is O(L).

Observe that the total preprocessing time is O(n). For two query vertices s and t, the
DAG, H, can be constructed in O(L) time. Finally, the dynamic programming algorithm on
H takes O(L) time. Thus, we have proved Theorem 2 for maximal outerplanar graphs that
satisfy the generalized triangle inequality.

5 Proof of Lemma 4

Let G be a maximal outerplanar beer graph with n vertices that satisfies the generalized
triangle inequality. We will first show how to compute distB(u, u) for each vertex u of G,
and distB(u, v) for each edge (u, v) of G. Consider again the dual D(G) of G. We choose an
arbitrary face of G and make it the root of D(G).

Let (u, v) be any edge of G. This edge divides G into two outerplanar subgraphs, both of
which contain (u, v) as an edge. Let GR

uv be the subgraph that contains the face represented
by the root of D(G), and let G¬Ruv denote the other subgraph. Note that if (u, v) is an external
edge, then GR

uv = G and G¬Ruv consists of the single edge (u, v).
By the generalized triangle inequality, the shortest beer path between u and v is com-

pletely in GR
uv or completely in G¬Ruv . The same is true for the shortest beer path from u to

itself. This implies:

Observation 4 For each edge (u, v) of G,

1. distB(u, v) = min
(
distB(u, v,GR

uv), distB(u, v,G¬Ruv)
)
,

2. distB(u, u) = min
(
distB(u, u,GR

uv), distB(u, u,G¬Ruv)
)
,

3. distB(v, v) = min
(
distB(v, v,GR

uv), distB(v, v,G¬Ruv)
)
.

Thus, it suffices to first compute distB(u, v,G¬Ruv), distB(u, u,G¬Ruv), and distB(v, v,G¬Ruv)
for all edges (u, v), and then compute distB(u, v,GR

uv), distB(u, u,GR
uv), and distB(v, v,GR

uv),
again for all edges (u, v).

20

5.1 Recurrences for distB(u, v,G¬Ruv), distB(u, u,G¬Ruv), and distB(v, v,G¬Ruv)

Let (u, v) be an edge of G. Item 1. below presents the base cases, whereas item 2. gives the
recurrences.

1. Assume that (u, v) is an external edge of G.

(a) If both u and v are beer stores, then distB(u, v,G¬Ruv) = ω(u, v), distB(u, u,G¬Ruv) =
0, and distB(v, v,G¬Ruv) = 0.

(b) If exactly one of u and v, say u, is a beer store, then distB(u, v,G¬Ruv) = ω(u, v),
distB(u, u,G¬Ruv) = 0, and distB(v, v,G¬Ruv) = 2 · ω(u, v).

(c) If neither u nor v is a beer store, then distB(u, v,G¬Ruv) =∞, distB(u, u,G¬Ruv) =∞,
and distB(v, v,G¬Ruv) =∞.

2. Assume that (u, v) is an internal edge of G. Let w be the third vertex of the face of
G¬Ruv that contains (u, v) as an edge. All possible cases are illustrated in Figure 9.

(a) The value of distB(u, v,G¬Ruv) is the minimum of

i. distB(u,w,G¬Ruw) + ω(w, v),

ii. ω(u,w) + distB(w, v,G¬Rvw),

iii. distB(u, u,G¬Ruw) + ω(u, v),

iv. ω(u, v) + distB(v, v,G¬Rvw).

(b) The value of distB(u, u,G¬Ruv) is the minimum of

i. distB(u, u,G¬Ruw),

ii. 2 · ω(u,w) + distB(w,w,G¬Rvw),

iii. 2 · ω(u, v) + distB(v, v,G¬Rvw).

The value of distB(v, v,G¬Ruv) is obtained by swapping u and v in i., ii., and iii.

These recurrences express distB(u, v,G¬Ruv), distB(u, u,G¬Ruv), and distB(v, v,G¬Ruv) in terms
of values that are “further down” in the tree D(G). Therefore, by performing a post-order
traversal of D(G), we obtain all these values, for all edges (u, v) of G, in O(n) total time.

5.2 Recurrences for distB(u, v,GR
uv), distB(u, u,GR

uv), and distB(v, v,GR
uv)

Let (u, v) be an edge of G. Item 1. below presents the base cases, whereas item 2. gives the
recurrences.

1. Assume that (u, v) is an edge of the face representing the root of D(G). Let w be the
third vertex of this face.

(a) The value of distB(u, v,GR
uv) is the minimum of

i. distB(u, u,G¬Ruw) + ω(u, v),

21

ii. distB(u,w,G¬Ruw) + ω(w, v),

iii. ω(u, v) + distB(v, v,G¬Rvw),

iv. ω(u,w) + distB(w, v,G¬Rvw).

(b) The value of distB(u, u,GR
uv) is the minimum of2

i. distB(u, u,G¬Ruw),

ii. 2 · ω(u,w) + distB(w,w,G¬Rvw),

iii. 2 · ω(u, v) + distB(v, v,G¬Rvw).

The value of distB(v, v,G¬Ruv) is obtained by swapping u and v in i., ii., and iii.

2. Assume that (u, v) is not an edge of the face represented by the root of D(G). Let w
be the third vertex of the face of GR

uv that contains (u, v) as an edge. We may assume
without loss of generality that (v, w) is an edge of the face represented by the parent
of the face representing (u, v, w). All possible cases are illustrated in Figure 10.

(a) The value of distB(u, v,GR
uv) is the minimum of

i. distB(u, u,G¬Ruw) + ω(u, v),

ii. distB(u,w,G¬Ruw) + ω(w, v),

iii. ω(u, v) + distB(v, v,GR
vw),

iv. ω(u,w) + distB(w, v,GR
vw).

(b) The value of distB(u, u,GR
uv) is the minimum of

i. distB(u, u,G¬Ruw),

ii. 2 · ω(u, v) + distB(v, v,GR
vw),

iii. 2 · ω(u,w) + distB(w,w,GR
vw).

(c) The value of distB(v, v,GR
uv) is the minimum of

i. distB(v, v,GR
vw),

ii. 2 · ω(v, u) + distB(u, u,GR
uw),

iii. 2 · ω(v, w) + distB(w,w,GR
uw).

These recurrences express distB(u, v,GR
uv), distB(u, u,GR

uv), and distB(v, v,GR
uv) in terms

of values that are “higher up” in the tree D(G) and values that involve graphs with a
superscript “¬R”. These latter values have been computed already. Thus, by performing
a pre-order traversal of D(G), we obtain all values distB(u, v,GR

uv), distB(u, u,GR
uv), and

distB(v, v,GR
uv), for all edges (u, v) of G, in O(n) total time. This completes the proof of the

first claim in Lemma 4.
To prove the second claim in Lemma 4, consider distB(u, v) where u = v or (u, v) is an

edge of G. If u or v is a beer store, then store nil with distB(u, v).

2We do not have to consider W := ω(u, v) + distB(v, w,G
¬R
vw) +ω(w, u), because the sum of the values in

ii. and iii. is at most 2W . Therefore, the smaller of the values in ii. and iii. is at most W .

22

The values distB(u, v,GR
uv) and distB(u, v,G¬Ruv) are computed as the minimum of a set of

path weights from u to v through a vertex x such that x is adjacent to both u and v or x is
equal to one of these vertices and adjacent to the other. Either the subpath from u to x is a
beer path or the subpath from x to v is a beer path. Whenever we take the minimum of a
set of path weights in the above computation, we store with that distance the vertex x and a
bit to indicate which subpath is the beer path. When u = v we can arbitrarily choose which
subpath is the beer path. After taking the minimum of distB(u, v,GR

uv) and distB(u, v,G¬Ruv),
we are left with a vertex, x, on the shortest beer path from u to v and the bit indicating
which subpath is a beer path.

We recursively compute SPB(u, v) where either (u, v) is an edge of G or u = v as follows.

1. If nil is stored with distB(u, v) and u = v, then SPB(u, v) = (u).

2. If nil is stored with distB(u, v) and (u, v) is an edge, then SPB(u, v) = (u, v).

3. If a vertex x is stored with (u, v) and the subpath from u to x is a beer path, then
recursively compute distB(u, x), and set SPB(u, v) = (SPB(u, x), v).

4. Otherwise x is stored with (u, v) and the subpath from x to v is a beer path. Recursively
compute distB(x, v), and set SPB(u, v) = (u, SPB(x, v)).

Note that a constant amount of work is done at each level of the recurrence excluding
the time spent in recursive calls. In each recursive call, except potentially the last call, we
get one new vertex on the shortest beer path. Thus, constructing the whole path requires a
total of O(L) time.

6 Extension to Arbitrary Outerplanar Graphs

6.1 Conversion to a Maximal Outerplanar Graph

Let G be an outerplanar beer graph with n vertices. Assume that the outer face of G is not
a Hamiltonian cycle. We traverse G along the outer face in a clockwise manner, and mark
each vertex when we encounter it for the first time. Each time we visit a marked vertex v,
we take note of v’s current counterclockwise neighbor, CCW(v). Then we continue from v to
the next clockwise vertex on the outer face and add an edge from this vertex to CCW(v). We
continue this process until we have returned to the vertex we started from and all vertices
have been marked.

At this moment, the outer face is a Hamiltonian cycle. For every interior face that is not
a triangle, we pick a vertex u on that face and add edges connecting u with all vertices of
the face that are not already adjacent to u.

The resulting graph is a maximal outerplanar graph. Each edge that has been added
is given a weight of infinity. Observe that each shortest (beer) path in the resulting graph
corresponds to a shortest (beer) path in the original graph, and vice versa.

23

6.2 Guaranteeing the Generalized Triangle Inequality

Let G be a maximal outerplanar graph with an edge weight function ω. In order to convert
G to a graph that satisfies the generalized triangle inequality, we need to compute dist(u, v)
for every edge (u, v) in G, and we need to be able to construct SP(u, v) for each edge (u, v).

Let D(G) be the dual of G rooted at an arbitrary interior face of G. For each edge (u, v),
we initialize δ(u, v) = ω(u, v). (At the end, δ(u, v) will be equal to dist(u, v).) For each edge
(u, v), we also maintain a parent vertex, p(u, v), initialized to nil.

We first conduct a post-order traversal of D(G), processing each associated face in G.
Then we conduct a pre-order traversal of D(G), again processing each associated face in
G. Let F be a face of G. We process F as follows. Let (u, v) be the edge of F that is
shared with the predecessor face F ′ in the traversal, and let w be the third vertex of F ′. If
δ(u, v) > δ(u,w) + δ(w, v), we set δ(u, v) = δ(u,w) + δ(w, v) and p(u, v) = w.

After these traversals, δ(u, v) = dist(u, v) for every edge (u, v) in G. If p(u, v) = nil, then
SP(u, v) = (u, v); otherwise, SP(u, v) is the concatenation of SP(u, p(u, v)) and SP(p(u, v), v),
both of which can be computed recursively.

7 Single Source Shortest Beer Path

In this section we will describe how to compute the single source shortest beer path from
a source vertex s on a maximal outerplanar graph G that satisfies the generalized triangle
inequality. In order to do this we first precompute (i) distB(u, v) for every edge (u, v) and
distB(u, u) for every vertex u and (ii) dist(s, v) for every vertex v. By Lemma 4, we can
compute (i) in O(n) time and in [7], Maheshwari and Zeh present a single source shortest
path algorithm for undirected outerplanar graphs which gives us (ii) in O(n) time.

Let D(G) be the dual of G and let Fs be an arbitrary interior face of G containing s.
Root D(G) at the node Fs and then conduct a pre-order traversal of D(G). Let F be the
current node of D(G) being processed during this traversal.

1. If F = Fs, let u and v be the vertices of Fs that are not s. Since (s, u) and (s, v) are
both edges of G, distB(s, s), distB(s, u) and distB(s, v) were precomputed in (i).

2. If F 6= Fs, let a and b be the vertices of F shared with the face F ′, where F ′ is
the parent of F in D(G). This implies that by this step we have already computed
distB(s, a) and distB(s, b). Let c be the third vertex of F . The value of distB(s, c) is
the minimum of:

(a) dist(s, a) + distB(a, c),

(b) distB(s, a) + ω(a, c),

(c) dist(s, b) + distB(b, c),

(d) distB(s, b) + ω(b, c).

24

Since (a, c) and (b, c) are edges of G, we precomputed distB(a, c) and distB(b, c) in (i).
Lastly, we computed dist(s, a) and dist(s, b) in (ii), so each of the values listed above
can be computed in constant time.

The correctness of this algorithm follows from Observation 3 and the generalized triangle
inequality. Since we do a constant amount of work at each face in the traversal of D(G) and
the number of interior faces of a maximal outerplanar graph is n − 2, this algorithm takes
O(n) time.

Let L be the number of vertices on the shortest beer path from s to v. If distB(s, v) was
found in step 1, then by Lemma 4, SPB(s, v) can be constructed in O(L) time. If this is
not the case, then v = c in some iteration of step 2. At this step we store a vertex p(v)
such that p(v) = a if (a) or (b) was the minimum of step 2 and p(v) = b otherwise. We
also store a bit to indicate if the subpath from s to p(v) is the shortest path (as in cases (a)
and (c)) or the shortest beer path (as in cases (b) and (d)). If the subpath from s to p(v)
is the shortest path, we use the method described in [7] to find SP(s, p(v)) and use Lemma
4 to find SPB(p(v), v) and then concatenate SP(s, p(v)) and SPB(p(v), v) to get SPB(s, v).
Both SP(s, p(v)) and SPB(p(v), v) are found in time proportional to the number of vertices
on their paths, so this takes O(L) time. If the subpath from s to p(v) is the shortest beer
path, then we recursively find SPB(s, p(v)) and concatenate it with the edge (p(v), v) (which
is SP(p(v), v) by the generalized triangle inequality). Each iteration of the recursive step
takes time proportional to the number of new vertices of the path found in that step. Thus,
we find SPB(s, v) in a total of O(L) time.

8 Concluding Remarks

We have introduced a variant of the shortest path problem in weighted graphs, in which a
subset of the vertices store a facility, say a beer store, and we want to compute the shortest
path between two vertices, or the length of this path, that visits at least one facility. For
the class of outerplanar beer graphs, we have presented data structures that are optimal in
terms of preprocessing time, space usage, and query times.

As a byproduct, we have also obtained improved results for standard shortest path queries
in outerplanar graphs. In particular, after an O(m)–time preprocessing of an n-vertex beer
outerplanar graph, we can determine the length of a shortest path between any two query
vertices in O(α(m,n)) time. We have shown that this is optimal for beer paths, even if
the graph is a tree. Unfortunately, our reduction does not work for standard shortest path
queries. Observe that, in any tree with n vertices, after O(n) preprocessing, we can report
the length dist(u, v) of the path between any two query vertices u and v in O(1) time, because

dist(u, v) = dist(u, r) + dist(v, r)− 2 · dist(LCA(u, v), r),

where r is an arbitrarily chosen root of the tree.

Open Problem 1 Is there a linear-size data structure that can answer standard distance
queries in outerplanar graphs in O(1) time?

25

Since shortest beer path queries are of relevance for practical applications, such queries
should be studied in larger families of graphs. Obvious examples are general planar graphs
and graphs of bounded tree width.

References

[1] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries.
Technical Report 71/87, Tel-Aviv University, 1987.

[2] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of
the 4th Latin American Symposium on Theoretical Informatics, volume 1776 of Lecture
Notes in Computer Science, pages 88–94, Berlin, 2000. Springer-Verlag.

[3] T. M. Chan, M. He, J. I. Munro, and G. Zhou. Succinct indices for path minimum, with
applications. Algorithmica, 78(2):453–491, 2017.

[4] B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorithmica,
2:337–361, 1987.

[5] H. Djidjev, G. E. Pantziou, and C. D. Zaroliagis. Computing shortest paths and distances
in planar graphs. In Automata, Languages and Programming, 18th International Col-
loquium, ICALP91, volume 510 of Lecture Notes in Computer Science, pages 327–338.
Springer, 1991.

[6] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
J. Comput., 13(2):338–355, 1984.

[7] A. Maheshwari and N. Zeh. I/O-optimal algorithms for outerplanar graphs. Journal of
Graph Algorithms and Applications, 8(1):47–87, 2004.

[8] S. Pettie. An inverse-Ackermann type lower bound for online minimum spanning tree
verification. Combinatorica, 26(2):207–230, 2006.

[9] M. Thorup. Parallel shortcutting of rooted trees. Journal of Algorithms, 32:139–159,
1997.

26

u

v

w

Beer

(a) i

R

u

v

w

Beer

R

u

v

w

Beer

R

(a) ii (a) iii

u

v

w

Beer

R

u

v

w

Beer

R

u

v

w

Beer

R

u

v

w

Beer

R

(a) iv (b) i (b) ii

(b) iii

Figure 9: Illustrating the post-order traversal for all cases in item 2.

27

(a) i (a) ii (a) iii

(a) iv (b) i (b) ii

(b) iii

u
v

w

R

u
v

w

R

u
v

w

R

u
v

w

R

u
v

w

R

u
v

w

R

u
v

w

R

u
v

w

R

Beer

Beer

Beer
Beer

Beer

Beer

Beer

u
v

w

R

Beer

u
v

w

R

Beer

(c) i (c) ii

(c) iii

Beer

Figure 10: Illustrating the pre-order traversal for all cases in item 2.

28

