
On Full Steiner Trees in Unit Disk Graphs

Ahmad Biniaz∗ Anil Maheshwari∗ Michiel Smid∗

April 9, 2014

Abstract

Given an edge-weighted graph G = (V,E) and a subset R of V , a Steiner tree of G
is a tree which spans all the vertices in R. A full Steiner tree is a Steiner tree which
has all the vertices of R as its leaves. The full Steiner tree problem is to find a full
Steiner tree of G with minimum weight. In this paper we consider the full Steiner
tree problem when G is a unit disk graph. We present a 20-approximation algorithm
for the full Steiner tree problem in G. As for λ-precise unit disk graphs we present a
(10 + 1

λ)-approximation algorithm, where λ is the length of the shortest edge in G.

1 Introduction

Given a graph G = (V,E) of n vertices with a weight function w : E → R+ on edges and a
subset R of V . The vertices in R are called the terminals and the vertices in V \R are called
Steiner vertices (usually denoted by S, i.e., S = V \R); see Figure 1(a). A Steiner tree of G is
a tree which contains all the vertices in R; see Figure 1(b). The weight of a tree T is defined
as the sum of the weights of all the edges in T ; i.e., w(T) =

∑
e∈T w(e). The Steiner tree

problem is to find a Steiner tree T of G with minimum weight [13]. This problem is known
to be MAX SNP-hard [1, 2]. Robins and Zelikovsky [17] presented a 1.55-approximation
algorithm for this problem. The approximation ratio was improved to ln(4) + ε < 1.39 by
Byrka et al. [3].

Motivated by the reconstruction of evolutionary trees in biology [15] and VLSI global
routing and telecommunications [14], a full Steiner tree of G is defined as a Steiner tree
which has all the vertices of R as its leaves; see Figure 1(c). The full Steiner tree problem is
to find a full Steiner tree T of G with minimum weight. This problem is also known as the
terminal Steiner tree problem. In a full Steiner tree problem one may assume that G does
not have any edge between the vertices of R.

A metric graph is defined as a complete graph, whose edge weights satisfy the triangle
inequality, i.e., for any three vertices x, y, and z, w(x, y) ≤ w(x, z) + w(y, z) [7, 20]. Lin
and Xue [14] showed that the full Steiner tree problem for metric graphs is NP-complete

∗School of Computer Science, Carleton University, Ottawa, Canada. Research supported by NSERC.

1

(a) (b) (c)

Figure 1: (a) The input graph G; terminals are indicated by filled circles, non-terminals by
non-filled circles. (b) A Steiner tree and (c) a full Steiner tree of G.

and MAX SNP-hard, even when the lengths of the edges are restricted to be either 1 or
2. Many approximation algorithms have been proposed for the full Steiner tree problem
in a metric graph [4, 5, 7, 8, 11, 14, 16]. Lin and Xue [14] presented an approximation
algorithm with performance ratio 2 + ρ, where ρ is the approximation ratio for the Steiner
tree problem. The currently best-known approximation ratio for the Steiner tree problem is
1.39 [3]. The approximation ratio was improved to 2ρ in [5, 7, 8], and further to 2ρ−(ρ

3ρ−2) in

[16], and 2ρ− (ρα2−ρα)
(α+α2)(ρ−1)+2(α−1)2 in [4] for any α ≥ 2. The straightforward 2ρ-approximation

algorithms [5, 7, 8] start by computing a Steiner tree T of G which has no edge between any
pair of terminals. Then, for each non-leaf terminal r in T , pick one of its adjacent Steiner
vertices, say s, and connect all other Steiner neighbors of r to s [5, 7, 8].

Drake and Hougardy [7] showed that approximating the non-metric version of the full
Steiner tree problem is at least as hard as approximating the set cover problem. They showed
that there is no polynomial time approximation algorithm for the full Steiner tree problem
with performance ratio better than (1− o(1)) lnn unless NP = DTIME(nO(log logn)).

1.1 Our Results

Let P denote a set of n points in the plane. The unit disk graph, UDG(P), is defined to
have P as its vertex set and there is an edge between two points p and q if their Euclidean
distance is at most 1, i.e., |pq| ≤ 1. Given a set of terminals R ⊂ P , we are interested
in computing the minimum-weight full Steiner tree of UDG(P); thus the Steiner vertices
must be chosen from the set P \R. We assume that the weight of an edge (p, q) is equal to
the Euclidean distance between p and q; i.e., w(p, q) = |pq|. It is not known whether this
problem can be solved in polynomial time.

The aspect ratio of an edge set E is the ratio of the length of a longest edge in E to
the length of a shortest edge in E. The aspect ratio of a graph is defined as the aspect
ratio of its edge set. For a constant λ > 0, a λ-precise (or λ-precision) UDG is a unit disk
graph in which no two vertices are at distance smaller than λ; it is also known as λ-civilized
UDG [6, 12]. Thus, the aspect ratio of any λ-precise UDG is at most 1

λ
. Most often wireless

devices in a wireless network cannot be too close, so it is reasonable to model a wireless
ad-hoc network as a λ-precise UDG [6]. It can be seen that grid graphs are λ-precise UDG.

2

1

x

1 1 1
u v

Figure 2: A non-metric instance for the full Steiner tree problem.

In this paper we present two polynomial-time approximation algorithms for the full
Steiner tree problem in UDG and λ-precise UDG. Note that all previous results [4, 5, 7,
8, 11, 14, 16] are only applicable when the input graph G is metric. Thus, they cannot be
applied to UDG, because it is not necessarily a complete graph. When the input graph G
is a λ-precise UDG, we present a (10 + 1

λ
)-approximation algorithm in Section 2. In Section

3 we extend our idea and present a 20-approximation algorithm for any unit disk graph.
The combination of these two algorithms give us a full Steiner tree of approximation ratio
min{20, (10 + 1

λ
)} for UDG. Using the same technique as in Section 3, we can compute a full

Steiner tree of approximation ratio 2∆ for general graphs, where ∆ is the maximum vertex
degree in the graph.

1.2 Preliminaries

Vazirani [20] showed that in polynomial time one can transform an instance of a Steiner tree
problem into an equivalent instance of the metric Steiner tree problem; the transformation
preserves the approximation factor. The transformation is as follows. For a given graph
G = (V,E), consider a complete graph G′ with vertex set V . Define the weight of an
edge (u, v) in G′ as the weight of the shortest path between u and v in G. Next compute
a minimum Steiner tree T ′ in G′ and replace each edge (u, v) in T ′ by the corresponding
shortest path in G. Finally compute a spanning tree T of the resulting subgraph. For any
edge (x, y) ∈ G, its cost in G′ is no more than its cost in G. Therefore, the cost of an optimal
solution in G′ is no more than the cost of an optimal solution in G [20].

Theorem (Vazirani [20]). There is a polynomial-time approximation factor preserving
reduction from the Steiner tree problem to the metric Steiner tree problem.

Drake and Hougardy [7] showed that the similar transformation cannot be applied for
the full Steiner tree problem. Figure 2 which is borrowed from [7] shows that if x > 2 then
the shortest path between Steiner vertices u and v passes through a terminal vertex. Finally
when replacing (u, v) in T ′ with the original shortest path in G, the resulting Steiner tree T
is not a full Steiner tree. As a result we have the following observation:

Observation 1. If the shortest path between any pair of vertices in G does not contain any
terminal as an internal vertex, the above transformation can be applied for the full Steiner
tree problem.

3

Group Steiner Tree (GST): The group Steiner tree problem is defined as follows. Given
an edge-weighted graph G(V,E), a set G ′ = {g1, g2, . . . , gk}, where each gi is a subset of V .
Each such subset gi is called a group of terminals. The objective is to find a minimum
weight tree T that contains at least one terminal from each group. The classical Steiner tree
problem is a special case of GST when each group gi, 1 ≤ i ≤ k, contains one vertex. Since
the GST problem is a generalization of the classical Steiner tree problem, it is also NP-hard.

It is well known that the GST problem is at least as hard as the set cover problem.
Therefore, it cannot be approximated to a factor o(ln k) unless P = NP , where k = |G ′|.
In [10], the authors showed that the GST problem cannot be approximated better than
Ω(log2−ε n), even when the host graph is a tree. Garg et al. [9] gave an approximation
algorithm which, with high probability, finds a GST of cost within O(log2 n log log n log k)
of the cost of an optimal GST. Slav́ık [18, 19] developed a 2σ approximation algorithm for
GST problem, where σ is the size of the largest group in G ′. As part of their algorithm, they
compute a complete graph G′ on vertex set V with a shortest-path metric inherited from
G. Without loss of generality, for the group Steiner tree problem one can assume that the
given graph is metric, i.e., it is a complete graph and the edge lengths satisfy the triangle
inequality.

2 Approximation algorithm for λ-precise UDG

Let P be a set of n points in the plane and let R ⊂ P be a set of terminals. In this section we
present a (10 + 1

λ
)-approximation algorithm for computing a full Steiner tree in a λ-precise

unit disk graph G(P). Recall that in a λ-precise UDG, edges are of lengths at least λ and
at most 1. We define a terminal edge as an edge connected to a terminal vertex. For a
full Steiner tree T let T (R) denote the set of all terminal edges in T and let T (S) denote
the skeleton tree obtained from T by removing T (R). Clearly, T (S) does not contain any
terminal vertex. Let Topt be an optimal full Steiner tree of G(P). Let Topt(R) denote the set
of its terminal edges and Topt(S) denote its skeleton tree.

Let G′(P) be the graph obtaining from G(P) in the following way. For each terminal
r ∈ R in G(P) consider a collection of six cones each of angle π/3, all having their apex at
r, that cover the plane. Let sr be the nearest Steiner neighbor of r in G(P). Place the cones
in such a way that sr is shared between two cones; see Figure 3(a). For each cone C for
which C ∩ S 6= ∅ consider the nearest Steiner neighbor s of r in G(P) in C. Remove from
G(P) all the edges incident on r in C except the edge (r, s). Denote the resulting graph by
G′(P). For simplicity of notation in the rest of the paper we use G and G′ instead of G(P)
and G′(P), respectively.

Lemma 1. The weight of an optimal full Steiner tree in G′(P) is at most two times the
weight of an optimal full Steiner tree in G(P).

Proof. Recall that Topt is an optimal full Steiner tree of G. We describe a method that
transforms Topt to a tree T ′ which is a full Steiner tree of G′ and has weight at most two
times w(Topt). For each terminal r ∈ R, let s∗ be the neighbor of r in Topt, and let Cr(s

∗) be

4

r

sr

r

s
s∗

(a) (b)

Figure 3: (a) sr is the nearest neighbor of r which is shared between two cones; bold edges
are added to G′. (b) The edge (r, s∗) ∈ Topt is replaced by two edges (r, s) and (s, s∗).

the cone with apex at r which contains s∗. If (r, s∗) is not an edge in G′, then let s be the
nearest Steiner neighbor of r in Cr(s

∗); see Figure 3(b). Clearly, s does not belong to Topt
because otherwise, we can replace the edge (r, s∗) by (r, s); the weight of the resulting tree
is smaller than the weight of Topt which is a contradiction. Thus, s /∈ Topt. We replace the
edge (r, s∗) by the edges (r, s) and (s, s∗). Let T ′ denote the resulting tree. Clearly, (r, s) is
an edge of G′ and hence T ′ is a full Steiner tree of G′. Since |rs| < |rs∗| and ∠srs∗ ≤ π

3
,

we have ∠rss∗ > π
3
. Thus, in triangle 4rss∗ the segment rs∗ is the longest. Therefore,

|rs|+ |ss∗| ≤ 2|rs∗| and hence the weight of T ′ is at most two times the weight of Topt.

Consider the tree T ′ as described in the proof of Lemma 1. We have the following
corollary:

Corollary 1. The weight of the skeleton tree of T ′ is at most the weight of an optimal full
Steiner tree of G; i.e., w(T ′(S)) ≤ w(Topt).

Proof. As described in Lemma 1, for each terminal edge (r, s∗) in Topt, the tree T ′ contains
either (r, s∗) or (r, s) and (s, s∗). In both cases the skeleton tree T ′(S) does not contain the
edge (r, s). In addition, |ss∗| ≤ |rs∗|. Therefore, w(T ′(S)) ≤ w(Topt).

For each terminal r, let g′r denote the set of neighbors of r in G′; we consider g′r to be
one “group”. See Figure 4(a). Define σ = maxr∈R |g′r|. Note that 1 ≤ σ ≤ 5. Let G ′ = {g′r :
r ∈ R} and let G[S] denote the subgraph of G, induced by S. The algorithm FSTUDG1
receives a λ-precise unit disk graph G(P), a terminal set R, and returns a full Steiner tree
T . It runs the function GroupSteinerTree(G[S],G ′) presented by Slav́ık [18, 19]. This
function returns a group Steiner tree T ′g which is a 2σ-approximation for the group Steiner
tree problem on the graph G[S] with respect to G ′. Finally it computes a full Steiner tree
T by appending each r ∈ R to its nearest neighbor in T ′g. The GroupSteinerTree first
computes a complete graph using the shortest path distances in G and then uses integer
programming to formulate an optimal solution. Finally it approximates the optimal solution
by using linear programming relaxation in polynomial time.

5

r

g′r

r
rs

s

(a) (b)

Figure 4: (a) Group g′r of the neighbors of a terminal r in G′. (b) Group g′′r of the copies of
a terminal r in G′′.

Algorithm 1 FSTUDG1(G(P), R)

Input: a λ-precise unit disk graph G(P) and a subset R ⊂ P .
Output: a full Steiner tree T of G(P).

1: S ← P\R, G ′ ← ∅
2: compute G′ from G(P)
3: for each r ∈ R do
4: g′r ← set of neighbors of r in G′

5: G ′ ← G ′ ∪ {g′r}
6: end for
7: T ′g ← GroupSteinerTree(G[S],G ′)
8: T ← connect each r ∈ R to its nearest neighbor in T ′g
9: return T

Lemma 2. The weight of the tree T ′g computed by algorithm FSTUDG1 is at most 10 times
the weight of Topt.

Proof. Recall that Topt(S) denotes the skeleton tree of the optimal full Steiner tree Topt of
G(P), and Topt(R) denotes the set of its terminal edges. Let T ′(S) be the skeleton tree of
the tree T ′ described in the proof of Lemma 1. By Corollary 1, w(T ′(S)) ≤ w(Topt). On the
other hand T ′(S) is a solution for the group Steiner tree problem in G[S] with respect to G ′.
Thus, the weight of T ′g in line 7 is at most 10 times (i.e., two times the maximum size of any
group) the weight of T ′(S), that is

w(T ′g) ≤ 10 · w(T ′(S)) ≤ 10 · w(Topt).

Theorem 1. Algorithm FSTUDG1 runs in polynomial time. The tree T returned by this
algorithm is a (10+ 1

λ
)-approximation for an optimal full Steiner tree Topt of a λ-precise unit

disk graph G(P).

6

Proof. As shown in [18, 19] the GroupSteinerTree routine in line 7 can be done in
polynomial time. Therefore, FSTUDG1 runs in polynomial time.

By Lemma 2, the weight of T ′g is at most 10 times the weight of Topt. For each terminal
r ∈ R, let s be a vertex in T ′g that is closest to r. Note that s ∈ g′r. Let T (R) be the set
of all (r, s) edges considered in line 8. Then T is the union of T ′g and T (R). Clearly, T is a
full Steiner tree of G and w(T) = w(T ′g) +w(T (R)). Note that in T , r is connected to s and
in Topt it is connected to s∗. Since G is a λ-precise UDG, the length of the edge (r, s) is at
most 1

λ
times the length of the edge (r, s∗), and hence w(T (R)) ≤ 1

λ
·w(Topt(R)). Therefore,

w(T) = w(T ′g) + w(T (R))

≤ 10 · w(Topt) +
1

λ
· w(Topt(R))

= 10 · w(Topt(S)) + 10 · w(Topt(R)) +
1

λ
· w(Topt(R))

= 10 · w(Topt(S)) + (10 +
1

λ
) · w(Topt(R))

≤ (10 +
1

λ
) · w(Topt).

3 Approximation algorithm for UDG

The approximation ratio of the tree T that is returned by algorithm FSTUDG1, is directly
related to the aspect ratio of the input graph G. In this section we present another approxi-
mation algorithm for the full Steiner tree problem in UDG which is independent of the aspect
ratio. By a modification of algorithm FSTUDG1 we present a 20-approximation algorithm
for unit disk graphs as follows. Consider again the graph G′ of Section 2. Let G′′ be the
graph obtaining from G′ in the following way. Recall g′r that is a group of (at most five)
Steiner neighbors of a vertex r in G′. For each s ∈ g′r create a copy of r and call it rs; see
Figure 4(b). Connect rs to s with an edge of weight equal to w(r, s), i.e., w(rs, s) = w(r, s),
then remove r and the edges incident on r. Denote the resulting graph as G′′. Note that in
G′′ all the terminals (new vertices) have degree one, and hence they cannot be internal vertex
of any simple path. Thus, by Observation 1 we can use Vazirani’s method to transform G′′

to a metric graph, i.e., a complete graph which satisfies the triangle inequality. Note that
in the GST approximation algorithm presented by Slav́ık [18, 19] the input graph should be
metric. For each r ∈ R, let g′′r be the group of copies of r in G′′ as shown in Figure 4(b). Let
G ′′ denote the set of groups g′′r , for all r ∈ R. Algorithm FSTUDG2 computes the group
Steiner tree of G′′ with respect to G ′′. Finally it computes the full Steiner tree T by replac-
ing one of the covered vertices of g′′r by r. The GroupSteinerTree is a 2σ-approximation
algorithm presented by Slav́ık [18, 19].

Lemma 3. An optimal group Steiner tree in G′′ (with respect to G ′′) can be transformed to
an optimal full Steiner tree in G′ with the same weight.

7

Algorithm 2 FSTUDG2(G(P), R)

Input: a unit disk graph G(P) and a subset R ⊂ P .
Output: a full Steiner tree T of G(P).

1: S ← V \R, G ′′ ← ∅
2: compute G′ from G
3: compute G′′ from G′

4: for each r ∈ R do
5: g′′r ← set of |g′r| many copies of r in G′′

6: G ′′ ← G ′′ ∪ {g′′r}
7: end for
8: T ′′ ← GroupSteinerTree(G′′,G ′′)
9: T ← for each r ∈ R, replace one of the vertices in T ′′ ∩ g′′r with r, and discard all other

vertices of g′′r from T ′′

10: return T

Proof. Let T ′′opt denote an optimal group Steiner tree of G′′ and let T ′opt denote an optimal
full Steiner tree of G′. We show how one can transform T ′′opt to a full Steiner tree T ′ of G′

with w(T ′) = w(T ′opt). Note that in G′′ all terminals have degree one, and hence T ′′opt does
not contain any internal terminal vertex. In addition, T ′′opt is optimal, so it covers exactly one
terminal from each group g′′r , and it does not contain any Steiner vertex as a leaf. For each
g′′r , where r ∈ R, let rs be the member of g′′r covered by T ′′opt. Recall that for each edge (rs, s)
in G′′ there is an edge (r, s) in G′ with the same weight. Let T ′ be the tree obtained from T ′′opt
by replacing each edge (rs, s) by (r, s). Since w(r, s) = w(rs, s), w(T ′) = w(T ′′opt). Clearly, T ′

is a full Steiner tree of G′ and hence w(T ′) ≥ w(T ′opt). Now we prove that w(T ′) = w(T ′opt).
Using contradiction, suppose that w(T ′) > w(T ′opt). Consider the skeleton tree T ′opt(S). Each
terminal r ∈ R is connected to a Steiner vertex s ∈ T ′opt(S). Note that T ′opt(S) ⊆ G[S] ⊆ G′′.
By connecting rs ∈ g′′r to s we obtain a solution T ′′ for the group Steiner tree problem which
has the same weight as T ′opt. Thus, w(T ′′) = w(T ′opt) < w(T ′) = w(T ′′opt), which contradicts
the optimality of T ′′opt. Thus, w(T ′) = w(T ′opt) and T ′ is an optimal full Steiner tree of G′.

Theorem 2. Algorithm FSTUDG2 runs in polynomial time. The tree T returned by this
algorithm is a 20-approximation for an optimal full Steiner tree Topt of a unit disk graph
G(P).

Proof. As shown in [18, 19] the GroupSteinerTree routine in line 8 can be done in
polynomial time. Therefore, FSTUDG2 runs in polynomial time.

Let T ′′opt denote an optimal group Steiner tree of G′′ with respect to G ′′. The tree T ′′

obtained in line 8 is a 10-approximation for T ′′opt. By using the same argument as in Lemma
3, the tree T obtained in line 9 is a full Steiner tree for G′ and w(T) = w(T ′′). According to
the statement of Lemma 3, we argue that

w(T) = w(T ′′) ≤ 10 · w(T ′′opt) = 10 · w(T ′opt).

8

By Lemma 1, the weight of an optimal full Steiner tree in G′ is at most 2 times the weight
of an optimal full Steiner tree in G. Therefore,

w(T) ≤ 10 · w(T ′opt) ≤ 20 · w(Topt).

Consider the input unit disk graph G and algorithms FSTUDG1 and FSTUDG2. To
compute a full Steiner tree of G, if the aspect ratio of G is at most 10, i.e., λ ≥ 1

10
, we use

algorithm FSTUDG1, otherwise we use algorithm FSTUDG2. Thus, we can find a full
Steiner tree of G with the approximation ratio of min{20, (10 + 1

λ
)}.

4 Conclusion

We considered the problem of computing a minimum-weight full Steiner tree in a unit disk
graph. In Section 2 we presented a (10 + 1

λ
)-approximation for λ-precise UDGs; where the

length of the smallest edge is at least λ. For general unit disk graphs we presented a 20-
approximation algorithm in Section 3. The combination of these two algorithms gives a full
Steiner tree of approximation ratio min{20, (10 + 1

λ
)} for UDG.

We leave as an open problem to improve the approximation ratio. We also leave as an
open problem whether the exact solution can be computed in polynomial time.

The proposed algorithm for a UDG in Section 3 can be extended to any simple graph G
as follow. Let G′′ be the graph obtaining from G in the following way. Let N(r) denote the
Steiner neighbors of a terminal vertex r in G. For each s ∈ N(r), where r ∈ R, create a copy
of r and call it rs. Connect rs to s with an edge of weight equal to w(r, s), then remove r and
its adjacent edges. Denote the resulting graph by G′′. Then we run algorithm FSTUDG2
from line 4. The tree T ′′ obtained in line 8 is a 2∆-approximation for the group Steiner tree
problem where ∆ = max{|N(r)| : r ∈ R}; ∆ is possibly the maximum vertex degree in G.
Finally, by using the same argument as in Lemma 3, we conclude that the tree T obtained
in line 9 is a 2∆-approximation for an optimal full Steiner tree in G.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[2] M. W. Bern and P. E. Plassmann. The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett., 32(4):171–176, 1989.

[3] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner tree approximation via
iterative randomized rounding. J. ACM, 60(1):6, 2013.

[4] Y. H. Chen. An improved approximation algorithm for the terminal Steiner tree prob-
lem. In ICCSA (3), pages 141–151, 2011.

9

[5] Y. H. Chen, C. L. Lu, and C. Y. Tang. On the full and bottleneck full steiner tree
problems. In COCOON, pages 122–129, 2003.

[6] M. Damian. A simple Yao-Yao-based spanner of bounded degree. Online,
http://arxiv.org/abs/0802.4325v2, 2008.

[7] D. E. Drake and S. Hougardy. On approximation algorithms for the terminal Steiner
tree problem. Inf. Process. Lett., 89(1):15–18, 2004.

[8] B. Fuchs. A note on the terminal Steiner tree problem. Inf. Process. Lett., 87(4):219–220,
2003.

[9] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for
the group Steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

[10] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In STOC, pages
585–594, 2003.

[11] S.-Y. Hsieh and W.-H. Pi. On the partial-terminal Steiner tree problem. In ISPAN,
pages 173–177, 2008.

[12] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and
R. E. Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for
geometric graphs. J. Algorithms, 26(2):238–274, 1998.

[13] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals of
Discrete Mathematics. North-Holland, Elsevier, Amesterdam, 1992.

[14] G.-H. Lin and G. Xue. On the terminal Steiner tree problem. Inf. Process. Lett.,
84(2):103–107, 2002.

[15] C. L. Lu, C. Y. Tang, and R. C.-T. Lee. The full Steiner tree problem. Theor. Comput.
Sci., 306(1-3):55–67, 2003.

[16] F. V. Martinez, J. C. de Pina, and J. Soares. Algorithms for terminal Steiner trees.
Theor. Comput. Sci., 389(1-2):133–142, 2007.

[17] G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In SODA,
pages 770–779, 2000.

[18] P. Slav́ık. The errand scheduling problem. Technical report, Department
of Computer Science and Engineering, University of New York at Buffalo.
http://www.cse.buffalo.edu/tech-reports/, 1997.

[19] P. Slav́ık. Approximation algorithms for set cover and related problems. PhD thesis,
Department of Computer Science and Engineering, University of New York at Buffalo.
http://www.cse.buffalo.edu/tech-reports/, 1998.

[20] V. V. Vazirani. Approximation algorithms. Springer, 2001.

10

