
Geometric Path Problems with Violations∗

Anil Maheshwari1, Subhas C. Nandy2, Drimit Pattanayak3, Sasanka Roy2 and
Michiel Smid1

1School of Computer Science, Carleton University, Ottawa, Canada,
{anil,michiel}@scs.carleton.ca.

2Indian Statistical Institute, Kolkata, India, {nandysc,sasanka}@isical.ac.in
3Chennai Mathematical Institute, Chennai, India, drimit@cmi.ac.in

Abstract

In this paper, we study variants of the classical geometric shortest path problem
inside a simple polygon, where we allow a part of the path to go outside the polygon.
Let P be a simple polygon consisting of n vertices and let s, t be a pair of points
in P . Let int(P) represent the interior of P and let P represent the exterior of P ,
i.e. int(P) = P \ ∂(P) and P = R2 \ int(P). For an integer k ≥ 0, we define a
k-violation path from s to t to be a path connecting s and t such that its intersection
with P consists of at most k segments. There is no restriction in terms of the number
of segments of the path within P . The objective is to compute a path of minimum
Euclidean length among all possible (≤ k)-violation paths from s to t. In this paper,
we study this problem for k = 1 and propose an algorithm that computes the shortest
one-violation path in O(n3) time. We show that for rectilinear polygons, the minimum
length rectilinear one-violation path can be computed in O(n log n) time.

We extend the concept of one-violation path to a one-stretch violation path. In this
case, the path between s and t is composed of (a) a path in P from s to a vertex u
of P , (b) a path in P between u and a vertex v of P , and (c) a path in P between v
and t. We show that a minimum length one-stretch violation path can be computed
in O(n log n log logn) time.

Next, we introduce one- and two-violation monotone rectilinear path problems
among a set of n disjoint axis-parallel rectangular objects. Let s, t be two points
in R2 that are not in the interior of any of the objects. In the case of one-violation
monotone path problem, the desired rectilinear path from s to t consists of horizontal
edges that are directed towards the right and vertical edges that are directed upwards,
except for at most one edge. Similarly, in the case of a two-violation monotone path
problem, all horizontal edges are directed towards the right except at most one and
all vertical edges are directed upwards except at most one. Our algorithms for both
of these problems runs in O(n log n) time.

Keywords: shortest path, violations, simple polygons, rectilinear polygons, graph, ge-
ometry

∗Research supported by NSERC and the Canadian Commonwealth Scholarship.

1

Manuscript Click here to download Manuscript one-violation-final-version-
nov-23-2016.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 Introduction

Let P be a simple polygon consisting of n vertices and let s, t be a pair of points in
P . Let int(P) represent the interior of P and let P represent the exterior of P , i.e.
int(P) = P \ ∂(P) and P = R2 \ int(P).

In the traditional shortest path problem inside a simple polygon, the input consists of
P and a pair of points s, t ∈ P ; the objective is to connect s and t by a path in P of
minimum length. Here a path is a sequence of line segments, called the edges of the path;
the path changes the direction (or turns) only at the vertices of P . The length of a path
is the sum of lengths of all the edges on that path. The shortest path problem inside a
simple polygon has a long and rich history. Interested readers may see [8, 17, 19] for an
exhaustive survey of known results. It is well-known that the shortest path map from a
point s to all the vertices in P can be computed in O(n) time [11].

In this paper, we study variants of the geometric shortest path problem where we allow
a part of the path to go outside P . For an integer k ≥ 0, we define a k-violation path
between s and t to be a path connecting s and t such that its intersection with P consists
of at most k segments. There is no restriction in terms of the number of segments of the
path within P . The objective is to compute the path of minimum Euclidean length among
all possible (≤ k)-violation paths from s to t. We study the following variants:

One-Violation Path Problem: Given a simple polygon P and a pair of points s, t ∈ P ,
compute a shortest one-violation path between s and t. Note that the intersection of a
one-violation path with P is at most one segment (see Figure 1 for an illustration).

One-Stretch Violation Path Problem: Given a simple polygon P and a pair of points
s, t ∈ P , a one-stretch path between s and t is composed of (a) a path in P from s to a
vertex u of P , (b) a path in P between u and a vertex v of P , and (c) a path in P between
v and t. The one-stretch violation path problem is to compute a shortest path among all
one-stretch paths between s and t.

Monotone Rectilinear Path Problems with Violations: Given a set R of disjoint
axis-parallel rectangular obstacles in R2, and a pair of points s, t ∈ R2 \ R, a monotone
rectilinear path from s to t consists of horizontal edges that are directed towards the right
and vertical edges that are directed upwards. A monotone rectilinear path from s to t
may not always exist. We show that if we allow at most one-violation with respect to the
direction of a horizontal or a vertical edge, then a path from s to t always exists. The
objective in these problems is to compute a minimum length monotone rectilinear path
between s and t with at most one or two violation edges.

In computational geometry, it is customary to study classical optimization problems that
violate a given set of constraints in some restricted way, see e.g. [4, 18, 21]. Also, there are
several studies in finding shortcuts for a given geometric network (paths, trees, cyclic, and
plane networks) so as to reduce its diameter or the spanning ratio, see e.g. [3, 6, 9]. An
alternative formulation of the one-violation path problem is to find a shortcut for a path
between s and t in a simple polygon P , subject to the condition that the intersection of
the shortcut with P is at most one segment. These problems and their variants motivated
us to seek algorithms for the traditional geometric shortest path problems with violations.

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1.1 New Results

In this paper, we propose algorithms for the following variants of the one-violation path
problem:

− An algorithm for computing a shortest one-violation path between a pair of points
inside a simple polygon with n vertices; it runs in O(n3) time.

− An algorithm for computing a shortest one-violation rectilinear path between a pair
of points inside a rectilinear polygon; it runs in O(n log n) time.

− Extending one-violation path problem to one-stretch violation path among a pair of
points inside a simple polygon. The time complexity of our proposed algorithm for
this problem is O(n log n log logn).

− For a given set R of disjoint axis-parallel rectangular obstacles and an arbitrary pair
of points s and t in R2\R, we show that a monotone rectilinear path from s to t with
at most one (resp. two, where one is in horizontal direction and the other one is in
vertical direction) violation(s) always exists, and a path of minimum length among
such paths can be computed in O(n log n) time.

1.2 Organization

The paper is organized as follows. In Section 2, we introduce the shortest path problem
with violations in a graph with two types of edges, namely good and bad. We show that
Dijkstra’s shortest path algorithm can be modified to work for this problem. In Section
3, the one-violation shortest path problem in a simple polygon is studied. In Section 4,
we show that for rectilinear polygons, the time complexity of the one-violation shortest
path problem can be improved. In Section 5, we extend the idea of one-violation shortest
path to one-stretch violation shortest path for simple polygons, and provide an algorithm
with improved time complexity. In Section 6, we study the one/two violation rectilinear
monotone shortest path problem among a set of disjoint rectangular obstacles. Finally,
concluding remarks appear in Section 7.

2 Shortest path with violations in a graph

We first introduce the k-violation shortest path problem in a simple graph G = (V,E =
E1 ∪ E2), where we have two disjoint sets of edges E1 and E2, named good and bad
respectively. Each edge in (u, v) ∈ E1 ∪ E2 is assigned with a non-negative cost c(u, v).
We can compute a path from s to t by choosing as many good edges as required but are
allowed to use at most k bad edges to reduce the cost of the path. The objective is to have
a path of minimum cost from s to t. We show that Dijkstra’s algorithm can be tailored to
work for this problem using Fibonacci heaps1 [7] as the additional data structure. Here

1Each element of the heap is a tuple (a, b, x), where a is the key and b is the priority field. Needless to
say, each key a ∈ A = {a1, a2, . . . , aN} has at most one representation in the heap. Each element in the
heap may contain some other information x, which can be null also.

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Algorithm 1: Dijkstra-k-Violation-Algorithm(G, s, t)

Input: The weighted digraph G = (V,E). An integer k ≥ 0.
Each edge (u, v) has a weight c(u, v) and a flag f(u, v) indicating “good” or “bad”.
Output: The k-violation shortest path from s to t

1 insert((s, 0, 0), H) // Initialize the element of H
2 forall v ∈ V \ {s} do
3 forall µ = 0, 1, 2, . . . , k do
4 insert((v, µ,∞), H)

5 repeat
6 (u, µ, χ) = delete-min(H) // Delete the root element from H
7 if u = t then
8 Report χ and Exit;
9 else

10 forall v ∈ Adj(u) //Adj(u): adjacency list of node u
11 do
12 (* Process the edge (u, v) *)

13 if f(u, v) = “good” then
14 Create a tuple (v, µ�, χ�) = (v, µ, χ+ c(u, v))
15 if f(u, v) = “bad” then
16 Create a tuple (v, µ�, χ�) = (v, µ+ 1, χ+ c(u, v))
17 if µ� ≤ k then
18 decrease-key((v, µ�, χ�), H)

19 until H is empty ;

insert2, decrease-key3, find-min4 operations can be performed in O(1) time, and delete-min5

operation needs logarithmic time on the size of the heap.

During the execution of the algorithm, we use a priority queueH maintained as a Fibonacci
heap. Each node of H is a triple (v, µ, χ) that corresponds to a path from s to the node
v with violation count µ; χ denotes the length of this path. Here (v, µ) plays the role of
key and χ plays the role of priority in the Fibonacci heap H. In addition, we maintain k
pointers Cv (in an array) with each node v ∈ V . The µ-th entry of Cv stores the position of
key value (v, µ) in H. The entries of {Cv, v ∈ V } are updated during the insert, decrease-
key and delete-min operations in H. Initially, the heap H contains n(k + 1) elements for
n(k+ 1) possible key values {(v, µ)|v ∈ V, µ = 0, 1, 2, . . . , k}. The χ value of each element
is set to ∞. The locations Cv, v ∈ V are set accordingly.

In each iteration of the modified Dijkstra’s algorithm, we choose an element of H having
minimum cost χ (say) by invoking delete-min(H). Let it correspond to the node u ∈ V .
We relax node u, or in other words, process the edges (u, v) for all vertices in V adjacent
to u. For each edge (u, v), it generates a tuple (v, µ�, χ�), where χ� = χ + c(u, v) and

2insert(a, b, x) inserts a tuple in the heap H.
3decrease-key(a, b�) updates the b-value corresponding to the key a in the heap H if the existing b-value

of the node having key a is greater than b�; if the update is done, then it adjusts the heap H.
4find-min(H) returns the entry with minimum priority (b) in the heap H.
5delete-min(H) deletes the element with minimum priority from H, and then adjusts the heap H.

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

µ� = µ or µ + 1 depending on whether the edge (u, v) is “good“ or “bad”. If µ� ≤ k
and χ� is less than the χ value attached to the (v, µ�)-th node of H6, we invoke decrease-
key((v, µ�, χ�). The algorithm terminates when t is reached for the first time, or in other
words, when a tuple (v, µ, χ) is taken from the heap with v = t. The pseudo code of the
proposed method is given in Algorithm 1.

Theorem 1. The Dijkstra-k-Violation-Algorithm correctly computes a path of minimum
cost consisting of at most k violation edges in O(mk + nk logn) time using O(m + nk)
space, where n = |V | and m = |E1|+ |E2|.

Proof. The correctness of the algorithm follows from that of the Dijkstra’s shortest path
algorithm, and the fact that we are using the tuple (v, µ) as the key in the priority queue
H.

The first part of the time complexity follows from the fact that (i) each edge may need
to be processed at most k times, and we are using Fibonacci heap for implementing the
priority queue. The second part of the time complexity follows from the fact that a node
of the graph may be considered for relaxing at most k times with k different violation
counts. The delete-min operation needs to be invoked O(nk) times, and each delete-min
operation needs O(log(nk)) time, where nk is the size of H.

Apart from storing the graph, which needs O(max(m,n)) space, the space needed for
storing Cv for all v ∈ V is O(nk). Also the priority queue H needs O(nk) space. Thus,
the space complexity follows.

3 One-violation path problem in a simple polygon

We are given a simple polygon P consisting of n vertices, and a pair of points s, t ∈ P .
The objective is to compute a minimum length path from s to t that consists of at most
one edge of the path or its portion that passes through the outside of the polygon P . From
now onwards, we use P = R \ int(P) to denote the region outside the polygon P , and the
edge of a path from s to t that passes through P is referred to as the violation edge. Note
that, unlike the shortest path inside a simple polygon, here a bend in a path may not
always be at a vertex of the polygon (see Figure 1). It is possible that the violation edge
of the shortest path from s to t meets at a point in the interior of an edge of the polygon,
from where the path enters in (leaves from) the polygon.

Throughout the paper, “x � y” is used to indicate a polyline path from x to y, and
“x −→ y” to indicate an edge of the path. We use Πin(x, y) to denote the shortest path
between a pair of points x, y ∈ P inside the polygon.

Observation 1. Unless the line segment st lies completely inside P , there exists a one-
violation path from s to t that is shorter than Πin(s, t).

Proof. Since the line segment st does not lie completely inside P , there exists at least one
turn at a vertex, say v, of Πin(s, t). We choose two points α and β at a very small distance

6The µ�-th entry of Cv indicates this position.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

s t

a b b�a�

P
P

Figure 1: Illustration of Πin(s, t) (red path) and the shortest one-violation path between
s and t (green path). The shortest one-violation path uses segment ab and bends at a�

and b�. Points a� and b� are in the interior of edges. The violation edge a�b� passes through
the vertices a and b.

� from v on the two segments of Πin(s, t) adjacent to v such that the segment αβ∩P forms
one connected component (i.e., αβ is a violation edge). By triangle inequality, the path
obtained by replacing the path segment α → v → β of Πin(s, t) by α → β is shorter, and
gives a feasible one-violation path from s to t.

Lemma 1. Let Π = s � a → b → c → d � t be any optimum one-violation path from
s to t consisting of at least three segments, with bc as the violation edge and a and d are
vertices of P and b and c are points on the boundary of P . Then, the violation edge bc
either (i) passes through a vertex of P or (ii) points {a, b, c} or {b, c, d} are collinear.

Proof. We prove this by contradiction. Let Π = s � a → b → c → d � t be an optimum
one-violation path where the violation edge bc does not pass through any vertex of P and
neither {a, b, c} nor {b, c, d} are collinear. Depending on the slope of the edges ab and cd
of Π, we need to consider two cases as shown in Figures 2(a) and 2(b).

Consider first the case that the edges ab and cd of Π have slopes of different sign (i.e.,
ab, bc, and cd form a convex path). In this case, the violation edge bc can be moved to
a new position b�c�, parallel to bc (see Figure 2(a)), such that b�c� is a violation edge and
the new path Π� = s � a → b� → c� → d � t is shorter than Π. This contradicts the
minimality of Π. Note that we can continue this movement until bc either (i) touches a
vertex of P , or (ii) b, c, and a and/or d becomes collinear.

Now consider that the edges ab and cd of Π have slopes of the same sign. Choose a point
x on bc. Rotate bc around x so that the new segment b�c� is a violation edge and the path
Π� = s � a → b� → c� → d � t is a valid one violation path (see Figure 2b). We claim
that we can always rotate bc such that the length of Π� is less than the length of Π. This
follows from the triangle inequality as the path segment a → b� → x → c� → d is shorter
than a → b → c → d. Hence this contradicts the minimality of Π. Note that we can rotate
bc around x until the line segment b�c� either (i) touches a vertex of P or (ii) a, b�, c�, and
d becomes collinear.

We will use the shortest path maps of s and t in P , namely SPMs and SPMt, respectively,
to compute an optimum one-violation path. Shortest path maps are typically used for

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

d

c
b

a

b�
c�

t

s

(a)

b

c

b�

c�

a

d

s

t

x

(b)

Figure 2: Illustration of the proof of Lemma 1

computing the shortest path of all points in P from s that stays within P . These maps
split the boundary of the polygon into open intervals, called component-pieces. None of
the component-pieces contain any vertex of P .

Definition 1. Each component-piece is associated with a vertex of the polygon, called the
parent vertex, such that for every point in that component piece, the shortest path from s
is reached from its parent vertex.

SPMs can be visualized as a tree. Its root is s, and component-pieces are leaves. The
vertices of P may appear as both leaf or non-leaf nodes in the tree. Each node p of SPMs,
that is a vertex of P , stores the length of the shortest path from s to p inside the polygon.
A similar data structure is also prepared for SPMt.

Lemma 2. [11, 13] After a linear time preprocessing, the length of the shortest paths
Πin(s, p) and Πin(t, p) for any point p on a component-piece can be computed in O(1)
time.

We consider the convex hull CH(P) of P . Each edge of CH(P), that is not an edge of P ,
introduces a pocket with respect to P as defined below.

Definition 2. A pocket of a simple polygon P is defined by an edge e of CH(P) that is
not an edge of P . It is a polygonal region outside P but inside CH(P). It is bounded by e
and a sequence of consecutive edges of P where the first and the last edge of the sequence
are incident on the two end points of e. The two end points of e will be referred to as the
frontiers of the pocket.

Let us name these pockets as P1, P2, . . . , Pk. Each pocket along with the corresponding
edge of CH(P) defines a simple polygon outside P . Let Π = s � a → b → c → d � t be
a one-violation path consisting of at least three segments as stated in Lemma 1. In this
notation, a and d are vertices of P , bc is the violation edge, where b and c are points on
the boundary of P . Let b belongs to the component piece I of SPMs and let c belongs to
the component piece J of SPMt. Note that the parent of I in SPMs is a and the parent
of J in SPMt is d. Observe that Π is composed of up to five pieces, namely (i) Πin(s, a),
(ii) Πin(t, d), (iii) the segment bc lying completely within one of the pockets Pi, where b

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and c are on the boundary of P , (iv) a segment ab in P , and (v) a segment cd in P . It is
possible that the segments ab and bc may be collinear and/or the segments bc and cd may
be collinear.

s t

u
v

I

J

x

y z

w

φ0

Hourglass H(I, J)

Pocket Pi

φ1

φ2

φm

φi

φi+1

ψ0
ψ1

ψm

ψi

ψi+1

C1

C2

P

φm+1

ψm+1

Figure 3: Processing of a pair of component-pieces (I, J)

Let I = [xy] and J = [wz] be two component pieces of a pocket Pi, with their parent
vertices u and v with respect to SPMs and SPMt, respectively. We want to compute an
optimum one-violation path between s and t, where the violation edge bc is restricted to
b ∈ I and c ∈ J . Assume that in the traversal of the boundary of Pi in counterclockwise
order starting at y, the points x, w, and z appear in this order (see Figure 3). Consider the
shortest paths between x and w and between y and z restricted to lie within Pi. These two
shortest paths together with the component pieces I and J define an hourglass H(I, J)
in Pi [10, 11]. An hourglass is said to be open, if the corresponding shortest paths do not
share any vertex. Otherwise it is closed. We make the following observation based on the
well established connection between shortest paths and hourglasses (see [10, 11]).

Observation 2. For two component pieces I and J of a pocket Pi, there exists a segment
joining I and J that lies completely within Pi if and only if H(I, J) is open.

For a pair of component pieces I and J in a pocket Pi, we first check whether H(I, J) is
open by computing the corresponding shortest paths in Pi. If H(I, J) is open, we say that
the component pieces I and J are valid, otherwise they are invalid. From now on assume
that the component pieces are valid. In this case the shortest path between x and w in Pi

is a convex chain (say C1). Similarly, the shortest path between y and z in Pi is a convex
chain (say C2).

To compute the violation edge bc, where b ∈ I and c ∈ J , we proceed as follows. We
subdivide component pieces I and J into intervals, so that for all points within an interval,
the vertex that is tangent on C1 (and C2) is the same. This is achieved by scanning C1

starting from x and drawing lines that are aligned with the edges of C1. The lines that
intersect C2 are ignored, and the others that intersect wz are retained. (The lines that
intersect wz correspond to the consecutive edges of C1.) Let these lines intersect xy at

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

points φ1, φ2, . . . , φm, and wz at points ψ1, ψ2, . . . , ψm, respectively (see Figure 3). We
also draw a pair of common tangents of C1 and C2. Let these intersect xy at φ0, φm+1

and wz at points ψ0, ψm+1, respectively. By Lemma 1, the violation edge of the shortest
one-violation path that intersects I in the interval [φi, φi+1] and J in the interval [ψi, ψi+1],
will pass through the same vertex w of P .

For each interval [φi, φi+1] and its corresponding pair [ψi, ψi+1] we can compute the length
of a shortest one-violation path by optimizing the function that is obtained by adding
the lengths of (a) Πin(s, u), where u is the parent vertex of I in SPMs, (b) Πin(t, v),
where v is the parent vertex of J in SPMt, (c) the segment bc, where b ∈ [φi, φi+1] and
c ∈ [ψi, ψi+1], (d) the segment ub, and (e) the segment cv. Once we fix the location of
b ∈ [φi, φi+1], everything else can be determined in O(1) time from SPMs and SPMt.
Therefore, for all b ∈ [φi, φi+1], the minimum of |ub|+ |bc|+ |cv| can be computed in O(1)
time. Hence the length of a shortest one-violation path restricted to intervals b ∈ [φi, φi+1]
and c ∈ [ψi, ψi+1] can be computed in O(1) time.

The same method is applied to compute shortest one-violation paths that pass through the
vertices of C2. Finally, the shortest one is considered for a valid pair of component-pieces
(I, J). Hence, the length of a shortest one-violation path restricted to I and J can be
computed in time proportional to the number of vertices of the pocket Pi. Considering all
possible pairs of component-pieces, we can identify the shortest one-violation path from
s to t passing through the pocket Pi. By repeating this computation for each pocket, we
can compute a shortest one violation path between s and t. We summarize the result in
the following theorem.

Theorem 2. A shortest one-violation path between a pair of points in a simple polygon
P consisting of n vertices can be computed in O(n3) time using O(n) space.

Proof. A shortest one-violation path either consists of a direct segment between s and t,
or a path consisting of two segments, or a path consisting of three or more segments.

We first test whether the segment st is a valid one-violation path. This can be done in O(n)
time by scanning the boundary of P and checking the number of intersections between
the boundary and st. Now consider the case when a shortest violation path consists of
two segments. The turning point of the path cannot be in the exterior of P . Moreover,
the turning point needs to be at a vertex of P , otherwise the length of the path can be
further improved. For each vertex v of P , we can use the ray shooting data structure to
find whether the segment sv and vt intersects the exterior of P at most once. Among all
such valid two segment paths, we find the one that has the minimum length. The ray
shooting data structure requires O(n) time and for each vertex v we can find whether sv
or tv intersects P more than once in O(logn) time.

If a shortest one violation path consists of three or more segments, we adopt Lemma
1. The shortest path maps SPMs and SPMt can be computed in O(n) time and space
by the algorithms in [11, 13]. We process each pocket Pi separately. Let the number of
vertices in Pi be ni; the number of component-pieces of SPMs and SPMt in Pi be µ and ν
respectively. We have considered µ× ν pairs of component-pieces (I, J), where I ∈ SPMs

and J ∈ SPMt. For each pair (I, J), in O(ni) time we traverse the entire Pi to form the

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

convex chains C1 and C2. If a pair of component-pieces (I, J) is observed to be valid, we
again traverse C1 and C2 in a merge-like fashion to split both I and J into at most ni

intervals in the worst case. As mentioned earlier, since the time of processing each pair
of intervals [φi, φi+1] ∈ I and [ψi, ψi+1] ∈ J needs O(1) time, the processing of a pair of
component pieces (I, J) in a pocket Pi needs O(ni) time. The final result is reported after
considering all possible pairs of valid component pieces. The result follows from the fact
that the number of pairs of component-pieces (I, J), I ∈ SPMs and J ∈ SPMt is O(n2)
considering all the pockets of P .

4 One-violation path problem in a rectilinear polygon

Given a rectilinear polygon P and a pair of points s, t ∈ P , a one-violation rectilinear path
is a rectilinear path from s to t such that it has at most one horizontal or one vertical
violation edge e that goes outside P , and the intersection of e with P is at most one
segment. Our objective is to compute a one-violation rectilinear path of minimum length.
We will use Ψin(s, t) to denote a shortest rectilinear path from s to t that stays inside P ,
and Ψone(s, t) to denote a shortest one-violation rectilinear path from s to t. We say, a
line segment � is ”aligned with“ an edge e of the polygon P if a portion of � overlaps with
a portion of e.

Lemma 3. If s and t are on the boundary of the polygon P , then there exists a minimum
length rectilinear path from s to t such that each line segment of this path is aligned with
some edge of the polygon P .

Proof. Let Ψ be a minimum length rectilinear path from s to t, and it has a vertical edge
e that does not have any portion which is aligned with some edge of the polygon. Here we
need to consider two cases depending on whether the next vertical edge e� of Ψ is aligned
with some edge of P or not. In the positive case, if we move the edge e horizontally
towards e�, the length of the path remains unchanged. After being aligned with e�, the
result holds. In the negative case, the combined edge e ⊕ e� starts moving along its next
vertical edge keeping the total length of Ψ unchanged. Proceeding similarly, the result
holds. Similarly, if a horizontal edge of Ψ is not aligned with a horizontal edge of the
polygon, it can be modified in a similar manner so that it aligns with an edge of P .

If s and t are not on the boundary of P , then there exists a minimum length rectilinear
path from s to t whose all the edges are aligned with edges of the polygon P except
possibly the edges that are incident on s or t.

Lemma 4. If there exists a one-violation rectilinear path whose length is less than that
of Ψin(s, t), then we can obtain a minimum length one-violation rectilinear path Ψone(s, t)
whose violation edge is the extension of an edge of P outside the polygon.

Proof. Let Ψ be a minimum length one-violation rectilinear path whose violation edge
e = [a, b] is horizontal, and is not aligned with any edge of P . Its adjacent vertical edges
at a and b must be vertically to the opposite direction. Otherwise, we can reduce the

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

path length by moving [a, b] in that (common) direction. Now, we move [a, b] above or
below maintaining the same length until it is aligned with the previous or next horizontal
edge, say e�, of Ψ. If the combined horizontal edge e ⊕ e� is not aligned with an edge of
the polygon, then it also can be moved in one direction (above or below) maintaining its
length unchanged until it becomes aligned with another edge of Ψ or it meets an edge of
the polygon. In the first case, the process of moving the merged edge continues, and in
the second case, the process stops proving the result.

As a warm-up, we first explain the method of computing a shortest rectilinear path
Ψin(s, t) in the rectilinear polygon P [22]. We draw a pair of orthogonal line segments
h(s) and v(s) (respectively, h(t) and v(t)) at the point s (respectively, t). Let the polygon
be split in two parts, namely Pleft and Pright on the two sides of v(s). We use P̂left and

P̂right to denote the vertices of the polygons Pleft and Pright respectively. Compute the
histogram partitioning of Pleft and Pright [22]. Each window of a histogram is the base of
the neighboring histogram, and the adjacency relationship among the histograms on each
side of v(s) can be represented as a directed tree. We use Tleft to denote the ‘histogram
tree’ for the polygon Pleft. The histogram of a node v ∈ Tleft will be denoted by H(v).
In Figure 4, a histogram partitioning and its corresponding tree representation are shown
for Pleft. Next we will consider a method for computing a shortest path from s to t. Let
t ∈ Pleft. We use H(s) and H(t) to denote the histograms containing s and t, respectively;
H(s) is the root of the histogram tree for Pleft. The shortest path from t to s will navigate
from H(t) to H(s) in the histogram tree, and the corresponding path will bend at the
projection of an edge of the histogram to its base, as shown in Figure 4(a). The histogram
partitioning of P and the computation of the histogram tree require O(n) time [16]. The
base of each histogram is projected to the base of its parent histogram. These create a
set of Steiner points Qleft. The bends can take place at the vertices P̂left of Pleft and at
Steiner points in Qleft.

s
v1

v2

v3

v4

v5

v6

v7

v10

v8

v14

v15 v18

v20

v19

v12

v21

v22
v23

v17

v16

v1

v2 v3 v4 v5 v6 v7

v8 v9 v10

v13 v14 v15

v20

v11 v12

v21 v22

v23

v16 v17

(a) (b)

Pleft Pright

v13

v9

v18 v19

v11

Figure 4: Histogram decomposition of Pleft, and (b) its histogram tree

Now, if s and t lie in the same histogram, their shortest path is an axis-parallel L-path7

connecting them. Otherwise, the first bend of the s to t path will be at the projection of t

7An L-path consists of a horizontal and a vertical segment incident at a common bend (turn) point

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

on the base of H(t) [22]. Next time onwards the bends are at the points of P̂left∪Qleft. We

construct a graph G = (V,E), where V = P̂left∪Qleft∪{s, si, i ∈ {N,S,E,W}}∪{t, ti, i ∈
{N,S,E,W}}, where {si, ti, i ∈ {N,S,E,W}} are the orthogonal projections of s and t
on the boundary of P along the four directions (namely north, south, east and west),
respectively. An edge e ∈ E joins a pair of points α, β ∈ P̂left ∪ Qleft such that α and

β have the same x (or y) coordinates and there is no other point(s) of P̂left ∪ Qleft in
the interval [α, β]. The shortest path from s to t can be computed by running Dijkstra’s
algorithm on the graph G.

Observe that |V | = O(n) since each window contributes at most two members to Q and
the number of windows in the histogram of Pleft is equal to the number of nodes in Tleft,

which is at most |P̂left|, the number of vertices in Pleft. The number of edges is also O(n)
since each vertex of P is incident on at most 2 edges and each member of Q is incident on
at most 3 edges. Thus, Dijkstra’s algorithm runs in O(n logn) time.

We now describe our method for computing a one-violation path of minimum length. By
Lemma 4, a violation edge can be the extension ê of an edge e of P . The extension ê
meets the boundary of P from outside. Note that the extension of e can intersect an edge
e� from inside, then it goes outside, and then it intersects another edge e��. Here we need
to mention that the violation edge from the boundary of Pleft may reach a point on the
boundary of Pright. So, in the graph formulation of computing Ψone(s, t), we need to handle
both Pleft and Pright simultaneously. As in the shortest path problem, we create a graph

Gone = (Vone, Eone), where Vone = P̂ ∪Q∪R∪{s, (si, σi), i ∈ {N,S,E,W}}∪{t, (ti, τi), i ∈
{N,S,E,W}}. Here (i) P̂ = P̂left ∪ P̂right, (ii) Q is the set of vertices generated from the
projection of the base of the histograms on their parents’ base respectively, as described
for the shortest path problem, (iii) R is the orthogonal projections of the vertices in P̂
on the boundary of P from outside, (iv) si (resp. ti) is the orthogonal projections of s
(resp. t) on the boundary of the polygon from inside in the i-th side and (v) σi (resp. τi)
is the point of intersection of the extended line from s (resp. t) with the boundary of the
polygon from outside on the i-th side. The edges Eone = Ê ∪ Eviolation. The edges in Ê
are those defined in the shortest path problem considering the vertices P̂ ∪ Q and these
are tagged as good. Eviolation is the set of all violation edges and these are tagged as bad.

For each vertex of P at most two violation edges may exist. Each edge of Eviolation connects
a vertex of P̂ and its orthogonal projections (∈ R) on the boundary of P from outside.
The vertices in R and the edges in Eviolation are generated by sweeping a horizontal (resp.
vertical) line over the polygon in O(n logn) time. Note that, an edge in Eviolation may
intersect many edges in Eviolation. Thus, unlike G, Gone may not be a planar graph.
However, (i) the number of vertices in R is O(n) since each edge in P is extended in at
most two directions, and (ii) the number of edges in Eone = O(n) since each vertex of P
can define at most two edges of Eviolation. We run Algorithm 1, with number of violations
k = 1, to compute Ψone(s, t) and obtain the following result.

Theorem 3. Given a simple rectilinear polygon P with n vertices and two points s and
t inside it, the shortest one-violation rectilinear path from s to t can be computed in
O(n log n) time using O(n) space.

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 One-stretch violation path problem in a simple polygon

Given a simple polygon P and a pair of points s and t, we will consider the paths from s
to t that bends (changes direction) at only the vertices of the polygon. We say a path is
a one stretch violation path between s and t if it is composed of (a) a path in P from s
to a vertex u of P , (b) a path in P between u and a vertex v of P , and (c) a path in P
between v and t. In order to characterize such paths, consider the convex hull CH(P) of
the polygon P , and the associated pockets (see Definition 2).

Definition 3. The external stretch of an one-stretch violation path from s to t is a
sequence of line segments connecting the vertices of the polygon such that no part of each
segment lies in the proper interior of the polygon.

Observation 3. A one-stretch violation path Π(s, t) from s to t consists of three parts
Π1 ⊕ Π2 ⊕ Π3. The edges of Π1 and Π3 completely lie inside the polygon, and Π2 is the
external stretch. Note that, any one of Π1, Π2 or Π3 may be empty.

Observation 4. If u and v are the two end-vertices of an external-stretch of an one-stretch
violation path, then it is one of the following two types:

Type-1: Both u and v are vertices of the same pocket Pα of P , and the entire external-
stretch is inside that pocket (see Figure 5(a)), or

Type 2: If they belong to different pockets Pα and Pβ, then the external-stretch can be
split into three parts π1 ⊕ π2 ⊕ π3, where π1 is a path from u to a frontier8 of the
pocket Pα, π3 is a path from v to a frontier of the pocket Pβ and π2 connects these
two frontiers via the convex hull edges (see Figure 5(b)).

pocket Pα

Πin(s, t)

Πα(s, t)

P

CH(P)

s

t

(a)

s

t

Πos(s, t) = Παβ
pocket Pα

pocket Pβ

Πin(s, t)

P

CH(P)

(b)

Figure 5: (a) Type-1 Πos(s, t), and (b) Type-2 Πos(s, t)

5.1 Algorithm

We compute the convex hull of the polygon P . Suppose, this generates k pockets, namely
P1, P2 . . . , Pk. We will use Πα to denote the minimum length Type-1 path whose stretch

8see Definition 2

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

lies entirely inside the pocket Pα, and Παβ to denote the minimum length Type-2 path
whose external stretch connects two vertices of the pockets Pα and Pβ . Thus the length
of a shortest one-stretch violation path, denoted by |Πos(s, t)|, from s to t is given by

|Πos(s, t)| = min{|Πin(s, t)|, min
α∈{1,··· ,k}

|Πα|, min
α,β∈{1,··· ,k},α �=β

|Παβ |}.

We first compute Πin(s, t), and the shortest path trees from s and t within P . We use two
arrays SPs and SPt. For i = 1, . . . , n, the array entry SPs[i] (respectively, SPt[i]) stores
the length of the shortest path of the vertex pi of P from s (respectively, t). In the following
two subsections we explain the methods of computing Πα’s and Παβ ’s, respectively.

5.1.1 Type-1 shortest one-stretch violation path

Let us consider the pocket Pα. Let the number of vertices in Pα be m and let the vertices
be {p1, p2, . . . , pm−1, pm} in counterclockwise order. Consider a matrix B, whose rows
correspond to the vertices {p1, p2, . . . , pm−1} of Pα in counterclockwise order and the
columns correspond to the vertices {pm, pm−1, . . . , p2} in clockwise order. Thus, the rows
are numbered as {1, 2, . . . ,m − 1} from top to bottom and columns are numbered as
{m,m − 1, . . . , 2} from left to right (see Figure 6(a)). The entries of the matrix B are
defined as follows:

B[i, j] =

�
SPs[i] + SPt[j] + χij if i < j, and

undefined otherwise

Here, χij = the length of the shortest path πij between the vertices pi, pj ∈ Pα inside
the pocket Pα. The objective is to find the minimum valued element in this matrix. We
now show that the matrix B is a partially monotone reverse rising staircase matrix (see
Definition 6). Thus, if we can compute χij on demand in O(f(m)) time using a data
structure that can be computed in g(m) time, then the smallest entry of the matrix B
can be computed in O(g(m) + mf(m) log logm) time [1]. Similarly, defining the matrix
entries as

B[i, j] =

�
SPt[i] + SPs[j] + χij if i < j, and

undefined otherwise,

we execute the same procedure. The minimum of these two values will be the result of
processing the pocket Pα. In order to explain the sub-quadratic time processing of the
matrix B, we need the following concepts from [1].

Definition 4. A 2× 2 matrix

�
a b
c d

�

is said to be monotone if b < a and c < d cannot

occur simultaneously.

Definition 5. A matrix B is said to be partially monotone if its every 2 × 2 sub-matrix
of B that consists of all defined entries, is a monotone matrix.

Definition 6. [1] A matrix is said to be a reverse rising staircase matrix if (i) the valid
entries in each row are consecutive, and (ii) if the valid entries in the i-th row span in
the column positions from αi to βi, then αi = 1 and βi’s are non-increasing for every
i = 1, 2, . . . , n (see Figure 6(a)).

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

p1

p2

pm pm−1 p2

pm−1

(a)

Pocket

pi

pj

p�

pk

θ

Pα

s
t

SPs entries SPt entries

Πi�

Πik

Πjk

Πj�

(b)

Figure 6: (a) Reverse rising staircase matrix, (b) Illustration of the proof of Lemma 5

Lemma 5. The matrix B is a reverse rising partial monotone matrix.

Proof. The structure of the matrix indicates that it is a reverse rising staircase matrix (see
Figure 6(a)). In order to prove that it is a partially monotone matrix, we need to show
that in every 2 × 2 sub-matrix of B, if all the entries are defined, then it is a monotone
matrix.

For a contradiction, let for a sub-matrix with rows i < j and columns k > �, B[i, �] > B[i, k]
and B[j, k] > B[j, �] hold simultaneously. Thus, we have

SPs[i] + SPt[�] + χi� > SPs[i] + SPt[k] + χik (1)

SPs[j] + SPt[k] + χjk > SPs[j] + SPt[�] + χj� (2)

In other words, we have

SPt[�] + χi� > SPt[k] + χik . (1�)

SPt[k] + χjk > SPt[�] + χj� . (2
�)

Adding the inequations (1’) and (2’), we have

χi� + χjk > χik + χj�.

Due to the configuration of points pi, pj , pk, and pl along the boundary of Pi, the paths
πik and πj� must intersect at least at a point, say θ (see Figure 6(b)). The path πi� may
may overlap the path from pi � θ along πik and θ � p� along πj�. Similarly, the path
πjk may overlap the path segment pj � θ along πj� and θ � pk along πik. Combining
these two, we have χik + χj� > χi� + χjk. Thus, we have a contradiction, and the result
follows.

The pocket Pα can be preprocessed in g(m) = O(m) time for the shortest path queries
[10]. This preprocessed data structure along with the arrays SPs and SPt enable us to
compute B[i, j] in f(m) = O(logm) time for any i and j for which B[i, j] is defined. Thus,

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

computing Πα, or in other words, finding the minimum entry in the matrix B requires
O(g(m)+mf(m) log logm) = O(m logm log logm) time [1]. Since the time for processing
the pockets are additive, we have the following result:

Lemma 6. The total time required for computing a minimum length Type-1 one-stretch
violation path is O(n logn log logn).

5.1.2 Type-2 shortest one-stretch violation path

Lemma 7. A Type-2 one-stretch violation path Παβ , α �= β, with the two end-points of its
external stretch in two different pockets Pα and Pβ, respectively, must pass through one of
the frontiers of both the pockets.

Proof. Follows from the fact that the external stretch of Παβ exits from pocket Pα through
one of its frontiers, goes along the boundary of the convex hull, and then enters the pocket
Pβ through one of its frontiers (see Figure 5(b)).

As mentioned earlier, the arrays SPs and SPt contain the length of the shortest path of
every vertex of the polygon P (inside P) from s and t, respectively. We attach two costs
Cs(q) and Ct(q) with each vertex q of the convex hull CH(P). These are the minimum
cost of connecting q with s and t respectively with a one-stretch violation path through
the pocket adjacent to it. If a convex hull vertex q is adjacent to two pockets, then we
consider it as two vertices, and two entries are created for this vertex in the array Cs and
Ct.

We consider each pocket Pα separately; let q and q� be the frontiers (convex-hull vertices)
associated to the pocket Pα. For each vertex pi ∈ Pα, we compute the length of the shortest
path δ(pi, q) from pi to q inside Pα. Next, we compute Cs(q) = minpi∈Pα SPs[i] + δ(pi, q),
and Ct(q) = minpi∈Pα SPt[i] + δ(pi, q). Our next task is to compute minα�=β |Παβ |. We
consider all the hull vertices {q1, q2, . . . , q2k} of the k pockets in clockwise order. Observe
that,

min
α�=β

|Παβ | = min(min
i�=j

π1(qi, qj),min
i�=j

π2(qi, qj))

where π1(qi, qj) = Cs(qi) + Ct(qj) + the length of the clockwise path from qi to qj along
the boundary of CH(P),
π2(qi, qj) = Cs(qi) +Ct(qj) + the length of the anticlockwise path from qi to qj along the
boundary of CH(P),

We explain the method of computing mini�=j π1(qi, qj) using the method of searching for
the minimum entry in a partially monotone reverse rising staircase matrix.

We define a 2k × 2k matrix D whose rows correspond to the vertices {q1, q2, . . . , q2k} in
order, and whose columns correspond to {q2k, q2k−1, . . . q1} in order. As in the earlier
subsection, the entries D[i, j] are undefined if j ≤ i; otherwise D[i, j] = π1(qi, qj).

Lemma 8. The matrix D is a partially monotone reverse rising staircase matrix.

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Proof. As in the proof of Lemma 5, we prove that for any arbitrary 2 × 2 sub-matrix�
a b
c d

�

, if all the entries are defined, then it is monotone. In other words, if a, b, c, d are

all defined then a > b and c < d can not happen simultaneously. Otherwise, the sum of
lengths of the clockwise paths qi � qk and qj � q� should be strictly greater that the sum
of lengths of the clockwise paths qi � q� and qj � qk. This is impossible since both the
sums are exactly equal.

Lemma 9. The time complexity for computing min
α�=β

|Παβ | is O(n log log n).

Proof. The processing of a pocket Pα involves computing the shortest path of all its vertices
from both of its frontiers. This can be done in O(m) time, where m = |Pα|. Since the
vertices of each pocket is disjoint from that of other pockets, Cs(qi) and Ct(qi) entries of all
the hull vertices qi, i = 1, 2, . . . , 2k of the polygon P can be computed in O(n) time. Using
the Cs and Ct arrays for the hull vertices, each entry of the matrix D can be obtained in
O(1) time. Finding the minimum element in the matrix D needs O(n log log n) time [1].
Thus, the result follows.

5.2 Complexity results

Lemmata 6 and 9 lead to the following result.

Theorem 4. Given a simple polygon P with n vertices and a pair of points s, t ∈ P , the
time complexity for computing a minimum length one-stretch violation path from s to t is
O(n log n log log n).

6 Monotone rectilinear path with violations among rectan-
gular obstacles

In this section, we consider the one-violation monotone rectilinear path problems be-
tween a pair of points s, t among a set of disjoint axis-parallel rectangular obstacles
R = {R1, R2, . . . , Rn} inside an axis-parallel rectangle B in R2. We borrow the following
definitions from [2].

Definition 7. [2] (x-monotone Path) A rectilinear path from p to q is said to be x-
monotone if all horizontal directed edges are from left to right. The vertical segments
in the path may be directed in any direction. Similarly, we can define (−x)-monotone,
y-monotone, and (−y)-monotone paths.

Definition 8. [2] (xy-monotone Path) A rectilinear path from p to q is said to be xy-
monotone if all horizontal directed edges are from left to right, and all vertical directed edges
are from bottom to top. Similarly we can define (−x)y, x(−y), and (−x)(−y)-monotone
paths.

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Definition 9. [2] (Preferred Path) A y-preferred xy-path from p is an xy-monotone
path which follows the +y direction whenever possible. If it encounters an obstacle it
follows the +x-direction until the end of the obstacle is reached. Again it resumes to
move in the +y direction. The movement continues until it meets the top boundary of the
bounding box B. Such a path is denoted by Πy

1(p), where “1” in the subscript indicates
the first quadrant with respect to p (i.e., xy-monotone path), and “y” in the superscript
indicates the y-preferred path. Similarly, Πx

1(p), Π
y
2(p), Π

−x
2 (p), Π−x

3 (p), Π−y
3 (p), Π−y

4 (p),
Πx

4(p) are defined.

Here by a violation we mean a directed line segment that goes from right to left or from
top to bottom. We consider the following two variations of the problem.

P1: Computing the shortest x-monotone path from s to t with at most one violation. In
other words, all the horizontal edges are directed from left to right except at most
one edge that is directed from right to left. There is no restriction on the direction
of the vertical line segments.

P2: Computing the shortest xy-monotone path from s to t with at most two violations.
In other words, all the horizontal edges on the path from s to t are directed from left
to right except at most one edge that is directed from right to left, and all the vertical
edges are directed from bottom to top except at most one edge that is directed from
top to bottom.

For a given pair of points s and t as the source and target of the desired path, we use the
notation S1 to denote the region bounded by the two staircase paths Πx

1(s) and Πy
1(s).

Similarly, the region S2 is defined by Πy
2(s) and Π−x

2 (s); the region S3 is defined by Π−x
3 (t)

and Π−y
3 (t); the region S4 is defined by Π−y

4 (t) and Πx
4(t). The computation of each of

these staircase paths and regions need sorting of the members of R with respect to their
bottom or top boundaries depending on the respective cases, and it needs O(n log n) time
in the worst case.

6.1 Problem P1: one-violation rectilinear path

Lemma 10. For any set R of disjoint axis parallel rectangular obstacles and any pair of
points s, t in R2 \ R, there always exists a x-monotone path from s to t with at most one
violation.

Proof. Let B be an axis-parallel rectangle that contains all the rectangles in R. We
compute Πy

1(s) and Π
y
2(t) up to the top boundary of B. Let these meet the top boundary of

B at points α and β, respectively. Now, if α is to the left of β then the path s � α → β � t
has no violation edge; otherwise α → β is the only violation edge. Note that, this path
may be self-intersecting.

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6.1.1 Computation of shortest one-violation rectilinear path

Consider the polygonal line Πy
14(s) = Πy

1(s) ⊕ Π−y
4 (s). If the point t lies to the right of

Πy
14(s) (see Figure 7(a)), then the rectilinear shortest path from s to t is x-monotone, and

it can be computed in O(n log n) time (see de Rezende et al. [20]). Thus, we need to
consider the case where t lies to the left of the poly-line Πy

14(s) (see Figures 7(b)).

Let us consider the poly-line Πy
23(t) = Πy

2(t) ⊕ Π−y
3 (t). Now, consider a horizontal line

segment �, that sweeps along vertical direction, keeping its two end-points on Πy
14(s) and

Πy
23(t) respectively. At each instance, if � is not intersected by any one of the members

in R, then we compute the length of the rectilinear path s � a → b � t, where the
path segments s � a and b � t are along Πy

14(s), and Πy
23(t) respectively. During this

computation, we maintain the minimum length path, and the corresponding horizontal
line segment connecting Πy

14(s) and Πy
23(t) in a temporary storage �∗ = [a∗, b∗]. At the

end of the sweep, the path s � a∗ → b∗ � t is reported.

t

s

Πy
1(s)

Π−y
4 (s)

(a)

s

t

(b)

Figure 7: Computation of shortest one-violation rectilinear path among obstacles

Theorem 5. The rectilinear shortest one-violation x-monotone path for a pair of points
s and t among a set of disjoint rectangular obstacles can be computed in O(n logn) time
in the worst case.

Proof. If the point t is to the right of Πy
14(s), then both the correctness and time complexity

results follow from de Rezende et al. [20]. If t is to the left of Πy
14(s), then a feasible one-

violation path consists of three parts P1, P2, P3, where P1 is a staircase path from s to a
point in S1 ∪ S4, P2 is a horizontal line segment directed from right to left, and P3 is a
staircase path from a point in S2 ∪ S3 to t. Such a path must intersect the left (staircase)
boundary of the region S1 ∪ S4 and the right (staircase) boundary of the region S2 ∪ S3.
The correctness follows from the fact that we have considered all such paths, and chosen
the one having the minimum length. Note that Πy

14(s), Π
y
23(t), and �∗ can be computed

in O(n log n) time by performing a plane sweep using a horizontal sweep line. Thus, the
result follows.

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6.2 Problem P2: two-violation rectilinear path

Lemma 11. For any set R of axis parallel rectangular obstacles and a pair of points
s, t ∈ R2 \ R, there always exists an xy-monotone path from s to t with at most one
violation in the horizontal direction and at most one violation in the vertical direction.

Proof. Let B be an axis-parallel rectangular box containing all the members of R, and let
o be its top-left corner. We compute a xy-monotone path Ψ1 from s up to a point b on
the top boundary of B in the region S1, and another (−x)(−y)-monotone path Ψ2 from
t up to a point c on the left boundary of B in the region S3. If x(s) < x(t) then these
two paths may or may not intersect; however if x(s) > x(t) then these paths will never
intersect. If Ψ1 and Ψ2 intersects at a point a, then the path s � a � t does not have
any violation. Otherwise, the path s � b → o → c � t has one horizontal violation edge
b → o and one vertical violation edge o → c.

6.2.1 Computation of shortest two-violation rectilinear path

As mentioned earlier, if the point t lies in the region S1 bounded by the staircases Πy
1(s)

and Πx
1(s), then the shortest path from s to t has no violation edge [20]. Thus, we now

concentrate on the case where t �∈ S1.

d
s

a

b

c

θ

t

(a)

t

s

θ
a

b

c

(b)

Figure 8: Demonstration of Lemma 12

Lemma 12. If the shortest two violation xy-monotone path contains exactly two violations
(one in both horizontal and vertical directions), then the violation edges are consecutive in
the path.

Proof. On the contrary, let the violation edges are not consecutive, and is of the form:
s � a → b � c → d � t, where s � a is a xy-monotone path, a → b is a horizontal
(or vertical) violation edge, b � c is a xy-monotone path, and c → d is a vertical (or
horizontal) violation edge, and d � t is a x-monotone path. Here, if the violation edges
intersect (at a point, say θ), then we can shorten the path using s � a → θ → d � t

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(see Figure 8(a)). If the violation edges do not intersect, then consider the regions S1 and
S3. Note that the first violation edge a → b emerges out of the region S1, and similarly,
the second violation edge c → d � t enters into the region S3. Observe that, in this case,
the path can be shortened and one of the violation edges can be removed by using part
of the boundaries Π−y

3 (s) or Π−x
3 (t) of the region S3. (For an illustration, consider Figure

8(b), where such a two violation path s � a → b � c → t is shown using solid lines, and
the corresponding shortened path s � a → b � θ � t is shown using dotted lines, where
θ � t is a xy-monotone path on the boundary of S3.)

By Lemma 12, the violation edges occur in pair. We now describe two types of violation
paths, where the violations are (a) a horizontal edge followed by a vertical edge (see Figure
9(a)) or (b) a vertical edge followed by a horizontal edge (see Figure 9(b)).

s

t

(a)

s

t

(b)

Figure 9: Minimum length two violation path - demonstration of Cases (a) and (b)

We now explain the method of generating the shortest two violation path of type (a). Let
Ψ1 be a xy-monotone path from s in the region S1, and Ψ2 be a (−x)(−y)-monotone path
from t in the region S3. As mentioned in Lemma 11, any L-path that connects Ψ1 and
Ψ2 produces a feasible xy-monotone path from s to t with two consecutive violation edges
- one in horizontal followed by the other one in the vertical direction. In order to have
the minimum length path among the possible paths of type (i) we will connect the left
boundary of S1 (i.e., Ψ1 = Πy

1(s)) and the left boundary of S3 (i.e. Ψ2 = Π−x
3 (t)) by an

L-path composed of a horizontal violation edge and a vertical violation edge. Thus, we
generate a sequence Φ1 of horizontal violation edges and a sequence Φ2 of vertical violation
edges (shown by blue horizontal lines and green vertical lines respectively, in Figure 10).
Each member of Φ1 (horizontal violation edge) originates from Ψ1, not intersected by any
member of R, and ends at the right boundary of a member of R or the left boundary
of B. These segments are generated by sweeping a horizontal line upwards from s or
t depending on which one is above9, and their right-end moves along Ψ1. During the
generation of these horizontal violation edges, we store only those which form a strictly
decreasing sequence with respect to the x-coordinates of their left end-points from bottom
to top. The reason is that, if a member of v ∈ Φ2 does not intersect a member h ∈ Φ1

with its left end-point at x = α, then it cannot intersect another member h� ∈ Φ1 above

9If t is above s, then any one-violation path, if exists, will be of smaller length than any two violation
path, and we can get an one-violation path of minimum length (if exists) as in Subsection 6.1.1.

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

h with left end-point at x > α. The generation of Φ1 needs a height-balanced binary
tree for storing the members of R encountered during the sweep at an instance of time in
order of their right boundaries. The generated segments in Φ1 are stored in the form of
a stack. Similarly, another sequence Φ2 of vertical violation edges are generated, which
are attached to Ψ2 and the y-coordinates of their top end-points are strictly decreasing
from left to right. The members of Φ2 are also stored in the form of a stack. Next, in a
linear scan over Φ1 and Φ2 we can identify a member Φ1 with minimum y-coordinate that
intersects a member of Φ2 with maximum x-coordinate. Let ab ∈ Φ1 and bc ∈ Φ2 be these
“sticks”. Thus, we have a two violation path s � a → b → c � t (see Figure 10, where
the L-path corresponding to the two violation edges are shown using bold red lines). The
entire process takes O(n log n) time.

s

t
Ψ1

Ψ2

L-path

ab

c

Figure 10: Generation of a two violation path in Case (a)

Similarly, we can compute the shortest path of type (b) by processing Ψ1 = Πx
1(s) and

Ψ2 = Π−y
3 (t). Finally, the shortest one among the paths obtained in Case (a) and Case

(b) is reported.

Theorem 6. The minimum length two violation xy-monotone path from s to t among a
set of disjoint rectangular obstacles can be computed in O(n logn) time.

7 Conclusion

In this paper, we introduced a new concept of shortest path with violations with an aim
to reduce the cost of the path. To the best of our knowledge this is the first attempt of
studying these variants of the classical geometric shortest path problems. We presented
an O(n3) time algorithm for computing a one-violation shortest path between a pair of
points inside a simple polygon. It will be interesting if a sub-cubic time algorithm for this
problem can be devised. Another interesting problem in this context is to compute the
shortest one-violation path map for point s, where the input is the simple polygon P and
the point s, and the output is a data structure which, for a given query point q ∈ P , can
report the length of the shortest one-violation path from s to q efficiently.

We also show that, for a given pair of points s and t in rectilinear polygon, the short-
est one-violation path from s to t can be reported in O(n logn) time. We define the

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

one-stretch violation shortest path problem between a pair of points in P , and devised an
algorithm that runs in O(n log n log log n) time. Here also one may consider the possibility
of having an O(n logn) time algorithm. Finally, we formulated the one and two violation
shortest rectilinear monotone path problems among a set of disjoint rectangular obstacles,
and proposed an O(n logn) time algorithm for both the versions of the problem. For an
environment with arbitrary polygonal obstacles, one can easily design a quadratic time
algorithm formulating the problem as a k-violation shortest path problem in a graph. Ob-
taining a sub-quadratic time algorithm, even for the shortest one-violation path problem,
in this geometric environment will be interesting.

Acknowledgements

The authors acknowledge Professor Haim Kaplan for discussion on some of the problems
presented in this paper. We thank both the referees for making numerous suggestions that
led to the improvement of the presentation of the paper.

References

[1] A. Aggarwal and M. Klawe. Applications of generalized matrix searching to geometric
algorithms. Discrete Applied Mathematics, 27(12):3–23, 1990.

[2] G. Bint, A. Maheshwari, and M. H. M. Smid. xy-monotone path existence queries in
a rectilinear environment. In Proc. CCCG, pages 35-40, 2012.

[3] J-L. De Carufel, C. Grimm, A. Maheshwari, and M. Smid, Minimizing the Continuous
Diameter when Augmenting Paths and Cycles with Shortcuts, 15th Scandinavian
Symposium and Workshop on Algorithmic Theory, Reykjavik, Iceland, June 2016.

[4] T. Chan, Low-dimensional linear programming with violations. SIAM Journal on
Computing, 34:879–893, 2005.

[5] B. Chazelle. Triangulating a simple polygon in linear time. Discrete & Computational
Geometry, 6:485-524, 1991.

[6] M. Farshi, P. Giannopoulos, and J. Gudmundsson. Improving the Stretch Factor of
a Geometric Network by Edge Augmentation, SIAM Jl. Computing 38(1): 226-240,
2008.

[7] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of ACM, 34(3):596-615, 1987.

[8] S. K. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.

[9] U. Große, J. Gudmundsson, C. Knauer, M. Smid, and F. Stehn. Fast Algorithms for
Diameter-Optimally Augmenting Paths. 42nd ICALP, LNCS 9134: 678-688, Kyoto,
Japan, July 2015.

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[10] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygons.
Journal of Computer and System Sciences, 39:126–152, 1989.

[11] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time al-
gorithm for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica, 2:209–233, 1987.

[12] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility
graphs. SIAM Journal on Computing 20(5): 888-910, 1991.

[13] J. Hershberger and J. Snoeyink. Computing the minimum length path in a given
homotopy class. Computational Geometry: Theory and Applications, 4:63-97, 1994.

[14] J. Hershberger and S. Suri. Matrix searching with the shortest-path metric. SIAM
Journal on Computing, 26(6):1612-1634, 1997.

[15] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Com-
puting, 12(1):28–35, 1983.

[16] C. Levcopoulos. Fast heuristics for minimum length rectangular partitions of poly-
gons. Symposium on Computational Geometry, pages 100–108, 1986.

[17] F. Li and R. Klette. Euclidean Shortest Paths - Exact or Approximate Algorithms,
Springer, 2011.

[18] J. Matoušek, On geometric optimization with few violated constraints. Discrete &
Computational Geometry, 14:365–384, 1995.

[19] J. S. B. Mitchell. Geometric shortest paths and network optimization. Handbook
of Computational Geometry, Elsevier Science Publishers B.V. North-Holland, pages
633–701, 1998.

[20] P. J. de Rezende, D. T. Lee and Y. F. Wu. Rectilinear shortest paths in the presence
of rectangular barriers. Discrete & Computational Geometry, 4:41–53, 1989.

[21] T. Ross and P. Widemayer, k-violation linear programming. Information Processing
Letters, 52(2):109–114, 1994.

[22] S. Schuierer. An optimal data structure for shortest rectilinear path queries in a
simple rectilinear polygon. International Journal of Computational Geometry & Ap-
plications, 6(2):205–226, 1996.

24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

