Solution to Exercise 14.15
 The parameters for the Generalized Leapfrog Theorem

Giri Narasimhan and Michiel Smid

February 23, 2007

1 The constraints

We are given real numbers t_{1}, t_{2}, such that

$$
\begin{equation*}
1<1-\phi+\phi t_{2}<t_{1}<t_{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=233 / 303 \tag{2}
\end{equation*}
$$

We also have the real constant $0<\alpha<1$, which is given in the Sparse Ball Theorem. Consider real numbers $\theta, \beta, \delta, \mu, a$, and h, and define

$$
\begin{gather*}
w:=\frac{1}{2}(\cos \theta-\sin \theta)-\frac{t_{2}-t_{1}+\delta}{2 \delta t_{2}}, \tag{3}\\
h^{\prime}:=h-\frac{2 \beta(2+h)}{1-2 \beta}, \tag{4}\\
a^{\prime}:=a-\frac{2 \beta(a+\sin \theta)}{1-2 \beta}, \tag{5}\\
\beta^{\prime}:=\frac{\beta(1+h)}{h+\cos \theta} \tag{6}\\
\delta^{\prime}:=\frac{\delta(h+\cos \theta)}{1+h} \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
\xi:=\frac{12(1+h)(3 a+\sin \theta)}{h^{\prime}-6 a-2 \sin \theta-8 \beta(1+h)-48 \beta(1+h)^{2}} . \tag{8}
\end{equation*}
$$

The parameters must be chosen, subject to the following constraints:

$$
\begin{equation*}
0<\theta<\pi / 4 \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& \frac{t_{2}-t_{1}}{t_{2}-1}<\delta<1, \tag{10}\\
& \cos \theta-\sin \theta>\frac{t_{2}-t_{1}+\delta}{\delta t_{2}}, \tag{11}\\
& 0<\delta<1 \text {, } \tag{12}\\
& \mu \geq \max \left(w,(1+a+h / 2+\sin \theta)\left(1+\frac{1}{\delta(1-2 \beta)}\right)\right), \tag{13}\\
& 0<\beta<\min \left(\delta, \cos \theta, \frac{h}{4(1+h)}, \frac{a}{4 a+2 \sin \theta}\right), \tag{14}\\
& 0<a<h<\frac{\cos \theta-\beta}{1+\beta}, \tag{15}\\
& h^{\prime}>6 a+2 \sin \theta+8 \beta(1+h), \tag{16}\\
& \beta(1+h)^{2}<\delta(h+\cos \theta)^{2}, \tag{17}\\
& \frac{\delta^{\prime}\left(1-\beta^{\prime}\right)}{2\left(1-\beta^{\prime}\right)+\delta^{\prime}\left(3-\beta^{\prime}\right)} \geq 1 / 6, \tag{18}\\
& h^{\prime}>6 a+2 \sin \theta+8 \beta(1+h)+48 \beta(1+h)^{2}, \tag{19}\\
& \mu \geq(a+1+h / 2)(1+1 / \delta)+(\xi+\sin \theta) / \delta, \tag{20}\\
& \xi<\cos \theta-h, \tag{21}\\
& \cos \theta>2(a+\sin \theta)+1 / t_{2}, \tag{22}\\
& \xi \leq \frac{3 t_{1}(1+h)+\left(t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta)\right)(\cos \theta-h)}{9 t_{2}(1+h)+t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta)} \\
& -\frac{3 t_{2}(1+h)(1+2 a+\sin \theta+2 \beta(a+\sin \theta))}{9 t_{2}(1+h)+t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta)}, \tag{23}\\
& \alpha a^{\prime}-\sin \theta-\frac{6 a \beta}{1-\beta} \geq \frac{1}{2} \alpha a, \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\beta<\frac{a^{\prime}}{2 a+a^{\prime}} . \tag{25}
\end{equation*}
$$

2 Choice for the parameters

We define

$$
\begin{gather*}
\beta:=\min \left(10^{-4}, \alpha / 49\right), \tag{26}\\
\delta:=99 / 100 \tag{27}\\
h:=1 / 100 \tag{28}\\
\mu:=5 \tag{29}\\
a:=\min \left(10^{-4}, \frac{t_{2}-1}{10^{6} t_{2}}, \frac{t_{1}-(1-\phi)-\phi t_{2}}{10^{5} t_{2}}\right), \tag{30}
\end{gather*}
$$

and choose θ, such that

$$
\begin{align*}
& 0<\theta<\pi / 4, \tag{31}\\
& \cos \theta>91 / 100, \tag{32}\\
& \sin \theta \leq \frac{t_{2}-1}{200 t_{2}}, \tag{33}\\
& \sin \theta \leq \alpha a / 8, \tag{34}\\
& \cos \theta>\frac{2}{10^{6}}+\frac{1}{100}+\left(1-\frac{2}{10^{6}}-\frac{1}{100}\right) \frac{1}{t_{2}}, \tag{35}\\
& \cos \theta-\sin \theta>\frac{t_{2}-t_{1}+\delta}{\delta t_{2}}, \tag{36}
\end{align*}
$$

and

$$
\begin{equation*}
\cos \theta \geq \frac{1375 a}{9 / 1000-18 a}+\frac{2}{9}+\frac{7}{9} \frac{1}{t_{2}}+\frac{101}{30} \frac{t_{2}-t_{1}}{t_{2}} . \tag{37}
\end{equation*}
$$

3 Verification of the constraints

3.1 Choosing θ as in (35) is possible

In order for (35) to be possible, we need

$$
0<\frac{2}{10^{6}}+\frac{1}{100}+\left(1-\frac{2}{10^{6}}-\frac{1}{100}\right) \frac{1}{t_{2}}<1 .
$$

It is clear that this quantity is strictly positive. It is strictly less than one, if and only if $1 / t_{2}<1$, which is true by (1).

3.2 Choosing θ as in (36) is possible

In order for (36) to be possible, we need

$$
0<\frac{t_{2}-t_{1}+\delta}{\delta t_{2}}+\sin \theta<1 .
$$

Since $t_{2}>t_{1}$ by (1), this quantity is strictly positive. Using (30) and (34), and the fact that $0<\alpha<1$, we have

$$
\frac{t_{2}-t_{1}+\delta}{\delta t_{2}}+\sin \theta<\frac{t_{2}-t_{1}+\delta}{\delta t_{2}}+\frac{t_{1}-(1-\phi)-\phi t_{2}}{10^{5} t_{2}} .
$$

By (1), we have $t_{1}-(1-\phi)-\phi t_{2}>0$. Also, by (27), we have $1 / 10^{5}<1 / \delta$. Hence,

$$
\frac{t_{2}-t_{1}+\delta}{\delta t_{2}}+\sin \theta<\frac{t_{2}-t_{1}+\delta}{\delta t_{2}}+\frac{t_{1}-(1-\phi)-\phi t_{2}}{\delta t_{2}}=\frac{(1-\phi)\left(t_{2}-1\right)}{\delta t_{2}}+\frac{1}{t_{2}} .
$$

Thus, it suffices to show that

$$
\frac{(1-\phi)\left(t_{2}-1\right)}{\delta t_{2}}+\frac{1}{t_{2}}<1,
$$

which is equivalent to

$$
\frac{(1-\phi)\left(t_{2}-1\right)}{\delta t_{2}}<\frac{t_{2}-1}{t_{2}},
$$

which is equivalent to

$$
1-\phi<\delta
$$

which is true by (2) and (27).

3.3 Choosing θ as in (37) is possible

In order for (37) to be possible, we need

$$
0<\frac{1375 a}{9 / 1000-18 a}+\frac{2}{9}+\frac{7}{9} \frac{1}{t_{2}}+\frac{101}{30} \frac{t_{2}-t_{1}}{t_{2}}<1 .
$$

Since $a \leq 10^{-4}$ (by (30)), and since $t_{2}>t_{1}$ (by (1)), this quantity is strictly positive. It is strictly less than one, if and only if

$$
\frac{1375 a}{9 / 1000-18 a}<\frac{7}{9} \frac{t_{2}-1}{t_{2}}-\frac{101}{30} \frac{t_{2}-t_{1}}{t_{2}}
$$

which is equivalent to

$$
1375 a<\frac{7}{9}(9 / 1000-18 a) \frac{t_{2}-1}{t_{2}}-\frac{101}{30}(9 / 1000-18 a) \frac{t_{2}-t_{1}}{t_{2}},
$$

which is equivalent to

$$
\left(1375+14 \frac{t_{2}-1}{t_{2}}-\frac{303}{5} \frac{t_{2}-t_{1}}{t_{2}}\right) a<\frac{7}{1000} \frac{t_{2}-1}{t_{2}}-\frac{303}{10^{4}} \frac{t_{2}-t_{1}}{t_{2}}
$$

which is equivalent to

$$
\left(1375+14-\frac{303}{5}-\frac{14}{t_{2}}+\frac{303}{5} \frac{t_{1}}{t_{2}}\right) a<\frac{7}{1000}-\frac{303}{10^{4}}-\frac{7}{1000} \frac{1}{t_{2}}+\frac{303}{10^{4}} \frac{t_{1}}{t_{2}} .
$$

Since $1375+14-303 / 5<1329$ and $7 / 1000-303 / 10^{4}=-233 / 10^{4}$, it suffices to show that

$$
\left(1329-\frac{14}{t_{2}}+\frac{303}{5} \frac{t_{1}}{t_{2}}\right) a<\frac{303}{10^{4}} \frac{t_{1}}{t_{2}}-\frac{7}{1000} \frac{1}{t_{2}}-\frac{233}{10^{4}} .
$$

Since $t_{1}<t_{2}$ (by (1)), we have

$$
1329-\frac{14}{t_{2}}+\frac{303}{5} \frac{t_{1}}{t_{2}}<1329+\frac{303}{5}<1400 .
$$

Thus, it suffices to show that

$$
1400 a<\frac{303}{10^{4}} \frac{t_{1}}{t_{2}}-\frac{7}{1000} \frac{1}{t_{2}}-\frac{233}{10^{4}} .
$$

Using (2), the right-hand side is equal to

$$
\frac{303}{10^{4}} \frac{t_{1}-(1-\phi)-\phi t_{2}}{t_{2}}
$$

Thus, it suffices to show that

$$
1400 a<\frac{303}{10^{4}} \frac{t_{1}-(1-\phi)-\phi t_{2}}{t_{2}} .
$$

But this inequality is satisfied, because of (30) and the fact that $1 / 10^{5}<\frac{303}{1400 \cdot 10^{4}}$.

3.4 Verification of (9)

Constraint (9) holds, because of (31).

3.5 Verification of (10)

It follows from (27) that $\delta<1$. Again using (27), the requirement

$$
\frac{t_{2}-t_{1}}{t_{2}-1}<\delta
$$

is equivalent to

$$
\frac{t_{2}-t_{1}}{t_{2}-1}<\frac{99}{100}
$$

which can be written as

$$
t_{2}<100 t_{1}-99
$$

By (1), we have

$$
t_{2}<\frac{t_{1}-(1-\phi)}{\phi}
$$

Thus, it suffices to show that

$$
\frac{t_{1}-(1-\phi)}{\phi}<100 t_{1}-99
$$

which can be written as

$$
(100-1 / \phi) t_{1}>(100-1 / \phi),
$$

which is true, because, by (1), $t_{1}>1$.

3.6 Verification of (11)

Constraint (11) holds, because of (36).

3.7 Verification of (12)

Constraint (12) follows from our choice of δ in (27).

3.8 Verification of (13)

Observe that $w>0$, because of (11). Using (3), (29), and the fact that $t_{2}>t_{1}$, we have

$$
w=\frac{1}{2}(\cos \theta-\sin \theta)-\frac{t_{2}-t_{1}+\delta}{2 \delta t_{2}} \leq 1 / 2 \leq 5=\mu
$$

Using (26), (27), (28), and (30), we have

$$
\begin{aligned}
(1+a+h / 2+\sin \theta)\left(1+\frac{1}{\delta(1-2 \beta)}\right) & \leq\left(1+\frac{1}{10^{4}}+\frac{1}{200}+1\right)\left(1+\frac{1}{\frac{99}{100}\left(1-2 \cdot 10^{-4}\right)}\right) \\
& \leq 5 \\
& =\mu .
\end{aligned}
$$

3.9 Verification of (14)

Using (26) and (27), we have $0<\beta<\delta$. Using (26) and (32), we have

$$
\cos \theta>91 / 100>10^{-4} \geq \beta
$$

Using (26) and (28), we have

$$
\frac{h}{4(1+h)}=1 / 404>10^{-4} \geq \beta
$$

The inequality

$$
\beta<\frac{a}{4 a+2 \sin \theta}
$$

is equivalent to

$$
(4 a+2 \sin \theta) \beta<a .
$$

Using (34) and the fact that $0<\alpha<1$, we have

$$
(4 a+2 \sin \theta) \beta \leq(4 a+\alpha a / 4) \beta<5 a \beta,
$$

which is less than a, because, by (26), $\beta<1 / 5$.

3.10 Verification of (15)

Using (28) and (30), we have $0<a \leq 10^{-4}<h$. The inequality

$$
h<\frac{\cos \theta-\beta}{1+\beta}
$$

is equivalent to

$$
\cos \theta>\beta+h(1+\beta)
$$

Using (26), (28), and (32), we have

$$
\beta+h(1+\beta) \leq 10^{-4}+\frac{1}{100}\left(1+10^{-4}\right)<91 / 100<\cos \theta
$$

3.11 Verification of (16)

The constraint (16) is implied by (19), which will be verified later.

3.12 Verification of (17)

Using (26) and (28), we have

$$
\beta(1+h)^{2} \leq \frac{1}{10^{4}}\left(1+\frac{1}{100}\right)^{2}=\frac{101^{2}}{10^{8}} .
$$

Thus, it suffices to show that

$$
\frac{101^{2}}{10^{8}}<\delta(h+\cos \theta)^{2} .
$$

Using (27) and (28), this is equivalent to

$$
\frac{101^{2}}{10^{8}}<\frac{99}{100}\left(\frac{1}{100}+\cos \theta\right)^{2}
$$

which is equivalent to

$$
\left(\frac{1}{100}+\cos \theta\right)^{2}>\frac{101^{2}}{99 \cdot 10^{6}} .
$$

Using (32), we have

$$
\left(\frac{1}{100}+\cos \theta\right)^{2}>\left(\frac{92}{100}\right)^{2}>\frac{101^{2}}{99 \cdot 10^{6}} .
$$

3.13 Verification of (18)

We first show that

$$
\begin{equation*}
\frac{9}{10} \delta<\delta^{\prime}<\delta \tag{38}
\end{equation*}
$$

The inequality $\delta^{\prime}<\delta$ follows from the definition of δ^{\prime} in (7). The inequality $\frac{9}{10} \delta<\delta^{\prime}$ is equivalent to

$$
\frac{9}{10}<\frac{h+\cos \theta}{1+h}
$$

which is equivalent to

$$
10 \cos \theta+h>9 .
$$

Using (32), we have

$$
10 \cos \theta+h>10 \cos \theta>\frac{91}{10}>9 .
$$

This proves that (38) holds.
In exactly the same way, using the definition of β^{\prime} in (6), we get

$$
\begin{equation*}
\frac{9}{10} \beta^{\prime}<\beta<\beta^{\prime} . \tag{39}
\end{equation*}
$$

Now we can show that constraint (18) is satisfied. Using (38) and (39), we get

$$
\frac{\delta^{\prime}\left(1-\beta^{\prime}\right)}{2\left(1-\beta^{\prime}\right)+\delta^{\prime}\left(3-\beta^{\prime}\right)} \geq \frac{\frac{9}{10} \delta\left(1-\frac{10}{9} \beta\right)}{2+3 \delta},
$$

which, using (26) and (27), is at least

$$
\frac{\frac{9}{10} \frac{99}{100}\left(1-\frac{10}{9} \cdot 10^{-4}\right)}{2+\frac{3.99}{100}} \geq 1 / 6 .
$$

3.14 Verification of (19)

Using the definition of h^{\prime} in (4), the constraint (19) can be written as

$$
h>\frac{2 \beta(2+h)}{1-2 \beta}+6 a+2 \sin \theta+8 \beta(1+h)+48 \beta(1+h)^{2} .
$$

Using (26), (28), (30), and (34), and the fact that $0<\alpha<1$, we get

$$
\begin{aligned}
& \frac{2 \beta(2+h)}{1-2 \beta}+6 a+2 \sin \theta+8 \beta(1+h)+48 \beta(1+h)^{2} \\
& \quad<\frac{\frac{2}{10^{4}}(2+1 / 100)}{1-\frac{2}{10^{4}}}+\frac{6}{10^{4}}+\frac{1}{4 \cdot 10^{4}}+\frac{8}{10^{4}}\left(1+\frac{1}{100}\right)+\frac{48}{10^{4}}\left(1+\frac{1}{100}\right)^{2}
\end{aligned}
$$

which is less than $1 / 100=h$.

3.15 Some inequalities for ξ

The value of ξ is defined in (8). We first prove that

$$
\begin{equation*}
\xi \leq \frac{25 a}{\frac{2}{1000}-4 a} . \tag{40}
\end{equation*}
$$

Using the definitions of h^{\prime} and ξ in (8) and (4), respectively, we have

$$
\xi=\frac{12(1+h)(3 a+\sin \theta)}{h-\frac{2 \beta(2+h)}{1-2 \beta}-6 a-2 \sin \theta-8 \beta(1+h)-48 \beta(1+h)^{2}} .
$$

Using (26), (28), (30), and (34), and the fact that $0<\alpha<1$, we have

$$
\begin{aligned}
\xi & \leq \frac{12 \cdot \frac{101}{100}(3 a+a / 8)}{\frac{1}{100}-\frac{2 \cdot 10^{-4} \cdot \frac{201}{100}}{1-2 \cdot 10^{-4}}-6 a-\frac{1}{4 \cdot 10^{4}}-\frac{8}{10^{4}} \cdot \frac{101}{100}-\frac{48}{10^{4}}\left(\frac{101}{100}\right)^{2}} \\
& =\frac{\frac{75}{2} a}{\frac{1}{101}-\frac{1}{10^{4}}\left(\frac{402}{101\left(1-2 \cdot 10^{-4}\right)}+\frac{100}{404}+8+\frac{48 \cdot 101}{100}\right)-\frac{600}{101} a} .
\end{aligned}
$$

Since

$$
\frac{1}{101}-\frac{1}{10^{4}}\left(\frac{402}{101\left(1-2 \cdot 10^{-4}\right)}+\frac{100}{404}+8+\frac{48 \cdot 101}{100}\right)>3 / 1000
$$

and since

$$
\frac{600}{101} a \leq 6 a,
$$

we have

$$
\xi \leq \frac{\frac{75}{2} a}{\frac{3}{1000}-6 a}=\frac{25 a}{\frac{2}{1000}-4 a},
$$

completing the proof of (40).
We next prove that

$$
\begin{equation*}
\xi \leq \frac{9}{110}\left(\cos \theta-1 / t_{2}\right)-\frac{1}{55} \frac{t_{2}-1}{t_{2}}-\frac{3(1+h)}{11} \frac{t_{2}-t_{1}}{t_{2}} . \tag{41}
\end{equation*}
$$

To prove this inequality, we observe that, using (40), it suffices to show that

$$
\frac{25 a}{\frac{2}{1000}-4 a} \leq \frac{9}{110}\left(\cos \theta-1 / t_{2}\right)-\frac{1}{55} \frac{t_{2}-1}{t_{2}}-\frac{3(1+h)}{11} \frac{t_{2}-t_{1}}{t_{2}},
$$

which is equivalent to (where we use the fact that $h=1 / 100$, see (28))

$$
\frac{25 a}{\frac{2}{1000}-4 a} \leq \frac{9}{110} \cos \theta-\frac{1}{55}-\left(\frac{9}{110}-\frac{1}{55}\right) \frac{1}{t_{2}}-\frac{303}{1100} \frac{t_{2}-t_{1}}{t_{2}},
$$

which is equivalent to

$$
\frac{1375 a}{\frac{9}{1000}-18 a} \leq \cos \theta-\frac{2}{9}-\frac{7}{9} \frac{1}{t_{2}}-\frac{101}{30} \frac{t_{2}-t_{1}}{t_{2}}
$$

which is true, because of (37).

3.16 Verification of (20)

Using (30) and (40), we get

$$
\xi \leq \frac{25 a}{\frac{2}{1000}-4 a} \leq \frac{25 \cdot 10^{-4}}{\frac{2}{1000}-4 \cdot 10^{-4}}=\frac{25}{16} .
$$

Thus, using (27), (28), and (30), we get

$$
\begin{aligned}
(a+1+h / 2)(1+1 / \delta)+(\xi+\sin \theta) / \delta & \leq\left(\frac{1}{10^{4}}+1+\frac{1}{200}\right)\left(1+\frac{100}{99}\right)+\frac{\frac{25}{16}+1}{99 / 100} \\
& =\left(\frac{1}{10^{4}}+1+\frac{1}{200}\right) \frac{199}{99}+\frac{100 \cdot 41}{99 \cdot 16} \\
& <5 \\
& =\mu .
\end{aligned}
$$

3.17 Verification of (21)

It follows from (41) that

$$
\xi \leq \frac{9}{110}
$$

Using (28) and (32), we get

$$
\xi+h \leq \frac{9}{110}+\frac{1}{100}<\frac{91}{100}<\cos \theta
$$

3.18 Verification of (22)

Using (30) and (33), we get

$$
\begin{aligned}
2(a+\sin \theta)+\frac{1}{t_{2}} & \leq \frac{2}{10^{6}} \frac{t_{2}-1}{t_{2}}+\frac{1}{100} \frac{t_{2}-1}{t_{2}}+\frac{1}{t_{2}} \\
& =\frac{2}{10^{6}}+\frac{1}{100}+\left(1-\frac{2}{10^{6}}-\frac{1}{100}\right) \frac{1}{t_{2}}
\end{aligned}
$$

which, by (35), is less than $\cos \theta$.

3.19 Verification of (23)

The constraint (23) is equivalent to

$$
\begin{array}{r}
\xi\left(9 t_{2}(1+h)+t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta)\right)+3 t_{2}(1+h)(1+2 a+\sin \theta+2 \beta(a+\sin \theta)) \\
\leq 3 t_{1}(1+h)+\left(t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta)\right)(\cos \theta-h) . \tag{42}
\end{array}
$$

Observe that

$$
t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta) \leq t_{2} .
$$

Using (26), (28), (30), and (33), we get

$$
\begin{aligned}
2 a+\sin \theta+2 \beta(a+\sin \theta) & \leq \frac{2}{10^{6}} \frac{t_{2}-1}{t_{2}}+\frac{1}{200} \frac{t_{2}-1}{t_{2}}+\frac{2}{10^{4}}\left(\frac{1}{10^{6}} \frac{t_{2}-1}{t_{2}}+\frac{1}{200} \frac{t_{2}-1}{t_{2}}\right) \\
& \leq \frac{1}{30(1+h)} \frac{t_{2}-1}{t_{2}}
\end{aligned}
$$

Using (28) and (32), we get

$$
\cos \theta-h \geq \frac{91}{100}-\frac{1}{100}=\frac{9}{10} .
$$

Hence, (42) will follow from the claim that
$\xi\left(9 t_{2}(1+h)+t_{2}\right)+3 t_{2}(1+h)+\frac{1}{10}\left(t_{2}-1\right) \leq 3 t_{1}(1+h)+\frac{9}{10}\left(t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta)\right)$.

Since, using (28), $9 t_{2}(1+h)+t_{2} \leq 11 t_{2}$, it suffices to show that

$$
11 \xi t_{2}+3 t_{2}(1+h)+\frac{1}{10}\left(t_{2}-1\right) \leq 3 t_{1}(1+h)+\frac{9}{10}\left(t_{2} \cos \theta-1-2 t_{2}(a+\sin \theta)\right)
$$

which is equivalent to

$$
11 \xi t_{2}+3\left(t_{2}-t_{1}\right)(1+h)+\frac{1}{10}\left(t_{2}-1\right)+\frac{18}{10} t_{2}(a+\sin \theta) \leq \frac{9}{10}\left(t_{2} \cos \theta-1\right)
$$

Using (30) and (33), we get

$$
\frac{18}{10} t_{2}(a+\sin \theta) \leq \frac{18}{10} t_{2}\left(\frac{1}{10^{6}} \frac{t_{2}-1}{t_{2}}+\frac{1}{200} \frac{t_{2}-1}{t_{2}}\right)=\left(\frac{18}{10^{7}}+\frac{9}{1000}\right)\left(t_{2}-1\right) \leq \frac{1}{10}\left(t_{2}-1\right) .
$$

Thus, it suffices to show that

$$
11 \xi t_{2}+3\left(t_{2}-t_{1}\right)(1+h)+\frac{1}{5}\left(t_{2}-1\right) \leq \frac{9}{10}\left(t_{2} \cos \theta-1\right)
$$

which is equivalent to

$$
\xi \leq \frac{9}{110}\left(\cos \theta-1 / t_{2}\right)-\frac{1}{55} \frac{t_{2}-1}{t_{2}}-\frac{3(1+h)}{11} \frac{t_{2}-t_{1}}{t_{2}},
$$

which we have shown to hold in (41).

3.20 Verification of (24)

We have to show that

$$
\frac{1}{2} \alpha a+\sin \theta+\frac{6 a \beta}{1-\beta} \leq \alpha a^{\prime}
$$

We know from (34) that

$$
\sin \theta \leq \alpha a / 8
$$

Using (26) and the fact that $0<\alpha<1$, we get

$$
48 \beta+\alpha \beta \leq 49 \beta \leq \alpha,
$$

which can be rewritten as $48 \beta \leq \alpha(1-\beta)$, which can be rewritten as

$$
\frac{\beta}{1-\beta} \leq \alpha / 48
$$

Thus, it suffices to show that

$$
\frac{1}{2} \alpha a+\frac{1}{8} \alpha a+\frac{1}{8} \alpha a \leq \alpha a^{\prime},
$$

which is equivalent to

$$
\begin{equation*}
\frac{3}{4} a \leq a^{\prime} \tag{43}
\end{equation*}
$$

Using the definition of a^{\prime} in (5), this is equivalent to

$$
a-\frac{2 \beta(a+\sin \theta)}{1-2 \beta} \geq \frac{3}{4} a,
$$

which is equivalent to

$$
\frac{2 \beta(a+\sin \theta)}{1-2 \beta} \leq \frac{1}{4} a .
$$

Using (34) and the fact that $0<\alpha<1$, we have

$$
\sin \theta \leq \alpha a / 8 \leq a / 8
$$

Thus, it suffices to show that

$$
\frac{2 \beta(a+a / 8)}{1-2 \beta} \leq \frac{1}{4} a,
$$

which is equivalent to

$$
\frac{\frac{9}{4} \beta}{1-2 \beta} \leq \frac{1}{4}
$$

which is equivalent to

$$
9 \beta \leq 1-2 \beta,
$$

which is equivalent to

$$
\beta \leq 1 / 11,
$$

which is true, because of (26).

3.21 Verification of (25)

We have to show that

$$
\beta<\frac{a^{\prime}}{2 a+a^{\prime}},
$$

which is equivalent to

$$
\left(2 a+a^{\prime}\right) \beta<a^{\prime} .
$$

We have seen in (43) that $3 a / 4 \leq a^{\prime}$. Also, the definition of a^{\prime} in (5) implies that $a^{\prime}<a$. Therefore, it suffices to show that

$$
(2 a+a) \beta<\frac{3}{4} a,
$$

which is equivalent to

$$
\beta<1 / 4,
$$

which is true, because of (26).

