Solution to Exercise 14.11 The parameters for the Leapfrog Theorem

Giri Narasimhan and Michiel Smid

February 23, 2007

1 The constraints

We are given real numbers $t>1$ and $0<\alpha<1$ (where α is the constant in the Sparse Ball Theorem). Consider real numbers $\theta, \beta, \delta, \mu, a$, and h, and define

$$
\begin{gather*}
w:=\frac{1}{2}(\cos \theta-\sin \theta-1 / t), \tag{1}\\
h^{\prime}:=h-\frac{2 \beta(2+h)}{1-2 \beta}, \tag{2}\\
a^{\prime}:=a-\frac{2 \beta(a+\sin \theta)}{1-2 \beta}, \tag{3}\\
\beta^{\prime}:=\frac{\beta(1+h)}{h+\cos \theta}, \tag{4}\\
\delta^{\prime}:=\frac{\delta(h+\cos \theta)}{1+h}, \tag{5}
\end{gather*}
$$

and

$$
\begin{equation*}
\xi:=\frac{12(1+h)(3 a+\sin \theta)}{h^{\prime}-6 a-2 \sin \theta-8 \beta(1+h)-48 \beta(1+h)^{2}} . \tag{6}
\end{equation*}
$$

The parameters must be chosen, subject to the following constraints:

$$
\begin{gather*}
0<\theta<\pi / 4 \tag{7}\\
\cos \theta-\sin \theta>1 / t \tag{8}\\
0<\delta<1 \tag{9}\\
\mu \geq \max \left(w,(1+a+h / 2+\sin \theta)\left(1+\frac{1}{\delta(1-2 \beta)}\right)\right), \tag{10}\\
0<\beta<\min \left(\delta, \cos \theta, \frac{h}{4(1+h)}, \frac{a}{4 a+2 \sin \theta}\right), \tag{11}
\end{gather*}
$$

$$
\begin{gather*}
0<a<h<\frac{\cos \theta-\beta}{1+\beta}, \tag{12}\\
h^{\prime}>6 a+2 \sin \theta+8 \beta(1+h), \tag{13}\\
\beta(1+h)^{2}<\delta(h+\cos \theta)^{2}, \tag{14}\\
\frac{\delta^{\prime}\left(1-\beta^{\prime}\right)}{2\left(1-\beta^{\prime}\right)+\delta^{\prime}\left(3-\beta^{\prime}\right)} \geq 1 / 6, \tag{15}\\
h^{\prime}>6 a+2 \sin \theta+8 \beta(1+h)+48 \beta(1+h)^{2}, \tag{16}\\
\mu \geq(a+1+h / 2)(1+1 / \delta)+(\xi+\sin \theta) / \delta, \tag{17}\\
\xi<\cos \theta-h, \tag{18}\\
\cos \theta>2(a+\sin \theta)+1 / t, \tag{19}\\
\xi \leq \frac{(t \cos \theta-1-2 t(a+\sin \theta))(\cos \theta-h)}{t \cos \theta-1-2 t(a+\sin \theta)+9 t(1+h)} \\
-\frac{3 t(1+h)(2 a+\sin \theta+2 \beta(a+\sin \theta))}{t \cos \theta-1-2 t(a+\sin \theta)+9 t(1+h)}, \tag{20}\\
\alpha a^{\prime}-\sin \theta-\frac{6 a \beta}{1-\beta} \geq \frac{1}{2} \alpha a, \tag{21}
\end{gather*}
$$

and

$$
\begin{equation*}
\beta<\frac{a^{\prime}}{2 a+a^{\prime}} . \tag{22}
\end{equation*}
$$

2 Choice for the parameters

We define

$$
\begin{gather*}
\beta:=\min \left(10^{-4}, \alpha / 49\right), \tag{23}\\
\delta:=99 / 100, \tag{24}\\
h:=1 / 100, \tag{25}\\
\mu:=5, \tag{26}\\
a:=\min \left(10^{-4}, \frac{t-1}{10^{6} t}\right), \tag{27}
\end{gather*}
$$

and choose θ, such that

$$
\begin{gather*}
0<\theta<\pi / 4 \tag{28}\\
\cos \theta>91 / 100 \tag{29}\\
\sin \theta \leq \frac{t-1}{200 t} \tag{30}\\
\sin \theta \leq \alpha a / 8 \tag{31}
\end{gather*}
$$

and

$$
\begin{equation*}
\cos \theta \geq 1+\frac{1375 a}{9 / 1000-18 a}-\frac{7}{9} \frac{t-1}{t} \tag{32}
\end{equation*}
$$

3 Verification of the constraints

In order for (32) to be possible, we need

$$
0<1+\frac{1375 a}{9 / 1000-18 a}-\frac{7}{9} \frac{t-1}{t}<1 .
$$

Since, by (27), $a \leq 10^{-4}$, we have $9 / 1000-18 a>0$. Since the expression can be written as

$$
\frac{1375 a}{9 / 1000-18 a}+\frac{2}{9}+\frac{7}{9 t},
$$

it follows that it is strictly positive. The requirement that it is less than one is equivalent to

$$
\frac{1375 a}{9 / 1000-18 a}<\frac{7}{9} \frac{t-1}{t} .
$$

Since, by (27), $a \leq 10^{-4}$, we have $9 / 1000-18 a>0$. Hence, we need

$$
1375 a<\frac{7}{9} \frac{t-1}{t}(9 / 1000-18 a)=\frac{7}{1000} \frac{t-1}{t}-14 a \frac{t-1}{t},
$$

which can be rewritten as

$$
\left(1375+14 \frac{t-1}{t}\right) a<\frac{7}{1000} \frac{t-1}{t} .
$$

Since $1375+14(t-1) / t \leq 1389$, it is sufficient to show that

$$
1389 a<\frac{7}{1000} \frac{t-1}{t},
$$

i.e.,

$$
a<\frac{7}{1000 \cdot 1389} \frac{t-1}{t} .
$$

The latter inequality holds, because, using (27),

$$
a \leq \frac{1}{10^{6}} \frac{t-1}{t}<\frac{7}{1000 \cdot 1389} \frac{t-1}{t} .
$$

3.1 Verification of (7)

Constraint (7) holds, because of (28).

3.2 Verification of (8)

Using (30) and (32), we have

$$
\cos \theta-\sin \theta>1-\frac{7}{9} \frac{t-1}{t}-\frac{t-1}{200 t}=\left(\frac{2}{9}-\frac{1}{200}\right)+\left(\frac{7}{9}+\frac{1}{200}\right) \frac{1}{t} .
$$

Thus, to show that constraint (8) holds, it suffices to show that

$$
\left(\frac{2}{9}-\frac{1}{200}\right)+\left(\frac{7}{9}+\frac{1}{200}\right) \frac{1}{t}>\frac{1}{t},
$$

which is equivalent to

$$
\left(\frac{2}{9}-\frac{1}{200}\right)>\left(\frac{2}{9}-\frac{1}{200}\right) \frac{1}{t}
$$

which holds, because $t>1$.

3.3 Verification of (9)

Constraint (9) holds, because of (24).

3.4 Verification of (10)

Using (1) and (26), we have

$$
w=\frac{1}{2}(\cos \theta-\sin \theta-1 / t) \leq 1 / 2 \leq 5=\mu .
$$

Using (23), (24), (25), and (27), we have

$$
\begin{aligned}
(1+a+h / 2+\sin \theta)\left(1+\frac{1}{\delta(1-2 \beta)}\right) & \leq\left(1+\frac{1}{10^{4}}+\frac{1}{200}+1\right)\left(1+\frac{1}{\frac{99}{100}\left(1-2 \cdot 10^{-4}\right)}\right) \\
& \leq 5 \\
& =\mu .
\end{aligned}
$$

3.5 Verification of (11)

Using (23) and (24), we have $0<\beta<\delta$. Using (23) and (29), we have

$$
\cos \theta>91 / 100>10^{-4} \geq \beta
$$

Using (23) and (25), we have

$$
\frac{h}{4(1+h)}=1 / 404>10^{-4} \geq \beta .
$$

The inequality

$$
\beta<\frac{a}{4 a+2 \sin \theta}
$$

is equivalent to

$$
(4 a+2 \sin \theta) \beta<a
$$

Using (31) and the fact that $0<\alpha<1$, we have

$$
(4 a+2 \sin \theta) \beta \leq(4 a+\alpha a / 4) \beta<5 a \beta
$$

which is less than a, because, by (23), $\beta<1 / 5$.

3.6 Verification of (12)

Using (25) and (27), we have $0<a \leq 10^{-4}<h$. The inequality

$$
h<\frac{\cos \theta-\beta}{1+\beta}
$$

is equivalent to

$$
\cos \theta>\beta+h(1+\beta)
$$

Using (23), (25), and (29), we have

$$
\beta+h(1+\beta) \leq 10^{-4}+\frac{1}{100}\left(1+10^{-4}\right)<91 / 100<\cos \theta
$$

3.7 Verification of (13)

The constraint (13) is implied by (16), which will be verified later.

3.8 Verification of (14)

Using (23) and (25), we have

$$
\beta(1+h)^{2} \leq \frac{1}{10^{4}}\left(1+\frac{1}{100}\right)^{2}=\frac{101^{2}}{10^{8}}
$$

Thus, it suffices to show that

$$
\frac{101^{2}}{10^{8}}<\delta(h+\cos \theta)^{2}
$$

Using (24) and (25), this is equivalent to

$$
\frac{101^{2}}{10^{8}}<\frac{99}{100}\left(\frac{1}{100}+\cos \theta\right)^{2}
$$

which is equivalent to

$$
\left(\frac{1}{100}+\cos \theta\right)^{2}>\frac{101^{2}}{99 \cdot 10^{6}}
$$

Using (29), we have

$$
\left(\frac{1}{100}+\cos \theta\right)^{2}>\left(\frac{92}{100}\right)^{2}>\frac{101^{2}}{99 \cdot 10^{6}}
$$

3.9 Verification of (15)

We first show that

$$
\begin{equation*}
\frac{9}{10} \delta<\delta^{\prime}<\delta \tag{33}
\end{equation*}
$$

The inequality $\delta^{\prime}<\delta$ follows from the definition of δ^{\prime} in (5). The inequality $\frac{9}{10} \delta<\delta^{\prime}$ is equivalent to

$$
\frac{9}{10}<\frac{h+\cos \theta}{1+h}
$$

which is equivalent to

$$
10 \cos \theta+h>9 .
$$

Using (29), we have

$$
10 \cos \theta+h>10 \cos \theta>\frac{91}{10}>9 .
$$

This proves that (33) holds.
In exactly the same way, using the definition of β^{\prime} in (4), we get

$$
\begin{equation*}
\frac{9}{10} \beta^{\prime}<\beta<\beta^{\prime} . \tag{34}
\end{equation*}
$$

Now we can show that constraint (15) is satisfied. Using (33) and (34), we get

$$
\frac{\delta^{\prime}\left(1-\beta^{\prime}\right)}{2\left(1-\beta^{\prime}\right)+\delta^{\prime}\left(3-\beta^{\prime}\right)} \geq \frac{\frac{9}{10} \delta\left(1-\frac{10}{9} \beta\right)}{2+3 \delta},
$$

which, using (23) and (24), is at least

$$
\frac{\frac{9}{10} \frac{99}{100}\left(1-\frac{10}{9} \cdot 10^{-4}\right)}{2+\frac{3.99}{100}} \geq 1 / 6
$$

3.10 Verification of (16)

Using the definition of h^{\prime} in (2), the constraint (16) can be written as

$$
h>\frac{2 \beta(2+h)}{1-2 \beta}+6 a+2 \sin \theta+8 \beta(1+h)+48 \beta(1+h)^{2} .
$$

Using (23), (25), (27), and (31), and the fact that $0<\alpha<1$, we get

$$
\begin{aligned}
& \frac{2 \beta(2+h)}{1-2 \beta}+6 a+2 \sin \theta+8 \beta(1+h)+48 \beta(1+h)^{2} \\
& \quad<\frac{\frac{2}{10^{4}}(2+1 / 100)}{1-\frac{2}{10^{4}}}+\frac{6}{10^{4}}+\frac{1}{4 \cdot 10^{4}}+\frac{8}{10^{4}}\left(1+\frac{1}{100}\right)+\frac{48}{10^{4}}\left(1+\frac{1}{100}\right)^{2}
\end{aligned}
$$

which is less than $1 / 100=h$.

3.11 Some inequalities for ξ

The value of ξ is defined in (6). We first prove that

$$
\begin{equation*}
\xi \leq \frac{25 a}{\frac{2}{1000}-4 a} \tag{35}
\end{equation*}
$$

Using the definitions of h^{\prime} and ξ in (6) and (2), respectively, we have

$$
\xi=\frac{12(1+h)(3 a+\sin \theta)}{h-\frac{2 \beta(2+h)}{1-2 \beta}-6 a-2 \sin \theta-8 \beta(1+h)-48 \beta(1+h)^{2}} .
$$

Using (23), (25), (27), and (31), and the fact that $0<\alpha<1$, we have

$$
\begin{aligned}
\xi & \leq \frac{12 \cdot \frac{101}{100}(3 a+a / 8)}{\frac{1}{100}-\frac{2 \cdot 10^{-4 \cdot \frac{201}{100}}}{1-2 \cdot 10^{-4}}-6 a-\frac{1}{4 \cdot 10^{4}}-\frac{8}{10^{4}} \cdot \frac{101}{100}-\frac{48}{10^{4}}\left(\frac{101}{100}\right)^{2}} \\
& =\frac{\frac{75}{2} a}{\frac{1}{101}-\frac{1}{10^{4}}\left(\frac{402}{101\left(1-2 \cdot 10^{-4}\right)}+\frac{100}{404}+8+\frac{48 \cdot 101}{100}\right)-\frac{600}{101} a}
\end{aligned}
$$

Since

$$
\frac{1}{101}-\frac{1}{10^{4}}\left(\frac{402}{101\left(1-2 \cdot 10^{-4}\right)}+\frac{100}{404}+8+\frac{48 \cdot 101}{100}\right)>3 / 1000
$$

and since

$$
\frac{600}{101} a \leq 6 a,
$$

we have

$$
\xi \leq \frac{\frac{75}{2} a}{\frac{3}{1000}-6 a}=\frac{25 a}{\frac{2}{1000}-4 a},
$$

completing the proof of (35).
We next prove that

$$
\begin{equation*}
\xi \leq \frac{9}{110}(\cos \theta-1 / t)-\frac{1}{55} \frac{t-1}{t} . \tag{36}
\end{equation*}
$$

To prove this inequality, we observe that, using (35), it suffices to show that

$$
\frac{25 a}{\frac{2}{1000}-4 a} \leq \frac{9}{110}(\cos \theta-1 / t)-\frac{1}{55} \frac{t-1}{t},
$$

which is equivalent to

$$
\cos \theta \geq \frac{110}{9} \frac{25 a}{\frac{2}{1000}-4 a}+\frac{1}{t}+\frac{110}{9} \frac{1}{55} \frac{t-1}{t}=1+\frac{1375 a}{9 / 1000-18 a}-\frac{7}{9} \frac{t-1}{t},
$$

which is true, because of (32).

3.12 Verification of (17)

Using (27) and (35), we get

$$
\xi \leq \frac{25 a}{\frac{2}{1000}-4 a} \leq \frac{25 \cdot 10^{-4}}{\frac{2}{1000}-4 \cdot 10^{-4}}=\frac{25}{16}
$$

Thus, using (24), (25), and (27), we get

$$
\begin{aligned}
(a+1+h / 2)(1+1 / \delta)+(\xi+\sin \theta) / \delta & \leq\left(\frac{1}{10^{4}}+1+\frac{1}{200}\right)\left(1+\frac{100}{99}\right)+\frac{\frac{25}{16}+1}{99 / 100} \\
& =\left(\frac{1}{10^{4}}+1+\frac{1}{200}\right) \frac{199}{99}+\frac{100 \cdot 41}{99 \cdot 16} \\
& <5 \\
& =\mu
\end{aligned}
$$

3.13 Verification of (18)

It follows from (36) that

$$
\xi \leq \frac{9}{110}
$$

Using (25) and (29), we get

$$
\xi+h \leq \frac{9}{110}+\frac{1}{100}<\frac{91}{100}<\cos \theta .
$$

3.14 Verification of (19)

Using (27) and (30), we get

$$
\begin{aligned}
2(a+\sin \theta)+\frac{1}{t} & \leq \frac{2}{10^{6}} \frac{t-1}{t}+\frac{1}{100} \frac{t-1}{t}+\frac{1}{t} \\
& \leq \frac{t-1}{9} \frac{1}{t}+\frac{1}{t} \\
& =1-\frac{7}{9} \frac{t-1}{t}
\end{aligned}
$$

which, by (32), is less than $\cos \theta$.

3.15 Verification of (20)

The constraint (20) is equivalent to

$$
\begin{align*}
\xi(t \cos \theta-1-2 t(a+\sin \theta)+9 t(1+h)) & +3 t(1+h)(2 a+\sin \theta+2 \beta(a+\sin \theta)) \\
\leq & (t \cos \theta-1-2 t(a+\sin \theta))(\cos \theta-h) . \tag{37}
\end{align*}
$$

Observe that

$$
t \cos \theta-1-2 t(a+\sin \theta) \leq t
$$

Using (23), (25), (27), and (30), we get

$$
\begin{aligned}
2 a+\sin \theta+2 \beta(a+\sin \theta) & \leq \frac{2}{10^{6}} \frac{t-1}{t}+\frac{1}{200} \frac{t-1}{t}+\frac{2}{10^{4}}\left(\frac{1}{10^{6}} \frac{t-1}{t}+\frac{1}{200} \frac{t-1}{t}\right) \\
& \leq \frac{1}{30(1+h)} \frac{t-1}{t} .
\end{aligned}
$$

Using (25) and (29), we get

$$
\cos \theta-h \geq \frac{91}{100}-\frac{1}{100}=\frac{9}{10} .
$$

Hence, (37) will follow from the claim that

$$
\xi(t+9 t(1+h))+\frac{1}{10}(t-1) \leq \frac{9}{10}(t \cos \theta-1-2 t(a+\sin \theta)) .
$$

Since, using (25), $t+9 t(1+h) \leq 11 t$, it suffices to show that

$$
11 \xi t+\frac{1}{10}(t-1) \leq \frac{9}{10}(t \cos \theta-1-2 t(a+\sin \theta))
$$

which is equivalent to

$$
11 \xi t+\frac{1}{10}(t-1)+\frac{18}{10} t(a+\sin \theta) \leq \frac{9}{10}(t \cos \theta-1) .
$$

Using (27) and (30), we get

$$
\frac{18}{10} t(a+\sin \theta) \leq \frac{18}{10} t\left(\frac{1}{10^{6}} \frac{t-1}{t}+\frac{1}{200} \frac{t-1}{t}\right)=\left(\frac{18}{10^{7}}+\frac{9}{1000}\right)(t-1) \leq \frac{1}{10}(t-1) .
$$

Thus, it suffices to show that

$$
11 \xi t+\frac{1}{5}(t-1) \leq \frac{9}{10}(t \cos \theta-1)
$$

which is equivalent to

$$
\xi \leq \frac{9}{110}(\cos \theta-1 / t)-\frac{1}{55} \frac{t-1}{t},
$$

which we have shown to hold in (36).

3.16 Verification of (21)

We have to show that

$$
\frac{1}{2} \alpha a+\sin \theta+\frac{6 a \beta}{1-\beta} \leq \alpha a^{\prime}
$$

We know from (31) that

$$
\sin \theta \leq \alpha a / 8
$$

Using (23) and the fact that $0<\alpha<1$, we get

$$
48 \beta+\alpha \beta \leq 49 \beta \leq \alpha,
$$

which can be rewritten as $48 \beta \leq \alpha(1-\beta)$, which can be rewritten as

$$
\frac{\beta}{1-\beta} \leq \alpha / 48
$$

Thus, it suffices to show that

$$
\frac{1}{2} \alpha a+\frac{1}{8} \alpha a+\frac{1}{8} \alpha a \leq \alpha a^{\prime}
$$

which is equivalent to

$$
\begin{equation*}
\frac{3}{4} a \leq a^{\prime} \tag{38}
\end{equation*}
$$

Using the definition of a^{\prime} in (3), this is equivalent to

$$
a-\frac{2 \beta(a+\sin \theta)}{1-2 \beta} \geq \frac{3}{4} a,
$$

which is equivalent to

$$
\frac{2 \beta(a+\sin \theta)}{1-2 \beta} \leq \frac{1}{4} a .
$$

Using (31) and the fact that $0<\alpha<1$, we have

$$
\sin \theta \leq \alpha a / 8 \leq a / 8
$$

Thus, it suffices to show that

$$
\frac{2 \beta(a+a / 8)}{1-2 \beta} \leq \frac{1}{4} a,
$$

which is equivalent to

$$
\frac{\frac{9}{4} \beta}{1-2 \beta} \leq \frac{1}{4}
$$

which is equivalent to

$$
9 \beta \leq 1-2 \beta
$$

which is equivalent to

$$
\beta \leq 1 / 11
$$

which is true, because of (23).

3.17 Verification of (22)

We have to show that

$$
\beta<\frac{a^{\prime}}{2 a+a^{\prime}},
$$

which is equivalent to

$$
\left(2 a+a^{\prime}\right) \beta<a^{\prime}
$$

We have seen in (38) that $3 a / 4 \leq a^{\prime}$. Also, the definition of a^{\prime} in (3) implies that $a^{\prime}<a$. Therefore, it suffices to show that

$$
(2 a+a) \beta<\frac{3}{4} a
$$

which is equivalent to

$$
\beta<1 / 4,
$$

which is true, because of (23).

