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Abstract. Let (S,d) be a finite metric space, where each element p ∈ S has a non-negative weight
w(p). We study spanners for the set S with respect to the following weighted distance function:

dw(p, q) =



0 if p = q,
w(p) + d(p, q) + w(q) if p 6= q.

We present a general method for turning spanners with respect to the d-metric into spanners with
respect to the dw-metric. For any given ε > 0, we can apply our method to obtain (5 + ε)-spanners
with a linear number of edges for three cases: points in Euclidean space R

d, points in spaces of bounded
doubling dimension, and points on the boundary of a convex body in R

d where d is the geodesic distance
function.
We also describe an alternative method that leads to (2 + ε)-spanners for weighted point points in R

d

and for points on the boundary of a convex body in R
d. The number of edges in these spanners is

O(n log n). This bound on the stretch factor is nearly optimal: in any finite metric space and for any
ε > 0, it is possible to assign weights to the elements such that any non-complete graph has stretch
factor larger than 2 − ε.

1 Introduction

Motivation. Networks play a central role in numerous applications, and the design of good networks is
therefore an important topic of study. In general, a good network has certain desirable properties while not
being too expensive. In many applications this means one wants a network providing short paths between
its nodes, while not containing too many edges. This leads to the concept of spanners, as defined next in the
geometric setting.

Let G = (S, E) be a geometric graph on a set S of n points in R
d. That is, G is an edge-weighted

graph where the weight of an edge (p, q) ∈ E is equal to |pq|, the Euclidean distance between p and q. The
distance in G between two points p and q, denoted by dG(p, q), is defined as the length of a shortest (that
is, minimum-weight) path from p to q in G. The graph G is called a (geometric) t-spanner, for some t > 1, if
for any two points p, q ∈ S we have dG(p, q) 6 t · |pq|. The smallest t for which G is a t-spanner is called the
stretch factor (or dilation, or spanning ratio) of G and the number of edges of G is called its size.

Geometric spanners have been studied extensively over the past decade. It has been shown that for any
set of n points in R

d and any ε > 0, there is a (1 + ε)-spanner with only O(n/εd−1) edges—see the recent
book by Narasimhan and Smid [17] for this and many other results on spanners. Instead of considering points
in Euclidean space, one can also consider points in some other metric space. Recently the notion of doubling
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dimension [5, 13, 16] has received considerable attention [2, 15]. The doubling dimension of a metric space
(S,d) is defined as follows. If p is a point of S and R > 0 is a real number, then the d-ball with center p
and radius R is the set {q ∈ S : d(p, q) 6 R}. The doubling dimension of (S,d) is the smallest real number
d such that the following is true: For every real number R > 0, every d-ball of radius R can be covered by
at most 2d d-balls of radius R/2.

As it turns out, results similar to the Euclidean setting are possible when the doubling dimension of the
metric space is bounded by a constant d: in this case there is a (1 + ε)-spanner with n/εO(d) edges [15, 19].

Sometimes the cost of traversing a path in a network is not only determined by the lengths of the edges
on the path, but also by delays occurring at the nodes on the path: in a (large-scale) road network a node
may represent a town and entering and leaving the town will take time, in a computer network a node may
need some time to forward a packet to the next node on the path, and so on. The goal of our paper is to
study the concept of spanners in this setting.

Problem statement. Let S be a set of n elements—we will refer to the elements as points from now on—and
let d be a metric on S. Assume each point p ∈ S has a non-negative weight, denoted by w(p). We now define
a new distance function on S, denoted by dw, as follows.

dw(p, q) =

{

0 if p = q,
w(p) + d(p, q) + w(q) if p 6= q.

For a graph G = (S, E) and two points p and q in S, we denote by dG,w(p, q) the length of a shortest path
in G between p and q, where edge lengths are measured using the distance function dw; if p = q, then we
define dG,w(p, q) = 0. For a real number t > 1, we say that G is a t-spanner for the weighted point set S,
if for any two points p and q in S we have dG,w(p, q) 6 t · dw(p, q). We want to compute a t-spanner for
the weighted point set S having few edges and with a small stretch factor. Unfortunately our metric space
(S,dw) does not necessarily have bounded doubling dimension, even if the underlying metric space (S,d)
has bounded doubling dimension. A simple example is a set S of n points inside a unit disk in the plane,
each having unit weight, and when d is the Euclidean distance function. Then the doubling dimension of the
metric space (S,dw) will be Θ(log n). This leads us to the main question we want to answer: Is it possible
to obtain spanners for weighted point sets with constant stretch factor—that is, stretch factor independent
of n, but also independent of the weights of the points—and a near-linear number of edges?

Recently Bose et al. [7] also studied spanners for weighted points. More precisely, they consider points in
the plane with positive weights and then define the distance between two points p, q as |pq|−w(p)−w(q). The
difference between their setting and our setting is thus that they subtract the weights from the Euclidean
distance, whereas we add the weights (which in the applications mentioned above is more natural). This is,
in fact, a fundamental difference: Bose et al. show (under the assumption that the distance between any pair
of points is non-negative) that in their setting there exists a (1 + ε)-spanner with O(n/ε) edges, while our
lower bounds (see below) imply that such a result is impossible in our setting.

Our results. We present two methods for computing spanners for weighted point set. The first method is
described in Section 2. It essentially shows that whenever there is a good spanner for the metric space (S,d),
there is also a good spanner for the metric space (S,dw). This is done by clustering the points in a suitable
way, computing a spanner in the d-metric on the cluster centers, and then connecting each point to its cluster
center. We apply our method to obtain, for any 0 < ε < 1, (5 + ε)-spanners for weighted point sets in R

d

and in spaces of doubling dimension d, with O(n/εd) and n/εO(d) edges, respectively.
We also apply our method to points on the boundary of a convex body in R

d, where distances are geodesic
distances along the body’s boundary. We give a simple and efficient algorithm for computing a well-separated
pair decomposition for this metric—we believe this result is interesting in its own right—which proves the
existence of a (1+ε)-spanner with O(n/εd) edges. When the points are weighted, we can then use our general
method to get a (5 + ε)-spanner for weighted point sets with O(n/εd) edges.

Our second method is described in Section 3. It applies to spaces of bounded doubling dimension for which
a semi-separated pair decomposition [1, 20] can be constructed. It leads to spanners with a better stretch
factor than our first method, but the size of the spanner is larger. In particular, it leads to (2 + ε)-spanners
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with (n/εO(d)) log n edges, for points in R
d and for points on the boundary of a convex body in R

d. We also
show that the bound on the stretch factor is nearly optimal: in any finite metric space and for any ε > 0, it
is possible to assign weights to the points such that any non-complete graph has stretch factor larger than
2 − ε.

2 A Spanner Construction Based on Clustering

Let (S,d) be a finite metric space and let n denote the number of points in S. We assume that each point
p ∈ S has a real weight w(p) > 0. We will show that if we can find a good spanner for S in the d-metric, we
can also find a good spanner for S in the dw-metric.

The main idea is to partition S into clusters, where each cluster has a designated point as its cluster
center. The clusters have the following two properties: First, the d-distances and dw-distances between any
two centers are approximately equal. Second, for each point p in the cluster with center c, the distance d(p, c)
is O(w(p)).

In the second step, a t-spanner, based on the distance function d, is constructed for the set of cluster
centers. Each point p which is not a cluster center is connected by an edge to the center of the cluster that
p belongs to. As we will see, the resulting graph is a O(t)-spanner for the weighted point set S.

In this section, we will show that, for some specific metric spaces, we obtain a (5+ε)-spanner for weighted
point sets having n/εO(d) edges.

Clusterings for spanners of weighted point sets. We start by stating more precisely the properties we require
from our clustering. Let k1 and k2 be two parameters, with k1 > 0 and k2 > 1. Define a (k1, k2)-clustering of
S to be a partitioning of S into a collection {C1, ..., Cm} of clusters, each with a center denoted by center(Ci),
such that the following three conditions hold:

(I) for every 1 6 i 6 m and for all p ∈ Ci we have: w(center(Ci)) 6 w(p);
(II) for every 1 6 i 6 m and for all p ∈ Ci we have: d(center(Ci), p) 6 k1 · w(p);

(III) for every 1 6 i, j 6 m we have:

dw(center(Ci), center(Cj)) 6 k2 · d(center(Ci), center(Cj)).

Later we will show how to find such a clustering. But first we show how to use such a clustering to obtain a
spanner for S in the dw-metric.

Let {C1, C2, . . . , Cm} be a (k1, k2)-clustering of S, and let ci = center(Ci). Let C = {c1, c2, . . . , cm}
denote the set of cluster centers, and let G1 = (C, E1) be a t-spanner of the set C in the d-metric. Finally,
let E2 = {(ci, p) : 1 6 i 6 m and p ∈ Ci and p 6= ci}. In other words, E2 contains the edges connecting
the points in each cluster to the center of that cluster. The next lemma states that augmenting G1 with the
edges in E2 gives a spanner in the dw-metric.

Lemma 1. The graph G = (S, E1∪E2) is a t′-spanner in the dw-metric, where t′ = max(2+k1+k1k2t, k2t).

Proof. Let p, q be two distinct points in S. We must show that dG,w(p, q) 6 t′ · dw(p, q). Let Ci and Cj

be the clusters containing p and q, respectively, and consider ci = center(Ci) and cj = center(Cj). (It can
happen that i = j, but this will not invalidate the coming argument.) Note that either p = ci or (p, ci) is an
edge in G; similarly q = cj or (q, cj) is an edge in G. Hence,

dG,w(p, q) = dw(p, ci) + dG,w(ci, cj) + dw(cj , q)

= (w(p)+d(p, ci)+w(ci))+dG,w(ci, cj)+(w(cj)+d(cj, q)+w(q))

6 (2 + k1) · w(p) + dG,w(ci, cj) + (2 + k1) · w(q),

where the last inequality follows from properties (I) and (II) of the clustering. Now consider the shortest path
in G1 from ci to cj in the d-metric. By property (III) the length of every link on this path—and, hence, its total
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length—increases by at most a factor k2 when we measure its length in the dw-metric. Since G1 is a t-spanner
for C in the d-metric, we thus have
dG,w(ci, cj) 6 k2 · dG1(ci, cj) 6 k2t · d(ci, cj). Finally, we observe that

d(ci, cj) 6 d(ci, p) + d(p, q) + d(q, cj) 6 k1 · w(p) + d(p, q) + k1 · w(q).

Combing this with our two earlier derivations, we get

dG,w(p, q)6(2 + k1) · w(p) + dG,w(ci, cj) + (2 + k1) · w(q)

6(2 + k1) · w(p) + k2t · d(ci, cj) + (2 + k1) · w(q)

6(2+k1) · w(p)+k2t · (k1 · w(p)+d(p, q)+k1 · w(q))+(2+k1) · w(q)

=(2 + k1 + k1k2t) · w(p) + k2t · d(p, q) + (2 + k1 + k1k2t) · w(q)

6max(2 + k1 + k1k2t, k2t) · (w(p) + d(p, q) + w(q))

=max(2 + k1 + k1k2t, k2t) · dw(p, q).

Computing good clusterings and spanners. The following algorithm takes as input the weighted set S and
two real numbers k and ε > 0, and computes a clustering {C1, . . . , Cm} of S.

1. Sort the points of S in non-decreasing order of their weight, and let p1, p2, . . . , pn be the sorted sequence
(ties are broken arbitrarily).

2. Initialize the first cluster C1: set C1 = {p1} and c1 = center(C1) = p1. Initialize the set of cluster centers:
C = {p1}. Set m = 1.

3. For i = 2 to n, do the following:
(a) Compute an index j with 1 6 j 6 m such that cj is a (1 + ε)-approximate nearest-neighbor of pi in

the set C, in the d-metric. (Thus, d(pi, cj) is at most 1 + ε times the d-distance between pi and the
point in C that is closest to pi.) Observe that we use approximate nearest neighbor instead of the
exact nearest neighbor to improve the efficiency of the algorithm, see Theorem 1.

(b) If d(cj , pi) 6 k · w(pi), then set Cj = Cj ∪ {pi}. Otherwise, start a new cluster: set m = m + 1, set
Cm = {pi} and cm = center(Cm) = pi, and set C = C ∪ Cm.

4. Return the collection {C1, . . . , Cm} of clusters.

Lemma 2. The algorithm above computes a (k, 1 + 2(1+ε)
k )-clustering of S.

Proof. Since we treat the points in order of increasing weight and the first point put into a cluster is its
center, we have w(cj) 6 w(p) for every cluster Cj and point p ∈ Cj . Moreover, by step 3 we only put a point
p in a cluster Cj if d(center(Cj), p) 6 k · w(p). Hence, conditions (I) and (II) are satisfied.

To prove condition (III), consider two distinct cluster centers c and c′. Assume without loss of generality
that c was added to C before c′. Then it follows from the algorithm that w(c) 6 w(c′). Consider the iteration
of the for-loop in which pi = c′, and consider the set C at the beginning of this iteration. Observe that c ∈ C.
Let cj be the (1 + ε)-approximate nearest-neighbor of c′ in C that is computed by the algorithm. Since c′ is
added to C, we have d(cj , c

′) > k · w(c′). Let c∗ be the exact nearest-neighbor of c′ in C. Then, since c ∈ C,
d(cj , c

′) 6 (1 + ε) · d(c∗, c′) 6 (1 + ε) · d(c, c′). It follows that

dw(c, c′) = w(c) + d(c, c′) + w(c′) 6 d(c, c′) + 2 · w(c′)

< d(c, c′) +
2

k
· d(cj , c

′) 6

(

1 +
2(1 + ε)

k

)

· d(c, c′).

By combining Lemmas 1 and 2, we obtain the following result.

Theorem 1. Let t > 1 be a parameter, and let (S,d) be a metric space with n weighted points such that the
following holds:
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– For any subset S′ ⊆ S with m points, we can compute in Tsp(m) time a t-spanner for S′ in the d-metric
with Esp(m) edges, where Tsp and Esp are non-decreasing functions.

– For any ε > 0 there is a semi-dynamic (insertions-only) data structure for (1 + ε)-approximate nearest-
neighbor queries in the d-metric for S, such that both insertions and queries can be done in Tnn(ε, n)
time, where the function Tnn is non-decreasing in n.

Then we can construct for any ε > 0 a t′-spanner for S in the dw-metric with O(Esp(n)) edges and t′ =
3t + 2 + 2ε(t + 1). The construction can be done in O(n log n + Tsp(n) + n · Tnn(ε, n)) time.

Proof. We run the clustering algorithm described above with k = t/(t + 1). By Lemma 2 it produces a
(k1, k2)-clustering with k1 = t/(t+1) and k2 = 1+2(1+ε)(t+1)/t. Using the data structure for approximate
nearest-neighbor queries, the clustering algorithm can be implemented to run in O(n log n + n · Tnn(ε, n))
time.

Next we compute a t-spanner in the d-metric on the set C of cluster centers of the computed cluster-
ing. If |C| = m, this takes Tsp(m) 6 Tsp(n) time and produces a spanner G1 with Esp(m) 6 Esp(n) edges.
To this spanner we add the set E2 of edges connecting each point to its cluster center. This takes O(n)
time, and adds another n − m edges. Hence, the total number of edges is at most Esp(n) + n − m, which
is O(Esp(n)), since Esp(n) > n − 1. This proves the time bound and the bound on the number of edges.
The bound on the stretch factor follows by plugging k1 = t/(t+1) and k2 = 1+2(1+ε)(t+1)/t in Lemma 1.

Applications: Euclidean spaces and spaces of bounded doubling dimension. Theorem 1 can immediately be
used to obtain spanners for weighted point sets in Euclidean spaces and metric spaces of bounded doubling
dimension.

Corollary 1. (i) Given a set S of n points in R
d, each having a non-negative weight, and given a real

number 0 < ε < 1, we can construct a (5 + ε)-spanner of the weighted point set S having O(n/εd) edges
in O((n/εd) log n) time.

(ii) Given a metric space (S,d) of constant doubling dimension d, where S is a set of size n, and in which
each point of S has a non-negative real weight, and given a real number 0 < ε < 1, we can construct a
(5 + ε)-spanner of the weighted point set S having n/εO(d) edges in O(n log n) + n/εO(d) time.

Proof. Callahan and Kosaraju [9] have shown that for any set of n points in R
d and any 0 < ε < 1, one

can compute a (1 + ε)-spanner with Esp(n) = O(n/εd) edges in Tsp(n) = O(n log n + n/εd) time. Moreover,
Arya et al. [4] presented a data structure for (1 + ε)-approximate nearest-neighbor queries in R

d that has
O((1/εd) log n) query time, and in which insertions can be done in O(log n) time. Part (i) of the theorem
now follows by applying Theorem 1, replacing ε by ε/10 and setting t = 1 + ε/10.

Roddity [18] (see also Gottlieb and Roddity [12]) have shown that for any metric space (S,d) with n
points and doubling dimension d and any 0 < ε < 1, one can compute a (1+ε)-spanner with Esp(n) = n/εO(d)

edges in Tsp(n) = O(n log n) + n/εO(d) time. Moreover, Cole and Gottlieb [10] presented a data structure
for (1 + ε)-approximate nearest-neighbor queries in (S,d) that has 2O(d) log n + 1/εO(d) query time, and in
which insertions can be done in 2O(d) log n time. Part (ii) now follows by applying Theorem 1, replacing ε
by ε/10 and setting t = 1 + ε/10.

More applications: the geodesic metric for a convex body. Let S be a set of n points on the boundary ∂B of
a convex body B in R

d. For any two points p, q ∈ S, let dB(p, q) be the geodesic distance between p and q
along ∂B, and let d(p, q) denote their Euclidean distance. In order to apply Theorem 1 to the metric space
(S,dB), we need a sparse (1 + ε)-spanner for a set S′ ⊆ S based on the distance function dB. We will obtain
such a spanner using a so-called well-separated pair decomposition (WSPD).

Well-separated pair decompositions were introduced by Callahan and Kosaraju [9] for the Euclidean
metric and by Talwar [19] for general metric spaces. They are defined as follows. Let (S,d) be a finite metric
space. The diameter diamd(A) of any subset A of S is defined as diamd(A) = max{d(a, b) : a, b ∈ A}, and
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the distance d(A, B) of any two subsets A, B ⊆ S is defined as d(A, B) = min{d(a, b) : a ∈ A, b ∈ B}.
For a real number s > 0, we say that the subsets A and B of S are well-separated with respect to s, if
d(A, B) > s · max(diamd(A), diamd(B)).

Definition 1. Let (S,d) be a finite metric space and let s > 0 be a real number. A well-separated pair
decomposition (WSPD) for (S,d), with respect to s, is a set {(A1, B1), . . . , (Am, Bm)} of pairs of non-empty
subsets of S such that

1. for each i, Ai and Bi are well-separated with respect to s, and
2. for any two distinct points p, q ∈ S, there is exactly one index i with 1 6 i 6 m such that (i) p ∈ Ai and

q ∈ Bi or (ii) p ∈ Bi and q ∈ Ai.

The following lemma, due to Callahan and Kosaraju [8], shows how a spanner can be obtained from a WSPD.

Lemma 3. [8] Let (S,d) be a finite metric space and let t > 1 be a real number. Furthermore, let {(A1, B1), . . . , (Am, Bm)}
be a WSPD for (S,d), with respect to s = 2(t+1)

t−1 and, for each i with 1 6 i 6 m, let ai be an arbitrary point
of Ai and bi be an arbitrary point of Bi. Then the graph G = (S, E) where E = {(ai, bi) : 1 6 i 6 m} is a
t-spanner for S with m edges.

Lemma 3 tells us that if we have a WSPD for S in the dB-metric, we can get a spanner for S in the dB-metric.
Using Theorem 1 we can then also get a spanner for the weighted point set S. As we show in Lemma 10, the
metric space (S,dB) has bounded doubling dimension. Using the algorithm of Har-Peled and Mendel [15]
we can thus construct a WSPD for this metric space. Unfortunately, their algorithm needs an oracle that
returns, for any two points p and q, the geodesic distance dB(p, q) in O(1) time, and computing geodesic
distances on a convex body is not so easy. We therefore describe a more direct method for computing a
WSPD for points on a convex body. The basic idea behind our method is to compute a WSPD for the
Euclidean space (S,d), and then refine this WSPD in a suitable way to obtain a WSPD for (S,dB). For
the refinement, we only need to know the normal vectors of all points p ∈ S; we do not need any distance
computations in the dB-metric. An additional advantage of our method over Har-Peled and Mendel’s method
is that the dependency on ε will be better.

For any point p on ∂B, we denote by NB(p) the (outer) normal vector of B at p. If the tangent plane of p
at B is not unique, then we choose for NB(p) the normal vector of an arbitrary tangent plane. We fix a real
number σ such that 0 < σ < π/2. The following lemma states that dB(p, q) and d(p, q) are approximately
equal, provided the angle between the normals of p and q is at most σ. Similar observations have been made
in papers on approximate shortest paths on polytopes; see e.g. [3].

Lemma 4. Let p and q be two points on ∂B such that ∠(NB(p),NB(q)) 6 σ. Then

d(p, q) 6 dB(p, q) 6
d(p,q)
cos σ .

The normal vector of each point of ∂B at B can be considered to be a point on the sphere of directions,
denoted S

d−1, in R
d. We partition S

d−1 into O(1/σd−1) parts such that the angle between any two vectors
in the same part is at most σ. Based on this, we partition ∂B into patches : A σ-patch is the set of all points
of ∂B whose normals fall in the same part of the partition of S

d−1.
Let s > 0 be a real number, and let {(A1, B1), . . . , (Am, Bm)} be a WSPD for the Euclidean metric

space (S,d), with respect to s, where m = O(sdn). We refine the WSPD by partitioning each Ai and Bi into
subsets A1

i , . . . , A
ℓ
i and B1

i , . . . , Bℓ′

i , respectively, where ℓ = O(1/σd−1) and ℓ′ = O(1/σd−1). The partitioning

is done such that the points in each subset belong to the same σ-patch. Define Ψ = {(Aj
i , B

k
i ) : 1 6 i 6

m, 1 6 j 6 ℓ and 1 6 k 6 ℓ′}.
Lemma 5. The set of pairs in Ψ forms a WSPD with respect to s cosσ for the metric space (S,dB). The
number of pairs in this WSPD is O((sd/σ2d−2)n).

Proof. It is clear that Ψ contains O((sd/σ2d−2)n) elements. It is also clear that condition 2. in Definition 1
is satisfied. It remains to show that condition 1. is satisfied. Consider a pair (Aj

i , B
k
i ) ∈ Ψ . We have to show

that
dB(Aj

i , B
k
i ) > s cosσ · max(diamdB

(Aj
i ), diamdB

(Bk
i )). (1)
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We first show that
diamd(Aj

i ) > diamdB
(Aj

i ) cosσ. (2)

To show this, let a and a′ be two arbitrary points in Aj
i . Using Lemma 4, we obtain dB(a, a′) 6

d(a,a′)
cos σ 6

diamd(Aj
i )

cos σ , from which (2) follows. By a symmetric argument, we obtain

diamd(Bk
i ) > diamdB

(Bk
i ) cosσ. (3)

Let a be an arbitrary point of Aj
i and let b be an arbitrary point of Bk

i . Since Aj
i ⊆ Ai and Bk

i ⊆ Bi,
and since Ai and Bi are well-separated with respect to s (in the Euclidean metric d), we have dB(a, b) >

d(a, b) > s ·max(diamd(Ai), diamd(Bi)) > s ·max(diamd(Aj
i ), diamd(Bk

i )). Combining this with (2) and (3),

it follows that dB(a, b) > s cosσ · max(diamdB
(Aj

i ), diamdB
(Bk

i )). This proves that (1) holds.

Lemmas 3 and 5 now imply the following result (take for instance σ = π/3, so that cosσ = 1/2).

Theorem 2. Let S be a set of n points on the boundary of a convex body B in R
d, and let 0<ε<1 be a real

number. If we can determine for any p∈S an outward normal of B at p in O(1) time then we can compute
in O(n log n + n/εd) time a (1 + ε)-spanner of S in the dB-metric, with O(n/εd) edges.

Corollary 2. Let S be a set of n points on the boundary of a convex body B in R
d, each with a non-negative

weight. For any 0 < ε < 1, there is a (5 + ε)-spanner of the weighted point set S having O(n/εd) edges.

3 A (2 + ε)-Spanner for a Weighted Point Set

In each of the applications considered in the previous section, our method generated a (5 + ε)-spanner for
weighted point sets. The goal of this section is to see if we can obtain spanners for weighted point sets with
a smaller stretch factor. We start with a lower bound.

Lemma 6. For any finite metric space (S,d) and any real number ε > 0, there exists a set of weights for
the points of S, such that every non-complete graph with vertex set S has stretch factor larger than 2 − ε.

Proof. Let D = diamd(S). Assign each point in S a weight D/ε. Consider a non-complete graph G with
vertex set S, and let p and q be two points in S that are not connected by an edge in G. We have

dw(p, q) 6 (1 + 2/ε)D, whereas dG,w(p, q) > 4D/ε. Thus
dG,w(p,q)
dw(p,q) >

4D/ε
(1+2/ε)D > 2 − ε.

In the remainder of this section we will describe a general strategy for computing a (2 + ε)-spanners
for weighted point sets in spaces of bounded doubling dimension that admit a so-called semi-separated pair
decomposition [20] of small size. Given the lower bound, the stretch factor is almost optimal in the worst
case. We use the strategy to obtain (2 + ε)-spanners for two cases of weighted point sets: points in R

d, and
points on the boundary of a convex body in R

d.

The semi-separated pair decomposition. Let (S,d) be a metric space, where S is a set of n points, and let d be
its doubling dimension. We assume that each point of S has a real weight w(p) > 0. Our spanner construction
will be based on a decomposition {(A1, B1), . . . , (Am, Bm)} having properties similar to those of the WSPD.
As we will see, the number of edges in the spanner for weighted point sets is proportional to

∑m
i=1(|Ai|+|Bi|).

Thus, we need a decomposition for which this summation is small. Callahan and Kosaraju [9] have shown
that, for the WSPD, this summation can be as large as Θ(n2); in other words, we cannot use the WSPD
to obtain a non-trivial result. By using a decomposition satisfying a weaker condition, it is possible to make
sure the summation is only O(n log n). This decomposition is the semi-separated pair decomposition, as
introduced by Varadarajan [20].

For a real number s > 0, two subsets A, B ⊆ S are called semi-separated with respect to s, if d(A, B) >

s ·min(diamd(A), diamd(B)). A semi-separated pair decomposition (SSPD) for the metric space (S,d), with
respect to s, is defined to be a set Ψ = {(A1, B1), . . . , (Am, Bm)} of pairs of non-empty subsets of S, having
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the same properties as in Definition 1, except that in condition 1, the sets Ai and Bi are semi-separated
with respect to s. The quantity

∑m
i=1(|Ai| + |Bi|) is called the size of the SSPD.

For the Euclidean distance function in R
2, Abam et al. [1] showed that an SSPD with O(n) pairs and size

O(n log n) can be computed in O(n log n) time. The argument of Abam et al. [1] can easily be generalized to
d-dimensional Euclidean space for d > 2; for completeness we give the formal proof in Section 4. The bound
on the SSPD that we obtain is optimal: it follows from results by Hansel [14] that, for any set of n points,
any SSPD has size Ω(n log n); see also Bollobás and Scott [6].

From SSPDs to spanners. Let Ψ be an SSPD for S with respect to some s > 0. For each pair (A, B) ∈ Ψ we
will add a set E(A, B) of edges to our spanner such that any two points a ∈ A and b ∈ B are connected by
a path of length at most (2 + 3

s ) · dw(a, b).

The main idea is quite simple. Assume without loss of generality that diamd(A) 6 diamd(B). Thus, we
have d(A, B) > s · diamd(A). Define center(A) to be a point from A of minimum weight (among the points
in A), and let E1(A, B) = {(x, center(A)) : x ∈ A ∪ B and x 6= center(A)}. This provides short connections
between the points in A and those in B by going via center(A): since d(A, B) > s · diamd(A), going via
center(A) does not create a large detour in the d-metric, and since w(center(A)) 6 w(a) the extra path
length caused by w(center(A)) is also limited. In fact, for some pairs of points a, b, the set E1(A, B) already
gives us a path of the required length. The next lemma gives the condition under which this is the case.

Lemma 7. Let a∗ = center(A). Let b ∈ B be a point such that w(a∗) 6 w(b) + d(a∗, b). Then, for any
a ∈ A, we have dw(a, a∗) + dw(a∗, b) 6

(

2 + 3
s

)

· dw(a, b).

Proof. We have

dw(a, a∗) + dw(a∗, b) = (w(a) + d(a, a∗) + w(a∗)) + (w(a∗) + d(a∗, b) + w(b))

6 2 · w(a) + d(a, a∗) + 2 · (d(a∗, b) + w(b))

6 2 · w(a) + d(a, a∗) + 2 · (d(a∗, a) + d(a, b) + w(b))

6 2 · (w(a) + d(a, b) + w(b)) + 3 · diamd(A)

6 2 · (dw(a, b)) + 3 · (d(a, b)/s)

6 (2 + 3
s ) · dw(a, b).

It remains to establish short paths between the points in A and the points b ∈ B, where B = {b ∈
B : w(a∗) > w(b) + d(a∗, b)} with a∗ = center(A). We cannot use any point from A as an intermediate
destination on such paths, because the weights of the points from A are too large compared to those in
B. Hence, we need to go via a point from B. However, the diameter of B can be large. Therefore we first
decompose the set B into subsets of small diameter.

The points b in B have d(a∗, b) < w(a∗), so they are contained in a d-ball C of radius w(a∗). Recall
that d is the doubling dimension of (S,d). Thus we can cover C by sO(d) balls of radius w(a∗)/(2s). Let
C1, . . . , Cℓ be such a collection of balls, where ℓ = sO(d). We partition B into subsets B1, . . . , Bℓ in such a
way that Bi ⊆ Ci for all 1 6 i 6 ℓ. For each Bi, let center(Bi) be a point of minimum weight (among the
points in Bi). The next lemma shows that going from any point in A to any point in Bi via center(Bi) gives
us a path of the required length.

Lemma 8. Let b∗i = center(Bi). Then, for two points a ∈ A and b ∈ Bi we have dw(a, b∗i ) + dw(b∗i , b) <
(

2 + 2
s

)

· dw(a, b).
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Proof. Note that w(b∗i ) 6 w(b) < w(a∗) 6 w(a). Hence, we have

dw(a, b∗i ) + dw(b∗i , b) = (w(a) + d(a, b∗i ) + w(b∗i )) + (w(b∗i ) + d(b∗i , b) + w(b))

< (2 · w(a) + d(a, b) + d(b∗i , b)) + (d(b∗i , b) + 2 · w(b))

6 2 · w(a) + d(a, b) + 2 · diamd(Bi) + 2 · w(b)

6 2 · w(a) + d(a, b) + 2 · (w(a∗)/s) + 2 · w(b)

6 (2 + 2
s ) · w(a) + d(a, b) + 2 · w(b)

< (2 + 2
s ) · dw(a, b).

We are now ready to define the set of edges for the pair (A, B) in the SSPD Ψ . Namely, we define E(A, B) =

E1(A, B) ∪
(

⋃ℓ
i=1 E2(A, Bi)

)

, where E2(A, Bi) = {(x, center(Bi)) : x ∈ A ∪ Bi and x 6= center(Bi)}. For

any two points a ∈ A and b ∈ B, there exists a path in the graph with edge set E(A, B) of length at most
(2+ε)·dw(a, b). This follows by using Lemmas 7 and 8, and setting s = ε/3. Using that ℓ = sO(d) = 1/εO(d), we

get that the total number of edges in E(A, B) is |E1(A, B)|+∑ℓ
i=1 |E2(A, Bi)| = |A|+|B|+∑ℓ

i=1(|A|+|Bi|) =
(1/ε)O(d) · (|A|+ |B|). By combining the sets E(A, B) for all pairs (A, B) ∈ Ψ we get our final spanner. Since,
by definition of the SSPD, for any two points a, b ∈ S there is a pair (A, B) ∈ Ψ such that a ∈ A and b ∈ B
(or vice versa), we get the following result.

Lemma 9. The graph G = (S, E) with E =
⋃

(A,B)∈Ψ E(A, B) is a (2 + ε)-spanner for the weighted point

set S with (1/ε)O(d) ·∑(A,B)∈Ψ (|A| + |B|) edges.

As in Section 2, the size of the (2 + ε)-spanner G and the time to construct it depends on the metric space
(S,d).

Applications. Let S be a set of n points in R
d and let d(p, q) be the Euclidean distance between p and q.

Observe that the metric space (S,d) has doubling dimension Θ(d). Abam et al. [1] have shown that in the
plane an SSPD of size O(s2n log n) can be computed in O(n log n + s2n) time, for any s > 1. In section 4,
we will show that their algorithm in fact also works in higher dimensions; its analysis also goes through,
with appropriate changes to the constant factors in certain packing lemmas. This leads to an SSPD of size
O(sdn logn) that can be computed in O(n log n + sdn) time, giving the following result.

Theorem 3. Given a set S of n points in R
d, each one having a non-negative weight, and given a real

number 0 < ε < 1, we can construct a (2 + ε)-spanner for the weighted point set S having (n/εO(d)) log n
edges in (n/εO(d)) log n time.

We now turn our attention to a set S of points on the boundary of a convex body B. For any two points
p and q of S, let dB(p, q) be the geodesic distance between p and q along ∂B. The proof of the following
lemma is based on the concept of σ-patches introduced earlier.

Lemma 10. The metric space (S,dB) has doubling dimension Θ(d).

Let d denote the Euclidean distance function in R
d, let s > 1 be a real number, and consider an SSPD

{(A1, B1) . . . , (Am, Bm)} for the metric space (S,d), with respect to s, whose size is O(sdn log n). We fix a
real number σ such that 0 < σ < π/2. Let i be an index with 1 6 i 6 m. As before, we partition both Ai and
Bi into subsets A1

i , . . . , A
ℓ
i and B1

i , . . . , Bℓ
i , respectively, where ℓ = O(1/σd−1), such that the points in each

subset belong to the same σ-patch of ∂B. Now define Ψ = {(Aj
i , B

k
i ) : 1 6 i 6 m, 1 6 j 6 ℓand1 6 k 6 ℓ}.

The proof of the following lemma is similar to that of Lemma 5.

Lemma 11. The set Ψ forms an SSPD, with respect to s cosσ, for the metric space (S,dB). The size of this
SSPD is O((sd/σ2d−2)n log n).

We choose σ = π/3, so that cosσ = 1/2. We obtain the following result.
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Theorem 4. Given a convex body B in R
d and a set S of n points on the boundary of B. Assume that each

point of S has a non-negative real weight. Let 0 < ε < 1 be a real number. We can construct a (2+ε)-spanner
for the weighted point set S having (n/εO(d)) log n edges in (n/εO(d)) log n time.

Remark 1. It follows from the proofs of Lemmas 7 and 8 that the graph G has spanner diameter 2. That
is, for any two points p and q of S, the graph G contains a path between p and q that contains at most two
edges and whose dw-length is at most (2 + ε) · dw(p, q). If we want to keep this property, then the number
of edges in our spanner is worst-case optimal: For any real number t > 1, there exists a set S of n points on
the real line such that every t-spanner for S having spanner diameter 2 has Ω(n log n) edges—see Exercise
12.10 in Narasimhan and Smid [17]. Of course, this then also holds for spanners for weighted point sets. Note
that if all weights are equal and very large compared to the d-diameter of the set, then any 2-spanner of the
weighted point set must have spanner diameter 2. (This does not imply, however, that Ω(n log n) is a lower
bound on the worst-case size of 2-spanners of weighted point sets.)

4 Computing an SSPD in R
d

Abam et al. [1] have shown how to compute an SSPD of size O(n log n) in R
2. Their result can be generalized

to d > 2 fairly easily; for completeness we describe the generalization below, repeating the various concepts
and definitions where necessary.

To compute an SSPD for a given point set S, we use a bounded aspect ratio (BAR) tree, as introduced
by Duncan et al. [11]. A BAR-tree for a point set S is a binary space partition (BSP) tree with the following
properties:

1. each leaf region contains at most one point from S,
2. the tree has size O(n),
3. if we go down two levels in the tree then the size of the subtree reduces at least with a factor of

β = (d + 1)/(d + 2), so its depth is O(log1/β n) = O(d log n),
4. the region R(ν) associated with an (internal or leaf) node ν has aspect ratio at most α for some constant

α > 18d3/2, that is, there are concentric balls DI ⊂ R(ν) and DO ⊃ R(ν) with radius(DO) = α ·
radius(DI). Moreover, the complexity of the region R(ν) is O(2d).

Let T be a BAR-tree on the point set S. For a node ν, we use pa(ν) to denote the parent of ν, and we
use S(ν) to denote the subset of points from S that are stored in the leaves of the subtree Tν rooted at ν.
The weight of a node ν is the number of points in S(ν), and is denoted |S(ν)|. We say that a node ν in T
has weight class ℓ, for some integer ℓ, if and only if |S(ν)| 6 n/2ℓ and |S(pa(ν))| > n/2ℓ. The weight class
of the root is defined to be zero. We denote the collection of nodes of weight class ℓ by N(ℓ). Obviously we
have ⌊log n⌋ weight classes. Note that some of the nodes in the tree may not be in any weight class; this
can happen when the weight of a node ν is almost the same as the weight of its parent. For example, this
happens when |S(pa(ν))| = n/2ℓ for some ℓ and |S(ν)| = n/2ℓ − 1. It can also happen that a node belongs
to more than one weight class, namely when the weight of a node is much smaller than the weight of its
parent. The following lemma is straightforward.

Lemma 12. Every leaf node is in weight class ℓmax, where ℓmax = ⌊log n⌋. Furthermore, on any root-to-
leaf-path there is exactly one node with weight class ℓ, for any 0 6 ℓ 6 ℓmax.

For a node ν ∈ N(ℓ), we define its ℓ-parent to be the node ν′ ∈ N(ℓ− 1) that is on the path from the root of
T to ν (including ν itself). We denote the ℓ-parent of ν by pa(ℓ, ν). Observe that ν can be its own ℓ-parent,
namely when ν ∈ N(ℓ) and ν ∈ N(ℓ − 1). By Lemma 12, if ν ∈ N(ℓ) then one of its ancestors (possibly
itself) must be in weight class ℓ − 1, so it must have an ℓ-parent. If µ is the ℓ-parent of ν then we call ν a
ℓ-child of µ.

For a node ν in the BAR-tree, the region corresponding to ν is denoted by R(ν) and for a region R,
we let diam(R) denote the diameter of the region R. As mentioned before, all nodes in the BAR-tree have
bounded aspect ratio, that is, all aspect ratios are bounded by some fixed constant α.
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Lemma 13 (Lemma 3.5 from [1]). If d(R(ν),R(µ)) >
(s+1)α

2 ·min{diam(R(ν)), diam(R(µ))} then there
are two balls Dν ⊃ R(ν) and Dµ ⊃ R(µ) such that

d(Dν , Dµ) > s · min{radius(Dν), radius(Dµ)}.

Now we construct an SSPD S of the point set S using the following algorithm.

1. Construct a BAR tree T on S. Let α be the maximum aspect ratio of the region R(ν) for any node
ν ∈ T . Compute the weight classes of all nodes in T .

2. For each weight class ℓ with 0 6 ℓ 6 ℓmax do the following: add to S all pairs (S(ν), S(µ)) such that
(i) ν, µ ∈ N(ℓ),

(ii) ν and µ are leaves or d(R(ν),R(µ)) >
(s+1)α

2 · min{diam(R(ν)), diam(R(µ))}, and

(iii) d(R(pa(ℓ, ν)),R(pa(ℓ, µ))) < (s+1)α
2 · min{diam(R(pa(ℓ, ν))), diam(R(pa(ℓ, µ)))}.

Lemma 14 (Lemma 3.6 from [1]). S is an SSPD for S with respect to s.

To bound the size of the SSPD, we first prove two auxiliary lemmas.

Lemma 15. A node ν in T can be an ℓ-parent of at most 22d nodes in T .

Proof. Consider a node ν ∈ N(ℓ − 1) and let ν′ be a node such that ν = pa(ℓ, ν′). Then ν′ is a node in
Tν (the subtree of T rooted at ν) in weight class ℓ. Note that no other node than ν′ in Tν′ can have ν as
its ℓ-parent. Recall that the weight of a node reduces with a factor of β when we go down two levels in a
BAR-tree. Since ν′ ∈ N(ℓ), its (normal) parent has weight at least n/2ℓ. On the other hand ν ∈ N(ℓ − 1),
so the weight of ν is at most n/2ℓ−1. Hence, the path between ν and ν′ consists of at most 2k links, where
βk = 1/2 and β = (d + 1)/(d + 2). It follows that the total number of nodes in T that have ν as a ℓ-parent
is bounded by 22d—note that log β > −1/d.

Lemma 16. Let S(ℓ) be the set of all pairs (ν, µ) such that ν, µ ∈ N(ℓ) and d(R(ν),R(µ)) < (s+1)α
2 ·

min{diam(R(ν)), diam(R(µ))}, where 0 6 ℓ 6 ℓmax. Then |S(ℓ)| = O(α2ddd/2(s + 1)d · 2ℓ) and

∑

(ν,µ)∈S(ℓ)

(|S(ν)| + |S(µ)|) = O
(

α2ddd/2(s + 1)d · n
)

.

Proof. We reorder the nodes in the pairs (ν, µ) such that

diam(R(ν)) 6 diam(R(µ)).

We claim that any node ν appears in a constant number of pairs as the first element of the pair. To show this
let (ν, µ) be an arbitrary ordered pair. Let DS(ν) be the smallest enclosing ball of S(ν) and let o be its center.
Consider the annulus A between the balls D1 and D2 with center o and radii r1 := ((s+1)α+1)·radius(DS(ν))
and r2 := r1 + radius(DS(ν)). Note that

diam(R(ν))/2 6 radius(DS(ν)) 6 diam(R(ν)).

Since

d(R(ν),R(µ)) <
(s + 1)α

2
· diam(R(ν))

the region R(µ) intersects D1—see Fig. 1. Now we have two cases:
Case 1: The region R(µ) lies partially outside D2. Using the packing lemma by Duncan et al. [11, Lemma 3.2]

this can happen for O
(

(α
√

d)d
(

r1/(r2 − r1)
d−1
)

)

= O(α2d−1dd/2(s + 1)d−1) regions.

Case 2: In this case the region R(µ) lies inside D2. Because the aspect ratio of the region R(µ) is at most
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α, there are two d-balls DI and DO such that DI ⊂ R(µ) ⊂ DO and volume(DO) 6 αd · volume(DI), where
volume(A) denotes the volume of the region A. Note that volume of a d-ball with radius r is Cdr

d, where

Cd =

{

(2π)d/2

2×4×···×d if d is even
(2π)(d−1)/2

1×3×···×d if d is odd.

Therefore

volume(R(µ)) > volume(DI)

>
1

αd
· volume(DO)

=
1

αd
· Cd (radius(DO))

d

>
1

(2α)d
· Cd (diam(R(µ)))d

>
1

(2α)d
· Cd (diam(R(ν)))

d

>
Cdr

d
2

(2α)d · ((s + 1)α + 2)d
.

On the other hand, the volume of D2 is Cdr
d
2 , which means we can have at most O(α2d(s+1)d) such regions.

DS(ν)

D1
R(ν)

D2

R(µ)

((s + 1)α + 1) · radius(DS(ν))

radius(DS(ν))

DO

DI

Fig. 1. Illustrating the proof of Lemma 16 (in 2D).

Hence in total we can have O(α2ddd/2(s+1)d) pairs that have ν as the first element. Since |N(ℓ)| = O(2ℓ),
we can have O(2ℓ) nodes as the first element of the pair so |S(ℓ)| = O(α2ddd/2(s + 1)d · 2ℓ). The lemma
follows since |S(ν)| 6 n/2ℓ for each ν ∈ N(ℓ).

Corollary 3. The number of pairs in the SSPD S generated by the construction algorithm is O
(

(4α)2ddd/2(s + 1)d · n
)

.

Proof. By the construction algorithm, if (S(ν), S(µ)) ∈ S and ν, µ ∈ N(ℓ) then (pa(ℓ, ν), pa(ℓ, µ)) ∈ S(ℓ−1).

By combining this with Lemma 15, we conclude that the number of pairs in S is bounded by O(
∑log n

ℓ=0 42d ·
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|S(ℓ)|). Using Lemma 16 we have

|S| = O

(

log n
∑

ℓ=0

42d · |S(ℓ)|
)

= O

(

log n
∑

ℓ=0

(4α)2ddd/2(s + 1)d · 2ℓ

)

= O
(

(4α)2ddd/2(s + 1)d · n
)

.

Now we are finally ready to bound the size of S.

Lemma 17. For the SSPD S generated by the construction algorithm we have

∑

(ν,µ)∈S

(|S(ν)| + |S(µ)|) = O
(

(4α)2ddd/2+1(s + 1)d · n log n
)

.

Proof. Since the number of weight classes in T is O(log n) it suffices to prove that for every fixed ℓ it holds
that:

∑

(ν,µ)∈S

ν,µ∈N(ℓ)

(|S(ν)| + |S(µ)|) = O((4α)2ddd/2(s + 1)dn). (4)

Obviously |S(ν)| 6 |S(pa(ℓ, ν))| for each node ν, so we can bound (4) by
∑

(ν,µ)∈S

ν,µ∈N(ℓ)

(|S(pa(ℓ, ν))| + |S(pa(ℓ, µ))|). (5)

From the algorithm we know that

d(R(pa(ℓ, ν)),R(pa(ℓ, µ))) <
(s + 1)α

2
· min{diam(R(pa(ℓ, ν))), diam(R(pa(ℓ, µ)))}.

Furthermore, by Lemma 15 each node can be an ℓ-parent of 22d nodes. Hence, (5) can be bounded by
∑

(ν,µ)∈S(ℓ−1)

42d · O(|S(ν)| + |S(µ)|), (6)

where S(ℓ − 1) is the set of all pair (ν, µ) such that ν, µ ∈ N(ℓ − 1) and

d(R(ν),R(µ)) <
(s + 1)α

2
· min{diam(R(ν)), diam(R(µ))}.

According to Lemma 16 summation (6) is O
(

(4α)2ddd/2+1(s + 1)d · n
)

, which completes the proof of the
lemma.

Lemma 18. The SSPD of a set S of n points w.r.t. a constant s can be computed in O((4α)2ddd/2(s +
1)dn + d2dn log n) time.

Proof. The proof is the same as the proof of Lemma 3.10 from [1] where the dependency on the dimension
follows from plugging in Corollary 3 and the fact that the BAR tree T requires O(d2dn log n) time to
compute [11].
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The following theorem summarizes the results on the SSPD construction.

Theorem 5. Given a set S of n points in R
d and s > 0 we can compute an SSPD with respect to s of size

O((4α)2ddd/2(s + 1)dn) and weight O((4α)2ddd/2+1sdn log n) in time O((4α)2ddd/2sdn + d2dn log n), where
α is a constant greater than 18d

√
d.

5 Conclusions

We have studied spanners for vertex-weighted point sets in a metric space, where the length of an edge
connecting two points is the length of the edges in the underlying metric space plus the weights of two
incident points. We presented a general method to compute a (5 + ε)-spanner of linear size for this setting,
provided that we can compute a linear-size (1+ε)-spanner in the underlying metric space. We also presented
a method to compute a (2 + ε)-spanner; this spanner, however, has size O(n log n). We furthermore showed
that in general one cannot obtain a spanner with a subquadratic number of edges whose dilation is smaller
than 2. Hence, the main open problem is whether there exists a linear-size spanner with dilation close to 2.

Recently Abam and Har-Peled [2] showed that any n-point metric space with doubling dimension d
admits an SSPD of expected size O(n/εd) such that the total expected weight of the pairs is (n/εO(d) log n),
which can be computed in (n/εO(d) log2 n) expected time. By Lemma 9 this immediately implies that any
metric space of doubling dimension d admits a (2 + ε)-spanner of weighted point sets with (n/εO(d) log n)
edges.
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