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Abstract

Let G be a connected graph with n vertices in which each edge
has a weight, and let T be a spanning tree of G. The stretch factor of
two vertices x and y is the ratio of the distance between x and y in T
and the shortest-path distance between x and y in G. In SODA 2007,
Abraham, Bartal and Neiman showed that there exists a spanning
tree T of G such that the average stretch factor (over all

(
n
2

)
vertex

pairs) is bounded by a constant.
We prove this result for the cases when (i) G is the complete graph

on a set of points in Rd and edge weights represent Euclidean distances
and (ii) G is the complete graph on a set of points in a metric space
and edge weights represent distances in this space.

1 Introduction

Let (S,d) be a finite metric space and let H be a connected edge-weighted
graph with vertex set S in which the weight of any edge (x, y) is equal to
d(x, y). The length of a path in H is defined to be the sum of the weights
of the edges on the path. For any two points x and y of S, we denote by
dH(x, y) the minimum length of any path in H between x and y. If x 6= y,
then the stretch factor of x and y is defined to be dH(x, y)/d(x, y). If t ≥ 1
is a real number such that each pair of distinct points in S has stretch factor
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at most t, then we say that H is a t-spanner of S. The smallest value of t
such that H is a t-spanner of S is called the stretch factor of H. (For an
overview of results on t-spanners for the Euclidean metric, see the book by
Narasimhan and Smid [8].) Observe that any t-spanner of S must have at
least n− 1 edges.

Assume that S is a set of n points in Rd (where the dimension d is a
constant) and d is the Euclidean distance function. Das and Heffernan [5]
have shown that for any real constant ε > 0, there exists a graph H with
at most (1 + ε)n edges, such that H is a t-spanner of S, for some constant
t that depends on ε and d. Aronov et al. [3] have shown that this result is
optimal: For any constant t > 1, t-spanners with n + o(n) edges do not exist
for all sets of n points in Rd.

For an arbitrary finite metric space (S,d), with |S| = n, it is not difficult
to show that a minimum spanning tree is an (n−1)-spanner of S. Eppstein [7]
has shown that this result cannot be improved: If S is the vertex set of a
regular n-gon in the plane and d is the Euclidean distance function, then
any spanning tree of S has stretch factor Ω(n). (An alternative proof of this
lower bound is given in [3].)

In this paper, we consider the problem of constructing a graph H whose
average stretch factor1

ASF (H) =
1(
n
2

)
∑

{x,y}∈P2(S)

dH(x, y)

d(x, y)

is bounded by a constant and that contains as few edges as possible. Since
H must be a connected graph, it contains at least n− 1 edges.

The result of Das and Heffernan implies that, for the Euclidean metric
and for any real constant ε > 0, there exists a graph H having at most
(1 + ε)n edges, such that ASF (H) = O(1).

Consider Eppstein’s example of the vertex set S of a regular n-gon. Even
though any spanning tree of S has stretch factor Ω(n), there exists a spanning
tree T whose average stretch factor ASF (T ) is bounded from above by a
constant: If we take for T the tree (in fact, the path) obtained by deleting
a random edge of the n-gon, then the expected value of ASF (T ) is bounded
by a constant. (A proof of this claim follows from results by Alon et al. [2].
In fact, this result holds for any set of points on a circle.)

1P2(S) denotes the set of all
(
n
2

)
unordered pairs of distinct elements in S.
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Abraham et al. [1] have shown that a spanning tree T with ASF (T ) =
O(1) exists for any finite metric space2:

Theorem 1 There exists a constant α > 1, such that every finite metric
space (S,d) contains a spanning tree T such that ASF (T ) ≤ α. Such a
spanning tree can be computed in polynomial time.

In this note, we present an alternative proof of Theorem 1, which is
simpler to understand than the proof in [1]. (Of course, the reason that our
proof is simpler is the fact that the result in [1] is stronger.)

In Section 2, we prove Theorem 1 for the case when S is a set of n points
in Rd and d is the Euclidean distance function. In this case, the spanning
tree is obtained from Callahan and Kosaraju’s split tree (see [4]), where the
splitting of the bounding box of the point set is done in a “careful” way.
In Section 4, we prove Theorem 1 for arbitrary metric spaces (and, in fact,
obtain a better value for the constant α).

Our construction uses the following lemma, which states that any se-
quence of real numbers can be cut in the “middle third”, such that any pair
of elements in the sequence that are very close together are on opposite sides
of the cut:

Lemma 1 There exists a constant β > 2 such that the following is true. Let
n ≥ 2 be an integer and let x1 ≤ x2 ≤ · · · ≤ xn be a sequence of real numbers
with x1 6= xn. Then, there exists a real number z such that

x1 +
xn − x1

3
≤ z ≤ x1 +

2(xn − x1)

3

and ∑
xi≤z

∑
xj>z

1

xj − xi

≤ β

xn − x1

m(n−m),

where m = |{i : xi ≤ z}|.

We remark that a simple probabilistic argument shows that such a z with

∑
xi≤z

∑
xj>z

1

xj − xi

≤ 3

xn − x1

(
n

2

)

2In fact, they prove that every weighted graph contains such a spanning tree.
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exists; see Lemma 4. Lemma 1, however, states that
(

n
2

)
can be replaced by

the smaller value m(n −m), which counts the number of pairs of elements
that are in different subsequences of the partition. The proof of Lemma 1
will be given in Section 3.

2 The Euclidean metric

Throughout this section, S denotes a finite set of points in Rd and d denotes
the Euclidean distance function.

A hyperrectangle is defined to be the Cartesian product of d closed inter-
vals. Hence, such a hyperrectangle R can be written as

R = [a1, b1]× [a2, b2]× . . .× [ad, bd],

where ai and bi are real numbers with ai ≤ bi, 1 ≤ i ≤ d. We call Li(R) =
bi − ai the side length of R along the i-th dimension. We define Lmax(R) to
be the maximum side length of R along any dimension. The bounding box of
the point set S is defined to be the smallest hyperrectangle that contains all
points of S.

The algorithm that computes a spanning tree of S is as follows:

Algorithm EuclLowAverStrTree(S)
Input: A finite set S of points in Rd.
Output: A pair (T, r), where T is a spanning tree of S and r is the root of

T .
1. if |S| = 1
2. then let p be the element of S;
3. let T be the tree consisting of the single node p;
4. return (T, p);
5. else let R be the bounding box of S;
6. let i be the dimension such that Lmax(R) = Li(R);
7. let x1 ≤ x2 ≤ . . . ≤ xn denote the sorted sequence of the i-th

coordinates of the points in S;
8. let z be a real number as given by Lemma 1;
9. let S1 be the set of all points of S whose i-th coordinates are at

most z;
10. let S2 = S \ S1;
11. (T1, r1) = EuclLowAverStrTree(S1);
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12. (T2, r2) = EuclLowAverStrTree(S2);
13. let T be the union of T1, T2 and the edge (r1, r2);
14. return (T, r1)

In Lemma 3 below, we will prove that the average stretch factor of the
spanning tree T that is returned by this algorithm is bounded by a constant.
Before we can prove this claim, we show that the length of any path in T
from the root to any point q has length O(Lmax(R)):

Lemma 2 Let R be the bounding box of S, let T be the spanning tree of S
that is returned by algorithm EuclLowAverStrTree(S), and let p be the
root of T . Then, for any point q in S, we have

dT (p, q) ≤ 3d
√

d · Lmax(R).

Proof. If |S| = 1, then q = p and Lmax(R) = 0, and, therefore, the lemma
obviously holds. Assume that |S| ≥ 2. Let L = Lmax(R), let i be the
dimension such that Li(R) = L, and consider the sets S1 and S2 that are
computed in lines 9 and 10 of the algorithm.

First observe that the diameter of S is at most
√

dL. Therefore, the
distance between the roots of the recursively computed trees T1 and T2 is
at most

√
dL. Next, it follows from Lemma 1 that the side lengths along

the i-th dimension of the bounding boxes of S1 and S2 are at most 2L/3.
Finally, after d recursive calls, all side lengths of the bounding box of the
current point set are at most 2L/3. It follows that

dT (p, q) ≤ d
√

dL

∞∑
j=0

(2/3)j = 3d
√

dL.

Lemma 3 Assume that |S| ≥ 2 and let T be the spanning tree of S that is
returned by algorithm EuclLowAverStrTree(S). Then

ASF (T ) ≤ 6βd
√

d,

where β is the constant in Lemma 1.
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Proof. We will prove by induction on the size of S that

∑

{x,y}∈P2(S)

dT (x, y)

d(x, y)
≤ 6βd

√
d

(
n

2

)
.

If S contains only one element, then T is the tree consisting of one single
node. In this case, both the lefthand and righthand sides are equal to zero.

Assume that S contains at least two elements. Let R be the bounding box
of S, let L = Lmax(R), and consider the sets S1 and S2 that are computed in
lines 9 and 10 of the algorithm.

The tree T is the union of (i) the recursively computed spanning tree T1

of S1, (ii) the recursively computed spanning tree T2 of S2, and (iii) the edge
(r1, r2) joining the roots of T1 and T2. Let p = r1; thus, p is the root of T .
We have

∑

{x,y}∈P2(S)

dT (x, y)

d(x, y)
=

2∑
j=1

∑

{x,y}∈P2(Sj)

dT (x, y)

d(x, y)
+

∑
x∈S1,y∈S2

dT (x, y)

d(x, y)
.

If both x and y are in the same subset Sj, then dT (x, y) = dTj
(x, y). Thus,

by induction, we have

∑

{x,y}∈P2(Sj)

dT (x, y)

d(x, y)
=

∑

{x,y}∈P2(Sj)

dTj
(x, y)

d(x, y)
≤ 6βd

√
d

(|Sj|
2

)
.

For any point x in S1 and any point y in S2, we have, by Lemma 2,

dT (x, y) = dT (x, p) + dT (p, y) ≤ 6d
√

dL.

It follows that

∑
x∈S1,y∈S2

dT (x, y)

d(x, y)
≤ 6d

√
dL

∑
x∈S1,y∈S2

1

d(x, y)
.

Let i be the dimension such that Li(R) = L. Observe that, for x ∈ S1 and
y ∈ S2, the Euclidean distance d(x, y) is at least the difference between the
i-th coordinates of the points y and x. Therefore, the choice of z in line 8 of
the algorithm and Lemma 1 imply that

∑
x∈S1,y∈S2

1

d(x, y)
≤ β

L
|S1| · |S2|.
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Thus, we have ∑
x∈S1,y∈S2

dT (x, y)

d(x, y)
≤ 6βd

√
d |S1| · |S2|.

It follows that

∑

{x,y}∈P2(S)

dT (x, y)

d(x, y)
≤ 6βd

√
d

((|S1|
2

)
+

(|S2|
2

)
+ |S1| · |S2|

)

= 6βd
√

d

(
n

2

)
.

3 The proof of Lemma 1

Our proof of Lemma 1 uses the following weaker lemma:

Lemma 4 Let n ≥ 2 be an integer, let x1 ≤ x2 ≤ · · · ≤ xn be a sequence
of real numbers with x1 6= xn, and let a and b be two real numbers such that
x1 ≤ a < b ≤ xn. Then, there exists a real number z such that a < z < b and

∑
xi≤z

∑
xj>z

1

xj − xi

≤ 1

b− a

(
n

2

)
.

Proof. Let z be a real number that is chosen uniformly at random in the
interval (a, b). For any two indices i and j with 1 ≤ i < j ≤ n, define the
indicator random variable

Xij =

{
1 if xi ≤ z < xj,
0 otherwise.

Then ∑
xi≤z

∑
xj>z

1

xj − xi

=
∑

1≤i<j≤n

Xij · 1

xj − xi

and, by the linearity of expectation,

E


∑

xi≤z

∑
xj>z

1

xj − xi


 =

∑
1≤i<j≤n

E(Xij) · 1

xj − xi

.
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Consider two indices i and j with 1 ≤ i < j ≤ n. We prove an upper bound
on the expected value E(Xij) of the random variable Xij. If a ≤ xi < xj ≤ b,
then

E(Xij) = Pr(Xij = 1) = Pr(xi ≤ z < xj) =
xj − xi

b− a
.

If xi < a ≤ xj ≤ b. Then

E(Xij) = Pr(Xij = 1) = Pr(a < z < xj) =
xj − a

b− a
≤ xj − xi

b− a
.

If a ≤ xi ≤ b < xj, then

E(Xij) = Pr(Xij = 1) = Pr(xi ≤ z < b) =
b− xi

b− a
≤ xj − xi

b− a
.

If xi ≤ a and xj ≥ b, then Xij = 1 and

E(Xij) = 1 ≤ xj − xi

b− a
.

In all other cases, we have Xij = 0 and

E(Xij) = 0 ≤ xj − xi

b− a
.

It follows that

E


∑

xi≤z

∑
xj>z

1

xj − xi


 ≤

∑
1≤i<j≤n

1

b− a
=

1

b− a

(
n

2

)
.

Thus, there exists a real number z such that a < z < b and

∑
xi≤z

∑
xj>z

1

xj − xi

≤ 1

b− a

(
n

2

)
.

We now prove Lemma 1. Let n ≥ 2 be an integer and let x1 ≤ x2 ≤ · · · ≤
xn be a sequence of real numbers with x1 6= xn. We have to show that there
exists a real number z in the middle third of the interval [x1, xn] such that

∑
xi≤z

∑
xj>z

1

xj − xi

≤ β

xn − x1

m(n−m), (1)
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where m = |{i : xi ≤ z}| and β > 2 is a constant.
We will prove this claim by induction on n. During the induction proof,

we will determine the value of β.
If n = 2, then we take z = (x1 + x2)/2. In this case, m = 1 and (1)

obviously holds. Let n ≥ 3 and assume that the claim holds for all sequences
having less than n elements. Let L = xn − x1. We may assume without loss
of generality that x1 = 0 and xn = L. Define the intervals I0 = [0, L/9] and,
for each integer i with 1 ≤ i ≤ 8, Ii = (iL/9, (i + 1)L/9]. Observe that these
nine intervals are pairwise disjoint and cover the interval [x1, xn].

Let δ be a real number with 0 < δ < 1/9. We say that an interval Ii is
heavy, if it contains at least δn elements of the sequence x1, x2, . . . , xn. If Ii

contains less than δn elements, then we say that this interval is light. Since
δ < 1/9, there is at least one heavy interval.

Let k be the smallest index such that the interval Ik is heavy, and let `
be the largest index such that the interval I` is heavy. Observe that k ≤ `.
We distinguish two cases.

Case 1: There exists an index k′ such that 3 ≤ k′ ≤ 5 and k < k′ < `.
By Lemma 4, there exists a real number z ∈ Ik′ such that

∑
xi≤z

∑
xj>z

1

xj − xi

≤ 9

L

(
n

2

)
≤ 9

2L
n2.

Observe that z is in the middle third of the interval [x1, xn]. Let m = |{i :
xi ≤ z}|. Since Ik is heavy and all elements in Ik are less than z, we have
m ≥ δn. Similarly, since I` is heavy and all elements in I` are larger than z,
we have n−m ≥ δn. It follows that

∑
xi≤z

∑
xj>z

1

xj − xi

≤ 9

2L
n · n ≤ 9

2δ2L
m(n−m).

Thus, if we choose β such that

β ≥ 9

2δ2
, (2)

then (1) holds.

Case 2: An index k′ as in Case 1 does not exist.
We claim that (i) both k and ` are at least 4 or (ii) both k and ` are at

most 4. To prove this, recall that k ≤ `. Thus, if k ≥ 4, then (i) holds. If
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k ≤ 3, then ` ≤ 4 (because, otherwise, we can take k′ = 4 and are in Case 1)
and, therefore, (ii) holds.

We may assume without loss of generality that (i) holds. Thus, ` ≥ k ≥ 4
and each of the intervals I0, I1, I2, and I3 is light.

First assume that I3∩{x1, . . . , xn} = ∅. Let z be an arbitrary real number
in I3 and let m = |{i : xi ≤ z}|. Then z is in the middle third of the interval
[x1, xn]. Since the length of the interval I3 is equal to L/9, we have

∑
xi≤z

∑
xj>z

1

xj − xi

≤ 9

L
m(n−m).

Thus, since β satisfies the condition in (2) and β < 1/9, it follows that (1)
holds.

From now on, we assume that I3 ∩ {x1, . . . , xn} 6= ∅. Let a and b be
the indices such that xa and xb are the minimum and maximum elements in
I3 ∩ {x1, . . . , xn}, respectively.

If xa > 10L/27, i.e., xa is not in the left third of the interval I3, then we
take for z an arbitrary real number with L/3 < z < 10L/27. Thus, z is in
the left third of I3. In this case, letting m = |{i : xi ≤ z}|, we have

∑
xi≤z

∑
xj>z

1

xj − xi

≤ 27

L
m(n−m).

Since β satisfies the condition in (2) and β < 1/9, it follows that (1) holds.
By a symmetric argument, if xb < 11L/27, i.e., xb is not in the right third

of I3, then we take for z an arbitrary real number with 11L/27 < z < 4L/9.
Thus, z is in the right third of I3. In this case, (1) holds.

Thus, we may assume that xa is in the left third of I3 and xb is in the
right third of I3. Consider the sequence xa, xa+1, . . . , xb, and let L′ = xb−xa.
Observe that L′ ≥ L/27. By the induction hypothesis, there exists a real
number z in the middle third of the interval [xa, xb] such that

∑
xa≤xi≤z

∑
z<xj≤xb

1

xj − xi

≤ β

L′
m′(b− a + 1−m′),

where m′ = |{i : a ≤ i ≤ b and xi ≤ z}|. Define m = |{i : 1 ≤ i ≤
n and xi ≤ z}|. Observe that m′ ≤ m. Since each of the intervals I0, I1, I2,
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and I3 is light, we have m ≤ 4δn and, therefore, n −m ≥ (1 − 4δ)n. Fur-
thermore, since I3 is light, we have b− a + 1−m′ ≤ δn. Thus,

b− a + 1−m′ ≤ δn ≤ δ

1− 4δ
(n−m).

It follows that

∑
xa≤xi≤z

∑
z<xj≤xb

1

xj − xi

≤ 27δβ

(1− 4δ)L
m(n−m).

Recall that z is in the middle third of the interval [xa, xb]. If (i) xi < xa

and xj > z or (ii) xa ≤ xi ≤ z and xj > xb, then xj − xi > (xb − xa)/3 =
L′/3 ≥ L/81. The number of pairs (xi, xj) for which (i) or (ii) holds is at
most m(n−m). It follows that

∑
xi<xa

∑
xj>z

1

xj − xi

+
∑

xa≤xi≤z

∑
xj>xb

1

xj − xi

≤ 81

L
m(n−m).

By combining the above inequalities, we obtain

∑
xi≤z

∑
xj>z

1

xj − xi

=
∑

xi<xa

∑
xj>z

1

xj − xi

+
∑

xa≤xi≤z

∑
z<xj≤xb

1

xj − xi

+
∑

xa≤xi≤z

∑
xj>xb

1

xj − xi

≤ 81

L
m(n−m) +

27δβ

(1− 4δ)L
m(n−m).

The quantity on the right-hand side is less than or equal to β
L

m(n −m) if
and only if

81 +
27δβ

1− 4δ
≤ β.

Thus, if we choose β such that

β ≥ 81(1− 4δ)

1− 31δ
, (3)

and choose δ such that δ < 1/31, then (1) holds.
If we take δ = 1/32 and β = 4608, then the requirements in (2) and (3)

are satisfied. Thus, we have shown that Lemma 1 holds with β = 4608.
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4 General metric spaces

In this section, we generalize the construction of Section 2 to arbitrary metric
spaces. Our proof of Theorem 1 is based on a slightly modified version of the
low-cost star decomposition of Elkin et al. [6].

Let (S,d) be a finite metric space. For any point p in S and any real
number r ≥ 0, the ball with center p and radius r is defined to be the set
{x ∈ S : d(p, x) ≤ r}. For any subset X of S and for any point p in X, we
define the radius radX(p) of X with respect to p as

radX(p) = max{d(p, x) : x ∈ X}.

Thus, radX(p) is the minimum radius of any ball centered at p that contains
all points of X.

Consider a partition of the set S into subsets S1, S2, . . . , Sk, for some
k ≥ 2. We define D(S1, . . . , Sk) to be the set of all (unordered) pairs {x, y}
in P2(S) that are in different subsets of the partition. Thus,

D(S1, . . . , Sk) =
k−1⋃
i=1

k⋃
j=i+1

{{x, y} : x ∈ Si, y ∈ Sj}.

The following lemma, which forms the basis of our algorithm for computing
a spanning tree with low average stretch factor, states the following: There
exists a partition of S into subsets S1, S2, . . . , Sk, such that (i) the radius of
each subset is at most a constant factor of the radius of S and (ii) points x
and y whose distance is very small are in the same subset of the partition.

Lemma 5 There exists a constant γ > 2 such that the following is true. Let
p be an arbitrary element of S. There exists a partition S1, S2, . . . , Sk of S,
for some k ≥ 2, and a sequence p1, p2, . . . , pk of points in S, such that

1. p1 = p,

2. pi ∈ Si and radSi
(pi) ≤ 2

3
· radS(p) for all i with 1 ≤ i ≤ k, and

3.
∑

{x,y}∈D
1

d(x,y)
≤ γ

radS(p)
|D|, where D = D(S1, . . . , Dk).

The proof of this lemma will be given in Section 5. The algorithm that
computes a spanning tree of S is as follows:
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Algorithm LowAverStrTree(S,d, p)
Input: A finite metric space (S,d) and a point p in S.
Output: A spanning tree T of S rooted at p.
1. if |S| = 1
2. then return the tree T consisting of the single node p;
3. else compute the partition S1, S2, . . . , Sk of S and the sequence p1, p2,

. . . , pk of points in S, as given by Lemma 5;
4. for i = 1 to k
5. do Ti = LowAverStrTree(Si,d, pi);
6. let T be the union of T1, T2, . . . , Tk and the edges (p, p2),

(p, p3), . . . , (p, pk);
7. return T

In the rest of this section, we will prove that the average stretch factor
of the spanning tree T that is returned by this algorithm is bounded by a
constant. The following lemma generalizes Lemma 2:

Lemma 6 Let T be the spanning tree of S that is returned by algorithm
LowAverStrTree(S,d, p). For any point q in S, we have

dT (p, q) ≤ 3 · radS(p).

Proof. Let r = radS(p). It follows from the second claim in Lemma 5 that
each of the edges (p, p2), (p, p3), . . . , (p, pk) in T has length at most 2r/3. A
straightforward induction proof shows that

dT (p, q) ≤
∞∑

j=0

(2/3)j r = 3r.

Lemma 7 Assume that |S| ≥ 2 and let T be the spanning tree of S that is
returned by algorithm LowAverStrTree(S,d, p). Then

ASF (T ) ≤ 6γ,

where γ is the constant in Lemma 5.
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Proof. We will prove by induction on the size of S that

∑

{x,y}∈P2(S)

dT (x, y)

d(x, y)
≤ 6γ

(
n

2

)
.

If S contains only one element, then T is the tree consisting of one single
node. In this case, the claim holds.

Assume that S contains at least two elements. The tree T is the union
of the edges (p, p2), (p, p3), . . . , (p, pk) and the recursively computed trees
T1, T2, . . . , Tk. Let D = D(S1, . . . , Sk). We have

∑

{x,y}∈P2(S)

dT (x, y)

d(x, y)
=

k∑
i=1

∑

{x,y}∈P2(Si)

dT (x, y)

d(x, y)
+

∑

{x,y}∈D

dT (x, y)

d(x, y)
.

Let i be an integer with 1 ≤ i ≤ k. If both x and y are in the same subset
Si, then dT (x, y) = dTi

(x, y). Thus, by induction, we have

∑

{x,y}∈P2(Si)

dT (x, y)

d(x, y)
=

∑

{x,y}∈P2(Si)

dTi
(x, y)

d(x, y)
≤ 6γ

(|Si|
2

)
.

For any pair {x, y} in D, we have, by Lemma 6,

dT (x, y) = dT (x, p) + dT (p, y) ≤ 6 · radS(p).

It follows that
∑

{x,y}∈D

dT (x, y)

d(x, y)
≤ 6 · radS(p)

∑

{x,y}∈D

1

d(x, y)
≤ 6γ|D|,

where the last inequality follows from the third claim in Lemma 5. Thus, we
have

∑

{x,y}∈P2(S)

dT (x, y)

d(x, y)
≤ 6γ

(
k∑

i=1

(|Si|
2

)
+ |D|

)
.

Since
k∑

i=1

(|Si|
2

)
+ |D| =

(
n

2

)
,

it follows that ∑

{x,y}∈P2(S)

dT (x, y)

d(x, y)
≤ 6γ

(
n

2

)
.
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5 The proof of Lemma 5

Let p be an arbitrary element of S and define r = radS(p). We have to
show that there exists a partition S1, S2, . . . , Sk of S, for some k ≥ 2, and
a sequence p1, p2, . . . , pk of points in S, such that p1 = p, pi ∈ Si and
radSi

(pi) ≤ 2r/3 for all i with 1 ≤ i ≤ k, and

∑

{x,y}∈D

1

d(x, y)
≤ γ

r
|D|,

where γ is a constant and D = D(S1, . . . , Dk) is the set of all unordered pairs
{x, y} in P2(S) that are in different subsets of the partition.

We will construct this partition incrementally. During the construction,
we maintain the following invariant:

Invariant: We have a partition of S into subsets S1, S2, . . . , Sk−1, R, and a
sequence p1, p2, . . . , pk−1 of points in S, such that p1 = p and for all i with
1 ≤ i ≤ k − 1, the following hold: pi ∈ Si, radSi

(pi) ≤ 2r/3, and

∑
x∈Si

∑
y∈Si+1∪...∪Sk−1∪R

1

d(x, y)
≤ 3β

2r
|Si| · |Si+1 ∪ . . . ∪ Sk−1 ∪R|,

where β > 2 is the constant in Lemma 1. (Thus, the constant γ will be equal
to 3β/2.)

Initialization: We start the construction by setting k = 1 and R = S.
Then, the invariant holds.

One iteration of the construction: Assume that the invariant holds. If
R = ∅, then the partition S1, S2, . . . , Sk−1 of S and the sequence p1, p2, . . . , pk−1

of points prove Lemma 5.
Assume that R 6= ∅. If k = 1, then let p1 = p. Otherwise, let pk be an

arbitrary element of R. We will show how to partition R into two subsets Sk

and R′ such that
radSk

(pk) ≤ 2r/3 (4)

and ∑
x∈Sk

∑

y∈R′

1

d(x, y)
≤ 3β

2r
|Sk| · |R′|. (5)

Then, by setting k = k + 1 and R = R′, the invariant still holds.
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First assume that all elements of R are within distance 2r/3 of pk. Then
we define Sk = R and R′ = ∅. In this case, (4) and (5) obviously hold.

Thus, we may assume that not all points of R are within distance 2r/3
of pk. Now assume that {x ∈ R : 2r/3 < d(pk, x) ≤ r} = ∅. Then we define
Sk = {x ∈ R : d(pk, x) ≤ 2r/3} and R′ = R \ Sk. It is clear that (4) holds.
If x ∈ Sk and y ∈ R′, then

d(pk, y) ≤ d(pk, x) + d(x, y),

which implies that d(x, y) ≥ r/3. Thus

∑
x∈Sk

∑

y∈R′

1

d(x, y)
≤ 3

r
|Sk| · |R′|.

Since β > 2, it follows that (5) holds.
It remains to consider the case when {x ∈ R : 2r/3 < d(pk, x) ≤ r} 6= ∅.

Let R1 = {x ∈ R : d(pk, x) ≤ r} and R2 = R \R1. For each element x in R1,
let rx = d(pk, x). Observe that rpk

= 0. Let r′ = max{rx : x ∈ R1}. Then
2r/3 ≤ r′ ≤ r. Consider the sequence of real numbers rx, where x ranges
over all elements of R1. By Lemma 1, there exists a real number z such that
r′/3 ≤ z ≤ 2r′/3 and

∑
x∈R1,rx≤z

∑
y∈R1,ry>z

1

ry − rx

≤ β

r′
m(|R1| −m) ≤ 3β

2r
m(|R1| −m),

where m = |{x ∈ R1 : rx ≤ z}|.
We define Sk = {x ∈ R1 : rx ≤ z} and R′ = (R1 \ Sk)∪R2. Observe that

radSk
(pk) ≤ z ≤ 2r′/3 ≤ 2r/3; thus, (4) holds. We next observe that

∑
x∈Sk

∑

y∈R′

1

d(x, y)
=

∑
x∈Sk

∑

y∈R1\Sk

1

d(x, y)
+

∑
x∈Sk

∑
y∈R2

1

d(x, y)

≤ 3β

2r
|Sk|(|R1| − |Sk|) +

3

r
|Sk| · |R2|

≤ 3β

2r
|Sk| · |R′|.

Therefore, (5) holds. This concludes the description of one iteration of the
construction.
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Since in each iteration, the size of the set R gets smaller, the construction
terminates. Thus, we have proved Lemma 5 and, therefore, Theorem 1 as
well.

By Lemma 7, the constant α in Theorem 1 is equal to 6γ. As we have
seen in the invariant, the constant γ is equal to 3β/2, where β is the constant
in Lemma 1. In Section 3, we have seen that Lemma 1 holds with β = 4608.
Thus, we have α = 9β = 41, 472.

6 Concluding remarks

The minimum spanning tree (MST) may have an unbounded average stretch
factor. Take n/3 points uniformly spaced around the unit-circle. Take two
neighboring points p and q, and move them apart by a very small amount, so
that their distance is a bit larger than all other distances between neighboring
points. Now put n/3 points very close to p, and n/3 points very close to q.
The MST of the n points is the union of (i) the unit-circle minus the gap
pq, (ii) the MST of the n/3 points close to p, and (iii) the MST of the n/3
points close to q. The average stretch factor is Ω(n).

Does Theorem 1 hold for spanning paths? The answer is “no”: Let S be
the vertex set of a

√
n×√n grid in the plane, where each grid cell has sides

of length one. Let P = (p1, p2, . . . , pn) be an arbitrary spanning path of S.
Let A = {p1, . . . , pn/3} and B = {p1+2n/3, . . . , pn}. If x ∈ A and y ∈ B, then

dP (x, y) ≥ n/3 and d(x, y) ≤ √
2n. Thus,

ASF (P ) ≥ 1(
n
2

)
∑
x∈A

∑
y∈B

dP (x, y)

d(x, y)
≥ 1(

n
2

) |A| · |B| n/3√
2n

= Ω(
√

n).

Observe that we can modify algorithm EuclLowAverStrTree(S) so that
it returns a spanning path of S. The analysis in Section 2, however, cannot
be applied to this case, because Lemma 2 does not hold.
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