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Abstract

This paper proposes using collisions of Pareto random
variables in traffic analysis and in generating fictitious
network traffic that follows various Pareto distributions.
Fareto distributions are commonly found in network statis-
tics, but the distributions may be truncated or overlapping,
thus making it hard to estimate their sample parameters.
Therefore, this paper investigates methods of computing pa-
rameters of binned collisions of Pareto random variables.

This paper explores an indicator variable approach to
analyzing collisions of Pareto random variables. These col-
lisions are initially modeled by the Birthday problem or
paradox and then they are extended to understand indepen-
dence of collisions. This paper’s use of indicator variables
simplifies the calculation of higher moments for binned col-
lisions of Pareto random variables.

1 Introduction

Encryption alone is not sufficient for secure communi-
cation. That is, many successful security breaches are not
the result of finding an opponent’s encryption key. An ad-
versary can gain significant information about communicat-
ing parties’ transmissions just by observing their encrypted
traffic. Currently, most direct encryption-protocol cracking
attacks are far more expensive in computer and intellectual
costs than some simple and straight-forward traffic analysis
attacks.

Numerous researchers, for example Barabdsi and Al-
bert [2], Fabrikant, et al. [6], Faloutsos, et al. [7], and
Fowler [9], have found many network and computer statis-
tics follow power-law or Pareto distributions. Specifically,
numerous aspects of network traffic exhibits variations on
Pareto distributions [9]. These range from low-level statis-
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tics such as the timing of packet requests, file sizes, etc., to
high-level aspects such as the popularity of web sites, the
popularity of certain web pages in particular web sites, the
number of incoming links, efc.

This paper extends variations of the classical birthday
problem to better understand Pareto-like network traffic.
This is accomplished by applying indicator random vari-
ables to counting collisions in binned network statistics.
The birthday problem has been studied using indicator ran-
dom variables, as an example see the second exposition
of the birthday problem in Cormen, Leiserson, Rivest and
Stein [3]. While Cormen et al. assume uniform random
variables, we apply these indicator variables with a focus
on Pareto-type distributions to gain a better understanding
of network traffic statistics for traffic analysis.

1.1 Previous Research

Select Research on Traffic Analysis. There has been a
good deal of work on traffic analysis. Here we very briefly
review selected papers. We are not aware of any papers
that take our approach to traffic analysis of using indicator
random variables to understand Pareto distributions.

Raymond [18] surveys traffic analysis and related issues.
Newman-Wolfe and Venkatraman [17] give a model for pre-
venting traffic analysis. This model tries to make the traf-
fic behave neutrally, thus disguising the actual traffic pat-
terns. They base this on matrices describing neutral traffic
patterns. Then they suggest traffic padding, re-routing, and
traffic delays as countermeasures.

Guan, Li, Xuan, Bettati, and Zhao [14] use traffic
padding and host-based re-routing to disguise network traf-
fic. Further, they give heuristic methods that allow real-
time constraints to be met while preventing traffic analysis.
Guan, Fu, Xuan, Shenoy, Bettati, and Zhao [13] describe
the NetCamo system which forestalls traffic analysis in real-
time systems. Fu, Graham, Bettati, and Zhao [10] give an
analytical framework for traffic analysis. The focus is on
constant-interarrival time packets and variable interarrival
time packets for countermeasures.

Fu, Graham, Bettati, Zhao, and Xuan [11] study traf-
fic link padding with constant-interarrival time packets and
variable interarrival time packets for countermeasures to



traffic analysis. They give extensive analytical and empir-
ical analysis of these countermeasures and attacks against
them. The attacks they examine are sample mean, sample
variance and sample entropy. Finally, they give guidelines
for system configurations to harden security.

The birthday problem. The birthday problem was origi-
nally proposed and solved by Richard von Mises [20]. Sub-
sequently, a number of variations of the birthday problem
and their solutions have appeared. For example, due to its
applicability to attacking hash functions, the birthday prob-
lem is now an important part of the computer security liter-
ature [19].

Work on the birthday problem that is somewhat relevant
to this paper is Flajolet, Gardy, and Thimonier [8]. Flajo-
let, et al. [8] give results on the expectation for getting j dif-
ferent letter k-collisions. Different from our approach, their
results are expressed as truncated exponentials or gamma
functions.

Challenges simulating heavy-tailed distributions.
Crovella and Lipsky [4] examine challenges of simulating
heavy-tailed distributions. These challenges are due to
sampling large numbers of moderate (tail) values and
fewer peak values. They point out that this is a particular
challenge for Pareto-like distributions where o < 1.7.

Gross, Shortle, Fischer, and Masi [12] discuss the chal-
lenges of simulating truncated Pareto distributions. The
question arises as to where to truncate a Pareto distribution,
and this has a large impact on properly simulating a Pareto
distribution.

Our approach circumvents the issue of analyzing trun-
cated Pareto distributions by focusing on moments and pa-
rameters of ¢-sized buckets of collision bins.

1.2 Structure of this Paper

Section 2 reviews useful facts about Pareto distributions.
Section 3 discusses measurement of Pareto distributions by
collisions of values in bins. Section 4 gives a brief re-
view of the birthday problem. Subsection 4.1 gives exam-
ples of probabilities for birthday collisions in binned data
from Pareto distributions, while subsection 4.2 gives ways
to compute indicator moments. Section 4 applies indicator
random variables to Pareto-based birthday problems. Sec-
tion 5 concludes the paper and discusses future directions.

2 Pareto Distributions

Pareto or power-law distributions are loosely character-
ized by having heavy tails. Intuitively, this is a result of
their density functions which are variations on geometric
functions.

Let H, ) denote the n'" Harmonic number of the k"
order. This is defined as:

n

1
H,p= Z e

i=1

The Riemann Zeta function, denoted {(-), is defined simi-
larly:

for any complex number k£ with real component larger than
1.

Although Johnson, et al. [15] give three versions of the
Pareto distribution, here we examine only the (continuous)
Pareto distributions of the first and second kinds. Given the
parameters location ¢ > 0 and shape o > 0, the Pareto
distribution of the 1-st Kind has the probability distribution
function (PDF % for x > ¢, while the Pareto distribu-
tion of the 2-nd Kind (also known as the Lomax distribu-
tion) has the PDF W forz > 0.

The Zeta distribution with parameter o > 0 is a discrete
distribution sometimes also called the discrete Pareto distri-
bution or the Zipf-Estoup law, and has the PDF P[X = i] =
cim+) for i = 1,2,.. and ¢ = (302, i—(@FD) 7 =
(¢(ar+ 1)), We can also consider the case where o = 0,
though only over a finite range [1,n]. This is the Harmonic
Zipf distribution and has the PDF P[X = i] = - for

i =1,2,...,n, where H, is the nth harmonic number of
the first order.

In general, for both types of Pareto distributions, the k"
central and raw moment are only defined for o > k. Thus,
it is worth noting that for values of the shape parameter «
which are less than or equal to 2, the variance of both types
of Pareto is infinite. As noted in [5], this means that the
Central Limit Theorem does not hold with respect to the
distribution for values of o < 2, which can cause significant
difficulties in analyzing Pareto-like behaviors with simula-
tions.

The rest of this paper assumes suitably large o so the
moments exist for the discussion at hand.

3 Traffic Analysis and the Birthday Problem

Many systems generate numerous overlapping data
transmissions. These transmissions in effect wash-out or
truncate the Pareto tails of other transmissions.

As an example, Figure 1 shows two overlapping Pareto
distributions of the 2nd kind, the first distribution has o« =
1.5 and the second has o = 2.5. This was generated from
simulated data. Such data is not unusual in network trans-
missions, see for example [1] for analysis of data from In-
ternet sites serving the 1998 World Cup in which o = 1.37.



Pareto of the 15¢ Pareto of the 2™¢
Kind Distribution | Kind Distribution
pdf f(z) ZarT W
a >0,e >0,z >c a >0,z >0
P[X > z] ()™ (1+x)"°
E[X] aa_cl ifa>1 ﬁifoz>1
oo otherwise oo otherwise
2 . .
oo otherwise oo otherwise
Harmonic ¢
Zipf
PIX =i Y sl
a >0,z >0
Hy Hy at1
P[X > x] 1— 4 1— CESY)
n ¢(a)
E[X] H, ((1+a)
a >1
n(n+1) C(a—1)
E[X?] SH, =)
a > 2

Table 1. Main Distributions and their Charac-
teristics with various parameters

A standard way of computing and understanding the
parameters of Pareto distributions is based on binning
data [16]. At arudimentary level, binned data may be exam-
ined as histograms to determine if a data-set forms a Pareto
distribution. Variable sized bins may also lead to more so-
phisticated analyzes. Histogram-based techniques can be
used to derive sample parameters for Pareto distributions.
These sample parameters are important in both perform-
ing traffic analysis as well as building counter-measures by
spoofing Pareto distributions.

Due to the truncation of Pareto distribution’s tails and
the overlapping nature of much network traffic (see Fig-
ure 1), this paper proposes computing statistics on t-sized
collisions. Data points that are put in the same buckets
of Pareto distributions give identifying information to track
similar network statistics. Also, if we are spoofing network
traffic, then we should be careful to make sure these t-size
collisions follow appropriate network statistics.

4 The Birthday Problem using Indicator
Variables

Let Y1,Y5,..., Y, be a sequence of independent and
identically distributed random variables, whose range is [n].
We imagine this to model the following situation: There are

Pareto Distributions
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Figure 1. Two Pareto Transmissions of the
2nd kind.

n days in one year, and there are k people. The random
variable Y;, for i € [k], represents the birthday of the i-th
person.

Definition 1 For any non-empty subset I of [k], we de-
fine X to be the indicator random variable represent-
ing the event that all people in I have the same birth-
day. Thus, if I = {i1,is,...,i}, then

1 ifiy,---, 4 all have the same birthday
X; = .
0 otherwise.

For each i € [k] and j € [n], we define p; = P[Y; = j].
Then, for any subset I of [k] with |I| = ¢,

E[X;] =

= zn: P
j=1

= Y I[P =14
j=14iel

= 2 II»

j=1iel
n
_ Z ¢
= pj.
j=1

If we define the function ) by

A —j)}

i€l

Q(z) =Y _pi'h,
j=1



then we have shown that, for any ¢ with 1 < ¢ < k, and for
any subset I of [k] of size t,

E[X;]=Q(t—-1).
4.1 Examples of Pareto Events

Suppose ¢ = 2 and consider the uniform random distri-
bution, therefore p; = * forall i : n > i > 1, giving,

n 1
Z, n?
i=1

1

n

QM) =

That is, for any two fixed people i1, 22, with random and
uniform birthdays, the probability these birthdays are the
same is +.

Likewise, consider t = 2 people whose birthdays are dis-
tributed according to the harmonic Zipf distribution, p; =
ﬁ, then

1
1) = —_—
1 1
= mle
no=1
Since lim,,—, o (H,, —Inn) = v, where v is Euler’s con-
stant, and Y -, 1/i*> = 72/6, it follows that the proba-
bility that two people have the same birthday is Q(1) €
@(ﬁ), a rather dramatic increase compared to the uni-
form case.

4.2 Computing indicator Expectations

Here the focus is on the expectation of indicator vari-
ables. These variables allow us to gain a better understand-
ing of how to distinguish different Pareto variables.

Definition 2 For any fixed ¢ € [k],

X = (i, ie): {i1 <ip < - <ig} C [K]

and all iy, - - -, i; have the same birthday }|.

Definition 2 immediately gives

X = ZX,.

IC[k]|I|=t

The random variable X represents the number of ¢-size
sets of k people with the same birthday. Therefore, in this

case, [E[ X] is the expected number of ¢-size groups of k ran-
domly and uniformly chosen people having the same birth-
day.

If we write E[X;] = Q(t — 1) as before, then we have

EX] = )

IC[k],|I|=t

(})et -1,

by the linearity of expectation.

E[X/]

Lemmal If I and J are sets of indices whose inter-
section has size one, then X; and X ; are indepen-
dent.

Proof: Lett c [k]and¢ > 1and s € [t], let us first show
that

P[X;, ..., =1 = PIX,...

for any set { i1,---,4; } C [k].

o =1 P[Xi i = 1]

st

Let Y; be the birthday of the j** person, for 1 < j < k.

PXi, ... =1]
= P, =yA- AY;, =y|Y;, =y
by definition, forany s : k > ¢t > s > 1
= PV =yn---AYi =y
ANYiy =y AN NY;, =1
by independence of all Y;
P[Y;, =y|---P[Y;,_, =y
-PY;,,, =y]---PlY;, =y
= P, =yA-AY , =y
PlYi . =yA-AY, =y
= PY,, =yA---NY;, =ylYi, =y
P, =y A AY;, = ylYi, =y
= P[Xy,....=1P[X;, ..., =1]

s+1

Now, assume without loss that I = {i,---,is}and J =
{is," -+, }. Hence that I N J = {is}. It must follow that

PXi, i.=1ANX,,  ; =1=PX,, ;=1

t

s

since the birthday of person ¢, fixes both sets. Hence,

P[Xi,,....i.
— P[X,

=1AXi,. .4 =1]

syeeeerlt

..........

completing the proof. ]



Lemma 2 Let I and J be subsets of [k], such that I N
J # (. The random variables X; and X ; have joint
probability

PX;=1AX;=1 = P[X;;=1].
Proof: Since I N J # (), we have

Xr=1AX;=1 ifandonlyif ¥; = Y]
Vi, jelIU.J.

It follows that

PX;=1AX,=1] = ZIPl/\ Yi=vy)

yeln] Lierug
== IP[Xjuj = 1]

Lemma3 Lett € [k] and ¢ > 2 s0 {iy,---,i:} C [k]
and {ji, -, j:} C [k]. The random variables X;, ...,
and X, .. ;, are independent iff 1 > |{i1,---,4} N
{jlv"'?jt}| 20

Proof: Letl = {iy,--,iz}and J = {j1, -, jt}-

< If|INJ| =0, then X;, ... ;, and X, ... j, are obviously
independent, since birthdays are independent. On the
other hand, if [T N J| = 1, then apply Lemma 1.

= We will prove the contrapositive. We take [I N J| > 1,
and for the sake of a contradiction, suppose the vari-
ables X7 and X ; are independent. We consider two
cases.

First, assume that either /N J =1 orINJ = J, then
since t > 2 gives
|P[X[:1/\XJ:1] = IP[XJZI]
# P[X;=1]P[X,; =1]
Thus, X; and X ; are not independent, contradicting
this sub case.
On the other hand, suppose I N J # I so since |I| =
|.J] it must be that |[I — (I N J)| > 1 (the case where
[I| = |Jland INJ # Jand |J —(INJ)| > 1is
symmetrical). Thus considering Lemma 2 gives
|P[X] =1NX;= 1}
- IP[Xjuj = 1]

QUIN+ [ = InJ=1).

Moreover, it must also be that

PIX; =1]PX; =1 = Q(Il-1e(J|-1)

but,
QUII-1)QUI —1) # QUII+|J|—|InJ|—1)
for [I N J| > 1. This completes the proof.

1

Theorem 1 Let X = X, ;, be as per Definition 2 with
t = 2. Then E[X] =

(5)Q(1) and Var[X] = E[X](1 —
Q1))

Proof: First note that since X, ... ;, is an indicator vari-
able, then E[X;, ...;,] = E[X? . ].

1,

Take the set of all pairs T = [k‘] x [k], and the subset
U C T sothat (u1, uz) € U iff ug # uo, then

Var[X]
= E[X? - E[X]?

= Y EX+2 ) EX,X, - (g) Q*(1)

uelU vwEU

vFEW

= > EX7+2 Y EXJEX,] - (’;) Q3(1)

uelU vwEU

vFEW
(by Lemma 3)

- Qanes@Jen- (o
- B (6 e
(5 e

— EX](1-Q(1).

completing the proof. 1

In the case of harmonic Zipf birthday collisions,
for t = 2 variables Q(1) = @(%) meaning

E[X] = @(k(kfl)). Theorem 1 gives Var[X] =

21n2(n)
O (35 (1 - sy ) ). Nows if X is uniformly dis-
@(%) and Var[X'] =

21n2(n) 2(n)
tributed, then [E[X’]

e (% (1- %)) These different moments should be
easily detectable.

The asymptotic notation is used here to deal with the dif-
ference between the harmonic numbers and their logarith-
mic representation.

Consider two Pareto distributions of the second kind

with parameters « = 1.5 and o/ = 2.5. If we consider




truncating each distribution at = 3.6 and using bins
of size 0.1, we have that the probabilities of two birth-
days colliding are approximately 0.04 and 0.06, respec-
tively. Thus, for ¢ = 2 we have E[X] ~ 0.04(%) and
E[X'] ~ 0.06(%). Further, V[X] ~ (0.96 * 0.04)(%) and
V[X'] = (0.94 % 0.06) (g) This means the variances of the
t = 2 sized bin collisions for each of these different distri-
butions are different by about 50%.

Lemma4 Assumet=2andk >tandlet X = X, ,,
then,

Skew[X] = E[X](-(2E[X]-1)

-(E[X]+1) +2Q(1)).

Proof: Take the set of all pairs T = [k] x [k], and the
subset U C T so that (uq, us) € U iff ug # us.
Now, consider the definition of skew:

Skew[X]
= E[(X — E[X])"]
= [E[X?] - 3E[X]E[X?] + 2E[X]?
= Y E[X]]+6 > E[X,JE[X,]E[X.]

uelU v,w,zeU

—3E[X]E[X?] + 2E[X]?

e ()((9)-)(() e

—3E[X]E[X?] + 2E[X]?

= E[X]+ E[X] ((’;)2 - 3<§> + 2) Q*(1)

—3IE[ JE[X?] + 2E[X]?

= E[X]+ E[X] (E[X]? — 3E[X]Q(1) + 2Q*(1))
—3IE[ JE[X?] + 2E[X]?
= [] E[X]3—3IE[

= E[X ]+IE[X] - 3E[X]?Q(1) + 2E[X]Q*(1)
—3E[X] (E[X] — E[X]Q(1) + E[X]?) + 2E[X]?

= [E[X] - 2E[X]® — 3E[X]? + 2E[X]Q*(1)
+2E[X]?

= E[X](1-2E[X]* - E[X]+2Q*(1))

= E[X](-2EX] - 1)(E[X]+1) +2Q(1)),

completing the proof. 1

Lemma 5 Assumet=2and k >tandlet X = X, ,,
then

Kurtosis| X] = [E[X]|(BE[X]—1)(E[X]—-1)
—4E[X]Q*(1) - 6Q*(1)).
Proof: Take the set of all pairs T = [k] X [k], and the

subset U C T so that (u1,us) € U iff ug # us.
Now, consider the definition of kurtosis:

Kurtosis[ X|

= E[(X - E[X])}]

= E[X*] - 4E[X]E[X?]
+3E[X]?(2E[X?] — E[X]?)

= Y EX;+4 Y E[X,JE[X,]EX]EX,]
uelU v,w,s,tel
—4E[X]E[X3] + 3E[X]*(2E[X?] — E[X]?)

B k k 4

= () () =) () 2) () ) e
—4E[X]E[X?] + 3E[X]*(2E[X?] — E[X]?)
+E[X]

- () o) o)

—4E[X]E[X?] + 3E[X]*(2E[X?] — E[X]?)
+E[X]

= E[X](E[X]® - 6E[X]*Q(1)
+11E[X]Q?*(1) — 6Q*(1))

—4E[X](E[X] — 3E[X]?Q(1)
+2E[X]Q*(1) + E[X]?)
+3E[X]*((E[X] — E[X]Q(1))
+E[X] - E[X]Q(1) + E[X]?)
+E[X]

= —4E[X]?Q*(1) — 6E[X]Q*(1)
+3E[X]? — 4E[X]? + E[X]

= E[X]BE[X]* —4E[X] +1
—4E[X]Q*(1) - 6Q°(1))

= [EX](BE[X]-1)(E[X]-1)
—4E[X]Q*(1) - 6Q%(1))

completing the proof. 1

Lemmas 4 and 5 give moderately complex expressions
for Pareto type distributions. However, these expressions
are easy to program. For instance, they are exclusively de-
pendent on linear functions of the expectation of the birth-



day collisions in addition to products of powers of probabil-
ities.

Theorem 2 For the more general case, where ¢t € [k]
and for {i1,---,4;} C [k] andlet X = X;, ... ;,, then

Var[X] — E[X](1- E[X])

+Z< kz>< t_iz_t)Q(Qt—i—l).

Proof: First, let

and take U C T such that for all (uy,---,u;) € U it must
be that u; # u; fori # jand all 4,5 : t > 4,5 > 1. Here,

E[X] = (})Q(t - 1).

Var[X]
= [E[X?] - E[X)?
= > EXZ+2 ) EX,X,]
uelU v, weU

vFEW

- (’j)QQ%t )
S

e (e
('§>22“
)215—@'—1)

completing the proof. 1

5 Conclusion and Future Directions

Indicator random variables are useful tools for giving in-
sight into Pareto random variables. When applied to the
birthday problem, indicator random variables may provide
useful and sometimes easy to compute parameters. Under-
standing and working with Pareto distributions is impor-
tant for traffic analysis since network statistics often exhibit
Pareto distributions.

Left for future work is the question of whether it is pos-
sible to get a closed form for the variance expression given
in Theorem 2 when t is a large integer. Furthermore, gener-
alizations of Theorem 1, Lemmas 4 and 5 for ¢ > 2 would
also be of interest.
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