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AbstratLayered Manufaturing is a tehnology that allows physial prototypes of three-dimensionalmodels to be built diretly from their digital representation, as a stak of two-dimensionallayers. A key design problem here is the hoie of a suitable diretion in whih the digitalmodel should be oriented and built so as to minimize the area of ontat between the prototypeand temporary support strutures that are generated during the build. Devising an eÆientalgorithm for omputing suh a diretion has remained a diÆult problem for quite some time.In this paper, a suite of eÆient and pratial heuristis is presented for estimating the minimumontat-area. Also given is a tehnique for evaluating the quality of the estimate provided byany heuristi, whih does not require knowledge of the (unknown and hard-to-ompute) optimalsolution; instead, it provides an indiret upper bound on the quality of the estimate via tworelatively easy-to-ompute quantities. The algorithms are based on various tehniques fromomputational geometry, suh as ray-shooting, onvex hulls, boolean operations on polygons,and spherial arrangements, and have been implemented and tested. Experimental results on awide range of real-world models show that the heuristis perform quite well in pratie.
1 IntrodutionLayered Manufaturing (LM) is a fast-growing tehnology with signi�ant impat on the eÆienyof the design proess in a broad range of industries [Ja92, CLL03℄. LM o�ers a exible and ost-e�etive alternative to traditional methods used in the design phase of physial prototypes. CurrentLM tehnology produes high-quality prototypes with added olor in a matter of hours and at lowost. The prototypes an be inspeted for aws and if neessary the design an be modi�ed andthe proess repeated until the �nal design has reahed the desired quality.�Department of Computer Siene & Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.filinkin,janardang�s.umn.edu, erj�visi.om. Researh supported, in part, by NSF grants CCR{9712226 andCCF{0514950. This e�ort is also sponsored, in part, by the Army High Performane Computing Researh Centerunder the auspies of the Department of the Army, Army Researh Laboratory ooperative agreement numberDAAD19-01-2-0014, the ontent of whih does not neessarily reet the position or the poliy of the government,and no oÆial endorsement should be inferred.yShool of Computer Siene, Carleton University, Ottawa, Canada, K1S 5B6 mihiel�ss.arleton.a. Re-searh supported by NSERCzCenter for Applied Sienti� Computing, Lawrene Livermore National Laboratory, Livermore, CA 94551astillo17�llnl.govxSoftwareb�uro Bubel GmbH, 66459 Kirkel, Germany jshwerdt�swbb.de
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Figure 1: The Stereolithography Apparatus, along with the slied digital model and support stru-tures.
Stereolithography is a widely-used LM proess. In essene, the Stereolithography Apparatus(SLA) onsists of a vat of light-sensitive liquid resin, a platform, and a laser (see Figure 1). Theinput to the proess (and to virtually all other LM proesses) is a surfae triangulation of thedigital model in the industry-standard STL format. The model is oriented suitably and slied intohorizontal 2D layers, whih are then sent over a network to the SLA. The laser traes out theontour of eah layer (a polygon) and then sans the interior in a zig-zag pattern. The exposureto the laser auses the sanned portion of the liquid to harden and form the physial layer. Theplatform is then lowered by an amount equal to the layer thikness (typially a few thousandths ofan inh) and the next layer is then built on top of the previous one; thus, the 3D prototype is realizedeventually as a vertial stak of 2D layers. Ideally eah new layer should rest ompletely on top ofthe previous one, so that the prototype is self-supporting during the build phase. Unfortunately,the omplex shape of real-world prototypes often prevents them from being self-supporting (inany orientation). Therefore, during a pre-proessing step, the model is analyzed and additionalstrutures alled supports are reated and merged with the desription of the model. Supports arebuilt simultaneously with the prototype and later removed in a post-proessing step.The hoie of orientation an impat ritially the eÆieny of the build proess and the surfaequality of the physial prototype. Several ompeting riteria need to be addressed when hoosingan optimal orientation. For example, an optimal orientation that minimizes the amount of supportstrutures will, in general, lead to faster build times. Similarly, an orientation that minimizesthe ontat-area (the area of that portion of the surfae of the prototype that is in ontat withsupports) would help minimize damage to the surfae of the prototype during support removal.The problem of �nding a suitable orientation an be translated into purely geometri terms andthis has led to a onsiderable amount of researh in reent years. Asberg et al. [ABB+97℄ (see also[Bos95℄) desribe eÆient algorithms to deide if a given model an be built without supports usingStereolithography. Majhi et al. [MJSG99℄ give algorithms to minimize the volume of supports andontat-area for onvex polyhedra. (See also [Maj98℄.) Shwerdt et al. show how to hoose a builddiretion that protets presribed faets from being damaged by supports [SSJ+00℄. Agarwal andDesikan [AD00℄ give an eÆient algorithm to ompute a build diretion whih approximates theminimum ontat-area for a onvex polyhedron. They also show that for a non-onvex polyhedron
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the set of diretions for whih the total area of the faets in ontat with supports is minimumhas 
(n4) onneted omponents. (Note that this problem is not quite the same as minimizingthe total ontat-area, as it onsiders the entire area of a faet in ontat with supports regardlessof area atually in ontat; nevertheless, the 
(n4) lower bound hints at the potential diÆultyassoiated with minimizing the ontat-area and provides further motivation for the heuristis weonsider here.) Johnson [Joh99℄ shows how to ompute support desriptions eÆiently for a givenbuild diretion.Unfortunately, very few results are available for the problem of optimizing support requirementsfor non-onvex polyhedra. Majhi et al. [MJS+99℄ give support optimization algorithms for non-onvex polygons in the ase of 2D Stereolithography. An exat algorithm to minimize ontat-areafor polyhedral models is presented in [Sh01℄, but its high running time preludes its use in pratie;spei�ally, the running time is O(n6q(n)), where q(n) is the time to solve a ertain non-linearoptimization problem on the unit-sphere. Allen and Dutta [AD95℄ give heuristis for minimizingsupport ontat-area for non-onvex polyhedra. Their approah restrits andidate build diretionsto the (disrete) set of faet normals of the onvex hull of the model and, furthermore, onsidersonly those faets whose areas are relatively large (so that the part is stable).Contributions: In this paper, we make further progress on the ontat-area problem for poly-hedral models. Spei�ally, we provide a suite of eÆient and pratial heuristis for estimatingsupport ontat-area (Setions 4{6). These heuristis are based on various tehniques from om-putational geometry, suh as ray-shooting, onvex hulls, boolean operations on polygons, spherialalgorithms et., and make use of the CGAL [CGA℄ and LEDA [MN99℄ libraries in the softwareimplementation. We also give a method for evaluating the quality of the estimate provided byany heuristi, whih does not require knowledge of the (unknown and hard-to-ompute) optimalsolution; instead, it provides an indiret upper bound on the quality of the estimate via relativelyeasy-to-ompute quantities (Setion 3). Finally, we present an extensive set of experimental resultson real-world STL models that show that the heuristis perform quite well in pratie (Setion 7).
2 PreliminariesWe denote by P the polyhedron of interest and by n the number of faets in P. We assume thatthe faets of P are triangles and that its boundary is represented in some standard form, suhas, for instane, a doubly-onneted edge list [dBvKOS97℄ or a winged-edge struture [Bau75℄. (Ifneessary, suh a representation an be omputed easily from the standard STL representation ofP [MS99℄.) Let d be a given build diretion (a unit-vetor); we assume, w.l.o.g., that d oinideswith the positive z-diretion.Let f be any faet of P. We lassify f , w.r.t. the given build diretion d, as a front faet, abak faet, or a parallel faet of P depending on whether the angle between the build diretion dand the outward unit-normal, nf , of f is less than, greater than, or equal to 90Æ, respetively.We now formalize the notion of supports. A faet of a polyhedron will need to be supported ifand only if the angle between its outer normal and the build diretion of the polyhedron is greaterthan 90Æ. This implies that the bak faets of P will need to be supported. For onreteness,onsider a bak faet f of P. The support polyhedron for f is the losure of the set of all pointsp 2 IR3 suh that p is not in the interior of P and the ray shot from p in diretion d �rst enters Pthrough f . Informally, the support polyhedron of f is bounded from above by f , on the sides by
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vertial faets that \drop down" from the edges of f , and from below by the platform on whih Prests and/or portions of front faets of P. (If P is onvex, then it is bounded from below by onlythe platform.) The supports of P w.r.t. a build diretion is the olletion of support polyhedra forthe bak faets.The support ontat-area for P is the total surfae area of P that is in ontat with supports.It onsists of the area of all the bak faets of P and the areas of those portions of front faets andparallel faets that are in ontat with supports. Note that for a onvex polyhedron, the supportstrutures are relatively simple, in that only bak faets are in ontat with supports and everypoint on a bak faet is in ontat with supports. Furthermore, the support strutures extend allthe way down to the platform. However, for a general polyhedron, the situation is more omplex:First, in addition to bak faets, some front and parallel faets an also be in ontat with supports(involuntarily, due to a bak faet on a higher layer needing support). Seond, front and parallelfaets may be only partially in ontat with supports. Finally, supports need not extend all the waydown to the platform, but may instead terminate on other parts of the polyhedron itself. This isillustrated in Figure 1 for the supports for the �fth layer. (The �gure is shown in 2D, for simpliity.)It is this omplexity of the support strutures that makes the support optimization problem thatwe onsider so hallenging.
3 An upper bound on the quality of the estimateIdeally, we would like to �nd a diretion d� that minimizes the ontat-area of P. Unfortunately,the struture of non-onvex polyhedra presents signi�ant hallenges in �nding an optimal solutioneÆiently. Unlike onvex objets, for whih only the bak faets are in ontat with supports,non-onvex objets an have portions of front and parallel faets in ontat with supports, as well.Furthermore, a small hange in the build orientation an result in a signi�antly di�erent footprintof the support strutures, possibly a�eting other faets that previously were not in ontat withsupports. These fators make it diÆult to design an exat algorithm that is both eÆient andpratial. Therefore, a simple and eÆient heuristi to estimate the ontat area, along with ameasure of the quality of the estimate, an be quite useful in pratie.We now develop a measure for the quality of the estimate provided by a given heuristi. Speif-ially, the ratio test developed below gives an indiation of how lose the estimated ontat-area isto the optimal ontat-area. Let CA(d) denote the ontat-area of P for a given build diretion, d,and let d̂ be the diretion omputed by a heuristi. We show how to obtain an upper bound on theratio CA(d̂)=CA(d�) via two relatively easy-to-ompute quantities. Let BFA(d) be the total areaof the bak faets w.r.t. d and let d0 be a diretion that minimizes the total area of bak faets.Notie that BFA(d�) � CA(d�), sine CA(d�) inludes possible ontat-area on front andparallel faets, and BFA(d0) � BFA(d�), by de�nition of d0. Therefore,CA(d̂)CA(d�) � CA(d̂)BFA(d�) � CA(d̂)BFA(d0) (1)The above result allows us to upper-bound the ontat-area estimate for a set of andidatediretions, relative to the (unknown) optimal solution, and to hoose from these the best diretiond̂. Notie that BFA(d0) needs to be omputed only one, and therefore, the quality test will dependmainly on the eÆieny of omputing the ontat-area for a given diretion. In the next setion wepresent two algorithms that ompute the ontat-area, but di�er in their auray and eÆieny.4



We note that the upper bound in Equation (1) is onsiderably weaker than a performane guar-antee typially proved for an approximation algorithm. Proving suh a bound would be desirablebut it has eluded us thus far. Nevertheless, the bound in Equation (1) is still useful sine it an aidthe user in seleting a suitable heuristi for estimating ontat-area, as we will see in Setion 7.
4 Computing ontat-area on front faets for a �xed diretionIn this setion, we desribe an exat algorithm and a heuristi for omputing the ontat-area onfront faets for a �xed build diretion d. The exat algorithm is simple, but too slow to be ofpratial use. However, this is tolerable sine we use the exat algorithm merely to do a one-time(o�ine) veri�ation of the auray of our heuristi whih is simple and eÆient.4.1 An exat algorithmW.l.o.g. assume that P rests on the xy-plane and that the build diretion d oinides with thepositive z diretion. Let f be a �xed front faet and let b be any bak faet. We projet f andb to the xy-plane and ompute the intersetion of their projetions (i.e., triangles), whih yields aonvex polygon, Cf (b) (Figure 2(a)). If Cf (b) 6= ;, then let p be any point in it, say the entroid.If the pre-images, pref (p) and preb(p), of p on f and b, respetively, are suh that preb(p) is abovepref (p) in diretion d, then pref (p) is in ontat with supports. This implies that the pre-imagepref (Cf (b)) is in ontat with supports. This follows sine no faet of P pieres another, so thereannot be another point q in Cf (b), whose pre-images on f and b are in the opposite order fromthose of p. (Note that it need not be the ase that the ylinder bounded by pref (Cf (b)) and bypreb(Cf (b)) is a support ylinder, sine b, or parts thereof, need not be immediately above f ; thereould be parts of other bak faets in between.) We an ompute the portions of the front faet fthat are in ontat with supports, i.e., the footprint of supports on f , by taking the union of thepre-images pref (Cf (b)) that are found to be in ontat with supports, for all bak faets b. (Inour implementation, we used the funtions provided by LEDA [MN99℄ to perform the union andintersetion operations.)The most expensive part of this algorithm turns out to be the union step in the omputation ofthe footprints. Note that the algorithm simply projets all bak faets down to the xy-plane, withoutregard to any intervening faets. Thus, the omplexity of the union of the polygons pref (Cf (b))on a single front faet, f , an be �(n2) in the worst ase, and �(n3) over all front faets. (Anexample of this is a on�guration of n=3 front faets staked on top of eah other and two sets ofn=3 bak faets above them that overlap in the form of a trellis.) The total time to ompute theunion is O(n2 log n) in the worst ase for any front faet [dBvKOS97℄, hene O(n3 log n) over allfront faets. The storage requirement is O(n2); sine the algorithm works on a faet-by-faet basis,the spae an be reused.With some additional e�ort, the running time an be improved to O(n3), as follows: For eahfront faet, f , we �rst projet all bak faets onto f . Next, we take the lines supporting eahpolygon in the projetion, ompute the arrangement of these lines, and determine the ells in thisarrangement that are overed by the projetion of at least one bak faet. The union of these ellsgives the footprint of the supports on f . The overing information for the ells an be omputedinrementally, by doing a depth-�rst traversal of the dual graph of the arrangement and maintaininga ounter that is inremented or deremented depending on whether or not the next ell in the
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Figure 2: (a) Computing a path that is in ontat with supports in the exat algorithm; (b) Rayshooting for a front faet f in the heuristi.
traversal is overed by the triangle whose side is rossed to reah the ell. The time per front faetredues to O(n2) and the laimed bound follows. (Note that this method, unlike the previous one,takes quadrati time per front faet, regardless of the geometri omplexity of the footprint.)We note also that a theoretially faster algorithm, running in O(n2 log n) time and O(n2)spae, is possible. This algorithm uses ylindrial deomposition [Mul93℄ and respets interveningfaets during projetion. An output-sensitive algorithm with running time O(n log2 n + V log n),where V is the omplexity of the deomposition, is given in [SH02℄. Unfortunately, the algorithmsdesribed in this setion and in [SH02℄ are extremely sensitive to degenerate input on�gurations,and therefore, reliable implementations require the use of exat arithmeti. Our experimentalresults indiate that the use of exat arithmeti introdues onsiderable overhead in the runningtime. Therefore, as mentioned at the beginning of Setion 4, we use an exat-result algorithmmerely for a one-time veri�ation of the heuristi in Setion 4.3, and we have hosen to implementthe relatively simpler O(n3 log n)-time algorithm desribed above for this purpose.Table 1 shows the running time of our O(n3 log n)-time algorithm and that of [SH02℄ on twogroups of data. The �rst group onsists of two geometri models.1 The vertex oordinates ofthe two models have been perturbed slightly and parallel faets have been removed to satisfy thegeneral position assumption required by the algorithm in [SH02℄; this explains why the number offaets in these models is slightly lower here than in Tables 2 and 3. The seond group onsists ofsets of triangles whose oordinates have been generated randomly in a �xed range.As an be seen from the table, our algorithm runs faster on the two models and slower on thesets of overlapping triangles than does the algorithm in [SH02℄. One possible explanation for thisis that the triangle datasets ontain many pairs that overlap in projetion and represent \diÆult"on�gurations for our algorithm. In real-world models, the number of overlapping triangles isgenerally muh smaller and so our algorithm runs faster. (Our algorithm also does not make any1The geometri models used here (and those used later in Tables 2 and 3) are real-world models that have beenredued in size, while preserving their general topology, in order to keep the running times reasonable. We use softwaresuh as Deimator [De℄ and VRMesh [VRM℄ to do the redution. However, our �nal experiments in Tables 4 and 5use the original models. 6



model (.stl) redued time (se.) time (se.)#faets Algo. in Setion 4.1 Algo. in [SH02℄mj 1896 3390 11649triad1 1983 3788 15161random tri. 1 400 3203 800random tri. 2 500 6906 1129Table 1: Comparison between the atual running times of the O(n3 log n) algorithm in Setion 4.1and the algorithm in [SH02℄. The �rst two test ases are deimated versions of real-world modelswhile the last two are staks of randomly-generated overlapping triangles. All experiments weredone on a SunBlade 100 mahine with 512 MB of main memory and a 500 MHz proessor; exatarithmeti is used in both implementations.
general position assumptions.)4.2 A heuristi based on ray-shootingIn this setion we desribe a simple heuristi with a very fast rate of onvergene, whih makes itpratial for real data sets. Consider a front faet f and let p be a point on f . The point p willbe in ontat with supports if and only if the ray originating at p in diretion d intersets someother faet of P. Thus, the main idea behind the heuristi is to pik a set of points in the interiorof f and identify those points that will be in ontat with supports by shooting rays in diretiond (Figure 2(b)). Let Hf (resp. Mf ) denote the set of rays, originating at points on f , that hit afaet of P (resp. miss all faets of P). Then the area of f that is in ontat with supports an beestimated as (jHf j=(jHf j+ jMf j)) � area(f). As the density of the sample points is inreased, theauray of the estimate improves (Figure 2(b)).The sample points are seleted through an adaptive subdivision proess. During the exeutionof the algorithm eah front faet is subdivided into a number of triangular pathes (initially theentire faet is the only path). The entroids of the pathes are seleted as sample points and theresults from the ray shooting are reorded. Next, eah path is subdivided into two triangles (forexample, by onneting the midpoint of its longest side with the opposite vertex). The new pathesare plaed at the end of a queue of unproessed pathes, whih guides the subdivision proess in abreadth-�rst searh fashion.The subdivision proess is made adaptive in that the number of sample points per faet isweighted based on area, so that bigger faets have more sample points. In a pre-proessing stepeah front faet is subdivided repeatedly until the resulting pathes have areas that are less thanthe average of the areas of the front faets of P. This ensures that bigger faets are subdivideddeeper and onsequently generate more sample points for the ray-shooting phase. Furthermore, asthe following lemma shows, the pre-proessing does not result in too many pathes.Lemma 4.1 The number of pathes generated after the pre-proessing step is less than 3n, wheren is the number of faets of P.Proof Let m be the number of front faets of P, A be total area of the front faets, and �A = Ambe the average front faet area. Let S be the set of pathes that result from the front faets of7



P that are subdivided at least one. Sine our method of subdivision halves the area of a pathand the area is larger than �A just prior to the last subdivision, all pathes in S have areas thatare greater than �A=2. If we let A0 denote the total area of the pathes in S, and let k = jSj, thenk �A2 < A0. Sine A0 � A, we have k �A2 < A, or k A2m < A, and therefore, k < 2m.In addition, there are at most m front faets of P that are not subdivided in pre-proessing(beause their areas are less than �A to begin with). Sine m � n, the lemma follows.Eah iteration of the algorithm orresponds to a omplete subdivision of the pathes, andtherefore, will proess twie as many pathes as the previous one. The algorithm terminates aftera prede�ned number of iterations, ontrolled by the user, or when the hange in ontat-area is notsigni�ant. Currently, we use the onvergene riterion Æ = jCAi+1 � CAij < 0:01 � CAi, i.e., thealgorithm terminates when the ontat-area from iteration i to iteration (i + 1) (denoted by CAiand CAi+1, respetively) hanges by less than 1%.During eah iteration i, i � 1, the algorithm proesses less than 2i�1 � 3n pathes. In ourimplementation, a brute-fore approah is used to answer a ray shooting query in O(n) time. Thus,for eah path the ray shooting takes O(n) time to deide whether the ray hits any faet of P, sothe overall time per iteration is O(2i � n2). Therefore, for a user-spei�ed number, d, of iterations,the overall running time is O(2d � n2).4.3 Experimental resultsTable 2 provides a omparison between the exat algorithm and the heuristi. The heuristi was runwith two di�erent terminating riteria: (i) terminating after ten iterations, denoted as \� = 10",following the initial subdivision of large faets; (ii) terminating based on the onvergene riteriondesribed in Setion 4.2, denoted as \Æ < 1%". In the latter ase, we also imposed an upperlimit of ten iterations following the initial subdivision of large faets, so that the omputationdid not beome prohibitively expensive. The omparison tests were run on deimated versions ofreal-world STL models due to the slow performane of the exat algorithm from Setion 4.1 thatwe implemented for purposes of omparison. (However, our �nal experiments in Tables 4 and 5were done on original models, not deimated ones.) As an be seen, the heuristi provides nearlythe same answer as the exat algorithm, but in a fration of the time. All experiments were doneon a SunBlade 100 mahine with 512 MB of main memory and a 500 MHz proessor. Programswere written in C++ and use CGAL [CGA℄ and LEDA [MN99℄; the ode for the heuristi usesoating-point arithmeti.
5 Handling parallel faetsThe previous algorithms onsider only the ontat-area on front and bak faets. In order to getan overall estimate of the ontat-area, we need to also onsider the portions of parallel faetsthat are in ontat with supports. In Setion 5.1 we give an algorithm for omputing the exatontat-area on parallel faets, and in Setion 5.2 we give an eÆient heuristi, analogous to theone in Setion 4.2.
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model (.stl) redued algorithm ontat-area time(#faets) #faets (% di�erene) (se.)bot ase 2000 � = 10 13644.0, (0%) 41(17642) Æ < 1% 13660.6, (0%) 1exat 13642.3 4182arasse 2000 � = 10 63.75, (0%) 34(22876) Æ < 1% 63.61, (0%) 1exat 63.73 3296mj 2000 � = 10 1.68, (0%) 29(2832) Æ < 1% 1.66, (-1%) 1exat 1.68 3391top ase 2000 � = 10 10239.5, (0%) 53(16692) Æ < 1% 10251.5, (0%) 1exat 10268.1 4790triad1 2000 � = 10 0.33, (0%) 36(11352) Æ < 1% 0.33, (0%) 1exat 0.33 3757Table 2: Comparison between the exat algorithm and the heuristi to ompute, for a given dire-tion, the ontat-area on front faets. Large models have been deimated to 2000 faets due to theslow speed of the exat algorithm. Note that the exat algorithm is only used for a one-time veri-�ation of the auray of the heuristi. The models bot ase and top ase required 2 iterationsafter the initial subdivision to meet the Æ < 1% terminating riterion; arasse and mj required3 iterations; triad1 required 4 iterations. In the olumn labeled \ontat-area" the number inparenthesis shows the perentage di�erene between the ontat-area omputed by the heuristiand by the exat algorithm (values are rounded to the nearest perent). The z-diretion is hosenas a build diretion. The models used here and in the rest of the tables are illustrated in Table 5.
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5.1 Exat algorithmLet f be a parallel faet and let Vf be the vertial strip that is in the supporting plane of f andontains f exatly. We may assume, w.l.o.g., that no vertex of f is in the interior of Vf . (Eahbounding line of Vf ontains at least one vertex of f . If there is a vertex in the interior of Vf , wedraw a vertial line through it and split f into two faets that eah satisfy the assumption.) Let f̂be the projetion of f on the xy-plane. (Notie that f̂ is just a line segment.)Consider the bak faets of P that either piere Vf above f , or touh Vf above f and are in thesame halfspae of Vf as the outer unit-normal, nf , of f . (These are the bak faets whose supportsare potentially in ontat with f when P is built in diretion d.) The intersetions of these bakfaets with Vf is a set, A, of line segments (Figure 3(a)).Let A0 be the set of segments that orrespond to the projetions of the segments in A on thexy-plane. Clearly, all the segments in A0 lie on f̂ and an be merged eÆiently, so that no two ofthe resulting segments overlap. For eah merged segment s we eret a vertial strip Vs and �nd itsoverlap area with f (Figure 3(b)). The sum of the areas of overlap for all strips Vs gives the overallontat-area on f .For eah faet f the size of A is O(n). Merging the segments in A0 an be done eÆiently inO(n log n) time by pre-sorting them on their �rst endpoint. For eah strip Vs the overlap area anbe found in onstant time. Therefore, the algorithm takes O(n log n) time per parallel faet, orO(n2 log n) time for all parallel faets.5.2 HeuristiLet f be a parallel faet and let f̂ be the projetion of f on the xy-plane. (Notie that f̂ is just aline segment.) Let p be any point on f̂ and let sp be the segment obtained by interseting f withthe ray originating at p in diretion d. The segment sp will be in ontat with supports if and only10



model (.stl) redued algorithm ontat-area time(#faets) #faets (% di�erene) (se.)bot ase 2000 � = 10 701.17, (0%) 0(17642) Æ < 1% 701.17, (0%) 0exat 701.17 1arasse 2000 � = 10 22.70, (0%) 8(22876) Æ < 1% 22.70, (0%) 0exat 22.68 143mj 2000 � = 10 1.88, (0%) 4(2832) Æ < 1% 1.88, (0%) 0exat 1.88 40top ase 2000 � = 10 4352.26, (0%) 21(16692) Æ < 1% 4340.39, (0%) 0exat 4352.30 352triad1 2000 � = 10 0.065, (0%) 3(11352) Æ < 1% 0.065, (0%) 0exat 0.065 34Table 3: Comparison between the exat algorithm and the heuristi to ompute, for a given dire-tion, the ontat-area on parallel faets of the models in Table 2. The z-diretion is hosen as abuild diretion. Four of the models required 2 iterations after the initial subdivision to meet theÆ < 1% terminating riterion; arasse required 3 iterations. In the olumn labeled \ontat-area"the number in parenthesis shows the perentage di�erene between the ontat-area omputed bythe heuristi and by the exat algorithm (values are rounded to the nearest perent).

11



if the supporting line of sp intersets properly a faet of P at a point above sp (Figure 3()).Let S be a set of sample points on f̂ . Let Hf (resp. Mf ) be the set of segments, sp, thatare (resp. are not) in ontat with supports. If length(Hf) and length(Mf) denote the sum ofthe lengths of the segments in Hf and Mf , respetively, we an estimate the ontat-area on f as(length(Hf)=(length(Hf) + length(Mf))) � area(f). As the number of sample points is inreased,the auray of the estimate also inreases.The sample points are seleted through an adaptive subdivision proess similar to the onedesribed in Setion 4.2. The main di�erene is that the pathes are line segments, and not triangles(initially, eah faet f is represented by the path f̂). The sample points are the midpoints of theorresponding pathes and eah path is subdivided into two equal length segments at its midpoint.In our implementation a path is represented by the edge of f that ompletely spans the strip Vf ,i.e., whose projetion on the xy-plane is the same as f̂ . The pathes are subdivided until the lengthsof the span segments fall below the initial average length of all span segments. The terminatingriterion is the same as the one desribed in Setion 4.2. Table 3 summarizes the exeution of theexat algorithm and the heuristi on deimated models.
6 Minimizing bak faet areaThe eÆieny of omputing the upper-bound in Equation (1) depends ritially on the eÆieny of�nding a diretion d0 that minimizes the bak faet area. In this setion we desribe an algorithm,based on arrangements of great irles on the unit-sphere, that omputes d0.6.1 PreliminariesLet S2 denote the unit-sphere of diretions. We map eah faet, f , to a point on S2 orrespondingto the unit vetor, nf , normal to the supporting plane of f . Let Cf be the set of points on S2 thatare at distane �=2 from nf , i.e., Cf is a great irle on S2. (Note that several faets of P anorrespond to a single great irle.) Cf de�nes two open hemispheres: H+f with pole nf , and H�fwith pole �nf . Given a build diretion d the faet f will be a bak faet, and therefore will requiresupports, if and only if d 2 H�f . Similarly, f will be a front faet, requiring no supports, if and onlyif d 2 H+f . Finally, f will be a parallel faet, requiring no supports, if and only if d 2 Cf . (Althougha front or parallel faet requires no support, it ould be in ontat with supports required by bakfaets, as seen previously.)Consider the arrangement, A, of great irles Cf orresponding to the faets f of P. A de-omposes S2 into three types of elements: (i) ells, whih are (open) regions of intersetion of thehemispheres de�ned by the great irles, (ii) ar edges, whih are (open) portions of great irlesand determine the boundaries of the ells in A, and (iii) verties, whih are intersetions of greatirles and are the endpoints of ar edges.Lemma 6.1 The elements of A de�ne regions on S2 that orrespond to sets of diretions for whihthe bak faet area is onstant.Lemma 6.2 The build diretion d0 minimizing the bak faet area orresponds to a vertex in A.
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Proof We show that the bak faet area orresponding to any point in a ell or ar edge isnever less than the bak faet area orresponding to the verties of the ell. This implies that it issuÆient to onsider only the verties of A in order to �nd d0.Let  be a ell in A. For any element q of A, let BFA(q) be the bak faet area assoiatedwith any diretion in q. By Lemma 6.1 BFA(q) is well-de�ned and a onstant. Notie that theedges bounding  represent transitions onto great irles, whih orrespond to front and/or bakfaets beoming parallel faets. Therefore, the set of bak faets orresponding to any point on theboundary of  is either the same as or a proper subset of the set of bak faets orresponding toany point in the interior of . This implies that the bak faet area annot inrease. Therefore,BFA(e) � BFA() for any edge e on the boundary of .Let e be an edge in A and let u be one of the verties in A that is adjaent to e along thesupporting great irle C(e) of e. The vertex u represents a transition, along the ar edge e, ontoa great irle other than C(e) along the ar edge e. Thus, a front and/or a bak faet beomesparallel. Arguing as before, BFA(u) � BFA(e).The above disussion shows that the bak faet area orresponding to any point within a ellin A is never less than the bak faet area orresponding to any point along the bounding edges ofthe ell. Furthermore, the latter is never less than the bak faet area at the verties in A adjaentto the edge. Thus in order to identify the diretion d0 that minimizes the bak faet area, it issuÆient to examine only the diretions orresponding to the verties in A.6.2 The algorithmLemma 6.2 shows that to �nd the diretion, d0, that minimizes the bak faet area it is suÆient toonsider only the diretions on S2 that orrespond to the verties of A. This immediately suggestsan algorithm for �nding d0:� (pre-proessing) Compute the arrangement A of great irles on the unit sphere.� (initialization) Let u be any vertex in A. Identify the front, bak, and parallel faets deter-mined by the diretion orresponding to u, and initialize the bak faet area term to the totalarea of the bak faets.� (update)Walk along the verties of the arrangement, by visiting adjaent verties onneted byan ar edge. Notie that a vertex in A is the intersetion of great irles and eah great irledesribes a set of diretions for whih front and/or bak faets beome parallel. Therefore,during the transition from vertex u to vertex v, let �BFA(u) be the area of the parallel faetsat u that beome bak faets at v, and let �BFA(v) be the area of the parallel faets at vthat were bak faets at u. Then BFA(v) = BFA(u) + �BFA(u)��BFA(v).� During the walk along the verties of the arrangement we keep trak of the vertex v for whihthe bak faet area is minimized and report as d0 the diretion orresponding to v.The pre-proessing step of the above algorithm takes O(n2) time and O(n2) spae sine thenumber of great irles in the arrangement is O(n). At eah vertex in the arrangement we spendtime proportional to the degree of the vertex, and therefore the overall time during the update stepof the algorithm is O(n2). Therefore, the algorithm takes O(n2) time and uses O(n2) spae.
13



model #faets minimum area time(.stl) (bak faets) (se.)bot ase 17642 14409.4 4079arasse 22876 35.98 6784mj 2832 5.81 82top ase 16692 7843.5 3446triad1 11352 2.20 1581Table 4: Performane of the algorithm for omputing a diretion that minimizes the area of thebak faets.
The spae usage of the algorithm an be improved to O(n) at the expense of inreased runningtime to O(n2 log n). The main idea is to walk along ar edges belonging to the same great irle.This allows us to fous on only a portion of the arrangement A. Given a great irle Cf we omputeits intersetions with all the other great irles and sort the verties of intersetion in their irularorder along Cf . Next we pik an arbitrary vertex and initialize the bak faet area term. Finally, wevisit all the verties along Cf and update the bak faet area term following the rule desribed in theupdate step of the algorithm above. During the walk we keep trak of the vertex, v, orrespondingto the diretion for whih the bak faet area is minimized. The optimal diretion is identi�ed afterall great irles have been proessed.The running time per great irle is dominated by the time to sort O(n) verties of intersetionin time O(n log n). The walk along a great irle spends O(n) time for the initialization and onstanttime per vertex, or O(n) in total. Over all great irles the running time is O(n2 log n). Sine wedo not ompute the whole arrangement, the spae is O(n) and this an be re-used.Table 4 summarizes the results of the exeution of the O(n2 log n)-time algorithm on non-deimated models.We remark that it is possible to obtain a slightly more eÆient algorithm (O(n2) time and O(n)spae) at the expense of inreased algorithmi omplexity. For onveniene, we map the portionsof the great irles lying in the upper half of S2 to straight lines using entral projetion [PS93℄.We an ompute the bak faet areas at the verties of the resulting planar arrangement, whihare in 1-1 orrespondene with the verties of the arrangement in the upper half of S2, by doing asweep: when the sweep reahes a vertex v, we ompute BFA(v) from BFA(u), as above, where u isa neighbor of v that has already been visited. However, to obtain the desired O(n) spae bound, weannot a�ord to do a traditional sweep whih requires the entire arrangement to be pre-omputedand stored. Instead, we use the topologial sweep method [EG89℄ whih omputes and retains onlythe portion of the arrangement that is relevant urrently|this has size O(n). A similar approahis used for the lower half of S2. We note that this approah was used previously in [MJSG99℄ tominimize ontat-area of supports for a onvex polyhedron.

7 Approximating the ontat-areaIn this setion we present several heuristis for hoosing a andidate build diretion to estimate theoptimal ontat-area requirements. The quality of eah heuristi is measured in terms of the ratioCA(d̂)=BFA(d0), where d̂ is the diretion omputed by the heuristi, and d0 is the diretion that
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minimizes the area of the bak faets. As shown in Setion 3 (Equation (1)) this ratio is an upperbound on CA(d̂)=CA(d�), where d� is the diretion that minimizes the overall ontat-area.We have implemented and tested the following hoies for build diretion:� min BFA diretion | diretion that minimizes the bak faet area, as disussed in Setion 6.Sine the overall ontat-area inludes the area of the bak faets, it may be advantageous tohoose a diretion that results in low ontat-area ontribution from the bak faets.� max PFA diretion | diretion that maximizes the area of parallel faets. This diretion isomputed along with the diretion that minimizes the bak faet area; it is easy to adapt theproof of Lemma 6.2 to show that the same andidate diretions need to be examined in bothases. We onsider the diretion and its opposite, sine both generate the same area of parallelfaets, and take the better result. The intuition behind this heuristi is that parallel faetsdo not themselves require supports, and therefore, by maximizing the area of parallel faetsthe number of support strutures ould be redued, whih ould lead to redued amount ofontat-area.� max PFC diretion | diretion that maximizes the ount of parallel faets. This diretionis omputed along with the diretion that minimizes the bak faet area; again, it is easy toadapt the proof of Lemma 6.2 to show that the same andidate diretions need to be examinedin both ases. We onsider the diretion and its opposite, sine both generate the same ountof parallel faets, and take the better result. This is an alternative to the previous heuristi,but we try to maximize the number of faets that will not require diret supports, whihould lead to a redution in support strutures, and therefore a redution in the amount ofontat-area.� PC diretion | diretion that orresponds to the prinipal omponents of the objet. Intu-itively, this heuristi builds the objet along one of three mutually perpendiular axes thatapture the relative shape of the objet. We onsider eah diretion and its opposite and takethe best result. The prinipal omponent diretions were omputed using MATLABTM [MAT℄software from The MathWorks, In.� Flat diretion | diretion that is opposite to the outward unit-normal of a faet of the model.During the build phase it is often desirable to build the part suh that it rests on one of itsfaets. In this ase the faet must be ontained in the boundary of the onvex hull of themodel (notie that a faet on the onvex hull may ontain several faets from the originalmodel). We selet the faet, f , on the onvex hull whih ontains faets from the originalmodel that have the largest total area and use �nf as the build diretion, where nf is theoutward unit-normal of f . The onvex hull is omputed using the funtionality provided bythe CGAL library [CGA℄. (Note that this heuristi is somewhat similar to the one in [AD95℄,whih is desribed in Setion 1. Unfortunately, we have not been able to make a diretomparison of the two heuristis as the software for the one used in [AD95℄ appears to be nolonger available (personal ommuniation from D. Dutta).)� Random diretions | diretions hosen at random. This heuristi was inluded for ompari-son purposes only. We hose a set of �fteen random diretions, omputed the ontat-areasfor eah of these diretions, took their mean, and then divided this by the minimum bakfaet area to arrive at the mean ontat-area ratio.15



Table 5 illustrates the models used for our experiment and summarizes the results. For eahmodel the table shows the ontat-area ratio omputed for eah heuristi and ompares the ratiorealized by the best heuristi with the ratio realized by the random heuristi. As seen in the olumnnamed \omparison", savings ranging from 9% to 83% are ahieved on real-world (non-deimated)models. Note that even though we are omparing ratios this is equivalent to omparing the ontat-areas themselves, sine the denominators for both ratios are the same, namely the minimum bakfaet area.How might a designer use the results in Table 4? Suppose that the designer wishes to fabriate,say model oldbasex, using no more than twie the minimum ontat-area. Table 5 shows thatonly \Max PFA ratio" guarantees that this requirement will be met, so the designer an proeedto safely use this heuristi. (It is possible that some of the other heuristis will also meet therequirement, sine the upper-bound in Equation 1 is loose, but this is not guaranteed.)
8 ConlusionWe have presented a set of eÆient and pratial heuristis for estimating the ontat-area ofsupports for polyhedral models in Layered Manufaturing. We have also shown how the quality ofthe estimate, w.r.t. the unknown and hard-to-ompute optimal solution, an be upper-bounded asthe ratio of two relatively easy-to-ompute quantities. Our algorithms have been implemented andtested on a range of real-world models and have been shown to perform well in pratie.An interesting problem for further work is omputing a build diretion that estimates theminimum volume of the support strutures. Our approah in Setion 3 for upper-bounding theontat-area estimate does not appear to extend to the volume version of the problem, so a di�erentapproah may be needed.
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prism1 pyramid1 stlbin2 e4 triad1 tod21 f0m27

mj 3857438 top ase arasse over-5 oldbasex bot ase

model #faets max possible min BFA max PFA max PFC PC Flat random dir. omparison time(.stl) ratio ratio ratio ratio ratio ratio (mean) ratio (%) (se.)prism1 20 55.2 1.0[1℄ 1.0[1℄ 24.0[4℄ 1.0[1℄ 24.0[4℄ 30.3[6℄ 97 4pyramid1 10 14.3 1.0[1℄ 3.7[3℄ 6.0[4℄ 1.0[1℄ 6.0[4℄ 7.8[6℄ 87 2stlbin2 2761 15.8 2.2[1℄ 2.2[1℄ 9.2[4℄ 8.5[3℄ 9.2[4℄ 9.8[6℄ 77 90e4 4994 4.9 1.2[1℄ 1.2[1℄ 1.4[1℄ 1.9[5℄ 1.8[4℄ 2.7[6℄ 56 837triad1 11352 2.9 1.9[4℄ 2.1[5℄ 2.1[5℄ 1.4[1℄ 1.4[1℄ 1.8[3℄ 19 2280tod21 1128 7.2 1.1[1℄ 1.1[1℄ 3.8[4℄ 3.8[4℄ 1.1[1℄ 4.2[6℄ 75 49f0m27 3730 4.3 2.4[2℄ 2.3[1℄ 2.3[1℄ 2.4[2℄ 3.2[6℄ 2.8[5℄ 17 213mj 2832 5.3 2.1[1℄ 2.4[2℄ 2.4[2℄ 2.6[5℄ 2.4[2℄ 2.9[6℄ 27 1243857438 12184 3.4 2.6[6℄ 2.5[3℄ 2.5[3℄ 2.4[2℄ 2.3[1℄ 2.5[3℄ 9 2576top ase 16692 4.1 2.8[4℄ 2.8[4℄ 3.0[6℄ 2.1[2℄ 2.0[1℄ 2.5[3℄ 22 4944arasse 22876 6.2 3.5[3℄ 3.3[1℄ 4.0[4℄ 4.4[5℄ 3.3[1℄ 4.9[6℄ 34 9434over-5 906 5.7 3.9[3℄ 3.9[3℄ 3.9[3℄ 3.1[1℄ 5.2[6℄ 3.8[2℄ 19 10oldbasex 3660 15.6 3.3[2℄ 1.7[1℄ 12.0[5℄ 8.2[3℄ 12.0[5℄ 10.4[4℄ 83 161bot ase 17642 3.0 2.1[4℄ 2.1[4℄ 2.1[4℄ 1.5[2℄ 1.3[1℄ 1.9[3℄ 33 5617Table 5: Performane of the heuristis for estimating the ontat-area. The �rst two models were hand-generated; the remainingmodels are from Stratasys, In, a leading manufaturer of LM mahines (www.stratasys.om). All models are originals, notdeimated ones. The numbers in square brakets show the rankings of the heuristis for eah model. The olumn \omparison"shows the perentage improvement of the ratio ahieved by the top-ranked heuristi over the mean ratio given by the random-diretions heuristi. The olumn \max possible ratio" is given only as a referene and represents the extreme situation where allof the surfae area of the objet is in ontat with supports. The olumn \time" inludes the time for omputing the minimumbak faet area and the times for omputing the ratios for all heuristis, exept for the random heuristi, whih is for purposesof omparison only. The time-onsuming step is the omputation of the bak faet area.

19


