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Problem Definition

Consider a set S of n points in d-dimensional Euclidean space. A network on S can be
modeled as an undirected graph G with vertex set S of size n and an edge set E where
every edge (u, v) has a weight. A geometric (Euclidean) network is a network where the
weight of the edge (u, v) is the Euclidean distance |uv| between its endpoints. Given a
real number t > 1 we say that G is a t-spanner for S, if for each pair of points u, v ∈ S,
there exists a path in G of weight at most t times the Euclidean distance between u
and v. The minimum t such that G is a t-spanner for S is called the stretch factor,
or dilation, of G. For a detailed description of many constructions of t-spanners, see
the book by Narasimhan and Smid [30]. The problem considered is the construction of
t-spanners given a set S of n points in Rd and a positive real value t > 1, where d is a
constant. The aim is to compute a good t-spanner for S with respect to the following
quality measures:

size: the number of edges in the graph.
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degree: the maximum number of edges incident on a vertex.
weight: the sum of the edge weights.
spanner diameter: the smallest integer k such that for any pair of vertices u and v in
S, there is a path in the graph of length at most t · |uv| between u and v containing
at most k edges.

fault-tolerance: the resilience of the graph to edge, vertex or region failures.

Thus, good t-spanners require large fault-tolerance and small size, degree, weight
and spanner diameter. Additionally, the time required to compute such spanners must
be as small as possible.

Key Results

This section contains descriptions of several known approaches for constructing a t-
spanner of a set of points in Euclidean space. We also present descriptions of the con-
struction of fault-tolerant spanners, spanners among polygonal obstacles and, finally,
a short note on dynamic and kinetic spanners.

Spanners of points in Euclidean space

The most well-known classes of t-spanner networks for points in Euclidean space in-
clude: Θ-graphs, WSPD-graphs and Greedy-spanners. In the following sections the
main idea of each of these classes is given, together with the known bounds on the
quality measures.

The Θ-graph The Θ-graph was discovered independently by Clarkson and Keil in
the late 80’s. The general idea is to process each point p ∈ S independently as follows:
partition Rd into k simplicial cones of angular diameter at most θ and apex at p, where
k = O(1/θd−1). For each non-empty cone C, an edge is added between p and the point
in C whose orthogonal projection onto some fixed ray in C emanating from p is closest
to p, see Fig. 1a. The resulting graph is called the Θ-graph on S. The following result
is due to Arya et al. [9].

Theorem 1. The Θ-graph is a t-spanner of S for t = 1
cos θ−sin θ

with O( n
θd−1 ) edges and

can be computed in O( n
θd−1 logd−1 n) time using O( n

θd−1 + n logd−2 n) space.

The following variants of the Θ-graph also give bounds on the degree, spanner
diameter, and weight.

Skip-list spanners: The idea is to generalize skip-lists and apply them to the
construction of spanners. Construct a sequence of h subsets, S1, . . . , Sh, where S1 = S
and Si is constructed from Si−1 as follows (reminiscent of the levels in a skip list). For
each point in Si−1, flip a fair coin. The set Si is the set of all points of Si−1 whose
coin flip produced heads. The construction stops if Si = ∅. For each subset a Θ-graph
is constructed. The union of the graphs is the skip-list spanner of S with dilation t,
having O( n

θd−1 ) edges and O(log n) spanner diameter with high probability [9].

Gap-greedy: A set of directed edges is said to satisfy the gap property if the sources
of any two distinct edges in the set are separated by a distance that is at least propor-
tional to the length of the shorter of the two edges. Arya and Smid [6] proposed an
algorithm that uses the gap property to decide whether or not an edge should be added
to the t-spanner graph. Using the gap property the constructed spanner can be shown
to have degree O(1/θd−1) and weight O(log n · wt(MST (S))), where wt(MST (S)) is
the weight of the minimum spanning tree of S.
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Fig. 1. (a) Illustrating the Θ-graph, and (b) a graph with a region-fault.

The WSPD-graph The well-separated pair decomposition (WSPD) was developed
by Callahan and Kosaraju [12]. The construction of a t-spanner using the well-separated
pair decomposition is done by first constructing a WSPD of S with respect to a sep-

aration constant s = 4(t+1)
(t−1)

. Initially set the spanner graph G = (S, ∅) and add edges

iteratively as follows. For each well-separated pair {A,B} in the decomposition, an
edge (a, b) is added to the graph, where a and b are arbitrary points in A and B,
respectively. The resulting graph is called the WSPD-graph on S.

Theorem 2. The WSPD-graph is a t-spanner for S with O(sd · n) edges and can be
constructed in time O(sdn+ n log n), where s = 4(t+ 1)/(t− 1).

There are modifications that can be made to obtain bounded spanner diameter
or bounded degree.

Bounded spanner diameter: Arya, Mount and Smid [7] showed how to modify
the construction algorithm such that the spanner diameter of the graph is bounded by
2 log n. Instead of selecting an arbitrary point in each well-separated set, their algorithm
carefully chooses a representative point for each set.

Bounded degree: A single point v can be part of many well-separated pairs and
each of these pairs may generate an edge with an endpoint at v. Arya et al. [8] suggested
an algorithm that retains only the shortest edge for each cone direction, thus combining
the Θ-graph approach with the WSPD-graph. By adding a post-processing step that
handles all high-degree vertices, a t-spanner of degree O( 1

(t−1)2d−1 ) is obtained.

The Greedy-spanner The greedy algorithm was first presented in 1989 by Bern and
since then the greedy algorithm has been subject to considerable research. The graph
constructed using the greedy algorithm is called a Greedy-spanner and the general idea
is that the algorithm iteratively builds a graph G. The edges in the complete graph are
processed in order of increasing edge length. Testing an edge (u, v) entails a shortest
path query in the partial spanner graph G. If the shortest path in G between u and v
is at most t · |uv| then the edge (u, v) is discarded, otherwise it is added to the partial
spanner graph G.

Das, Narasimhan and Salowe [22] proved that the greedy-spanner fulfills the
so-called leapfrog property. A set of undirected edges E is said to satisfy the t-leapfrog
property, if for every k ≥ 2, and for every possible sequence {(p1, q1), . . . , (pk, qk)} of
pairwise distinct edges of E,

t · |p1q1| <
k∑
i=2

|piqi|+ t ·
( k−1∑
i=1

|qipi+1|+ |pkq1|)
)
.
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Using the leapfrog property, it has been shown that the total edge weight of the graph
is within a constant factor of the weight of a minimum spanning tree of S.

Using Dijkstra’s shortest-path algorithm, the greedy-spanner can be constructed
in O(n3 log n) time. Bose et al. [10] improved the time to O(n2 log n), while using O(n2)
space. Alewijnse et al. [4] improved the space bound to O(n), while slightly increasing
the time bound to O(n2 log2 n).

Das and Narasimhan [21] observed that an approximation of the Greedy-spanner
can be constructed while maintaining the leapfrog property. This observation allowed
for faster construction algorithms.

Theorem 3. [27] The greedy-spanner is a t-spanner of S with O( n
(t−1)d

log( 1
t−1

)) edges,

maximum degree O( 1
(t−1)d

log( 1
t−1

)), weight O( 1
(t−1)2d

· wt(MST (S)), and can be com-

puted in time O( n
(t−1)2d

log n).

The transformation technique Chandra et al. [16; 17] introduced a transformation
technique for general metrics that transforms an algorithm for constructing spanners
with small stretch factor and size into an algorithm for constructing spanners with the
same asymptotic stretch factor and size, but with the additional feature of small weight.
Elkin and Solomon [24] refined their approach to develop a transformation technique
that achieved the following: It takes an algorithm for constructing spanners with small
stretch factor, small size, small degree, and small spanner diameter, and transforms it
into an algorithm for constructing spanners with the a small increase in stretch factor,
size, degree, and spanner diameter, but that also has small weight and running time.

Using the transformation technique allowed Elkin and Solomon to prove the
following theorem.

Theorem 4. [24] For any set of n points in Euclidean space of any constant dimension
d, any ε > 0 and any parameter ρ ≥ 2, there exists a (1 + ε)-spanner with O(n) edges,
degree O(ρ), spanner diameter O(logρ n + α(ρ)) and weight O(ρ · logρ n · wt(MST )),
which can be constructed in time O(n log n).

Given the lower bounds proved by Chan and Gupta [13] and Dinitz et al. [23],
these results represent optimal tradeoffs in the entire range of the parameter ρ.

Fault-tolerant spanners

The concept of fault-tolerant spanners was first introduced by Levcopoulos et al. [28]
in 1998: After one or more vertices or edges fail, the spanner should retain its good
properties. In particular, there should still be a short path between any two vertices in
what remains of the spanner after the fault. Czumaj and Zhao [19] showed that a greedy
approach produces a k-vertex (or k-edge) fault tolerant geometric t-spanner with degree
O(k) and total weight O(k2 ·wt(MST (S))); these bounds are asymptotically optimal.
Chan et al. [15] used a “standard net-tree with cross-edge framework” developed by [14;
26], to design an algorithm that produces a k-vertex (or k-edge) fault tolerant geometric
(1 + ε)-spanner with degree O(k2), diameter O(log n), and total weight O(k2 log n ·
wt(MST (S))). Such a spanner can be constructed in O(n log n+ k2n) time.

For geometric spanners it is natural to consider region faults, i.e., faults that
destroy all vertices and edges intersecting some geometric fault region. For a fault
region F , let G	F be the part of G that remains after the points from S inside F and
all edges that intersect F have been removed from the graph, see Fig. 1b. Abam et
al. [2] showed how to construct region-fault tolerant t-spanners of size O(n log n) that
are fault-tolerant to any convex region-fault. If one is allowed to use Steiner points then
a linear size t-spanner can be achieved.
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Spanners among obstacles

The visibility graph of a set of pairwise non-intersecting polygons is a graph of intervis-
ible locations. Each polygonal vertex is a vertex in the graph and each edge represents
a visible connection between them, that is, if two vertices can see each other, an edge
is drawn between them. This graph is useful since it contains the shortest obstacle
avoiding path between any pair of vertices.

Das [20] showed that a t-spanner of the visibility graph of a point set in the
Euclidean plane can be constructed by using the Θ-graph approach followed by a
pruning step. The obtained graph has linear size and constant degree.

Dynamic and kinetic spanners

Arya et al. [9] designed a data structure of size O(n logd n) that maintains the skip-
list spanner, described in Section , in O(logd n log log n) expected amortized time per
insertion and deletion in the model of random updates.

Gao et al. [26] showed how to maintain a t-spanner of size O( n
(t−1)d

) and max-

imum degree O( 1
(t−2)d

logα), in time O( logα
(t−1)d

) per insertion and deletion, where α

denotes the aspect ratio of S, i.e., the ratio of the maximum pairwise distance to the
minimum pairwise distance. The idea is to use an hierarchical structure T with O(logα)
levels, where each level contains a set of centers (subset of S). Each vertex v on level i

in T is connected by an edge to all other vertices on level i within distance O( 2i

t−1
) of

v. The resulting graph is a t-spanner of S and it can be maintained as stated above.
The approach can be generalized to the kinetic case so that the total number of events
in maintaining the spanner is O(n2 log n) under pseudo-algebraic motion. Each event
can be updated in O( logα

(t−1)d
) time.

The problem of maintaining a spanner under insertions and deletions of points
was settled by Gottlieb and Roditty [5]: For every set of n points in a metric space of
bounded doubling dimension, there exists a (1 + ε)-spanner whose maximum degree is
O(1) and that can be maintained under insertions and deletions of points, in O(log n)
time per operation.

Recently several papers have considered the kinetic version of the spanner con-
struction problem. Abam et al. [1; 3] gave the first data structures for maintaining the
Θ-graph, which was later improved by Rahmati et al. [32]. Assuming the trajectories
of the points can be described by polynomials whose degrees are at most a constant s,
the data structure uses O(n logd n) space and handles O(n2) events with a total cost
of O(nλ2s+2(n) logd+1 n), where λ2s+2(n) is the maximum length of Davenport-Schinzel
sequences of order 2s+2 on n symbols. The kinetic data structure is compact, efficient,
responsive (in an amortized sense), and local.

Applications

The construction of sparse spanners has been shown to have numerous application ar-
eas such as metric space searching [31], which includes query by content in multimedia
objects, text retrieval, pattern recognition and function approximation. Another ex-
ample is broadcasting in communication networks [29]. Several well-known theoretical
results also use the construction of t-spanners as a building block, for example, Rao and
Smith [33] made a breakthrough by showing an optimal O(n log n)-time approximation
scheme for the well-known Euclidean traveling salesperson problem, using t-spanners
(or banyans). Similarly, Czumaj and Lingas [18] showed approximation schemes for
minimum-cost multi-connectivity problems in geometric networks.
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Open Problems

A few open problems are mentioned below:

1. Determine if there exists a fault-tolerant t-spanner of linear size for convex region
faults.

2. Can the k-vertex fault tolerant spanner be computed in O(n log n+ kn) time?

Experimental Results

The problem of constructing spanners has received considerable attention from a the-
oretical perspective but not much attention from a practical, or experimental per-
spective. Navarro and Paredes [31] presented four heuristics for point sets in high-
dimensional space (d = 20) and showed by empirical methods that the running time
was O(n2.24) and the number of edges in the produced graphs was O(n1.13). Farshi and
Gudmundsson [25] performed a thorough comparison of the construction algorithms
discussed in Section . The results showed that the spanner produced by the original
greedy algorithm is superior compared to the graphs produced by the other approaches
discussed in Section when it comes to number of edges, maximum degree and weight.
However, the greedy algorithm requires O(n2 log n) time [10] and uses quadratic space,
which restricted experiments in [25] to instances containing at most 13,000 points.
Alewijnse et al. [4] showed how to reduce the space usage to linear only paying an
additional O(log n) factor in the running time. In their experiments they could han-
dle more than a million points. In a follow-up paper Bouts et al. [11] gave further
experimental improvements.
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