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Abstract

In Layered Manufacturing, a three-dimensional polyhedral object is built by slicing its (vir-
tual) CAD model, and manufacturing the slices successively. During this process, support
structures are used to prop up overhangs. An important process-planning step in Layered Man-
ufacturing is choosing a suitable build direction, as it affects, among other things, the location of
support structures on the part, which in turn impacts process speed and part finish. We describe
a robust, exact, and efficient implementation of an algorithm that computes a description of a
subset of all build directions for which a prescribed facet is not in contact with supports. The
most interesting part of the program is the computation of the boundary of the union of convex
polygons on the unit-sphere. We also present test results on models obtained from industry,
and on collections of random triangles.

1 Introduction

Layered Manufacturing (LM) is an emerging technology that is gaining importance in the manufac-
turing industry. (See e.g. the book by Jacobs [2].) This technology makes it possible to rapidly build
three-dimensional objects directly from their computer representations on a desktop-sized machine
connected to a workstation. A specific process of LM, that is widely in use, is StereoLithography.
The input to this process is the triangulated boundary of a polyhedral CAD model. This model is
first sliced by horizontal planes into layers. Then, the object is built layer by layer in the following
way. The StereoLithography apparatus consists of a vat of photocurable liquid resin, a platform,
and a laser. (See Figure 1.) Initially, the platform is below the surface of the resin at a depth equal
to the layer thickness. The laser traces out the contour of the first slice on the surface and then
hatches the interior, which hardens to a depth equal to the layer thickness. In this way, the first
layer is created; it rests on the platform. Then, the platform is lowered by the layer thickness and
the just-vacated region is re-coated with resin. The subsequent layers are then built in the same
way.

It may happen that the current layer overhangs the previous one. Since this leads to instabilities
during the process, so-called support structures are generated to prop up the portions of the current
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Figure 1: The StereoLithograpy apparatus.

layer that overhang the previous layer. (See Figure 2 for an illustration in two dimensions.) These
support structures are computed before the process starts. They are also sliced into layers, and
built simultaneously with the object. After the object has been built, the supports are removed.
Finally, the object is postprocessed in order to remove residual traces of the supports.

An important issue in this process is choosing an orientation of the model so that it can be built
in the vertical direction. Equivalently, we can keep the model fixed, and choose a direction in which
the model is built layer by layer. This direction is called the build direction. It affects the number of
layers, the surface finish, the quantity of support structures used, and their location on the object
being built—all of which impact the speed, accuracy, and cost of the process.

1.1 Our results

Let P be the three-dimensional polyhedron, possibly with holes, that we want to build using LM.
Throughout, we assume that the facets are triangles. (This is the standard STL format used in
industry.) The number of facets of P is denoted by n. We consider the following problem:

Problem 1 Given a facet F' of P, compute a description of all build directions for which F is not
in contact with supports (i.e., protected from supports).

This is an important problem because support removal from a facet can affect surface quality
and accuracy adversely, thereby impacting the functional properties of critical facets, such as, for
instance, facets on gear teeth. This problem, which we define more precisely in Section 2, arose
from discussions with engineers at Stratasys, Inc.—a Minnesota-based world-leader in LM.

Later, we will see that a solution to Problem 1 consists of a collection of simple polygons, possibly
with holes, on the unit-sphere, all of whose edges are great arcs. In [9], we give an algorithm that
solves Problem 1 in O(n?) time, which can be shown to be worst-case optimal, because the output
may consist of Q(n?) connected components. The disadvantage of this algorithm is that its running
time is quadratic on any input.

In this paper, we describe an implementation of a simplified version of this algorithm, whose
running time is acceptable for practical applications. Our implementation is written in C++ and
uses LEDA [5]. In particular, we use LEDA’s exact rational arithmetic to solve geometric predicates
exactly. Hence, our program solves the problem exactly, and is robust, in the sense that it can handle
degenerate polyhedra (e.g., several neighboring facets can be co-planar). The most interesting and
challenging part of the algorithm involves computing the boundary of the union of a collection of
convex spherical polygons, whose edges are great arcs.



We have tested our program on polyhedral models obtained from Stratasys, Inc., and on collec-
tions of random triangles. We also discuss several simple heuristics, and show that these significantly
improve the running time of our implementation. (In fact, in one case, these heuristics improved
the running time from more than eleven weeks to just 175 seconds.)

This paper can be considered as the “practical” counterpart to the theoretical paper [9]. The
latter paper mainly concentrates on the non-trivial correctness proof of our algorithm. The emphasis
of the current paper is on the implementation, the development of the heuristics, and the extensive
testing of our program.

1.2 Related work

This paper continues our work on the implementation of algorithms for geometric problems that
arise in Layered Manufacturing. Most of these problems lead to algorithms for geometric objects
on the unit-sphere, rather than in a Euclidean space. In [10], we discussed our implementation of
an algorithm that computes the width of a polyhedron. (See also [8].) Computing the width leads
to the problem of computing the intersections of great arcs on the unit-sphere, and to the point
location problem in planar graphs on the unit-sphere. See also [3, 4].

In the geometry chapter of the LEDA-book by Mehlhorn and Niher [5], algorithms are given that
perform Boolean operations on polygons in the Euclidean plane R?. They use a sweep algorithm
that computes the planar graph obtained by overlaying the polygons. Then, they use this overlay
to perform the Boolean operation on the two polygons. Our algorithm is different: we compute the
boundary of the union of spherical polygons incrementally, adding one polygon at a time. Since in
our application, many of the intersection points will not be on the boundary of the union, this leads
to an algorithm that is faster in practice.

We are not aware of any previous implementations that compute the boundary of the union of
spherical polygons.

From the algorithmic side, there is related work by Nurmi and Sack [7]. They consider the
following problem: Given a convex polyhedron A and a set of convex polyhedral obstacles, compute
all directions of translations that move A arbitrarily far away such that no collision occurs between
A and any of the obstacles. If we take for A a facet F' of a polyhedron P, and for the obstacles the
other facets of P, then we basically get Problem 1. Our algorithm for solving Problem 1 is similar
to that of Nurmi and Sack. They only considered the problem from the theoretical point of view.

2 Geometric preliminaries

The unit-sphere, i.e., the boundary of the three-dimensional ball centered at the origin and having
radius one, is denoted by S2. We consider directions as points—or unit-vectors—on S2. For any
point € R®, and any direction d € S?, we denote by r,q, the ray emanating from z having
direction d.

Let F be a facet of P, ng the outer normal of F, and d € S? a direction. If ng-d > 0, then we
say that F'is a front facet w.r.t. d. Similarly, if ng -d < 0, then we say that F' is a back facet w.r.t.
d. Finally, if np - d = 0, then we say that d is parallel to F'.

In this paper, we will not consider directions d that are parallel to facet F. (For a discussion of
how these directions can be handled, we refer the reader to [9].)

Let d be a direction that is not parallel to F', and let = be a point on F. We say that point x
is in contact with supports for build direction d, if one of the following two conditions holds.

1. F is a back facet w.r.t. d.
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Figure 2: The shaded regions are the supports for the vertical build direction d.

2. F is a front facet w.r.t. d, and the ray r,q intersects the boundary of P in a point that is not
on facet F'.

We say that facet F' is in contact with supports for build direction d, if there is a point in the
interior of F' that is in contact with supports for build direction d.

In Figure 2, we illustrate the two-dimensional variant of the notion of being in contact with
supports, for a planar simple polygon.

Let V be a subset of S2. We say that V is spherically convexz, if for all points d and d’ in V, the
shortest great arc joining d and d’ is completely contained in V. We call this shortest great arc a
geodesic. (If d and d’ are not antipodal, then this geodesic is unique. Otherwise, every great arc
joining d and d’ must be contained in V. In the latter case, the set V is the entire unit-sphere.)

The spherical convex hull of a finite set D of points on S? is defined as the smallest spherically
convex set that contains all points of D. We say that the set D is hemispherical, if there is a
three-dimensional plane H through the origin, such that all elements of D are strictly on one side
of H. If D is hemispherical, then the spherical convex hull of D is not the entire unit-sphere. In
this case, the spherical convex hull is a spherical polygon, i.e., its vertices are points of D, and each
of its edges is a great arc.

3 Protecting one facet from supports

Let F' be a fixed facet of P. We will describe the basic approach for solving Problem 1 for facet F.
For the details, especially the non-trivial correctness proofs, the reader is referred to [9].

The idea is as follows. For each facet G, G # F, we define a set Crg C S? of directions, such
that for each d € Crg, facet F' is in contact with supports for build direction d “because of” facet
G. That is, there is a point z in the interior of F', such that the ray r,q emanating from x and
having direction d intersects facet G. Hence, for each direction in the complement of the union of
all sets Crg, G # F, facet F' is not in contact with supports. Because of several special cases that
can occur, we have to be careful when formalizing this idea. We will do this in Section 3.1.



For any facet G of P, the set Crq is formally defined as follows:

Crg = U{d eS?: (T‘xdﬂG)\{w} #@}

zEF

3.1 When is facet F' not in contact with supports?

We say that a facet G is not below facet F, if at least one vertex of G is strictly on the same side of
the plane through F' as the outer normal of F. We denote by Ur the union of the sets Crg, where
G ranges over all facets that are not below F'.

Note that a back facet is completely in contact with supports. The following lemma states when
a front facet F' is not in contact with supports.

Lemma 1 ([9]) Let d be a direction on S? such that F is a front facet w.r.t. d. Facet F is not in
contact with supports for build direction d if and only if

1. d is not in the interior of Ur, or

2. d is in the interior of Up, but not in the interior of Crg, for any facet G that is not below F'.

3.2 The algorithm

We denote by Pr the great circle on S? consisting of all directions that are parallel to F. The part
of the unit-sphere consisting of all directions that are on Pr or on the same side of Pr as the outer
normal of F' will be called the F-hemisphere.

Lemma 1 immediately implies an algorithm for solving Problem 1. We remark that—for
simplicity—in our implementation, we did not consider directions d that satisfy the second condi-
tion of Lemma 1. Hence, our algorithm computes a subset of all directions for which facet F' is not
in contact with supports.

Step 1: For each facet G of P that is not below F', compute the part of the boundary of the set
Crg that is contained in the F-hemisphere. We will see below that this part of Crg is a spherical
polygon on the F-hemisphere, all of whose edges are great arcs.

Step 2: Compute and report the boundary of the union of the parts of the spherical polygons Crg
that were computed in Step 1.

It follows from Lemma 1 that for each direction that is in the F-hemisphere, and that is not in
the reported union, facet F' is not in contact with supports.

3.2.1 Characterizing the sets Crg

At first sight, it is not clear what the sets C'rpg look like. We will see that these sets can in fact be
computed easily. It turns out that we have to distinguish two cases.

For any two distinct points s and ¢ in R®, we denote by d, the point on S? having the same
direction as the directed line segment from s to t. Let G be a facet of P, such that G is not below
F.

Case 1: F and G are disjoint, or intersect in a single point which is a vertex of both facets. Let
Drpg := {ds € S?: s is a vertex of F, ¢ is a vertex of G, s # t}.

In [9], we show that Cr¢ is the spherical convex hull of the at most nine directions in Dp¢.



Case 2: F and G share an edge. Note that F' and G are not coplanar, because G is not below F'.
Also, for each vertex ¢ of G, one of the following is true: ¢ is in the plane through F', or ¢ is on the
same side of the plane through F' as the outer normal of F'. Consider the great circles Pr and Pg
consisting of all directions that are parallel to F' and G, respectively. Then Crg is the set of all
directions that are

1. on or on the same side of Pr as the outer normal of facet F', and
2. on or on the same side of Py as the inner normal of facet G.

Note that in this case, the set C'r¢g is not spherically convex, because it contains antipodal directions.

4 The implementation

In this section, we give some details about the implementation. The program is written in C++
and uses LEDA 3.8 and its rational arithmetic to solve geometric predicates exactly. The program
takes as input a file in STL-format, and a non-negative integer, which indicates the number in the
STL-file of the facet F' that we want to protect from supports.

The STL-file contains the facets of the triangulated polyhedron, where each facet is specified
by three vertices and an outer normal. The coordinates of these vertices are converted to rational
points (d3_rat_point) from LEDA. Since the outer normals in the STL-file may not be exact, we
recompute them by computing a cross product based on the three rational vertices defining a facet.

Recall that for each facet G, G # F', the set C'r¢ is a spherical polygon. In Case 1 of Section 3.2.1,
each vertex of this polygon is a direction dg;, for some vertex s of F, and some vertex t of G. If we
want to compute this direction, then we have to use the expensive and inexact square root operation.
In order to avoid this, we represent any direction d by a non-zero vector having the same direction
as the ray from the origin through d. (We have used this already in our previous work [10].) Hence,
this vector does not necessarily have length one. As a result, we have to implement all geometric
primitives—which actually operate on unit-vectors—using these vectors.

4.1 Computing the sets Crg

Let G be a facet of P, G # F. How do we compute the vertices of the set Crg using our represen-
tation of directions? To answer this question, consider the set

Spg:={t—s¢€ R3 : s is a vertex of F, t is a vertex of G}.

Let S be the set Spg U {(0,0,0)}, and consider the convex hull CH(S) of this three-dimensional
point set S.

First assume that the origin is a vertex of CH(S). Then we are in Case 1 of Section 3.2.1.
Consider the set of all vertices of CH(S) that are connected by an edge to the origin. This set is a
representation of the set of all directions that form the vertices of the spherical convex hull of the
set

Dpg = {d, € S?: s is a vertex of F, t is a vertex of G, s # t}.

Hence, the vertices of CH(S) that are connected by an edge to the origin give us representations of
the unit-vectors that are the vertices of the set Crg.

The other case is when the origin is not a vertex of CH (S). Then we are in Case 2 of Section 3.2.1.
In this case, vectors that represent the vertices of the spherical polygon C'rg can easily be computed
using the normal vectors of the facets F' and G.



Hence, the vertices of the set C'rg can be computed by using any program that computes the
convex hull of a three-dimensional point set. In our program, we use LEDA’s D3_HULL to compute
the convex hull of the set S. Note that S contains at most ten points.

4.2 Computing intersections between great arcs

In order to compute the boundary of the union of the parts of the spherical polygons Crg that are
on the F-hemisphere, we need to compute intersections between edges of these parts. Recall that
each edge is a great arc on the F-hemisphere, and that our program represents each endpoint of an
edge by a vector that can have an arbitrary length. We claim that we can simulate all operations
that are needed to compute the intersections between these great arcs by operations that only use
our representations of directions.

Let us give two examples. Consider two great arcs (a,b) and (c,d) that are both on the
F-hemisphere. Let a',b',c', and d’ be the vectors that represent the unit-vectors a,b,c, and d,
respectively.

Assume that we know that the two arcs (a,b) and (c¢,d) have a unique intersection point, which
we denote by e. We compute a representation of this intersection point, as follows.

Let H be the plane through the origin, a’, and o'. This plane has the cross product a’ x b’ as
its normal vector. (Note that the plane through the origin, and the unit-vectors a and b is equal
to H. We do not, however, “know” these two unit-vectors.) Similarly, let H' be the plane through
the origin, ¢/, and d’. This plane has the cross product ¢ x d' as its normal vector. Let £ be the
line of intersection of the planes H and H'. Note that this line contains the cross product of the
normal vectors of H and H’; hence it can easily be computed. It is clear that the intersection point
e is one of the two intersection points of the line £ with the unit-sphere. Hence, if we take the cross
product of the normal vectors of the two planes H and H'—oriented appropriately—then we get a
vector which represents the intersection point e.

As a second example, assume we want to test if the direction d is in the interior of the great arc
(a,b). This is done in the following way.

Let H be the plane through the origin, a’, and b, and let nyg be its normal vector. Hence,
ng = a’ x b'. Note that, in general, ng does not have length one. Let H; be the plane through the
origin, a’, and ng, and let Hs be the plane through the origin, &', and ngy. Then the unit-vector d
is in the interior of the great arc (a,b) if and only if

1. d € H,
2. b’ and d' are strictly on the same side of H;, and
3. a’ and d’ are strictly on the same side of Ho.

These three conditions can be tested using the LEDA functions H.side_of (x) and H.contains(x),
where H is a d3_rat_plane, and x is a d3_rat_point.

4.3 Computing the union of the sets Crg

Consider the sets C'rg, where G ranges over all facets of P that are not below F'. For each such set
Crg, we compute the part of its boundary that is on the F-hemisphere. For simplicity, we denote
this part again by Cpg. We want to compute the boundary of the union of these sets.

In [9], we give an algorithm that computes this boundary in O(n?) time. The basic approach
of this algorithm is as follows. Recall that the edges of the sets Crg are great arcs. The algorithm



computes the arrangement of the great circles containing these great arcs. Then by walking through
the arrangement, the boundary of the union of the sets Crg is computed. Although this algorithm
is worst-case optimal, the disadvantage is that its running time is ©(n?) on any input.

An alternative approach would be to use an algorithm that is similar to the Bentley-Ottmann
sweep algorithm [1] for computing the intersections of line segments in the Euclidean plane. In our
case, we would sweep a half-circle over the unit-sphere, and compute the intersections of the great
arcs that form the boundaries of the sets Crg. From these intersections, we could then deduce the
boundary of the union. This approach has as a disadvantage that all intersections are computed. We
are, however, only interested in intersections that are on the boundary of the union. Since we expect
the number of boundary-intersections to be much smaller than the total number of intersections (in
fact, our experiments confirm this), we did not implement this sweep algorithm.

Our program computes the boundary of the union of the sets C'rg using an incremental algo-
rithm. That is, it starts with an initial spherical polygon Crg. Then, the other polygons Crg are
added one after another, and the boundary of the union of the polygons that have been added so
far is maintained.

The current boundary of the union consists of a list L of spherical polygons. Each polygon is
represented by an ordered list of vectors. The ordering of these vectors is such that the interior of
the union is to the “left” of the edges. Note that a polygon of I may represent a hole in the union.

Let us briefly sketch how a polygon Cr¢g is added to the current boundary of the union. Recall
that Crg has at most nine edges. For each edge e of C'rg, we walk through all polygons of the
list L, compute all edges of these polygons that intersect e, and insert the intersections into the
polygons of L. (Here, we have to be careful with degenerate intersections. For example, two edges
may overlap, or may intersect in their endpoints.) After we have done this for all edges of Cr¢, we
again walk along all polygons of L, and compute the list of polygons that form the boundary of the
new union. This step had to be implemented very carefully, because of the many degenerate cases
that may occur. For example, one vector may represent several vertices in one single polygon of L.
(See Figure 5.)

Since the total number of vertices of the polygons in L can be ©(n?), the time to add one
polygon Crg to the current union can be quadratic in n. Therefore, the worst-case time of our
incremental algorithm is ©(n?®). Our experiments, however, show that on polyhedral models that
are used in practice, the number of vertices on the boundary of the union is quite small and, as a
result, the program is fast.

4.4 Some heuristics to speed up the implementation

The first version of our program was very slow. In this section, we give some heuristics that
significantly increased the performance on real-world polyhedral models.

Heuristic 1: Let a,b and ¢ be three distinct directions on the F-hemisphere. We say that these
directions are collinear, if they are contained in a great arc. When we add a polygon Cpg to the
current boundary of the union, collinear points may arise. In this first heuristic, we delete the
“middle” point b of each collinear triple, provided that a and ¢ are not antipodal. (Clearly, such a
“middle” point is redundant.)

Heuristic 2: The vectors that represent directions on S? are stored as rational points (d3_rat_point)
from LEDA. In this representation, a three-dimensional point with rational Cartesian coordinates
(a,b,c) is stored using homogeneous coordinates (x,y,z,w) of arbitrary length integers, where
a=z/w, b=y/w, ¢c=z/w, and w > 0. When computing normal vectors, or the intersection
of two great arcs, the fourth coordinate w may become a very large integer. However, since all



Cartesian points (Aa, Ab, Ac), A > 0, represent the same direction on the unit-sphere, we can set the
fourth homogeneous coordinate w to one. This is what we did in the second heuristic.

Heuristic 3: This heuristic is also based on the representation of rational points. When computing
normal vectors, or the intersection of two great arcs, Cartesian coordinates of points have to be
multiplied. When two rational numbers, say p/q and r/s, are multiplied, LEDA stores the result
as (pr)/(gs). That is, the resulting rational is not simplified. By running our program, we noticed
that this leads to extremely large integers.

In this third heuristic, we simplify the homogeneous coordinates (z,y,z, w = 1), as follows. We
compute the greatest common divisor g of z, y, and z. Then, we divide z, y, and z by g. (These oper-
ations are supported by LEDA.) Note that the homogeneous points (x,y, z,1) and (z/g,y/9,2/g,1)
represent the same direction on S2. Therefore, we use the representation (x/g,v/g,2/g,1), whose
coordinates are, in general, smaller than the ones in the original representation (z,y, z,1).

Performing this simplify-operation each time when a polygon Crg is added did not improve
the running time of the program. After some experimentation, we found out that we get the best
speed-up by simplifying homogeneous points (z,y, z,1) when (i) z, y, and z are all greater than or
equal to 10?4, and (ii) each time when 20 polygons Crg have been added.

Heuristic 4: Recall that we compute the boundary of the sets Crg in an incremental way. Clearly,
if the current union covers the entire F-hemisphere, we can stop the computation, because the
remaining sets Cpg do not change the union. In early versions of our program, we did not check
this condition.

In the fourth heuristic, each time a polygon Crg has been added, we check if the F-hemisphere
is covered by the current union. If so, the program stops. Otherwise, the next polygon Crg is
added.

Heuristic 5: The running time of the program depends on the order in which the polygons Crg
are added. In all previous versions of the program, these polygons are added in the order in which
the facets G appear in the input file. In this final heuristic, the polygons Crg are added in random
order.

5 Experimental results

As mentioned already, the program is written in C++ using LEDA 3.8 [5]. We did our experiments on
a SUN Ultra (300 MHz, 512 MByte RAM). In these experiments, we ran the program on real-world
polyhedral models obtained from Stratasys, Inc., and on collections of random triangles.

5.1 Experiments on polyhedral models

The models that we tested are: (i) rd_yelo.stl, a long rod, with grooves cut along its length.
The two ends of the rod are decagons; (ii) cover-5.stl, a rectangular object, with three vertical
sides. The front has a rectangular cut-out. The object resembles a drawer for a filing cabinet; (iii)
tod21.stl, a bracket, consisting of a hollow quarter-cylinder, with two flanges at the ends, and a
through-hole drilled in one of the flanges; and (iv) mj.stl, see Figure 3.

Each model is given as an STL-file. Such a file contains the facets of the triangulated polyhedron,
where each facet is specified by three vertices and an outer normal, given to seven decimal digits of
precision. For each model and different facets F' of the model, we ran six versions of the program,
and measured the running times after reading the input. In the zeroth version, none of the heuristics
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Figure 3: The part mj.stl, as displayed using the QuickSlice software front-end of Stratasys, Inc.

mentioned in Section 4.4 is used. For each i, 1 < i < 5, version ¢ of the program uses heuristics 1
through «.

It is clear that the actual performance heavily depends on the model and the facet F'. We indeed
observed that the running times vary heavily for different facets F'. Table 1 gives our test results
for some “extreme” facets. The interpretation of this table is as follows.

1.
2.

#F': the number of the facet F' for which we ran the program.

#Crg: the number of facets G that are not below F'. Hence, we compute the boundary of
the union of #Crg spherical polygons.

. Fint: the total number of pairs of edges of all sets Crg that intersect. These numbers were

computed using a brute force algorithm.

. For each 7, 0 < ¢ < 5, the column labeled ¢ gives the running time, in seconds, of our program,

when it uses heuristics 1,...,4. Moreover, T' denotes the total number of intersections that
are computed, whereas M denotes the maximum number of vertices on the boundary of the
union U during its incremental construction, for these heuristics. Note that 7" is the same
for 1 <4 < 3. Also, M is the same for 1 <4 < 3.

. For rd_yelo.stl, cover-5.stl, and tod21.stl, we ran all six versions of the program for all

facets F'. For mj.stl, we ran all six versions for the first 100 facets F'.

. For each model, and each i, 0 <7 < 5, the facet F' was chosen such that heuristics 1,...,7+1

had maximum speed-up compared to heuristics 1, . .., %; these values are given in boldface. For
example, for rd_yelo.stl and #F = 94, heuristic 1 had a speed-up of 591/35 =~ 17 compared
to the version that uses no heuristics. For each of the first 100 facets of mj.stl, we ran the
version using heuristics 1-5 twice, and did not get any speed-up compared to heuristics 1-4.
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As can be seen from Table 1, the heuristics can dramatically reduce the running time. For
example, on model mj.stl and #F = 65, the program without any heuristic had not terminated
after eleven weeks (indicated by xx), and the programs with heuristic 1, and heuristics 1 and 2,
had not terminated after two weeks (indicated by *). On the other hand, using heuristics 1-3, the
program took only 175 seconds. Without heuristic 3, we observed that the homogeneous coordinates
of the vectors were integers having up to 500 decimal digits. Since the program multiplies these
coordinates, this explains the extremely high running time. With heuristic 3, i.e., when simplifying
the homogeneous coordinates, the integers were significantly smaller.

For the four models that we tested, most of the improvement in performance is caused by
heuristics 1 and 3.

Heuristic 5, i.e., adding the polygons in random order, decreased the performance in many cases.
(In fact, for mj.stl, we got no improvement at all, for any facet F.) This is caused by the fact
that STL-files store facets in a structured order, e.g. neighboring facets of the polyhedron are likely
to occur consecutively in the STL-file. Our experiments show that our program takes advantage of
this structured order.

In Table 1, the number T of intersections computed by the program can be larger than #int,
the total number of intersections among the sets Crg. (For example, for mj.stl, #F = 30, and
version 0, T" is about four times as large as #int.) This can be explained as follows. Let G1 and
G be two facets that have an edge in common. It is likely that the polygons Crg, and Crg, also
share an edge, say e. Assume that Crg, is added before Cr¢,, but in between some other polygons
CFq are added that split edge e of Cr¢g, into smaller subedges. When polygon Crg, is added, edge
e of Crg, intersects each of the subedges of e of Crg,, yielding a large value of T'.

Table 1 also shows that for versions one through five, #int is always substantially larger than
the values of T' and M. That is, our program is likely to be much faster than the two alternative
approaches that were mentioned in the beginning of Section 4.3

5.2 Experiments on random triangles

Since we only have a limited number of polyhedral models, we also tested our implementation on
collections of random triangles. We did the following two experiments.

First, we generated a set S of random triangles, where each vertex was drawn from a uniform
distribution in the cube [—1000; 1000]®, using LEDA’s generator random_d3_rat_points_in_cube.
Then, we generated a random triangle F' = (a,b,c), whose vertices were drawn from the uniform
distribution in the cube [1100;3100] x [-1000; 1000]2. The outer normal of F' was set to the cross
product (b —a) X (¢ — a). Then we ran our program for this triangle F', with the triangles G taken
from the set S. We ran the version of the program that uses heuristics 1-4 given in Section 4.4.
Note that the triangles of S do—in general—mot form a polyhedron. These triangles will in general
even be intersecting. The triangle F', however, does not intersect any of the triangles in S. On
this input, our program computes a description of all directions in which F' can be moved without
colliding with any of the triangles of S.
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‘ n ‘ #Crc ‘ max [Up| ‘ max ‘ average ‘ variance ‘

100 60 30 21 6 34
200 125 38 49 16 198
300 180 42 84 26 559
400 253 48 | 121 40 1144
500 305 52 | 179 54 2293

Table 2: Performance of our implementation on random triangles, using heuristics 1-4. n denotes
the number of triangles. For each n, we ran the program for 1000 random inputs. #Cgg denotes the
average number of facets G that are not below F'; max |Ur| denotes the average maximum number
of vertices on the boundary of the union Ur during its incremental construction; max, average, and
variance denote the maximum and average time in seconds, respectively, and the variance. For each
n, the minimum time was less than 0.1 seconds; in this case all facets G are below F'.

For each value of n € {100,200, ...,500}, we generated 1000 sets S of n triangles. (For each
set S, we generated one triangle F.) We measured the time of our program after S and F were
generated. Table 2 shows the results of this experiment.

As can be seen from Tables 1 and 2, the running time of our program heavily depends on the
number of facets G that are not below facet F'. This is not a surprise, because this number is equal
to the number of spherical polygons whose union we have to compute. In order to get a better
understanding of the performance of the part of the program that computes the union of spherical
polygons, we did the following experiment.

In the same way as above, we generated a set S of random triangles in the cube [—1000; 1000]3.
Then we generated a random point a close to the sphere centered at the origin and having radius
2000, using LEDA’s point generator random_d3_rat_points_on_sphere. We computed a plane H
through point a, having as normal the vector from a to the origin. Finally, we computed two random
points &' and ¢ in the cube [~1000; 1000]?, and their orthogonal projections b and ¢ onto the plane
H. We took for F' the triangle with vertices a, b, and ¢. Note that in this case, all triangles of S
are not below F. We ran our program for triangle F', with the triangles G taken from the set S.
Again, we ran the version of the program that uses heuristics 1-4 given in Section 4.4.

For each value of n € {100,200,...,500}, we generated 500 sets S of n triangles. (For each
set S, we generated one triangle F.) We measured the time of our program after S and F were
generated. In this case, we always computed the union of exactly n spherical polygons Crg. That
is, unlike in the previous experiment, there is no dependence on the number of facets G that are
not below F. Table 3 shows the results of this experiment. As can be seen from this table, if we
double n, the running time increases by a factor of about 2.6. This suggests a running time that is
proportional to n'°826 x 138,

6 Verifying the output

The most complicated part of the program is the one that computes the boundary of the union of
the sets Crg. The many degenerate cases that can occur caused great problems during the design
and debugging phases.

In [6], Mehlhorn et al. argue that program checkers should be used when implementing geometric
algorithms. Unfortunately, we have not been able to design a simple and efficient algorithm that
checks whether the output of a spherical polygon-union program is correct.
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| n | max|Up| | min | max | average | variance |

100 80| 14 31 21 9
200 106 | 35 76 54 58
300 123 | 62 | 134 94 168
400 138 | 88 | 208 141 407
500 148 | 121 | 289 189 696

Table 3: Performance of our implementation on random triangles that are all not below triangle
F, using heuristics 1-4. n denotes the number of triangles. For each n, we ran the program for
500 random inputs. max |Ur| denotes the average maximum number of vertices on the boundary
of the union Ur during its incremental construction; min, max, average, and variance denote the
minimum, maximum, and average time in seconds, respectively, and the variance.

Instead, we wrote two programs that can be used to graphically verify the part of the program
that computes the boundary of the union of spherical polygons. These verification programs take
as input a collection of spherical polygons that are on the F-hemisphere. The output consists of a
display of the boundary of the union of these polygons.

The first verification program displays the projection of the input polygons in one window,
whereas the projection of the boundary of the union is displayed in another window. This program
draws a vector v as a point which is obtained as follows. First, we rotate the scene such that the
F-hemisphere coincides with the upper hemisphere S%2 N {(x,y,z) € R® : 2 > 0}. Then we intersect
the ray through the rotated vector v with the plane z = 1, and draw the intersection point. If the
rotated vector v is in the plane z = 0, then it is drawn on the bounding square of the window. See
Figures 4 and 5 for some examples.

A disadvantage of this program is that it displays the projection of the boundary of the union of
the polygons. Therefore, we also wrote a second verification program—using OpenGL—that gives
a three-dimensional view of the output. It displays the boundary of the union of the polygons on
an “invisible” sphere. The scene can be rotated, and there is a zoom facility. See Figures 6 and 7
for a three-dimensional view of the union of the polygons of Figures 4 and 5.

We used both these graphical verifiers during the debugging phase of the implementation. They
were of tremendous help for finding incorrect handlings of degenerate cases in early versions of the
program.

Finally, we wrote a verification tool that generates random non-zero vectors. Let v be such a
vector. Clearly, v is contained in the union of the polygons Crg, if and only if v is contained in at
least one of these polygons. Both these conditions can easily be checked. We did a very large number
of these tests, and did not find any inconsistencies. We are aware that this does not imply that our
program is correct. These tests, however, greatly increased our confidence in the correctness.

7 Concluding remarks and further work

We have given a robust, exact and efficient implementation of an algorithm that solves an important
problem in layered manufacturing. The most interesting contribution is the part of the program
that computes the boundary of the union of spherical polygons. Representing the vertices of these
polygons by vectors that can have an arbitrary length simplified the implementation and avoided
numerical problems. We also showed that simple heuristics dramatically improve the performance
of the program.
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Figure 4: Illustrating the graphical verifier. The left window shows six spherical polygons. Their
union is shown in the right window.

We have designed three tools that can be used to verify the part of the program that computes
the boundary of the union of spherical polygons. Clearly, these verifiers do not prove the correctness
of the output of our program. We leave open the problem of designing an efficient algorithm that
checks (in the sense of [6]) whether the output of a spherical polygon-union program is correct.
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Figure 6: Ilustrating the union of the six spherical polygons of Figure 4, using our OpenGL-based
graphical verifier.

Figure 7: Illustrating the union of the five spherical polygons of Figure 5, using our OpenGL-based
graphical verifier.
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