
An Instance-Based Algorithm for Deciding the Bias of a
Coin

Lúıs Fernando Schultz Xavier da Silveira∗ Michiel Smid†

March 29, 2022

Abstract

Let q ∈ (0, 1) and δ ∈ (0, 1) be real numbers, and let C be a coin that comes up
heads with an unknown probability p, such that p 6= q. We present an algorithm that,
on input C, q, and δ, decides, with probability at least 1− δ, whether p < q or p > q.

The expected number of coin flips made by this algorithm is O
(
log log(1/ε)+log(1/δ)

ε2

)
,

where ε = |p− q|.

1 Introduction

Let q ∈ (0, 1) and ε ∈ (0,min{q, 1 − q}) be real numbers. Consider a coin that comes
up heads with an unknown probability p and, thus, comes up tails with probability 1 − p.
Assume we know that p ∈ {q + ε, q − ε}.

Let δ ∈ (0, 1) be a real number. The following algorithm decides, with probability at
least 1 − δ, whether p = q − ε (this corresponds to the output YES) or p = q + ε (this
corresponds to the output NO):

• Flip the coin k times, where

k =

⌈
ln(1/δ)

2ε2

⌉
.

• Let X be the number of heads in this sequence of k coin flips.

– If X ≤ qk, then return YES .

– If X > qk, then return NO .

∗School of Electrical Engineering and Computer Science, University of Ottawa, Canada. Supported by
NSERC.
†School of Computer Science, Carleton University, Ottawa, Canada. Supported by NSERC.

1

To prove correctness, assume first that p = q− ε. By the Chernoff–Hoeffding bound (see
Lemma 1 below), we have

Pr(the algorithm returns NO) = Pr (X > qk)

≤ Pr (X ≥ qk)

= Pr (X ≥ pk + εk)

≤ e−2kε
2

≤ δ

and, therefore, with probability at least 1 − δ, the algorithm correctly returns YES . By a
symmetric argument, in case p = q+ ε, the algorithm correctly returns NO with probability
at least 1− δ.

Observe that this algorithm must know the values of q, ε, and δ. The number of coin
flips made by the algorithm is O(log(1/δ)

ε2
), which is optimal for the case when q = 1/2: Any

algorithm that determines, with probability at least 1−δ, whether p = 1/2−ε or p = 1/2+ε,

must flip the coin Ω(log(1/δ)
ε2

) times in the worst case. For a proof of this claim, see Lemma 5.1
in Anthony and Bartlett [1]. The results by Mannor and Tsitsiklis [4] imply the same lower
bound for the expected number of coin flips made by any algorithm that uses, besides flipping
the coin, randomization to decide when to terminate.

In this paper, we consider a more general version of this problem. Besides the coin having
an unknown probability p ∈ (0, 1) of coming up heads, we are given a real number q ∈ (0, 1)
such that p 6= q and a real number δ ∈ (0, 1). How can we decide whether p is smaller than
or larger than q?

More formally, we consider the problem of designing an algorithm that takes as input the
above coin and the real numbers q ∈ (0, 1) and δ ∈ (0, 1), and outputs YES or NO , such
that

1. if p < q, then the output is YES with probability at least 1− δ,

2. if p > q, then the output is NO with probability at least 1− δ.

Any such algorithm will repeatedly flip the coin and determine its output based on the
resulting sequence of heads and tails. The goal is to minimize the number of coin flips made
by the algorithm. Intuitively, this number should depend on the absolute value |p − q| of
the difference between p and q: The smaller this value is, the more coin flips are needed to
decide which of p and q is larger.

An obvious approach is the following. For a given value ε ∈ (0, 1), the algorithm flips
the coin k times, where

k =

⌈
ln(1/δ)

2ε2

⌉
. (1)

Let X be the number of heads in this sequence of coin flips. The Chernoff–Hoeffding bound
implies the following two claims: If p < q, then

Pr (X ≥ qk + εk) ≤ Pr (X ≥ pk + εk) ≤ e−2kε
2 ≤ δ.

2

If p > q, then
Pr (X ≤ qk − εk) ≤ Pr (X ≤ pk − εk) ≤ e−2kε

2 ≤ δ.

Based on the value of X, the algorithm does the following:

• If X ≤ qk − εk, it returns YES .

• if X ≥ qk + εk, it returns NO .

• Otherwise, the algorithm does not have enough information to decide which of p and q
is larger. In this case, the algorithm chooses a smaller value of ε, recomputes the value
of k according to (1), and repeats.

Observe that this approach is similar to searching for a value, say x, in an infinite sorted
array A[1 . . .]. If x is stored at A[n], where n is unknown at the start, the algorithm first
finds an index, say m, such that x ≤ A[m] and m is polynomial in n. Given this index m,
the algorithm then performs a binary search for x in the bounded sorted array A[1 . . .m].
For a detailed exposition of this technique, see Bentley and Yao [2].

A natural choice for the values of ε is the sequence 1/2i for i = 1, 2, 3, Since each
iteration of this algorithm depends on the outcomes of all previous iterations, it is not clear
that this algorithm is correct with probability at least 1− δ.

In this paper, we show that we do obtain a correct algorithm, if we take a slightly larger
value for k: In (1), we replace ln(1/δ) by ln(π2i2/(6δ)).

Let

d =

⌈
log

(
1

|p− q|

)⌉
,

where log is the logarithm to the base 2. If, for example, q = 1/2 and p > q, then d is the
position of the leftmost bit in which the (infinite) binary representations of p and q differ.
We can think of d as being the degree of “difficulty”: The larger d is, the closer p and q are
to each other and, thus, the more “difficult” it is to decide whether p < q or p > q.

Using the new value for k, we prove the following:

1. The output of the algorithm is correct with probability at least 1− δ.

2. The expected number of iterations made by the algorithm is at most

d+ 1.2 = log

(
1

|p− q|

)
+O(1).

3. The expected total number of coin flips made by the algorithm and its expected running
time are

O
(
4d · log(d/δ)

)
= O

((
log log

(
1

|p− q|

)
+ log(1/δ)

)
· 1

(p− q)2

)
.

3

2 The Algorithm

Below, we give a formal description of the algorithm. In Section 3, we will analyze the success
probability, the expected number of iterations, and the expected total number of coin flips.

Algorithm CoinFlipper(C, q, δ)

Comment: C is a coin with an unknown probability of coming up heads, and q ∈ (0, 1)
and δ ∈ (0, 1) are real numbers. All coin flips are mutually independent.

i = 1;
while true
do ε = 1/2i;

k = dln
(
π2i2

6δ

)
/
(
2ε2
)
e;

flip the coin k times;
X = number of heads;
if X ≤ qk − εk
then return YES and terminate
else if X ≥ qk + εk

then return NO and terminate
else i = i+ 1
endif

endif
endwhile

3 The Analysis of Algorithm CoinFlipper

Our analysis will use the additive version of the well known Chernoff–Hoeffding bound (see,
e.g., inequalities (1.6) of Theorem 1.1 in Dubhashi and Panconesi [3]):

Lemma 1 (Chernoff–Hoeffding) Let k ≥ 1 be an integer and let p ∈ (0, 1) be a real
number. Consider a coin that comes up heads with probability p. Let X be the random
variable that counts the number of heads in a sequence of k mutually independent coin flips.
Then, for any real number ε ∈ (0, 1),

Pr (X ≥ pk + εk) ≤ e−2kε
2

and
Pr (X ≤ pk − εk) ≤ e−2kε

2

.

Throughout the rest of this section, p denotes the (unknown) probability that the coin
C comes up heads, and q and δ are the real numbers that are the input to algorithm

4

CoinFlipper(C, q, δ). We will assume throughout that p > q. The analysis for the case
when p < q is symmetric.

3.1 The Success Probability

We have to prove that, with probability at least 1 − δ, algorithm CoinFlipper(C, q, δ)
returns NO . Thus, if we let A be the event

A = “algorithm CoinFlipper(C, q, δ) returns YES”,

then we have to prove that Pr(A) ≤ δ.
For each integer i ≥ 1, define the events

Ai = “algorithm CoinFlipper(C, q, δ) returns YES in iteration i”,

Bi = “iteration i of algorithm CoinFlipper(C, q, δ) takes place”.

Observe that the events Ai and Ai∩Bi are the same. Using this, together with the fact that
the event A is the pairwise disjoint union of the Ai’s, we have

Pr(A) = Pr

(
∞⋃
i=1

Ai

)

=
∞∑
i=1

Pr (Ai)

=
∞∑
i=1

Pr (Ai ∩Bi)

=
∞∑
i=1

Pr (Ai | Bi) · Pr (Bi)

≤
∞∑
i=1

Pr (Ai | Bi) .

Let i ≥ 1 be an integer. We will derive an upper bound on Pr (Ai | Bi). Consider
iteration i of algorithm CoinFlipper(C, q, δ), and the values of ε, k, and X during this
iteration. It follows from the algorithm that

Pr (Ai | Bi) = Pr (X ≤ qk − εk)

≤ Pr (X ≤ pk − εk) ,

where the inequality follows from the assumption that p > q. Lemma 1 implies that

Pr (Ai | Bi) ≤ e−2kε
2

.

5

Since

2kε2 ≥ ln

(
π2i2

6δ

)
,

it follows that

Pr (Ai | Bi) ≤
6δ

π2
· 1

i2
.

Using the well known identity
∑∞

i=1 1/i2 = π2/6, we conclude that

Pr(A) ≤ 6δ

π2

∞∑
i=1

1

i2

=
6δ

π2
· π

2

6
= δ.

3.2 The Expected Number of Iterations

Let Y be the random variable that counts the number of iterations made when running al-
gorithm CoinFlipper(C, q, δ). For each integer i ≥ 1, define the indicator random variable

Yi =

{
1 if iteration i takes place,
0 otherwise.

Then

Y =
∞∑
i=1

Yi.

Let

d =

⌈
log

(
1

|p− q|

)⌉
.

Observe that d ≥ 1 and, because of our assumption that p > q,

q + 1/2d ≤ p < q + 1/2d−1.

Using the Linearity of Expectation, we have

E(Y) = E

(
∞∑
i=1

Yi

)

=
d+1∑
i=1

E (Yi) +
∞∑
j=1

E (Yd+j+1)

≤ d+ 1 +
∞∑
j=1

E (Yd+j+1) .

6

Let j ≥ 1 be an integer. Consider iteration d + j of algorithm CoinFlipper(C, q, δ),
and the values of ε, k, and X during this iteration. We have

E (Yd+j+1) = Pr (Bd+j+1)

= Pr (Bd+j+1 ∩Bd+j)

= Pr (Bd+j+1 | Bd+j) · Pr (Bd+j)

≤ Pr (Bd+j+1 | Bd+j)

= Pr (qk − εk < X < qk + εk)

≤ Pr (X < qk + εk) .

Since q ≤ p− 1/2d, we have

E (Yd+j+1) ≤ Pr
(
X ≤

(
p− 1/2d

)
k + εk

)
= Pr

(
X ≤ pk −

(
1/2d − ε

)
k
)
.

Observe that
1/2d − ε = 1/2d − 1/2d+j ≥ 1/2d − 1/2d+1 = 1/2d+1,

implying that
E (Yd+j+1) ≤ Pr

(
X ≤ pk − k/2d+1

)
.

Using Lemma 1, we obtain
E (Yd+j+1) ≤ e−k/2

2d+1

.

It follows from the algorithm that

k

22d+1
≥

ln
(
π2(d+j)2

6δ

)
2ε2

· 1

22d+1

≥
ln
(

4π2

6δ

)
2ε2

· 1

22d+1

≥ ln (6/δ)

2ε2
· 1

22d+1

= 4j−1 · ln (6/δ)

≥ 4j−1 · ln 6.

Therefore,
E (Yd+j+1) ≤ (1/6)4

j−1

. (2)

Thus,

E(Y) ≤ d+ 1 +
∞∑
j=1

(1/6)4
j−1

.

The infinite series converges and its value is approximately 0.167438, which is less than 0.2.
We conclude that

E(Y) ≤ d+ 1.2

=

⌈
log

(
1

|p− q|

)⌉
+ 1.2.

7

3.3 The Expected Total Number of Coin Flips

Let Z be the random variable that counts the total number of coin flips made when running
algorithm CoinFlipper(C, q, δ). Using the indicator random variables Yi of Section 3.2,
and denoting the value of k in iteration i by ki, we have

E(Z) = E

(
∞∑
i=1

Yi · ki

)

=
d+1∑
i=1

E (Yi) · ki +
∞∑
j=1

E (Yd+j+1) · kd+j+1

≤
d+1∑
i=1

ki +
∞∑
j=1

E (Yd+j+1) · kd+j+1. (3)

Since, for 1 ≤ i ≤ d+ 1,

ki ≤ 1 +
1

2
· 4i · ln

(
π2i2

6δ

)
≤ 1 +

1

2
· 4i · ln

(
π2(d+ 1)2

6δ

)
,

we obtain the following upper bound on the first summation in (3):

d+1∑
i=1

ki ≤ d+ 1 +
1

2
· ln
(
π2(d+ 1)2

6δ

) d+1∑
i=1

4i

= O
(
4d · log(d/δ)

)
. (4)

To bound the second summation in (3), let j ≥ 1. Using (2), we have

E (Yd+j+1) · kd+j+1 ≤
(

1

6

)4j−1 (
1 +

1

2
· 4d+j+1 · ln

(
π2(d+ j + 1)2

6δ

))
.

Since d+ j + 1 ≤ 3dj, it follows that

ln

(
π2(d+ j + 1)2

6δ

)
≤ ln

(
9π2(dj)2

6δ

)
≤ ln

(
3π2

2

)
+ ln

(
(dj)2

δ2

)
≤ 3 + 2 · ln

(
dj

δ

)
.

8

Thus, we obtain the following upper bound on the second summation in (3):

∞∑
j=1

E (Yd+j+1) · kd+j+1 ≤
∞∑
j=1

(
1

6

)4j−1 (
1 +

1

2
· 4d+j+1 ·

(
3 + 2 · ln

(
dj

δ

)))

=
∞∑
j=1

(
1

6

)4j−1

+ (5)

4d+1

(
3

2
+ ln

(
d

δ

)) ∞∑
j=1

4j ·
(

1

6

)4j−1

+ (6)

4d+1

∞∑
j=2

4j ·
(

1

6

)4j−1

ln j. (7)

The infinite series in (5), (6), and (7) converge, and their values are approximately 0.167438,
0.679012, and 0.00855737, respectively. Thus,

∞∑
j=1

E (Yd+j+1) · kd+j+1 = O
(
4d · log(d/δ)

)
. (8)

By combining (3), (4) and (8), we obtain our upper bound on the expected total number
of coin flips made by algorithm CoinFlipper(C, q, δ):

E(Z) = O
(
4d · log(d/δ)

)
= O

((
log log

(
1

|p− q|

)
+ log(1/δ)

)
· 1

(p− q)2

)
.

Since the running time of algorithm CoinFlipper(C, q, δ) is proportional to Z, we obtain
the same upper bound on its expected running time.

The following theorem summarizes our result.

Theorem 1 Let q ∈ (0, 1) and δ ∈ (0, 1) be real numbers, and let C be a coin that comes up
heads with an unknown probability p, such that p 6= q. Algorithm CoinFlipper(C, q, δ) has
the following properties:

1. If p < q, then the output is YES with probability at least 1− δ.

2. If p > q, then the output is NO with probability at least 1− δ.

3. Let ε = |p− q|. The expected total number of coin flips is

O

(
log log(1/ε) + log(1/δ)

ε2

)
.

9

As we mentioned in Section 1, if the algorithm gets as input the values of q, δ, and ε
(i.e., the algorithm knows that p ∈ {q − ε, p + ε}), the upper bound on the number of coin

flips can be improved to O(log(1/δ)
ε2

). As shown by Anthony and Bartlett [1] and Mannor and
Tsitsiklis [4], this is the best possible upper bound.

Open Problem Does there exist an algorithm that gets as input only the values of q and δ,
together with the promise that p 6= q, and solves the problem by making, in expectation,

O
(

log(1/δ)
ε2

)
coin flips?

References

[1] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, Cambridge, UK, 1999.

[2] J. L. Bentley and A. C.-C. Yao. An almost optimal algorithm for unbounded searching.
Information Processing Letters, 5:82–87, 1976.

[3] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, Cambridge, UK, 2009.

[4] S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-armed
bandit problem. Journal of Machine Learning Research, 5:623–648, 2004.

10

