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Abstract

Let S be a set of n points in a metric space, let R = {Rp : p ∈ S} be
a set of positive real numbers, and let GR be the undirected graph with
vertex set S in which {p, q} is an edge if and only if |pq| ≤ min(Rp, Rq).
The interference of a point q of S is defined to be the number of
points p ∈ S \ {q} with |pq| ≤ Rp. For the case when S is a subset
of the Euclidean space R

d, Halldórsson and Tokuyama have shown
how to compute a set R such that the graph GR is connected and the
maximum interference of any point of S is 2O(d)(1+log(R/D)), where
D is the closest-pair distance in S and R is the maximum length
of any edge in a minimum spanning tree of S. In this paper, it is
shown that the same result holds in any metric space of bounded
doubling dimension. Moreover, it is shown that such a set can be
computed in O(n log n) expected time. It is shown, by an example
of a metric space of doubling dimension one, that the upper bound
on the maximum interference is optimal. In fact, this example shows
that the maximum interference can be as large as n − 1; in contrast,
Halldórsson and Tokuyama have shown that, in R

d where d ≥ 1 is a
constant, there always exists a set R such that GR is connected and
each point has interference o(n2).
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1 Introduction

Consider a set S of n wireless nodes, which are modeled as points in a metric
space. The distance between any two points p and q in S is denoted by |pq|.
If p is a point in S and R ≥ 0 is a real number, then B(p, R) denotes the
ball with center p and radius R. Thus, B(p, R) = {q ∈ S : |pq| ≤ R}.

Given a set R = {Rp : p ∈ S} of positive real numbers, define the
undirected graph GR with vertex set S which contains an edge {p, q} if and
only if p 6= q, p ∈ B(q, Rq), and q ∈ B(p, Rp).

The graph GR represents an ad-hoc wireless network in which Rp is the
transmission radius of p. Two nodes p and q can directly send messages to
each other if p is within distance Rq of q and q is within distance Rp of p (i.e.,
{p, q} is an edge in the network). In order to be useful as a communication
network, the set R must be chosen such that the graph GR is connected.

Let q be a node in S and consider an edge {p, r} in the graph GR such
that q ∈ B(p, Rp). Since q is within the transmission radius of p, q is affected
by communication from p to r. Thus, an important issue in wireless networks
is limiting the maximum interference. The interference of a node q in S is
defined to be the number of nodes p 6= q for which q is within the transmission
radius of p, i.e.,

|{p ∈ S \ {q} : q ∈ B(p, Rp)}|.
Let K(S) denote the complete graph with vertex set S, and let the weight

of each edge {p, q} be equal to |pq|. Let D be the closest-pair distance in
S, and let R be the length of a longest edge in a minimum spanning tree of
K(S). For the case when S is a subset of R

2 and |pq| is the Euclidean distance
between p and q, Halldórsson and Tokuyama [5] showed how to compute a set
R of transmission radii such that the corresponding graph GR is connected
and the maximum interference of any point of S is O(1 + log(R/D)). Their
algorithm is based on a quadtree. By using a compressed quadtree and
techniques of Arya et al. [2] and Callahan and Kosaraju [4], the set R can
be computed in O(n log n) time. In fact, this result holds in the Euclidean
space R

d, for any d ≥ 1, and the maximum interference of any point is
2O(d)(1 + log(R/D)).

Halldórsson and Tokuyama conjectured that, again in Euclidean space
R

d, there always exists a set R such that GR is connected and the maximum
interference of any point is O(1 +

√

log(R/D)), where the constant hidden
in the Big-O may depend on d. (This upper bound would be tight, even for
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d = 1.)
Assouad [3] and Heinonen [7] defined the doubling dimension of a metric

space as a generalization of the Euclidean dimension. Let λ be the smallest
integer such that the following is true: For every real number ρ > 0, every
ball in S of radius ρ can be covered by at most λ balls of radius ρ/2. The
doubling dimension of the metric space S is defined to be log λ, where the
base of the logarithm is 2. It is not difficult to prove that the doubling
dimension of the Euclidean metric in R

d is proportional to d.
The main purpose of this paper is to give a simple proof for the result of

Halldórsson and Tokuyama. As will be shown, this result holds in any metric
space of bounded doubling dimension. Thus, the only geometric properties
that are needed are the triangle inequality and the fact that every ball can
be covered by a “small” number of balls of half the radius. Our main result
is the following:

Theorem 1 Let S be a metric space of n points, let d be its doubling di-

mension, let D be the closest-pair distance in S, and let R be the length

of a longest edge in a minimum spanning tree of S. In O(n log n) expected

time, we can compute a set R = {Rp : p ∈ S} of positive real numbers such

that the graph GR is connected and each point of S has interference at most

210d(2 + ⌊log(R/D)⌋).

Observe that in Theorem 1 (as well as in Halldórsson and Tokuyama’s
result), the upper bound on the maximum interference depends exponentially
on the doubling dimension d. In Theorem 1, however, this dependency is
very large even for small values of d. This is due to the fact that the result
is proved by making as few assumptions as possible.

We also show that the conjecture of Halldórsson and Tokuyama is not
true for general metric spaces of bounded doubling dimension:

Theorem 2 There exists a metric space S of n points and doubling dimen-

sion one such that, for every set R = {Rp : p ∈ S} of positive real numbers

for which the graph GR is connected, there is a point in S whose interference

is Ω(1 + log(R/D)).

Thus, if Halldórsson and Tokuyama’s conjecture is true for the Euclidean
space R

d, its proof must use geometric properties.
Halldórsson and Tokuyama also showed that, in the Euclidean space R

d,
where d ≥ 1 is a constant, a set R can be computed for which the graph
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GR is connected and every point in S has interference O(
√

n) if d ≤ 2 and
O(

√
n log n) if d ≥ 3. The metric space of Theorem 2 shows that this is

not true in general metric spaces of bounded doubling dimension: Even if
the doubling dimension is equal to one, the maximum interference can be as
large as n − 1.

2 The proof of Theorem 1

Throughout this section, S is a metric space of size n and doubling dimen-
sion d. For the proof of Theorem 1, we need a spanning tree of S that has
the following property: For any two points p and q in S, every edge on the
path in this tree between p and q has length O(|pq|). A minimum spanning
tree is an obvious choice for such a tree:

Fact 1 Let p and q be two points in S. Every edge on the path between p
and q in a minimum spanning tree of S has length at most |pq|.

Since the time complexity of computing a minimum spanning tree is
Θ(n2), even if the doubling dimension is equal to one (see [6, 8]), this would
lead to a quadratic-time algorithm. In order to obtain a faster algorithm, we
will use a minimum spanning tree of a spanner of S.

Recall that, for any real number t ≥ 1, an undirected graph H with
vertex set S is called a t-spanner of S if for any two points p and q of S, the
shortest-path distance between p and q in H is at most t|pq|.

Let H be a t-spanner of S, and let T be a minimum spanning tree of H .
The following lemma, due to Aronov et al. [1], is a weaker version of Fact 1.
Later in this section, we will see that this lemma will be sufficient to prove
Theorem 1. In order to be self-contained, a proof of the lemma is included.

Lemma 1 Let p and q be two points in S and consider the path P in T
between them. Every edge on P has length at most t|pq|.

Proof. Let {x, y} be an arbitrary edge on P and assume that |xy| > t|pq|.
The graph T ′ obtained by removing {x, y} from T consists of two components,
one containing p, the other containing q. The t-spanner H contains a path
Q between p and q having length at most t|pq|. The union of T ′ and Q is
a connected subgraph of H , whose weight is less than the weight of T , a
contradiction.
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The algorithm for computing the set R of transmission radii is as follows:

1. Compute a 2-spanner H of S with O(n) edges.

2. Compute a minimum spanning tree T of H .

3. For every point p in S, compute

Rp = max{|pq| : {p, q} is an edge in T}.

4. Return the set R = {Rp : p ∈ S}.
The graph H can be computed in O(n log n) expected time; see [6]. Since

H has O(n) edges, the minimum spanning tree T of H can be computed in
O(n logn) time. Finally, all values Rp, p ∈ S, can be computed in O(n) time.
Thus, the total expected running time of the algorithm is O(n log n).

Consider the graph GR corresponding to the output R of this algorithm.
Observe that each edge {p, q} in T is contained in GR. Therefore, this graph
is connected.

Let D be the closest-pair distance in S, let R be the length of a longest
edge in a minimum spanning tree of K(S), and let L be the length of a
longest edge in the minimum spanning tree T of the 2-spanner H . The
following two lemmas imply that the maximum interference of any point in
S is O(1 + log(R/D)), completing the proof of Theorem 1.

Lemma 2 L ≤ 2R.

Proof. Consider a longest edge {p, q} in T ; thus, |pq| = L. Removing this
edge from T partitions the set S into two subsets U and V . Since T is a
minimum spanning tree of H , each edge in H connecting a point in U with
a point in V has length at least L.

We prove that |uv| ≥ L/2, for all u ∈ U and v ∈ V . Since a minimum
spanning tree of S has to contain an edge {u, v} with u ∈ U and v ∈ V , this
shows that R ≥ L/2.

Consider a pair {u, v} with u ∈ U and v ∈ V and assume for the sake of
contradiction that |uv| < L/2. Since H is a 2-spanner, the shortest path in
H between u and v has length less than L. This path contains an edge {x, y}
with x ∈ U and y ∈ V . Since {x, y} belongs to the shortest path between u
and v, its length is less than L. On the other hand, since x ∈ U and y ∈ V ,
the length of {x, y} is at least L, a contradiction.
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Lemma 3 Every point in S has interference at most 210d(1 + ⌊log(L/D)⌋).

Proof. We may assume, without loss of generality, that D = 1. Partition
the interval [1, L] into subintervals Ci = [2i, 2i+1), 0 ≤ i ≤ ⌊log L⌋. Let q be
a point in S. For each i with 0 ≤ i ≤ ⌊log L⌋, define

N i
q = |{p ∈ S : |pq| ≤ Rp and Rp ∈ Ci}|.

Then the interference of q is equal to

|{p ∈ S \ {q} : |pq| ≤ Rp}| =

⌊log L⌋
∑

i=0

N i
q.

Fix an integer i with 0 ≤ i ≤ ⌊log L⌋. The lemma follows if we can show
that N i

q ≤ 210d.
Let k = N i

q and let p1, . . . , pk be the points in the set

{p ∈ S : |pq| ≤ Rp and Rp ∈ Ci}.

For each j with 1 ≤ j ≤ k, let qj be a point of S such that {pj, qj} is an edge
in T and |pjqj| = Rpj

.
Let ρ = 2i and let B be the ball with center q and radius 4ρ. Observe

that |qpj| ≤ Rpj
< 2ρ and

|qqj| ≤ |qpj| + |pjqj | = |qpj| + Rpj
< 4ρ.

Thus, all points p1, q1, . . . , pk, qk are contained in B.
By applying the definition of doubling dimension five times, we cover

B by at most 25d balls of radius ρ/8. For each j with 1 ≤ j ≤ k, since
|pjqj | = Rpj

≥ ρ, the points pj and qj are in different balls of the covering.
Consider any ordered pair (B1, B2) of balls in the covering of B. We prove

by contradiction that there is at most one edge in {{pj, qj} : 1 ≤ j ≤ k} with
pj ∈ B1 and qj ∈ B2. This implies that

k ≤ 2

(

25d

2

)

≤ 210d.

Assume there are two distinct edges, say, {p1, q1} and {p2, q2}, such that
p1, p2 ∈ B1 and q1, q2 ∈ B2; see Figure 1. Observe that p1 6= p2 because
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Figure 1: Illustrating the proof of Lemma 3.

each pair {pj, qj} is uniquely determined by pj . The points q1 and q2 are not
necessarily distinct.

Let P be the path in T between p1 and p2. By Lemma 1, each edge
on P has length at most 2|p1p2| ≤ ρ/2 < ρ. Thus, P does not contain q1

(otherwise, this path contains the edge {p1, q1}, which has length at least ρ)
and P does not contain q2 (otherwise, this path contains the edge {p2, q2},
which has length at least ρ). It follows that q1 6= q2 (otherwise, T contains a
cycle). Let Q be the path in T between q1 and q2. This path consists of the
edge {p1, q1}, the path P , and the edge {p2, q2}. Thus, Q contains the edge
{p1, q1}, which has length at least ρ. This contradicts Lemma 1, because
|q1q2| < ρ.

3 The lower bound

In this section, we prove Theorem 2. Let S = {p1, p2, . . . , pn}. For each i
and j with 1 ≤ i ≤ j ≤ n, define

|pipj| = |pjpi| =

{

0 if i = j,
4j if i < j.

Smid [8] showed that the doubling dimension of this metric space is equal to
one. Observe that for each j with 2 ≤ j ≤ n, each of p1, . . . , pj−1 is a nearest
neighbor of the point pj.
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Consider any set R = {Rpj
: 1 ≤ j ≤ n} of positive real numbers

for which the graph GR is connected. Then, for each j with 2 ≤ j ≤ n,
Rpj

≥ |p1pj| = 4j (otherwise, GR is not connected). It follows that the
interference of the point p1 is equal to n − 1.

The closest-pair distance in S is equal to D = 4, whereas the longest
edge in the minimum spanning tree of S has length R = 4n. Therefore, the
interference of p1 is

n − 1 = log(R/D) = Ω(1 + log(R/D)).

This proves Theorem 2.
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