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i Abstract 

We define a class of q-ary cyclic codes, the so-called duadic codes. 

These codes are a direct generalization of QR codes. The results of 

Leon, Masley and Pless on binary duadic codes are generalized. Duadic 

codes of composite length and a low minimum distance are constructed. 

We consider duadic codes of length a prime power, and we give an 

existence test for cyclic projective planes. Furthermore, we give 

bounds for the minimum distance of all binary duadic codes of length s241. 
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Preface 

In 1984, Leon, Masley and Pless introduced a new class of binary cyclic 

codes, the so-called duadic codes. These codes are defined in terms 

of their idempotents, and they are a direct generalization of quadratic 

residue codes. 

In this thesis, duadic codes over an arbitrary finite field are defined 

in terms of their generator polynomials. In the binary case, this 

definition is equivalent to that of Leon, Masley and Pless. 

In Chapter 1, we give a short introduction to coding theory, 

In Chapter 2, duadic codes of length n over GF(q) are defined. We show 

h h . . ff d· . f m. mt. m". th . t at t ey eX1st 1. q=o mo n, 1.e., 1. n = PI P2 w •• Pk 1.S e pr1me 

factorization of n, then duadic codes of length n over GF(q) exist 

iff q=D mod p., i = 1 ,2 , ••• ,k. 
1. 

Examples of duadic codes are quadratic residue codes, some punctured 

generalized Reed-Muller codes, and cyclic codes for which the extended 

code is self-dual. Furthermore, we give a construction of duadic codes 

of composite length with a low minimum distance. As an example, if 

n 1.S divisible by 7, then there is a binary duadic code of length n 

with minimum distance 4. 

In Chapter 3, we generalize the two papers of Leon, Masley and Pless 

on binary duadic codes. We show e.g., that the minimum odd-like weight 

in a duadic code satisfies a square root bound, just as in the case 

of quadratic residue codes. 

In Chapter 4, we study 

out that if pZII (qt-l) , 

(~z) over GF(q) have 

duadic codes of length a prime power. It turns 

where t=ord (q), that duadic codes of length pm p , 

minimum distance ~pz. If z=I, then we can 

strengthen this upper bound, and we can also give a lower bound on 

the minimum distance. As a consequence, we can determine the minimum 

distance of duadic codes of length pm for several values of p. For 

example, all binary duadic codes of length 7m (m>l) have minimum 

distance 4. 

In Chapter 5, we consider tournaments which are obtained from splittings, 

and we ask whether they can be doubly-regular. 

In Chapter 6, we show that a duadic code, whose minimum odd-like weight 

satisfies the specialized square root bound with equality, contains 

a projective plane. Furthermore, we give an (already known) existence 

test for cyclic projective planes. 
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Chapter 7 deals with single error-correcting duadic codes. We show 

that a binary duadic code with minimum distance 4 must have a length 

divisible by 7. In a special case we give an error-correction procedure. 

It turns out that most patterns of two errors can be corrected. 

In the last section of Chapter 7, we show that if a duadic code of 

length n~9 over GF(4) with minimum distance 3 exists, then n is 

divisible by 3. 

In Chapter 8, we give lower bounds on the minimum distance of cyclic 

codes. These bounds are used to analyze binary duadic codes of 

length :0;24 I . 

At the end of Chapter 8, we g1ve a table of all these codes. 
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Chapter I Introduction to error-correcting codes 

In this chapter we g1ve a short introduction to coding theory. For a 

more extensive treatment the reader is referred to [10,12]. 

Section I. I Definitions 

Let q be a prime power, and let GF(q) be the field consisting of q 

elements. 

A code C of length n over GF(q) is a subset of the vector space 

(GF(q»n. The elements of C are called codewords. 

A k-dimensional subspace of (GF(q»n is called a linear code. We call 

such a code a q-ary [n,k] code. 

If x is a vector, then the weight wt(x) of is the number of its 

non-zero coordinates. The distance d(~,y) of two vectors ~ and y, 

is the number of coordinates in which they differ. Note that 

d (~,y) =wt (~-y) • 

If C is a code, then the minimum distance d of C is defined as 

d:=min{d(~,y)I~,yEC.~ly}. 

If C is a linear code, then the minimum distance d of C equals the 

minimum non-zero weight, i.e., d=min{wt(~)I~EC,~1Q}. 

An [n,k] code with minimum distance d is denoted an [n,k,d] code. 

A vector ~ in (GF(q»n is called even-like I Xi = 0, otherwise 

it is called odd-like. If a code contains only even-like vectors, 

then it is called an even-like code. 

If q=2, then an even-like vector has even weight, and an odd-like 

vector has odd weight. 

Let C be an [n,k] code over GF(q). 

The extended code C is the [n+l,k] code defined by 

n+1 
C:= {(xl'x2 •••• 'xn+I)I<XI.x2' •.. 'xn)EC'itxi 

Note that C is an even-like code. 

The dual code C~ of C is defined as 

a}. 

c~ := {~E(GF(q»nIVYEC[(~'Y)=O]}, where ( , ) is the usual inner-
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If 0cC~, then the code C is called self-orthogonal, and if C=C~, 
then C is called self-dual. 

A generator matrix for C is a k x n matrix G, whose rows are a basis 
~ 

for C. A parity check matrix H for C is a generator matrix for C • 

The matrices G and H satisfy G.HT=O. 

Note that xEC iff HxT=O. 

Section 1.2 Cyclic codes 

A linear code C of length n ~s called cyclic if 

v( )EC[(c _l'cO""'c _~)EC]. cO,c1, ••• ,c
n

_ 1 . n . n '-

Now make the following identification between (GF(q»n and the residue 

class ring GF(q) [x]/(xn-1) 

n Then we can interpret a linear code as a subset of GF(q)[x]/(x -1). 

(1.2.1) Theorem A linear code C of length n over GF(q) is cyclic 

iff C is an ideal in GF(q)[x]/(xn-1). 

We shall only consider cyclic codes of length n over GF(q) where (n,q)=l. 

Let C be a cyclic code in (GF(q»n, and let g(x) be the unique monic 

polynomial of lowest degree in C. Then the ideal C is generated by 

g(x), i.e., 

C = <g(x» := {a(x)g(x) mod (xn-1)!a(x)EGF(q)[x]}. 

The polynomial g(x) is called the generator polynomial of C. If C 

has dimension k, then g(x) has degree n-k. Note that g(x) is a divisor 

of x
n
-l. It follows that there is a polynomial hex), called the 

check polynomial of C, such that xn_1 = g(x)h(x) (in GF(q)[x]). 

This gives: c(x)EC iff c(x)h(x) = 0 ( in GF(q) [x)/(xn-1». 

The dual code of C equals <h(x»+, which is obtained from <hex»~, 

by reversing the order of the symbols. 
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Let a be a primitive n-th root of unity in an extension field of GF(q), 

and let S c {O,1, ••. ,n-1}. We can define a cyclic code C of length n 

over GF(q) as follows : 

c(x)EC iff c(a 1 )=O, i~S 

(and every cyclic code can be defined in this way). 

The set {ailiES} is called a defining set for C. If this set is the 

maximal defining set for C, then it is called complete. 
i qi Note that if A is a complete defining set, we have a EA ~ a EA. 

(1.2.2) Lemma If a cyclic code C contains an odd-like vector, then 

it also contains the all-one vector j(x). 

Proof Let g(x) resp. hex) be the generator resp. check polynomial of C. 

Since C contains an odd-like vector, we have g(1)#0, and hence h(1)=O. 

So j(x) = ~~~) ·g(x) ~ C. 

Section 1.3 The idempotent of a cyclic code 

(1.3.1) Theorem A cyclic code C contains a unique codeword e(x), 

which is an identity element for C. 

Since (e(x»2 = e(x), this codeword is called the idempotent of C. 

Furthermore, the code C is generated by e(x), since all codewords 

c(x) can be written as c(x)e(x). 

(1.3.2) Theorem: If C
1 

and C
2 

are cyclic codes with idempotents 

e , (x) and e2(x), then 

(i) C1 n C2 has idempotent e
1

(x)e2 (x) , 

(ii) C1 + C
2 

has idempotent e
1

(x) + e2 (x) - e
1

(x)e2(x). 

Let a be a primitive n-th root of unity in an extension field of GF(q), 

and let C be the cyclic code of length n over GF(q) with complete 

defining set {ailiES}. 
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(1.3.3) Theorem: If e(x) E GF(q)[x]!(xn-l), then e(x) is the idempotent 

of C iff 

e(a i
) =0 if iES, and e(a i ) =1 if iE{O,l, .•. ,n-l}~. 

Proof: (i) Suppos: e(a i ) =0 if iES, and e(a i ) =1 if iET:={O,l, ••• ,n-l}'S. 

Let g(x) := n (x-a~) (g(x) is the generator polynomial of C). 
iES 

Then g(x) divides e(x), so e(x) E C. 
i xn_l 

Let hex) := n (x-a) = • Then hex) divides 1-e(x), so there is a 
iET 

polynomial hex), such that t-e(x) = b(x)h(x). 
n Let a(x)g(x) be a codeword in C. Then a(x)g(x)e(x) = a(x)g(x) mod(x -1). 

Hence e(x) is an identity element for C. 

(ii) If e(x) is the idempotent of C, then (e(x»2=e(x),and e(x) 

generates the code. o 
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Chapter 2 Duadic codes 

In this chapter we define duadic codes over GF(q) 1n terms of their 

generator polynomials. We show that in the binary case our definition 

is equivalent to that of Leon,Masley and Pless [6], who defined 

binary duadic codes in terms of their idempotents. 

Furthermore we investigate for which lengths duadic codes exist, and 

we give some examples. In the last section of this chapter we give 

a construction of duadic codes of composite length with a low minimum 

distance. 

8ection 2.1 Definition of duadic codes 

Let q be a prime power, and let n be an odd integer, such that (n,q)=1. 

If O~i<n, then the cyclotomic coset of i mod n is the set 
C {"' d 2. d 3, d } i:= 1,Q1 mo n,q 1 IDa n,q 1 ma n, ...• 

If a an integer such that (a,n)=l, then ~ denotes the 
a 

permutation i ~ ai mod n. 

(2.1.1) Definition: Let 8
1 

and 8
2 

be unions of cyclotomic cosets 

mod n, such that 8
1 

n 82 = ~ and 8
1 

U 82 = {1,2, ••• ,n-l}. 

Suppose there is an a, (a,n)=l, such that the permutation ~a 

interchanges 8
1 

and 82 , 
+ 

Then ~a:Sl + 82 is called a splitting mod n. 

Let a be a primitive n-th root of unity in an extension field of GF(q), 
+ 

and let ~a:81 + 82 be a splitting mod n. 

1 i Define gl(x) := n (x-a), g2(x) := n (x-a ). 
iE8 1 iE8Z 

Note that g1(x) and g2(x) are polynomials 1n GF(q)[x], since 

gk(x
q

) = (gkex»q, k=1,2. 

(2.1.2) Definition: A cyclic code of length n over GF(q) 1S called a 

duadic code if its generator polynomial is one of the following: 

gl(x), gZ(x), (x-l)gl(x) or (x-l)g2(x). 
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(2.1.3) Example: Let n be an odd pr1me, such that qEO mod n (i.e., 

there is an x~O mod n, such that mod n; if such an x~O mod n 

does not exist, then we write q=¢ mod n). 

Now take SI := {O<i<nliED mod n}, S2 := {O<i<nli=¢ mod n}. 

Since q=o mod n, the sets SJ and S2 are unions of cyclotomic cosets 

mod n. 
+ Let a€8 2 . Then ~a:SI + 82 is a splitting mod n, and the corresponding 

duadic codes are quadratic residue codes CQR codes, cf. [10]) • 

Now let • We shall show that Definition (2.1.2) is equivalent to the 

definition of Leon,Masley and Pless in [6]. 
+ 

Let ~a:Tj + T2 be a splitting mod n, and define 

1 
e ex) := LX, e

2
(x) 

1 i€T
1 

2 
Note that eek(x» 

:= E x1 (these are polynomials 1n GF(2)[x]). 
i€T2 

ek(x) , k=1,2. 

(2.1.4) Definition (Leon,Masley,Pless) 

A binary cyclic code of length n 1S called a duadic code if 

its idempotent is one of the following: 

ex), I+e
l 

(x) or l+eZ(x). 

(2.1.5) Theorem: A binary cyclic code is duadic according to (2.I.Z) 

iff it is duadic according to (Z.I.4). 

Proof : Let a be a primitive n-th root of unity in an extension field 

of GF(Z). 
+ 

(i) Let ~a:SI + S2 be a splitting mod n, and let Ck be the duadic 

code (according to (2.I.Z» with generator polynomial 
1 gk(X) = n (x-a), k=I,Z. Suppose the code Ck has idempotent 

i€8k 

ek(x) = L x1, k=I,2. 
i€Tk 

Since C) n C2 = <gl(x)g2(x» = <j(x» has idempotent j(x), we have 

ej(x) (x) = j(x). 

Now dim(C)+C2) = dimC] + dimC2 - dim(C) n C2) n, 
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so C
1
+C

Z
=(GF(Z»n. Comparing idempotents we find 

e
l 

(x)+eZ(x)+e 1 (x) (x)=I, and hence 

Z 3 n-l 
el(x)+eZ(x) = x+x +x + ••• +x . 

It follows that T)'{O} n TZ'{O} == 0 and T1'{0} U TZ'{O} = {1,2, ..• ,n-l}. 

It is obvio~s that TI and TZ are unions of cyclotomic cosets mod n. 

Since eI(aa~){= 0 if iES2 , 

= I if iE{O, I ,Z, ..• ,n-Il'SZ' 
a we have eZ(x) = e

1
(x) (cf. Theorem (1.3.3». 

We have shown that ~a:Tl'{O} : TZ'{O} is a splitting mod n, and hence 

C
1 

and C2 are duadic codes according to (2.1.4). 

By comparing zeros, we see that the duadic codes generated by (x-l)gl(x) 

resp. (x-l)g2(x) have idempotents ]+e2 (x) resp. l+e
1
(x), and hence 

they are duadic codes according to (Z.I.4). 

(ii) Let ~a:Tl : T2 be a splitting mod n, and let Ck be the duadic 

code (according to (Z.I.4» with idempotent ek(x) == EO 

(8 0EGF(2) is chosen such that ek(x) has odd weight). 

Note that e] (x)+eZ(x)=I+j (x). . 

i + Ex. k=I,2 
iETk 

Suppose the code ~ has complete defining set {a1IiESk}' k=I,Z. 

Obviously SI and 8Z are unions of cyclotomic cosets mod n, and otsk, 

k= 1 , Z. 

Since e1(ai)+e2(ai)=J+j(ai) I (i#O) , we have 8
J 

n 8Z=0. and 

8 J U 82={1,Z, ••. ,n-!}. . 

If iE8 1, then e2 (aa1)=e l (a1)=O, so aiE8Z' 

It follows that ~a:Sl : 8Z is a splitting mod n, so C1 and Cz are 

duadic codes according to (2.1.2). 

Let Ci resp. Ci be the duadic code with idempotent l+eZ(x) resp. 

I+e}(x). By comparing zeros we see that Ck is the even weight subcode 

of Ck ' so Ck is duadic according to (Z.I.2), k=I,2. 0 

(Z.I.6) Remark: In [14] Pless introduced a class of cyclic codes 

over GF(4), called Q~code!, in terms of their idempotents. In the 

same way as in Theorem (Z.I.5) it can be shown that these codes are 

duadic codes over GF(4) and vice versa. 
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The next theorem tells us for which lengths duadic codes exist. 

Again, let q be a prime power. 

(2 1 7) Th L - m. m~ ~b h . f . . •• eorem: et n - PI P2 .•• Pk e t e prlme actorlzat~on 

of the odd integer n. 

A splitting mod n exists (and hence duadic codes of length n 

over GF(q» iff q=D mod Pi' i=I,2, ••. ,k. 

Before proving this theorem, we glve some lemmas. 

(2.1.8) Lemma: Let p be an odd prime. 

A splitting mod p exists iff q=D mod p. 

~ : (i) In (2.1.3) we have seen that a splitting mod p exists 

if q=D mod p. 

(ii) Suppose a splitting mod p exists. 

Let N be the number of non-zero cyclotomic cosets mod p, then N must 

be even. Let G be the cyclic multiplicative group of GF(p), and let 

H be the subgroup of G generated by q. Let Q be the subgroup of G 

consisting of the squares mod p. Note that each coset mod p contains jHI elements 

Then we have IGI = N. IHI = 21QI, and hence IHI divides IQI. 

Because a cyclic group contains for each divisor d of its order 

exactly one subgroup of order d, we see that H is a subgroup of Q. 

We have shown that qEQ, i.e. q=D mod p. 

(2.1.9) ~ : Let p be an odd prime, such that q=D mod p, and let 
m 

m~I. Then there is a splitting mod p • 

Proof : The proof is by induction on m. 

For m=l the assertion follows from Lemma (2.1.8). 
~ + m + 

Now let ~a:SI + 82 be a splitting mod p , and let ~a:TI + T2 be a 

splitting mod p (remark that both splittings are given by ~ ). a 
Define ~ := {ipliESk} U {i+jpliETk,O~j<pm}, k=1,2. 

+ ~1 
It is easy to show that ~a:Rl + R2 is a splitting mod p 

(2.1.10) Lemma: Let 1 and m be odd integers, (l,m)=I, such that 

splitt mod 1 and mod m exist. 

Then there is a splitting mod 1m. 

D 
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-+ -+ 
Proof: Let ~a:Sl + 82 mod 1 and ~b:TI + T2 mod m be splittings. 

Define ~ := {im!iESk } U {i+jmliETk,O~j<l}, k=I,2. 

Choose c such that c=a mod 1, c=b mod m (such a c exists by the 

Chinese Remainder Theorem). Note that (c,lm)=l. 

Then ~c:Rl ! R2 is a splitting mod 1m. 

R!oof of Theorem (2.1.7) : 

o 

(i) Suppose q=o mod p., i=I.2 .... ,k. From Lemmas (2.1.9) and (2.l.IO) 
1 

it follows that a splitting mod n exists. 

(ii) Let ~a:SI ! S2 be a splitting mod n, and let p be a prime, pin. 

Choose m such that n=pm. 

Now define Tk := {1~i<plimESk}' k=I,2. Then ~a:Tl ! T2 is a splitting 

mod p, and then Lemma (2.1.8) shows that q=o mod p. 0 

(2.1. II) Examples: Let n 

the odd integer n. 

m. rna.. m\tb h f" f PJ P2 .•• Pk e t e prl.me actor1zat10n a 

(i) Binary duadic codes of length n exist iff p.=±1 mod 8, i=I,2, ••• ,k. 
1 

(ii) Ternary duadic codes of length n exist iff p.=±1 mod 12, 
1 

i=l,2, ••• ,k. 

(iii) Duadic codes of length n over GF(4) exist for all odd n. 

(2.1.12) Theorem: Let n = p7 I p;L ... p~~be the pr1me factorization 

of the odd integer n. Let q be a prime power such that (n,q)=I. 

Then q=o mod n iff q=o mod p., i=I,2, ..• ,k. 
1 

We shall first prove the following lemma. 

(2.1.13) ~ : Let p be an odd prime such that pjq, and let m~l. 
m m+1 If q=o mod p , then q=o mod p • 

m Proof : Suppose q=o mod p • Then there are integers x and k, such 
.~ 2 m 

that q = x +kp • Now choose t such that 2xt=k mod p (note that (p,q)=l, 
m 2 m+J and hence (p,x)=I). Then q=(x+tp) mod p • 0 

Proof of Theorem (2.1.12) : 

Suppose q=o mod p., i=t,2, ... ,k. Then, by Lemma (2.1.13), we have 
1 

= d mt '-12k q-o rna p., 1- , , ••• , • 
1 

S h ' - 2 mt . - 2 k o t ere are 1ntegers x., such that q=x. mod p., 1-1 ••... , . 
1 1 1 

By the Chinese Remainder Theorem, there is an integer x, such that 

d m, m.. m\c 
x=x1 mo PI' x=x2 mod P2' ••• , x=xk mod Pk' 
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Then q-X2 mod m, i-12k and hen e q=x2 mod n. = Pi' -, ,"" , c 

The converse is obvious. 

(Z.1.14) Corol,lary Duadic codes of length n over GF(q) exist iff 

q=D mod n. 

Section 2.2 Examples of duadic codes 

In the last section we saw that QR codes of pr~me length over GF(q) 

are duadic codes. We now give some other examples. For a list of 

binary duadic codes the reader is referred to Chapter 8. 

(2.2.1) We take q=2 r , n=q-l. 

Remark that each cyclotomic coset mod n contains exactly one element. 

Now let 8] := {ill~isn;l}, 82 := {iln;l~i~n-I}. Then ~_I:SI t 82 is 

a splitting mod n. The corresponding duadic codes of length n over 

GF(q) are Reed-Solomon codes with minimum distance n+l (cf. [10]). 

(2.2.2) Again take q=2r. Let m be odd, n:=qm_ l . 

Let c (i) be the sum of the digits of i, if i is written in the q-ary 
q 

number system. We define 

SI := {I~i<nlcq(i)<m(q;l)-l}., 8
2 

:= {1~i<nlcq(i»m(q;I2.+I}. 
Since cq(i) = cq(qi mod n), the sets S1 and S2 are unions of 

cyclotomic cosets mod n. 

Since cq(-i mod n) = m(q-I)-cq(i), the sets SI and S2 are interchanged 

by ~ -1 • 
• • -+ 

Hence we have a spl1tt1ng ~_I:SI + Sz mod n. 

The corresponding duadic codes are punctured generalized Reed-Muller 

d RM( m(q-l)-1 )*. .. d' I( 2) Hm-I) 1 co es m,· ,q w~th m~n1mum ~stance 2 q+ q -
-- 2 
(cf. [9]). 

If we take m=l, then we get the Reed-Solomon codes of (2.Z.I). 
m-I * If q=Z, we get the punctured Reed-Muller codes RM(--Z-,m) 

with minimum distance 2~(m+l) -1 (cf. I12]). 

(2.2.3) Theorem: Let C be a cyclic code of length n over GF(q), and 

suppose that the extended code C is self-dual. Then C is a 

duadic code, and the splitting is given by ~-1' 

D 



j I -

Proof: Let a be a primitive n-th root of unity, and let {ailiES1} 

be the complete defining set of C. 
n+l] If OES I , then C is an even-like code, so it is an [n'--2- self-dual 

code, which impossible. Hence O~SI' " 
.1 { -11 { }} The code C has complete defining set a iES2 U 0 ,where 

S2 := {J,2, ••• ,n-Il·'Sj' 

Let C' be the even-like subcode of C. Since C is self-dual, we have 

C' c C1 
, and hence C' = C1 (note that dimC'=dimC

1
). 

If we compare the defining sets of C' and C.l, we see that S2=-S) mod n. 
-+ 

Hence ~_I:Sl + 82 is a splitting mod n, which shows that C is a duadic 

code. 

Section 2.3 A construction of duadic codes of composite lena~h 

o 

Let -+ 
~a:TI + T2 mod 1 and ~a:UI 

-+ 
+ U

2 
mod m be splittings (both splittings 

given by ~ ). 
a 

are 

Let a be a primitive n-th root of unity 1n an extension field of 

GF(q), where n:=lm. 

Then S:=a
l 

is a primitive m-th root of unity. 

Let Co be the e:en-like duadic code of length mover GF(q) with complete 

defining set {slliEUl U {OJ} and minimum distance d. 

We shall construct a duadic code of length n with minimum distance ~d. 

If we take Sk := {~mliETk} U {i+jmliEUk,O~j<l}, k=I,2, then we have 

1 " . -+ a sp 1tt1ng ~a:Sl + S2 mod n. 

Let C be the duadic code of length n over GF(q) with complete defining 

set {ailiESj}. 

(2.3. I) Theorem The code C has minimum distance ~d, 

Proof : Let cO(x) be a codeword in Co of weight d. Then the word 

c(x) := cO(x
1) E GF(q) [x]/(xn-J) also has weight d. 

. k kl k 
Note that c(a )=cO(a )acO(S)' 

Let kES
I

, 
k im 

(i) If k=im mod n, where iET 1, then c(a )=cO(S )~CO(I)=~. 

(ii) If k=i+jm mod n, where iEU 1, O~j<l, then c(a )=cO(S )=0. 

It follows that c(x) is a codeword in C. [J 
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(2.3.2) Remark: Since the codeword c(x) in the proof is even-like, 

we see that the even-like subcode of C also has minimum distance sd. 

(2.3.3) Theorem: Let 1 and m be odd integers, (l,m)=l, and suppose 

that splittings mod I and mod m exist. If an even-like duadic 

code of length m has minimum distance d, then there is a 

duadic code of length n:=lm with minimum distance Sd. 

Proof : Let ~ resp. ~b give sp1ittings mod 1 resp. mod m. 
--- a 
Choose c such that c=a mod 1, c=b mod m, and continue as on page 11. 0 

(2.3.4) Example~ : (i) Take q=2, n divisible by 7 (we suppose that 

duadic codes of length n exist). 
. k ~ WrLte n=7 m, 7~m. 

The even-weight duadic code of length 7 has minimum distance 4. 

According to (2.3.1) and (2.3.2) there is an even-weight duadic code 

f 1 h 7k . h .. d . 4 a engt WLt m1n1mum Lstance S • 

If we apply Theorem (2.3.3) (suppose that m>I), we get a duadic code 

of length n with minimum distance s4. 

(ii) Now we take q=4, and n divisible by 3. 

In the same way it can be shown that there is a duadic code of length 

n over GF(4) with minimum distance ~3. 

In Chapter 7 we shall study binary duadic codes with minimum distance 

4, and duadic codes over GF(4) with minimum distance 3. 
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Chapter 3 Properties of duadic codes 

In this chapter we generalize the results about binary duadic codes 

from [7]. 

Section 3.1 Some general theorems 

Let ~a:SI t S2 be a splitting mod n, and let a be a primitive n-th 

root of unity in an extension field of GF(q). 

Le~ Ck be the duadic code of length n over GF(q) with defining set 

{a1IiESk}' and with even-like subcode Ck . Let ek(x) be the idempotent 

of Ck (k=I,2). 

(3.1.1) : Theorem 
n+1 

(i) dim Ck 2' dim Ck 
(ii) CI n C2 = ~, CI + 

(iii) Cj n Cz = {Q}, Cj + 

n-I 
= --2-' k=I,2. 

n 
C2 = (GF(q» • 

Cz = {~E(GF(q»nl~ even-like}. 

(iv) Ck = Ck i~, k=I,2 (i denotes an orthogonal direct 

sum). 

(v) e l (x)e2 (x) = *j(x) (* is the multiplicative inverse of 

n = 1+1+ •.• +1 in GF(q». 
+n~ 

(vi) e1(x) + e2 (x) = I + *j(x). 

(vii) Cj has idempotent l-e 2 (x), Cz has idempotent I-el(x). 

Proof: (i) is obvious. 

(ii) C1 n C2 has defining set {a i li=I,2, •.• ,n-I}, which shows that 

CI n C2 = ~. From dim (C I+C2)=dim C]+dim C2-dim (C I n C2)=n, it 

follows that C1+C2=(GF(q»n. The proof of (iii) is the same. 

(iv) Since Ck contains odd-like vectors, we have lECk' and so 

Ck+<~ C Ck . The code Ck contains only even-like vectors, so 

Ck n <~ = {Q}. It follows that dim (Ck+~)=dim Ck . 

Since for all ~ECk' (~,l)=O, we have proved that Ck i <I> Ck ' k=I,2. 

(v) and (vi) follow from (ii), (iii) and Theorem (1.3.2). 

(vii) follows from Theorem (1.3.3). 

(3.1.2) Theorem: The codes Ck and Ck are dual iff ~_I g1ves the 

splitting (k=I,2). 

o 
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.1 Compare the defining sets of Ck and Ck . 

(3.1.3) Theorem: The codes C
I 

and Cz are dual iff ~_I leaves them 

invariant. 

Proof Compare the defining sets of C~ and Ci. 

(3.1.4) Theorem: Let c be an odd-like codeword in Ck with weight d. 

Then the following holds: 

(i) d2~n. 

Now suppose the splitting 1S given by ~_I' Then 

(ii) d2 -d+ I ~n, 
2 2 (iii) if q=2 and d -d+l>n, then d -d+l~n+)2, 

[J 

[J 

(iv) if q=2, then dEn mod 4, and all weights in Ck are divisible 

by 4. 

Proof: The proofs of (i),(ii) and (iii) are the same as for QR codes 

(d. [10],[17]). 

(iv) We know that n=±J mod 8 (from (2.1.11». From Definition (2.1.4) 

it follows that the idempotent of Ck has weight n;1 or n-I Since 

this idempotent must have even weight, it follows that it has weight 

divisible by 4. Using Theorem (3.1.2), we see that Ck is self-orthogonal. 

Hence all weights in Ck are divisible by 4. 

There is a codeword~' in Ck such that c=c'+l (cf. Theorem (3.1.1)(iv». 

So d=wt<"~.')+wt(!)-2(~' ,_D=n mod 4. D 

In Chapter 6 we shall consider duadic codes for which equality holds 

in (3.1.4)(H). 

Section 3.2 Sp1ittings and the permutation ~ -I 

In this section we investigate when a splitting is given by ~-l' and 

also when a splitting is left invariant by p_ 1• In both cases we know 

the duals of the corresponding duadic codes by Theorems (3.1.2) and 

(3.1.3). 

(3.2.1) Notations: If a and n are integers, (a,n)=I, then ord (a) 
n 

denotes the multiplicative order of a mod n. 
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If P is a prime and m a POS1-t1ve integer, then we denote by v (m) 
p 

the exponent to which p appears in the prime factorization of m. 

The proof of the following theorem can be found in [8]. 

(3.2.2) Theorem: Let p be 

such that p~a. Let 

pZn (at_I). Then 

an odd prime, and let a be an integer 
t t:=ord (a), z:=v (a -1), i.e. p p 

[
= t if m~z, 

ord mea) m-z p = tp if m~z. 

(3.2.3) Lemma: Let n = p~lp~l ••• p~\be the prime factorization of 

the odd integer n (assume that the p, 's are distinct primes). 1-
Let a be an integer such that (a,n)=I. 

Then the following holds: 

(i) ord (a) = lcm(ord ~a»'=l 2 k' 
n p~.. 1- " ••• , 

1-

(ii) v2 (ord (a» = v2 (lcm(ord (a»'=1 2 k)' 
n Pi 1-, ,"" 

Proof (i) is obvious. The proof of (ii) follows from (3.2.2). 

The following trivial lemma will be used several times. 

(3.2.4) Lemma: If ~ gives a splitting, then p , gives the same 
----- a 1-a splitting if i is odd, and it leaves 

the splitting invariant if i is even. 

-+ (3.2.5) Remark: Let ~a:Sl + 8
2 

be a splitting mod n, where n=km, 

k> 1, m> I. 

Define S(k) := {l~i<nl(i,n)=k}. 

Since (a,n)=), the permutation p acts on S(k), i.e. if iES(k), then 
a 

o 

ai mod n ES(k). So there are disjoint subsets S. of S(k) n S., i=I,2, 1,m 1-
with S,(k)'=S I U 82 • which are interchanged by ~ • ,m ,m a 
If m is a prime, this splitting of S(k) looks like a splitting mod m, 

except that all the elements of S(k) are multiples of k. 
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(3 2 6) L L m I m" mkb h .• emma: et n == PI P2 , •• Pk e t e 
-+ 

the odd integer n, and let ~a:SI + 

Let r:=ord (a). Then the following 
n 

(i) r is even, 

prime factorization of 

8
2 

be a splitting mod n. 

holds: 

(ii) ~a gives the same splitting as ~-l iff r=2 mod 4, 

(iii) if ~-l leaves the splitting invariant. then 

ord (a)=O mod 4. i=1.2 •.•• ,k. 
Pi 

(iv) suppose v2(ord (a» is the same for each i, say v, 
Pi 

then ~a gives the same splitting as ~-l if v=l. and 

~-l leaves the splitting invariant if v>l. 

Proof: (i) follows from Lemma (3.2.4). 

(ii) Suppose r s 2 mod 4, . r 
~.e. u:= '2 odd. Let lsisk, P:=Pi' m: 

Since ~ gives the same splitting as ~ ,we see that ~ 
a u 

a u a 
the notation of (3.2.5», and hence interchanges SI and 82 (using 

u ,p ,p 
a ¥ 1 mod p. 

2u u 2u m We know that a =1 mod p, so a =-1 mod p. Now from a =1 mod p and 

since p cannot divide both aU+1 and aU-I, it follows that aUs-1 mod pm, 
u 

Hence a =-1 mod n. and ~a gives the same splitting as ~-1' 

Conversely suppose that ~a gives the same splitting as ~-l' 

Suppose r=O mod 4. 

By Lemma (3.2.3)(ii), there is an i, such that ord (a)=4w for some w 
2w p 

(again P:=Pi)' Now a s-1 mod p, so ~ 2 interchanges 81 and 82 ' 
a w ,p,p 

since ~_I does. On the other hand (by Lemma (3.2.4» ~ 2w leaves SI' 
a 

and hence 8
J 

,invariant. So we have a contradiction . 
• p 

(iii) Suppose ~-1 leaves the splitting invariant. 

Let l::s:i::S:k, p:=p., s:=ord (a). He know that s is even, s=2t. 
t ~ P 

Then a =-1 mod p, so ~ t leaves SI,p invariant, s~nce ~-l does. 
a 

Lemma (3.2.4) shows that t is even, and hence s=O mod 4. 

(iv) Suppose v:=v2 (ord (a» is the same for each i. 
Pi 

If v=l, then by Lemma (3.2.3)(ii) we have r=2 mod 4, so ~a gives the 

same splitting as ~-1' 

Suppose v>l. For each i there is an odd w. 
~ 

such that 
v-I 2 w: It follows that a ~ =-] mod 

Let w:=lcm(w')'=1 2 k' Then 
1 1 " ••• , 

for each 1. 

me. p .• 
~ 

v 2 w=ord (a), 
n 

and 

2~1 1 
So a mod n. Since 2~ w ~s even, ~-l leaves the splitting 
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invariant. 

(3 2 7) Th L m, m~ mk b th . factorization •• eorem: et n = PI P2 ..• P
k 

e e pr1me 

of the odd integer n, such that qS[] mod p., p.s-I mod 4, 
1 1 

i=1,2, .•• ,k. 

Then all splittings mod n are given by ~-I' 

Proof: Let ~ give a splitting mod n, and let r:=ord (a). 
--- a n 
By Lemma (3.2.6) it suffices to show that r=2 mod 4. 

Let l~i~k, p:=p .• We saw in (3.2.5) 
1 

on S(~). Hence s:=ord (a) is 
p p 

Since -ls~ mod p, it follows 

even, 
s 

that '2 

that ~ acts like a splitting 
a Is 

and a 2 s-1 mod p. 

odd. 

Then Lemma (3.2.3)(ii) shows that rs2 mod 4. 

(3.2.8) Theorem: Let n be as in Theorem (3.2.7), except that at 

least one p.sl mod 4. 
1 

Then there is a splitting mod n, which is not given by ~-1' 

~ : Suppose that PIS] mod 4. 

Let nis~ mod Pi' i=I,2, .•• ,k. 

Let asni mod p~t , i=I,2, ..• ,k (such an a exists by the Chinese 

Remainder Theorem). 

Suppose there is an i such that p.la. Then n.sasO mod p.; but 111 
n.s~ mod p .• So (a,n)=I. 

1 1 

Now consider ~ as acting on the non-zero cyclotomic cosets mod n. 
a 

Then each orbit of ~ has an even number of cyclotomic cosets: 

[] 

[] 

a 
Let Isx<n, band m integers such that abxsqmx mod n,so we have an orbit of b cosets. 

Write x=yz, n=uz, (y,u)=I. Then u~l, and (ah_qm)y=O mod u. 

Choose i such that p.lu, then (ah_qm)ysO mod p., 
1 1 

h m Since (y,u)=I, we have a sq mod p .. Since as~ mod p. and 
1 1 

qS[] mod p., we see that h is even. 
1 

Hence there are splittings given by ~ . 
a 

-+ 
Let Pa:S) ~ 82 be such a splitting. 

Then ~a interchanges 8
1 

and 8
2 

,Let k:=ord (a). 
,PI ,PI PI 

lk k 
Then k is even, and a 2 s-) mod PI' 8ince -Is[] mod PI' '2 must be even. 

Hence ~_I(SI )=SI ,and P I cannot give the same splitting as p. [] 
,PI ,PI - ·a 
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(3.2.9) Theorem: Let pal mod 4 be a prime, such that qao mod p, 

and let ~]. 
m Then either a splitting mod p is g1ven by ~_I' or it is 

left invariant by ~-l. 

Proof This follows from Lemma (3.2.6)(iv). 

(3.2.10) Theorem: Let n = p7'p~~", p~k be the prime factorization 

of the odd integer n, such that qao mod p., i=1,2, •.. ,k. 
1 

Suppose there is an integer b, such that n\(qb+ 1). 

Then p.al mod 4, i=I,2, ••. ,k, and each splitting mod n is 
1 . 

left invariant by ~-l' 

b Proof: Since q a-I mod p., we have -lao mod p., and hence p.a] mod 4. 111 
Each cyclotomic coset mod n 1S left invariant by ~_]' so V-J leaves 

each splitting mod n invariant. 

o 

o 
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Chapter 4 Duadic codes of length a prime powe~ 

In this chapter we give an upper bound for the minimum distance of 

duadic codes of length a prime power. In a special case we can 

strengthen this upper bound, and also give a lower bound for the 

minimum distance. As a consequence, we can determine the minimum 

distance of duadic codes of length pm for several values of p. 

Section 4.1 The general upper bound 

Let p be an odd 

Let t:=ord (q), 
p 

prime, q a prime power, (p,q)=l. 
z t and let z be such that p II (q -1). 

Then, by Theorem (3.2.2), m-z ord (q)=tp if m~z. 
m 

p 
Let m>z. 

Now suppose i is an integer such that pri, and let C. be the cyclotomic 
• 1 

coset mod pm which contains i, i.e. C.={qJi mod pmlj~O}. 
1 

(4. I. I) Theorem 

Proof: Let j~O. We shall prove that qji + pZ E C .• 
. kt kIt 1 m 

If k and k' are 1ntegers such that q =q mod p, 

(k-k')t m m-zi m-z then q =] mod p , so tp (k-kf)t. It follows that k=k' mod p 

kt m-z. m So the integers q -1, k=O,1,2 •.•• ,p -1, are d1fferent mod p • 
N h' 2 m-z h kt z ow c oose 1ntegers ~, k=O.l ••••• ,p -I, such t at q -l=akP 

m-z m-z Then ~, k=O,I,2, ••. ,p -I, are different mod p • Hence there is a 

-j -I m-z k,' such that ak =q i mod p (q-j and i-I are inverses mod pm). 

J . z 
q 1 + P = 

(4.1.2) Corollary 

q- j 1·- l pz mod m d h - P • an ence 

m mod p • 

If Pm-Z~1·. h m-l d m 4 t en C. + P = C. mo p • 
1 1 

Let ~a:S} t 52 be a splitting mod n, where n:=pm, and let a be a 

primitive n-th root of unity in an extension field of GF(q). 

Let C be the duadic code of length n over GF(q) with defining set 

{ailiES}} and with idempotent e(x). 

o 
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since e(xq)=(e(x»q=e(x), we can write e(x) as 

e (x) L 
i 

e.EGF(q), where i runs through a set of 1. 

cyclotomic coset representatives. 
m-I 

Now consider the codeword c(x):=(I-xP )e(x). 

Corollary (4.1.2) shows that 

m-I 
c(x) (l-xP ) L e i I xJ • Assume w.l.o.g. that IES I · 

. m-z I' J'EC, 1.:p 1. 1. 

m-I 
Since c(aa)=(I_aap )~O, we have c(x)/O. 

It is obvious that c(x) has weight ~pz. We have proved: 

(4.1.3) Theorem: Let p be an odd pr1.me, q a prime power, such that 

qED mod p. Let t:=ord (q), and let z be such that pZII (qt_ I). 
p 

Then all duadic codes of length pm, m~z, have minimum 

distance 

Section 4.2 The case 

In this section p 1.S an odd prime, q a prime power, such that q=D mod p. 

F th d ( ) d that P2~(qt_J). ur ermore, t:=or q, an we assume 4 
p 

Let m> I. 

We denote by C~k) the cyclotomic coset mod pk which contains i. 
1. 

(4.2.1) Lemma: If p%i, then C~I) c C~m). 
1. 1. 

f 'E (1) . h h . k, d Proo : Let J C. ,and let k be an 1.nteger suc t at J=q 1. rna p. 1. 
Choose integers O 1 2 m-I h that qst_ I , s= , , , .•• , P -\, suc 

In the proof of Theorem 
m-I s=O,I,2, ... ,p -I, are 

(4.1.1) we have seen 
m-I different mod p • 

that the integers 

So there is an s, such that 
-k,-) 

a = q 1. ( 
S 

m-I "'---'---) mo d p 
p , m-I are 1.nverses mod p ). 

h k+st. k. ( ) T en q 1. = q 1. I+a p -
s 

D 
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Let ~a:Sl t S2 be a splitting mod n, where n:=pm, and define 

Sk := {iESkIISi<p}, k=1,2. 

-+ 
(4.2.2) Lemma : ~a:Si + S2 1S a splitting mod p. 

Proof: Let iESj. From Lemma (4,2.1) it follows that 

so qi mod p E Sl't Since C(~) c C(~) c S2' we have ai 

c~ I) c C ~m) 
1 1 

a1 a1 mod p E S2' 

Let a be a primitive n-th root of unity 1n an extension field of GF(q). 
m-I 

Then S:=aP is a primitive p-th root of unity. We define 

C as the duadic code of length n with defining set {ailiES)} and 

minimum distance d, 

C' as the duadic code of length p with defining set {SiliESj} and 

minimum distance d', 

and C" as the even-like subcode of C', with minimum distance d". 

(4.2.3) Theorem We have d'sdsd". 

Proof Let e(x) be the idempotent of C, e(x) I e. I xJ , e.EGF(q), 
i 1 jEC. 1 . 

1 

i runs through a set of cyclotomic coset representatives. 

(i) Consider the codeword (of C) 

m-l m-l 
c(x) := (l-xP )e(x) = (l-xP ) L e. 

1 
(d. page 20). 

. m-l,. l:p 1 

m-l c(x) has (possibly) non-zeros only on positions =0 mod p 
m-I 

Now define a new variable y:=xP • and let c*(y):=c(x), a vector in 

GF(q) [y]/ (yP_I). 

* * Let C be the cyclic code of length p over GF(q), generated by c (y). 

If we show that C* = Cll
, then we have proved that d::;d ll

• 

. *' m-l . . m-l . 
Since C*(Sl) = c (alp ) = c(a l ) = (I-alp )e(a1)f=0 if 

VOir 
we have c* c e". 

iESj U {O}, 

iESi, 

a 
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Let g(y) be the generator polynomial of C". 

Since gcd(c*(y),yP- I) = g(y), there are polynomials a(y) and bey) 

such that a(y)c*(y)+b(y)(yP-I)=g(y), so g(Y)Ea(y)c*(y) mod (yP-l), 

* and hence e" c: C • 

(ii) Let Co := {(cO,c m-I' c m_I.··.,c m-I)I (cO,cl, .. ·,cn_I)EC}. 
p 2p (p-I)p 

If we show that 

We know that C. 
1 

It follows that 

Co = C', then we have proved that d'~d. 

+ pm-I E C. mod pm if pm-Ili (cf. Theorem (4.1.2». 
1 

the idempotent e(x) of C looks like (r:=pm-l) 

position: o 123 ... (r-l) r (r+I) ... (2r-l) 2r ... (p-I)r (p-I)r+l. •. (n-I 

e (x) * c * c * * c 

where the *'s are elements of GF(q). 

Let e'(x) := L 
. m-II' 1:p 1 

L xJ , then e(ak)=e l (ak ) , k=O,I,2, ... ,n-I. 
jEC. 

1 

m-I 
Again define 

Since e*(Sk) 

y:=xP ,e*(y):=e'(x) E GF(q)[y]!(yP-I). 

e'(ak) = e(ak)f= 0 if kESj, 

l= 1 if kES2 U {O}, 

* the polynomial e (y) 1S the idempotent of c' (cf. Theorem (1.3.3». 

Hence c' c: CO' 

Now consider xke(x) on the positions 

(~k has length p): 

a) if k¥O mod pm-I, then ~k E <~, 

m-I EO mod p call this vector ~k 

b) 1'f b m-I f 0 h k *( ) Eel. k= p or some ~b<p, t en ~k = Y e Y 

Since the code Co is generated by the vectors 

we have proved that Co c: <el,~ = e', 

, k =0, I , 2 , • • • ,n- I , 

Cl 
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Section 4.3 Examples 

(4.3.1) Theorem: Let 

and suppose that 

P-I 
I mod 8 be a prime, such that ord (2)= ---

p 2 ' 
p2%(2!(p-l) -1). 

Let d be the minimum distance of the binary even-weight 

QR code of length p. and let m>l. 
m Then all binary duadic codes of length p have minimum 

distance d. 

Proof: Since the only duadic codes of length pare QR codes, 

Theorem (4.2.3) shows that duadic codes of length pm have minimum 

distance d-I or d (here we use the fact that the QR code of length p 

has minimum distance d-l). From Theorem (3.1.4) it follows that this 

minimum distance must be even. 

(4.3.2) Examp~e : All binary duadic codes of length 31
m, m>l, have 

minimum distance 8. 

Proof : Duadic codes resp. even-weight duadic codes of length 31 

have minimum distance 7 resp. 8. The assertion follows from 

Theorems (3.1.4) and (4.2.3). 

(4.3.3) Remark: Let q=2. In Section 4.2 we only consider primes p 

such that p2i(2 t -l), where t=ord (2). This condition is very weak: 
p 9 -I 2 

There are just two primes p< 6.10 , such that 2P =1 mod p : 

p=1093, t=364, 2 1 mod p2, 2t =1064432260 mod p3, 

and 

p=3S11, t=17SS, 2t:l mod p2, 2t :21954602S02 mod p3 

(cf. [IS]). 

(4.3.4) Take q=4. Let n be an odd integer, such that ord (2) is odd. 
n 

Then binary and quaternary cyclotomic cosets mod n are equal, i.e. 

{2
j

i mod nlj~O} {4j i mod nlj~O} for each i. 

It follows that a duadic code C of length n over GF(4) is generated 

by binary vectors. Pless (cf. [14]) has shown that in this case the 

code C has the same minimum distance as its binary subcode, which is 

a duadic code over GF(2). 

c 

o 
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m (4.3.5) Example: All duadic codes of length 7 , m>l, over GF(4) 

Proof 

(4.3.6) 

have minimum distance 4. 

This follows from (4.3.1) and (4.3.4). 

: All duadic codes of length 3m , m>l, over GF(4) 

have minimum distance 3. 

Proof: Let C be a duadic code of length 3m over GF(4). Theorem (4.2.3) 

shows that C has minimum distance d= 2 or 3. 

By Theorem (3.1.4), minimum weight codewords are even-like. 

Then the BCH bound (cf. (8.1. I)) gives d~3. 

o 

o 
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Chapter 5 Splittings and tournaments 

In this chapter we study tournaments which are obtained from splittings 

given by ~-l' First we give some theory about tournaments (cf. [16]). 

Section 5.1 : Introduction 

A complete graph K ~s a graph on n vertices, such that there is an 
n 

edge between any two vertices. If such a graph is d.irected, i. e. 

each edge has a direction, then it is called a tournament. 

If x is a vertex of a directed graph, then the in-degree, resp. 

out-degree, of x 1S the number of edges coming in, resp. going out 

of x. 

A tournament on n vertices is called regular if there is a constant k, 

such that each vertex has in-degree and out-degree k. It is obvious 

that in that case n=2k+l. The tournament is called doubly-regular 

if the following holds. There is a constant t, such that for any 

two vertices x and y (xly). there are exactly t vertices z such that 

both x and y dominate z (x dominates z if there is an edge pointing 

from x to z). In that case the number of vertices equals n=4t+3, 

so ne3 mod 4. 

Note that a doubly-regular tournament is also regular. 

Let T be a tournament on n vertices. He assume w.1. o. g. that the 

vertices of Tare {O,I,2, ••• ,n-I}. 

Now define the n x n matrix A by 

r-1 if i dominates j, 

Aij :=lo otherwise. 
(O~i,j<n) 

This matrix is called the adjacency matrix of the tournament. 

From the definition ofa tournament it follows that 

T (5.1.1) A + A + I = J. 

(5.1.2) Lemma: If the tournament is regular, then 
. n-\ 

(1) AJ = JA = -2- J, 

(U) ATA = MT. 
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~ : (i) follows from the definition of a regular tournament, 

and (ii) follows from (5.1.1). 

(5.1.3) ~ : The following statements are equivalent: 

(i) The tournament is doubly-regular, 

( 0') T n+l n-3 
11 AA I + 4 J, 

(1'1'1') A2 n+1 I n+l + A + 4 = 4 J. 

Proof Apply the definition, (5.1.1) and (5.1.2). 

Section 5.2 Tournaments obtained from splittings 

Let n be odd, q a prime power, 

Let ~_1:S1 ~ 8
2 

be a splitting mod n (8
1 

and 8
2 

are unions of 

cyclotomic cosets {i,qi,q2 i , •.• } mod n). 

Now define the directed graph T on the vertices {0,1,2, ..• ,n-l} as 

follows: 

i dominates J iff (j-i) mod n E 8). 

The adjacency matrix A of T 1S a circulant, and 

=c 
if j-iE8) , 

A .. 
1J if j-iE8

2 
U {O}. 

From the definition of a splitting follows that T is a regular 

tournament. If T is doubly-regular, then the splitting is called 

doubly-regula::.. 

(5.2.1 ) Let p=3 mod 4 be a prime, and let q be a prime power 

such that q=o mod p. 

Let 8
1 

:= {1S:i<p!i=o mod p}, 8
2 

:= {i:<:;i<pli=¢ mod p}. 

Then u_1:S
I 
~ 8

2 
is a splitting mod p. Let A be the adjacency matrix 

of the corresponding tournament. 

The n x n matrix S defined by 

S .• 
1J 

:=r~1 
10 if 

j-iES I' 

j-iES2 ' 

[J 

[J 
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1S a Paley-matrix and satisfies SST = pI - J, S + ST = 0 (cf. [10]). 

Since !(S + J - I) , it follows 
T p+1 p-3 and A = that AA = -- I + -4- J, 4 

hence the splitting 11_1 :SI 
-+ 

is doubly-regular. +- S2 
I have not been able to find any other doubly-regular splittings. 

(5.2.2) Theorem: A splitting 11_I:SI ~ S2 mod n is doubly-regular 

iff lSI n (SI+k )I = n~3, k=I,2, ... ,n-l. 

Proof This follows from Lemma (5.1.3)(ii). 0 

We shall use this theorem to g1ve a nonexistence theorem. 

(5.2.3) Theorem: Let p be an odd prime, q a prime power such that 

q=D mod p, z an integer such that pZIl (qt_l), where t=ord (q). 
p m 

Let m>z. Then there is no doubly-regular splitting mod p. 

Proof: Let ll_I:SI ~ S2 be a splitting mod pm, and define 

TI := {iEsII i=O mod pm-z}, S; := SI'T 1. 

From Corollary (4.1.2) it follows that Si + pm-I = Si mod pm. 
m z 

m-I p -I p-I 
Therefore lSI n (SI + p )1 ~ ISil = Isll - ITII = -2--- - -2--- > 

pm_3 
> --4-- . Now apply Theorem (5.2.2). 0 
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Chapter 6 Duadic codes and cyclic projective planes 

In this chapter we study duadic codes for which equality holds in 

Theorem (3.1.4) (ii). Such codes "contain" projective planes. t.Je shall 

explain what we mean by this. 

If c is a vector, then the set Ole.IO} is called the support of c. 
1 

Now if a code contains eodewords such that their supports are the 

lines of a projective plane n. then we say that the code contains n. 

Furthermore, we give an existence test for cyclic projective planes. 

For the theory of projective planes, the reader is referred to [3]. 

Section 6.1 Duadic codes which contain projective planes 

Let C be a duadic code of length n over GF(q), and suppose the splitting 

is p,iven 

Let c(x) 

by ll-l' 
d e. 
I c.x 1 

i=l 1 
be an odd-like codeword of weight d. 

We know that d2-d+l~n. 

2 
(6.1.1) Theorem: If d -d+l=n, then the following holds: 

(i) The code C contains a projective plane of order d-l, 

(ii) C has minimum distance d, 

(iii) c.=c. for all 15i,j5d. 
1 J 

Proof: (i) From Theorem (3.1. l)(ii) it follows that there is an A 

in GF(q)~ AID, such that c(x)c(x-1)=A.j(x), so 

e.-e. 
e.c. x 1 J = 

1 J 
2 n-] 

A(x+x + ..• +x ). 

Since d(d-l)=n-l, all exponents 1,2, •••• n-l, appear exactly once as 

-e" . 
J 

a difference 

So the set D {e
l
,e

2
, ... ,e

d
} 1S a difference set in Z mod n. 

Now call the elements of Z mod n points, and call the sets D + k, 

k=D,J,2, .••• n-l, lines. Then we have a projective plane of order d-l. 

(ii) Consider the d x n matrix M, with rows e.x 
1 

The O-th column of M contains nonzero elements. 

-e. 
1 
e(x), i=1,2, ••• ,d. 
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Since d2=d+n-l and c(x)c(x-I)=A.j(x), every other column of M contains 

exactly one nonzero element. 

Let C' be the even-like subcode of C. 

We know that C
L = C' (cf. Theorem(3.1.2». 

Let c'(x) be a codeword of C', and assume w.l.o.g. that c'(x) has a 

nonzero on position O. Since every row of M has inner-product 0 with 

c'(x), we see that c'(x) has weight ~ d+J. 

(iii) Consider again the matrix M. Let l~i<j<k~d (remark that d~3). 

Every column of M (except the O-th) contains exactly one nonzero element, 

and all these elements are of the form c c • Since the sum of the rows 
r s 

of M equals A.j(x), we have c.c.=c.ck=c.ck=A, so c.=c.=ck • 
1 J 1 J 1 J 

In [13], Pless showed that there is a binary duadic code which contains 

a projective plane of order 2s if and only if s is odd. 

Furthermore, she showed in [14], that if s is either odd or s=2 mod 4, 

then there is a duadic code over GF(4) which contains a projective 

plane of order 2s • 

Section 6.2 An existence test for cyclic projec~ive planes 

Consider a cyclic projective plane of order n. 

The incidence matrix of this plane is the (n2+n+l)x(n2+n+l) matrix A, 

which has as its rows the characteristic vectors of the lines of the 

plane. 
t 2 Let p be a prime such that ~In, and let t~l, q:=p , N:=n +n+). 

o 

Let C be the cyclic code of length N over GF(q) generated by the matrix A. 
N+l L 

Bridges, Hall and Hayden [2] have shown that dim C = --2- and C c C. 

(6.2.1) Theorem: C is a duadic code of length N over GF(q) with 

minimum distance n+l, and the splitting is given by ~_I' 

Proof : Let u be a prlmltlve N-th root of unity in an extension field 

of GF(q) , and let {uiliES1} be the complete defining set of C. The rows 

of the matrix A are odd-like, so otsJ. 

The code C
L 

has complete defining set {u- i liES2 U {OJ}, where 

S2:={1,2, •• "N-l}'S\, Since CL c C. we have S\ c -S2 U {OJ, and hence 

-S\=S2 (note that Is l l=ls2 1), 
-+ So we have a splitting 1l_ 1:S 1 + S2 mod n, which shows that C is a 
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duadic code. 

Then Theorem (6.1.1) shows that C has m~n~mum distance n+l. 

(6.2.2) Remark If the extended code C is self-dual, then p=2. 

Proof: Let c be a row of the matrix A (so c is a codeword in C). 

since Ec. 
~ 

n+l = 1 mod P. we have (~,-1) E C. 
Now (~,-I) has inner-product 0 with itself, so n+l+l=2=O mod p. 

Hence p=2. 

(6.2.3) Theorem: Suppose a cyclic projective plane of order n exists. 

Let p and r be primes, such that pli n, r I (n2+n+ 1). 

Then P=[J mod r. 

2 Proof: By Theorem (6.2.1) there is a duadic code of length n +n+J 

over GF(p), and then Theorem (2.1.7) shows that p=[J mod r. 

(6.2.4) Remarks : (i) Theorem (6.2.3) ~s a weaker version of a theorem 

in [I], which says: 

Suppose a cyclic projective plane of order n exists. Let p and r be 

primes, such that pin, rl (n2+n+l), p=¢ mod r. Then n is a square. 

(ii) Wilbrink [18] has shown: 

If a ic projective plane of order n exists, then 

a) if ~In, then n=2, 

b) if ]In, then n=3. 

(iii) In [5J, Jungnickel and Vedder have shown: 

If a cyclic projective plane of even order n>4 exists, then n=O mod 8. 

[J 

[J 

[J 

We shall give some examples, which cannot be ruled out with Theorem (6.2.3). 

(6.2.5) Examples : (i) Suppose a cyclic projective plane of order 12 

exists. Then according to Theorem (6.2.1) there ~s a splitting 
-+ ., 

~_I :SI * S2 mod 157, where SI and S2 are un~ons of cyclotom~c cosets 

{ . 3' 32.} 39 7 1 1 . ~,~, ~, .•. mod 157. But 3 =-1 mod 15 , so al cyc otom~c cosets 

mod 157 are left invariant by ~-I' Hence a splitting mod 157 cannot 

be given by I' and the projective plane does not exist. 
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(ii) Suppose a cyclic projective plane of order 18 exists. 

By Theorem (6.2.1) there is a binary duadic code of length 18
2

+18+1=73 

with minimum distance 19. 
3 But in Theorem (4.3.1) we have seen that binary duadic codes of length 7 

have minimum distance 4. So we have a contradiction. 
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Chapter 7 Single error-correcting duadic codes 

In this chapter we study binary duadic codes with minimum distance 4, 

and duadic codes over GF(4) with minimum distance 3. 

Section 7.1 Binary single error-correcting duadic codes 

Let C be a binary duadic code of length n>7 (so n~17, cf. 

Examule (2.1.11». By Theorem (3.1.4) the odd weight vectors in C 

have weight at least 5. 

Let a be a primitive n-th root of unity, and suppose w.l.o.g. that 

a is in the complete defining set of C. Then the nonzero even-weight 
012 vectors in C have a ,a ,a as zeros, so their weights are at least 4 

by the BCH bound (cf. (8.1.1». We conclude that the code C has 

minimum distance at least 4. 

(7.1.1) Theorem: Let C be a binary duadic code of length nand 

m1n1mum distance 4. 

Then n=O mod 7. 

. . k 
Proof : Let c(x)=I+x1+xJ +x be a codeword in C of weight 4, and let 

a be a primitive n-th root of unity such that c(a)=O. 

If i+j=k mod n, then c(a)=(J+ai)(l+aj)=O, so a i =l or aj=J, which 1S 

impossible. Hence 

i+j1k, j+k1i, k+i¢j mod n. 

Suppose the splitting 

1S a codeword in C~. 

-a -ai -aj -ak 
given by p . Then c{x )=J+x +x +x 

a 

-a It follows that c(x) and c(x ) have inner-product 0, so 

{i,j,k} n {-ai,-aj,-ak} ~ ¢. 
The rest of the proof consists of considering all possibilities. 

We shall only give some examples, showing how these possibilities 

lead to the theorem. 

Suppose ai=-i mod n. 
. . k i -a i 2i i-aj i-ak 

The vectors c(x) l+x1+xJ+x and x c(x )=x +x +x +x have 

inner-product 0, so {O,j,k} n {2i,i-aj,i-ak} ~ ¢. 
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Now suppose e.g. that mod n, then i=-j mod n. 
-a d Since c(x) and c(x ) have inner-product 0, we have ak=-k mo n. 

2 -a 
Also c(x) and x (x) have inner-product 0, so 

{O,-i,k} n {Zi,3i,k+Zi} f 0. Note that Zi~O, 3i~0 mod n. 

Because of (*) there are two possibilities: 
i -i -3i 3i -a 3i 4i Zi (i) -i=k+Zi mod n: Then c{x)=I+x +x +x and x c(x )=x +x +x +1 

have inner-product 0, so {i,-i,-3i} n {2i,3i,4i} f 0. 
Since (2,n)=(3,n)=(5,n)=I, it follows that 7i=O mod n, so n=O mod 7. 

3i -a (ii) k=3i mod n: In the same way, c(x) and x c(x ) have inner-product 0, 

so {O,i,-i} n {Zi,4i,6i} f 0. Hence 7i=0 mod n, n=O mod 7. 0 

(7.1.Z) Remark: We saw in Example (2.3.4) that a binary duadic code 

of length n>7 and minimum distance 4 exists, if n=O mod 7. 

We shall now give complete proofs of some special cases of Theorem (7.1.1). 

(7.1.3) ~ : Binary duadic codes of length n=2m-l exist iff m is odd. 

Proof: We apply Theorem (2.1.7). 

I m-l (i) Let m be odd, p a prime, p n. Then 2 .Z=1 mod p, so 2=0 mod p. 

(ii) If m is even, then 31n, but 2=¢ mod 3. 0 

(7.1.4) Theorem: Let C be a binary duadic code of length n=Zm_ 1 

(m odd) and m1n1mum dis'tance 4, and suppose the splitting 

is given by U3 ' 

Then n=O mod 7, 

. . k 
Proof: Let c(x)=I+x1+xJ+x be a codeword of weight 4, and let u 

be a primitive element of GF(Zm) such that c(u)=O. 
b i Choose an integer b such that u (l+u )=1, and define 

b b+J' b+i b+k 
~:=u ,n:=a ,Then u =~+1 and u =n+l, 

b 9 999 9 The codeword x c(x) has a as a zero, so ~ +(~+l) +n +(n+1) =0. 

It follows that (~+n)8=~+n. Since ~+nfO, we find (~+n)7=1, 

(7.1,5) Theorem: Let C be a binary duadic code of length nand 

minimum distance 4. Suppose the splitting is given by u- 1' 

Then n=O mod 7. 

o 
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. . k 
~ : Let c(x)=I+x~+xJ+x be a codeword of weight 4. In the proof 

of Theorem (7.1.1) we have seen that 

i+j¥k, j+k¥i, k+i¥j mod n. 

By Theorem (3.1.4), all even weights in C are divisible by 4. Hence 
~ j k 2i i+j i+k. . (l+x )c(x) I+x +x +x +x -+x ~s a codeword of we~ght 4. 

So 1{O,j,k,2i,i+j,i+k}I=4. Because of (*) there are 4 possibilities: 
. . . 2i i k 3i 4i k+2i 

(~) J=21 mod n: (I+x )c(x)=I+x +x +x +x +x is a codeword of 

weight 4, so I{O,i,k,3i,4i,k+2i}I=4. 

Again because of (*), we have two possibilities: 
3i i 2i 3i 5i 7i a) kE4i mod n: (I+x )c(x)=I+x +x +x +x +x has weight 4, so 

7iEO mod n. 
. 3i 2i 3i 4i 5i -2i b) k+21=O mod n: (J+x )c(x)=l+x +x +x +x +x has weight 4, 

so 7iEO mod n. 

(ii) i+j=O mod n: In the same way we find k=3i or k=-3i mod n, and 

in both cases we get 7iEO mod n. 

The cases (iii) k=2i mod n, and (iv) i+k=O mod n, are similar. 

(7.1.6) Remark: From the above proof it follows that the codeword 

c(x) is one of the following: 
i 2i 4i i 2i -2i i -i 3i i-i I+x +x +x , l+x +x +x J+x +x +x , I+x +x +x , where 

7iED mod n. 

(7.1.7) Theorem: Let C be a binary duadic code of length nand 

minimum distance 4, and suppose the splitting is given 

by p_}' Then C contains exactly n codewords of weight 4. 

Proof: Let c(x) be a codeword of weight 4, w.l.o.g. 
----- i 2i 4i 
c(x)=l+x +x +x ,where 7iEO mod n. 

It is obvious that all shifts of c(x) are different. Hence C contains 

at least n codewords of weight 4. 

Let d(x) be a codeword of weight 4, such that the coefficient of xO 

is I. We shall prove that d(x) is a shift of c(x). 

By (7.1.6) there are four possibilities for d(x): 
. 2' 4' 

(i) d(x)=l+xJ +x J+x J, 7j=O mod n: 
. 2' 4' . 2' 4' 

C(x}+d(x)=x1+x ~+x ~+xJ+x J+x J is a codeword of weight 0 or 4, so 

{i,2i,4i} n {j,2j,4j} # 0. In each case we find c(x)=d(x). 

D 
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, 2' -2' 
(ii) d(x)=I+xJ+x J+x J, 7j=O mod n: 

Now we find {i,2i,4i} n {j,2j,-2j} # ¢. 
f " h () () 4i -2i 'h 0 6' 0 d I 1=J, t en c x +d x =x +x has we1g t ,so 1= mo n. 

A contradiction. 
4' -2' 

If i=2j, then c(x)+d(x)=x J+x J, so 6j=0 mod n. A contradiction. 

If i=-2j, then x2j c(x)=d(x). 

If 2i=j, then c(x)+d(x)=xi +x-4i so 5i=0 mod n. A contradiction. 

If 2 ,then i=j mod n, a contradiction. 

If 2i=-2j, then x2id(x)=c(x). 

If 4i=j, then c(x)+d(x)=x2i+x- i , so 3i=0 mod n. A contradiction, 

I f II i=: i. 111'>'11 ? i= i. <I 1111111'<:111 i ,'I i "II, 

If 4i=-2j, then x4id(x)=c(x). 

(iii) d(x)=I+xj +x- j +x3j , 7j=0 mod n: 
• . 2' 4' 

Consider xJ d(x)=l+xJ +x J+x J, 1.e. case (i). 
. . 3' 

(iv) d(x)=I+xJ+x-J+x- J, 7jsO mod n: 

Consider xJd(x), i.e. case (ii). 

Section 7.2 An error-correction procedu~ 

In this section we give an error-correction procedure for binary 

duadic codes with minimum distance 4 and splitting given by ~_]' 

It turns out that most patterns of two errors can be corrected. 

-7 
+ S2 be a splitting mod n, with corresponding binary duadic 

codes C1 and C2 of length n, Suppose the codes C1 and C2 have minimum 

distance 4, 

1 2i 4i Let c
2

(x)=I+x +x +x (7i=0 mod n) be a codeword in C
2 

of weight 4 

(cL (7.1.6». 

(7.2.1) Lemma: Let c(x) be a polynomial of weight 4. 
n Then c(x)EC) iff c(x)c2 (x)=O mod (x -I). 

Proof (i) Let c(x)EC), Then c(x)c2 (x)EC I n C2 = {Q,~}. 

Since c(x)c2 (x) has even weight, we have c(x)c2 (x)=O. 

o 
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(ii) Let c(x)=xj+xk+xl+xm , such that c(x)c2 (x)=O. 

We may assume w.l.o.g. that j=O. 

Each exponent of c(x)c2 (x) must occur an even number of times, e.g. 

the exponent O. 

Because of symmetry. there are three possibilities: 
6i i 4i i -] a) k+isO mod n: It turns out that c(x) l+x +x +x =x c2 (x ) Eel' 

6i 5i 3i -l 
or c(x)=l+x +x +x =c2 (x ) Eel' 

b) k+2isO mod n: In the same way we find 
5i i 2i 2i -I 

c(x)=l+x +x +x =x c2 (x ) Eel' 

5i 6i 3i -1 or c(x)=l+x +x +x =c2 (x ) Eel' 

. 3i 6i 5i -1 c) k+4LSO mod n: Here we get c(x)=l+x +x +x =c2 (x ) EC
1

, or 
3i 4i 2i 4i -1 

c(x)=l+x +x +x =x c2 (x ) Eel' 0 

(7.2.2) 
. k 

: Let e(x)=xJ+x be a polynomial of weight 2. 

Suppose that for all h=O.I.2 •... ,n-l, we have 

{j,k} ¢ {h,h+3i,h+5i,h+6i} mod n. 

Then the polynomial e(x)c
2

(x) mod (xn_l) uniquely determines 

the exponents j and k. 

. kIm 
Proof: Suppose (xJ+x )c2 (x)=(x +x )c2 (x), l#m. 

(i) If {j,k.l,m} <4, then {j,k}={l,m}. 

(ii) Suppose {j,k,l,m} =4. Then by Lemma (7.2.1) we have 
j k 1 mE . hId d f . h 4' C X +x +x +x C

1
• SLnce t e on y co ewor s 0 we1g t Ln 1 are 

the shifts of c2 (x- 1), there is an integer h, such that 

{j,k} c {h,h+3i,h+5i,h+6i}, a contradiction. 0 

Now error-correction goes as follows. 

Let c
1

(x)EC
1 

be sent over a noisy channel, and suppose we receive rex). 

Let e(x):=r(x)-ct(x) be the error-vector. 

Since c l (x)c2 (x) has even weight and Ct n C2 {Q,!}, we have 

c
1

(x)c2 (x)=O. 

Compute r(x)c2 (x)=e(x)c2 (x). 

(i) If r(x)c2 (x) is a shift of c2 (x), then we assume that one error 

has been made. Since all shifts of c2 (x) are different, we can 

determine e(x), and hence c] ex). 

(ii) If r(x)c2 (x) is not a shift of c 2 (x), then more than one error 

has been made. 

Suppose e(x) satisfies the conditions of Theorem (7.2.2). 

Then we can find e(x), and h ( ) ence c
l 

x • 
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There are ( ~ ) ways of making two errors. From the condition of 

Theorem (7.2.2), we see that at most (i ).n patterns of two errors 

cannot be corrected. Hence with the above procedure we can correct 

at least (~) - 6n patterns of two errors. 

Section 7.3 Duadic codes over GF(4) with minimum distance 3 

Let C be a duadic code of length n>3 over GF(4). 

In the same way as at the beginning of Section 7.1 we find that C 

has minimum distance at least 3. 

(7.3.1) Theorem: Let C be a duadic code of length n>3 over GF(4) 

with minimum distance 3. 

Then n=5 or n=7 or n=O mod 3. 

2 2 
~ : Suppose n~ll. Let GF(4)={O,l,w,w }, w +w=l. 

Let c(x)=l+c.xi +c.xj be a codeword of weight 3. 
1 J 

By Theorem (3.1.4), c(x) is even-like, so c.+c.=l. It follows that 
2 2 1 J 

{c.,c.}={w,w }. Take w.l.o.g. c.=w, C.=w • 
1 J 1 J -a .1 

Suppose the splitting is given by V • Then c(x ) 1S a codeword in C • 
a 

-a So c(x) and c(x ) have inner-product O. 

Therefore {i,j} n {-ai,-aj} I 0. We consider all possibilities. 
-a (i) ai=-i mod n: Since c(x) and c(x ) have inner-product 0, we 

have aj=-j mod n. 
i -a Also c(x) and x c(x ) have inner-product 0, so {O,j} n {2i,i+j} I 0. 

There are two possible cases: 

a) 2i=j mod n: c{x) and x1c(x-a ) have inner-product 0, so 3i=0 mod n, 

and hence n=O mod 3. 

b) i+j=O mod n: In the same way we find mod n. 

(ii) aj mod n: In the same way we find n=O mod 3. 

(iii) ai=-j mod n: Since c(x) and (x-a) have inner-product 0, 

I { ' '}n(" 2,}J.d. we lave 1,-a1 ;'11,<11+<1 1 T VI. 

) . 2. . ai -a 
a a1+a 1=1 mod n: x c(x) and c(x ) have inner-product 0, so 

{ai,i+ai} n {-ai,i-ai} I 0. 
1) i=2ai mod n: ai+a

2
i=3a

2
i J 2 so a i=O mod n, a contradiction. 

i=2ai=4a2i 

2) i=-2ai mod n: Let a be a primitive n-th root of unity such 
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that c(aa)=O, so 1+waai+w2aaj=O. 
2 2ai ai Take the square: l+wa +wa =0 (2aj=ai mod n). 

Add h 1 , aj 2ai '2' d t ese two re atlons: a =a ,so J= 1 mo n. 
i 2 2i -a 2i 2 i Now c(x)=l+wx +w x and c(x )=l+wx +w x have inner-product 

1+w3+w 3=1#0. Contradiction. 
a ai 2 2ai 

b) ai=-2i mod n: c(a )=l+wa +w a =0, and 
a 2 2 2ai 4ai 

(c(a ) =l+w a +wa =0. 

If we add these equations, then we find 3i=0 mod n. 
i 2 2i -a 2i 2 i But c(x)=l+wx +w x and c(x )=I+wx +w x have inner-product #0. 

Contradiction. 

(iv) aj=-i mod n: This gives in the same way a contradiction. 

(7.3.2) Remark: We have proved In Example (2.3.4) that a duadic 

code of length n>3 over GF(4) with mlnlmum distance 3 exists 

if n=O mod 3. 

o 
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Chapter 8 Binary duadic codes of length ~241 

In this chapter we give some bounds on the minimum distance of 

cyclic codes. These bounds will be used to analyze binary duadic 

codes of length ~241. 

Section 8.1 Bounds on the minimum distance of cyclic codes 

Let a be a primitive n-th root of unity ~n an extension field of GF(q). 

The 
i l i2 i m , 

set A={a ,a , ••• ,a } ~s called a consecutive set of length m , 

if there is a primitive n-th root of unity S, and an exponent i, 
i i+1 i+m-I such that A={B ,B , ... ,S }. 

The proofs of the next two theorems can be found ~n [10]. 

(8.1.1) Theorem (BCH bound) : Let A be a defining set for a cyclic 

code with minimum distance d. If A contains a consecutive 

set of length 0-1. then d~o 

(8.1.2) Theorem (HT bound, Hartmann and Tzeng) : 

Let A be a defining set for a cyclic code with minimum 

distance d. Let S.be a primitive n-th root of unity, and 

suppose that A contains the consecutive sets 

{B i+ja Qi+l+ja Si+6-2+ja} 
.~ •..• , • O~j~s. where (a.n)<6. 

Then d~6+s. 

(8.1.3) Examples: (i) q=2, n=73. Let a be a primitive n-th root 

of unity, and let C be the duadic code of length n with defining 

{ 3 9 II 17} hId f' , f' set a ,a,a ,a . T e camp ete e ~n~ng set 0 C, 1.e. 

{ailiEC3UC9UCIIUCI7}' contains {Sill~i~8}, where S:=a3. 

So by the BCH bound, the code C has minimum distance ~9. 

(ii) q=2, n=127. Let C be the duadic code of length n and defining 

set {a
i

li=I,3,5.15,19,2I,23,29,55} (again a is a primitive n-th 

root of unity). The complete defining set of the even-weight subcode 

contains {a
1

Ii=3,12,2I,30,39,48,57,66,75,84,93} U 

{a~li=37,46,55,64,73.82,91,100,109,118,0}. 
Then the HT bound shows that the even-weight sub code of C has minimum 

distance ~13, hence ~14. Since the splitting is given by ~-l' 

Theorem (3.1.4) shows that C has minimum distance ~15. 
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The next bound LS due to van Lint and Wilson [11]. First we need a 

definition. 

(8.1.4) Definition: Let S be a subset of the field F. We define 

recursively a family of subsets of F, which are called 

independent with respect to S, as follows: 

(i) 0 is independent w.r.t. S, 

(ii) if A independent w.r.t.S, Ac S, b~S, then 

A U {b} is independent w.r.t.S, 

(iii) if A is independent w.r.t. S, cEF, c#O, then cA is 

independent w.r.t.S. 

(B.l.5) Theorem Let c(x) be a polynomial with coefficients in F, 

and let S := {aEFlc(a)=O}. Then for every A c F which is 

independent w.r.t. 5, we have wt(c(x»~IAI. 

(8.1.6) Example: , n=73. Let cr be a primitive n-th root of unity, 

and let C be the duadic code of length n with defining set 

{cr
i

li=I,13,17,25} and minimum distance d. 

The complete defining set of C contains {criI49~i~55}, hence d~B 
by the BCH bound. 

Now suppose c(x) LS a codeword of weight B. 

If c(cr3)=0, then c(crL)=O, 4B~i~55, so wt(c(x»~9, a contradiction. 
9 . 

If c(cr )=0, then c(cr 1 )=0, i=61,62, .•• ,72,0,1,2, also a contradiction. 

So if S := {alc(a)=O}, then {aili€C3UC9} n 5 = 0. 
The following sets are independent w.r.t. 5: 

65 64 64 65 61 62 61 62 65 ° I 4 12 0, {cr }, {cr }, {cr ,cr }, {cr • cr }, {cr ,cr ,a }, {a ,a ,a,a }, 
63 64 65 67 2 48 49 50 51 53 61 

{a ,a ,a ,a ,a}, {a ,cr ,a ,cr ,cr ,cr }, 
32 33 34 35 37 45 46 61 62 63 64 65 66 I 2 {cr ,cr ,cr ,cr ,a ,a ,cr }, {cr ,a ,a ,a ,cr ,a ,a ,a ,}, 
50 51 52 53 54 5S 63 64 3 {a ,a ,a ,a ,a ,a ,a ,cr ,Ct}. 

Then Theorem (B.I.5) shows that wt(c(x»~9, a contradiction. 

We have proved that d~9. 

(B.l.7) Remark: In [4], Hogendoorn gives a program that searches for 

sequences of independent sets. In the next section, this program will be 

used several times. 
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Section 8.2 Analysis of binary duadic codes of length ~241 

In [7] there is a list of all binary duadic codes of length ~241, 

defined in terms of idempotents (cf. Definition (2.1.4)). 

For each code, the minimum distance, or an upper bound for it, is 

given. 

Since we want to apply the theorems of Section 8,1 to get lower 

bounds for the minimum distance, the zeros of the idempotents were 

determined by computer. 

The lower bounds were found either by hand, or using a program of 

Hogendoorn [4], cf. (8.1.7). 

In the rest of this section we shall give the details. 

In each case, n is the code-length, u is a primitive n-th root of 

unity, A is a defining set for the binary duadic code C,)J gives a 
the splitting, d is the minimum distance of C, and dO is the 

minimum odd weight of C. 

(8.2.1) n=89, A={c/li=I,9,13,33}, ll_I' 

Since the complete definin~ set contains {ui \i=15,30,45,60,7S,},16,31}, 

we have d~9~ Then Theorem (3.1.4) gives d~12. 

(8.2.2) n=89, A={uil~=3,9,1],]9},]l I' 

The code has zeros a 1
, i=19,38,57,76,6,25,44,63, so d~9. 

Again Theorem (3.1.4) gives d~]2. 

(8.2.3) n=119, A={a
i

li=3,7,13,Sn, 113', 

The complete defining set contains {alI101~i~105}, so d~6. 

Let c(x) be a codeword of weight 6 with zero-set S. 

Then c(a)~O, since otherwise c(ui)=O, i=117,118,0,1,2, ... ,10. 

Also c(all)~O since otherwise c(ui)=O, i=107,108, ••• ,117,118,0. 

The following sets are independent w.r.t. S (we only give the 

exponents of u): 

0, {4}, {4,5}, {4,5,6}, {95,IOl,102,103}, {96,100,102,103,104}, 

{ 104, 108, 109, 1 10,1 1 J , J 12}, {9 7, 10 1 , 102, 103, 104, 105, n. 

So wt(c(x»~7, a contradiction. Hence d~7. Then Theorem (3.1.4) 

gives d~8. 
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(8.2.4) Notation: We introduce a notation to abbreviate a sequence 

of independent sets.· 

The string (~,sO'~I,sl'~2,s2'.'.) has to be interpreted as the 

following sequence of sets: 

aO+sO+s l al+s l a2 aO+sO+s l +s 2 a l +s l +s 2 a2+s 2 
{a ,a,a }, {a ,a ,a }, .•. 

As an example, the sequence of independent sets in (8.2.3) 1S 

abbreviated as (!:,1,~,1,!:,97,22.,1,100,8,109,-7,_!). 

(8.2.5) n=127, A={a
1

Ii=3,5,7,11,19,21,23,55,63}, ]1-1' 

The code has zeros a l9i , l~i~12, so d~13. 
Theorem (3.1.4) gives d~15. 

(8.2.6) n=127, A={a
i

li=I,3,5,7,9,19,23,29,43}, ]1-1' 

By Theorem (3.1.4), dO~15, and by the BCH bound, d~ll, hence d~12. 

Let c(x) be a codeword of weight 12. 
11 

Then c(a )#0 by the BCH bound. The following sets are independent 

w.r.t. the zero-set of c(x): 

(.!l,-1 ,.!l,-I ,S-6 ,.!l,53 ,88,9, 69 ,-59 ,~,2 ,.!.!.,-8 ,22,2 ,.!.!., 14 ,44,-15, 

~,63,~), so wt(c(x))~13, a contradiction. 

Then Theorem (3.1.4) gives d~15. 

(8.2.7) n=127, A={a
i

li=3,5,7,9,11,23,27,43,63}, ]1-1' 

The code has zeros a9i , l~i~8, so d~9. Hence d~12, by Theorem (3.1.4). 

Let c(x) be a codeword of weight 12 with zero-set S. 
19 By the BCH bound, c(a)#O and c(a )#0. 

Using Hogendoorn's program, the computer showed that the code with 

d f · . A U {N 21} has .. d' 1 13 e 1n1ng set ~ m1n1mum 1stance at east . 

So c(a
21

)#0. The following sets are independent w.r.t. S: 

(J..,84,~,-62,J..,23,~,-2,~,-11 ,!0..,34,J..,-22,.!..,-53,!0..,-8,E,-21 ,~,-1, 

.!..,-I,J..), so wt(c(x))~13, a contradiction. 

By Theorem (3.1.4), we have d~15. 

(8.2.8) n=127, A={a i li=9,11,13,15,19,31,43,47 63}, ]1-1' 
90+25i . 

The code has zeros a , 0~1~13, so d~15. 
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(8.2.9) n=127, A={u i li=3,7.9,13,19,21,29,47,63}, ~_I' 
The code has zeros ulOO+l1i, Osisl3, so d~15. 

(8.2.10) n=127, A={a i li=3,9,11,IS,21,23,27,47,63}, ]1-1' 

The complete defining set of C contains {a3i l l~i510}, so d~ll. 
Then Theorem (3.1.4) gives d~12. Let c(x) be a codeword of weight 12 

with zero-set S. 

Then c(a5)~0, since otherwise c(a3i)=0, Osis12. 

The following sets are independent w.r.t. S: 

(~,-19 ,~,2 ,80,-8,~,3 ,66 ,-45 ,~,-3, 33 ,-3,~.-3 ,33 ,-3 ,33 ,-3,33 ,-3, 

80,96,~), so wt(c(x»~13, a contradiction. 

Hence d~15, by Theorem (3.1.4). 

(8.2.11) n=127, A={a i li=3,S,7,19,23,29,43,S5,63}, ~_I' 
23+5i 0 The code has zeros a , OS1s8, so d~10, and hence d~12 by 

Theorem (3,1.4). Let c(x) be a codeword of weight 12 with zero-set S, 
9 0 23+5i 0 13 Then c(a )~O (otherw1se c(a )=0, 051512) and c(a )~O (otherwise 

( 76+7i)_ <'<) C a -0, 0_1-13 , 

The following sets are independent w,r.t. S: 

(5!..,47 ,5!..,69,~,-58,68,66,!!..,-76,52,53 68 ,68,-5,68,-5,68,-5,68,-5, 

5!..,47,5!..), so wt(c(x»~13, a contradiction. Then, by Theorem (3.1.4), 

&15. 

(8.2,12) n=127, A={a i li=],S,13,IS,27,29,31,43,SS}, ~_I' 
The code has zeros uS4i , Isisl2, so d~13. Hence by Theorem (3.1.4), 

d~15. 

(8.2.13) n=127, A={u1 Ii=I,3,7,19,23,29,43,47,55}, ]1-1' 

We know that dO~15. Let c(x) be a codeword of even weight s12 with 

zero-set S. 

( 0) (IS).i.O 0 0 (97+ISi 0 4 1 car, S1nce otherw1se c u )=0, OSlS] • 

(ii) Suppose c(a5)=0. Then c(a I3 )#0, since otherwise c(a57+35i)=0, 

Osisl4. The following sets are independent w.r.t. s: 
(~,-21 ,60,-10,60,30 ,.§.2., -40,30,36 ,3S, -10 ,35 ,30,35 ,-I 0,35,5 I, 

30,-10,30,-10,30,-10,30), so wt(c(x»~13. 
- -5 - -
Hence c(a )0/:0. 

(iii) c(a27)#0, since otherwise we have the following independent 

sets w.r.t. S: 
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(..!2, I.!:?.. 71 ,ll. 1 9. 3Q. -16 .!:?.. -]2 • ..!...!1. -74,2, -I ,40.21 ,26,33, 60, 

-1,60,-]~60,-1,60) so wt(c(x»~13. 
11- - -

(iv) c(a )~O, since otherwise we have the following independent sets 

w.r.t. S: 

(~,-l ,~,-2,~.41,89,50, 104,-8 74,.!.2..-8,~,-2,Q,46,~,-I.~. 

-I ,2.!,.. -I "~'!) . 

The following sets are independent w.r.t. S: 

(~, -5,44, 3 ,~,l ,~, 19. 60, -17,33, 84 ,~, -44 ,~, 2 ,49, -46,2,89 ,Jil,-35, 
~,-55.!:?.), so wt(c(x»~13, a contradiction. 

We have proved that d~14. Then Theorem (3.1.4) shows that d~15. 

(8.2.14) n=127, A={a1 Ii=3,15,19,21,23,29,47,55,63}, ~_I' 

The code has zeros a l9i , l~i~8, so dz9. Hence d~12 by Theorem (3.1.4). 

Let c(x) be a codeword of weight 12 with zero-set S. 

( ~) (27)..10' h' ( 93+3i) ° ° . "'- caT, slnce ot erw1se c a =, :S;;1:S;;11. 

(ii) c(a 31 )..;0, since otherwise c(ai)=O, 113si~127. 
( ~~~) ( 7) 0 LLL Suppose c a =. 

a) c(a)~O, since otherwise c(a 19+9i )=0, Osi~12. 
b) c(a5)~0, since otherwise we have the following independent 

sets w.r.t. S: 

(.!.,64,.!.,-91 1,64,-9,64,1, .!.,-9,.!.,-1,64,-9,~,1,.!.,-9,.!., 

-1,64,-9,.0. 

The following sets are independent w.r.t. s: 
(l." 1 ,l.,,-1 ,.!.,95,40, 1 ,103,-4,40,34,~,-16, 108,-17 ,40,20,.!.,!2,-I, 

115,-1,108,-17,108), so wt(c(x»~13, a contradiction. 
- -7- --

Hence c(a )~O. 

(iv) Suppose c(a)=O. Then c(a9)..;0, since otherwise c(a37+9i)=O, Osi512. 

The following sets are independent w.r.t. S: 

(56, -I 0 ,~, 19,56, 9 ,~, 44,2,., -9,2,., -9 ,2,.,-9,,2.,-9,2,., -9,.2" -9,.2" -9, 

2,.,-8,.2.). So c(a)";O. 

The following sets are independent w.r.t. S: 

(.!.,81 ,I08,2,I.o2,-81,~.9,~,12,~,76,108,1 ,.!.,-8 102 1,.!.,-71,.!., 

70,..!..,-8,.!.), so wt(c(x»~13, a contradiction. Hence d~13. 

Then Theorem (3.1.4) gives d~15. 

(8.2.15) n=127, A={a 1 Ii=3,5,9,13,15,19,21,29,63}, JJ_ 1. 

By the BCH bound we have d~ll, hence d~12 by Theorem (3.1.4). 
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Let c(x) be a codeword of weight 12 with zero-set S. 
31· 11 . 

Then c(a )#0 and c(a )#0 by computer (1.e., the computer showed 

that the codes with defining sets A U {a31 } and A U {all} both have 

minimum distance at least 13, using Hogendoorn's program). 

The following sets are independent w.r.t, s: 
,2,24, 124,-29,~,45,1l,50,~,-3,22.,-8,.!..!2.,-31 ,~,-I ,~,-l, 

~.-1,~.-1,22), so wt(c(x»~13. 

We have proved that d~13, and hence d~15. 

(8.2.16) n=127, A={a
i

li=I,3,5,9,15,23,27,29,43}, ]1-1' 
57+7i . The code has zeros a , O~1~9, so d~11, and hence d~12, 

Let c(x) be a codeword of weight 12 with zero-set S. 

Then c(a
21

)#0, since otherwise c(a3i)=O, O~i~14. 
The following sets are independent w,r.t. S: 

(~,-21 ,~,24,~,-21 ,~,24 21 I ,~,24 21 I ,~,24,~,-21 ,~,24 

-21,~,3,~), a contradiction. 

Then, by Theorem (3.1.4), d~15. 

(8.2.17) n=127, A={a
i

li=5,7,9,13,19,29,31,43,63}, ]1_1' 

Let c(x) be a codeword of even weight ~12. 

Then, by computer, c(a1)#O, i=3,21,23,47,55. 

The following sets are independent w.r.t. the zero-set of c(x): 

(~, 17 ,§2., 16 61 ,22..,-1 ,96,-13,46,-11 ,55,-46,~,-12,84,42,55,-20, 

~,-I ,~,-I 21 , so wt(c(x»2:13. 

Hence, by Theorem (3.1.4), d~15. 

(8.2.18) n=127, A={a i li=3,11,15,19,23,43,47,55,63}, ]1-1' 
i The code has zeros a , 43~i~50, so d~9, and hence d2:12. 

Let c(x) be a codeword with weight 12 and zero-set S. 

By computer, c(ai)#O, i=5,7,21,27,31. 

The following sets are independent w.r.t. S: 

(72,-29, 102,7,108, 14 ,~,-4 33 ,1l,-19,!i,-16,72,-27 51 

~,-I ,~,-I ,~), a contradiction. 

So d2:15, by Theorem (3.1.4). 

(8.2.19) n=127, A={a~li=9,13,15,19,21,29,31,47,63}, ]1-1' 

The code has zeros a1 , 119~i~126, so d~9, and hence d~12. 

,~,-I, 
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Let c(x) be a codeword of weight 12 with zero-set S. 

The computer showed that c(ai)#O~ i=5,11,27. 

The following sets are independent w.r.t. S: 

(~,38,80,47,88,-4,80,-6,~,-6,~,-30,40,-3,~,-39,40,-1,20,-1, 

20 1,20,-1,20), a contradiction. Hence d~15. 

(8.2.20) n=127, A={a i li=I,3,5,9,11,15,21,23,27}, ~_I' 
The code has zeros a3i , l~i~12, so d~13. 
Then Theorem (3.1.4) gives d215. 

(8.2.21) n=127, A={a i li=3,9,15,23,27,29,43,47,63}, ~_I' 
96+3i . The code has zeros a , O~~~IO~ so d212. 

Let c(x) be a codeword with weight 12 and zero-set S. 
i By computer, c(a )#0, i=I,7,21,55. The following sets are independent 

w.r.t. S: 

(~,-3,~,-3,~,16,l,84,lZ,-10,56,-3,56,-26,1,-3,~,-9,42,-53~~,-2, 

1,-1,1), a contradiction. Hence d~IS. 

(8.2.22) n=127, A={a i li=I,3,7,II,I9,21,23,47,55}, ~-I' 
The complete defining set of C contains {a50+17i!0~ II}, 

so d213. Then Theorem (3.1.4) gives d21S. 

(8.2.23) n=127, !i=5,7,II,13,27,31,43,5S,63}, ~-l' 
103+3i . The code has zeros a , 0~~~7, so d~9. Hence d212. 

Let c(x) be a codeword of weight 12. 

Then, by computer, c(ai)#O, i=3,9,2J. 

The following sets are independent w.r.t. the zero-set of c(x): 

(~,26,~,-2.~,7,84,-18,96,-11,~,-6,36.-9,~,-30,~,-5,~,-7,~,-1, 

l~,-l,~), a contradiction. So d2JS. 

(8.2.24) n=127, A={a 1 !i=l,3,S,11,15,19,23,43,5S}, ~-1' 

We know that dO~lS. Let c(x) ,be a codeword of even weight ~12 with 

zero-set S. By computer, c(al)#O, i=7,13,63. 

The following sets are independent w.r.t. S: 

(26,-I,26,-20,26,-1,52,28,~,-31,95,-19,~,-10 56 

Z,-l,Z,-l,Z), so wt(c(x»~13, a contradiction. 

Hence, by Theorem (3. 1.4), d~I5. 
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(8.2.25) n=127, A={a
i

li=I,5,7,9,23,27,29,31,43}, ~-1' 
89+13i . The code has zeros a , 0S;1S; 11, so d;;:: 13. 

Then, by Theorem (3.1.4), d;;::15. 

(8.2.26) n=127, A={ili=I,5,9,11,13,15,19,31,43}, ~-1' 
The complete defining set of C contains {a5i lls;iS;10}, so d~ll. 
Hence d;;::12. Let c(x) be a codeword of weight 12 with zero-set S. 

By computer, c(ai)#O, i=21,27,47. 

The following setH are independent w.r.t. S: 

(89.24,89,-70,~,26,54,-1 ,~,-42 27 1 ,~,-8,~,32 87 14,74,-1,!..!::, 

-1 ,~,-1, 74), a contradiction. 

Then Theorem (3.1.4) gives d~15. 

(8.2.27) n=127, A={a i li=1,3,13,15,21,27,29,47,55}, ll_l' 

Th d h 35i 1<'<14 d>15 e co e as zeros a , _1_ , so _ • 

a) Let c(x) be a codeword of weight 15 with zero-set S. 

(i) c(a9)#0, since otherwise c(a35i )=0, ls;is;15. 

(ii) Suppose c(a 19 )=0. 

Then c(a45 )#0, since otherwise the following sets are independent 

w.r.t. S: 

(,2.,29,,2.,39,2..,12,34,21,68,-26,68,-13,68,-13,68,-13,68,-13,68,-13, 

68,-13,68,-13,68,-13,68,-13,~,-13,68). 

The following sets are independent w.r.t. S: 

(~, 67,45,36 -26,68,-17, 106,4 ,~, -26, 68, -13 ,68 ,-13, 68, -26,68, 

-13,68,-13,68,-13,68,-13,68,-13,68,-13,68), so wt(c(x»~16, a 

contradictio~ Henc:-c(a I9);O. - -
The following sets are independent w.r.t. S: 

(J.2,92,J.2,-15,E,-13,23.,50,50,-2 72 ,J2,22,n,21,38,-52,100,29, 

23.,-33,J2,-35,J2.-35,J2,-35,J2,-35 

We have proved that d~16. 

, a contradiction. 

b) Let c{x) be a codeword of weight 16 with zero-set S. 

(i) c(a9)#0, since otherwise c(a35i)=0, 0s;is;15. 

(ii) Suppose c(a I9 )=0. 

Then c(a
45

)#0, since otherwise the following sets are independent 

w.r.t. S: 

(68,52,68,-13,68,63,72,17,34,21,68,-26,68,-13,68,-13,68,-13,68, 

-13,68,-13,68,-13,68,-13,68,-13 68 13,68,-13,68). 
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The following sets are independent w.r.t. S: 

(1l.-24,68,-13.68,-14,~,1,68,-17,106,4,68,-26,68,-13,68,-13,68, 

-26,68,-13,68,-13,68,-13,68,-13,68,-13 68 13,68). 
- 19- - - -

Hence c(a )';'0. 

The following sets are independent w.r.t. s: 
(J2., 57 , 100,17, 34, -4, 100,22 ,..!,l, -13, 50, -2,13., - 33 ,J2., 22 ,22.,21 , 38, - 52, 

100,29,13.,-33 17 ,..!,l,-35,.!2,-35 • .!2,-35 17 , so wt(c(x»~17, a 

contradiction. 

Hence d217. Then Theorem (3.1.4) shows that d~19. 

(8.2.28) n=127, A={a
i

li=5,15,19,23,29,31,43,55,63}, ~-1' 
71+7i . The code has zeros a , 0~1~7, so d29. 

Hence d212, by Theorem (3.1.4). 

Let c(x) be a codeword of weight 12 with zero-set S. 

Then, by computer, c(a1)#0, i=I,3,7. 

The following sets are independent w.r.t. S: 

(~,-66,~,12 48 ,~,3,g,-20,.::,-4 24 ,24 ,-5 ,~,-23,96,-3 ,~, 

-1,~,-I,~), a contradiction. 

Then Theorem (3.1.4) gives d215. 

(8.2.29) n=127, A={a i li=5,7,9,11,13,19,21,31,63}, ~-1' 
The code has zeros a7i , l~i~10, so d211. Hence d212. 

Let c(x) be a codeword of weight 12. 

Then, by computer, c(ai).;.O, i=3,23,27,29,55. 

The following sets are independent w.r.t. the zero-set of c(x): 

(~,33,l,-3,46,-2 110 ,83,-4,~,-3,96,-24,89,-39,2.!.-,-13,g,-1 ,22, 
-1,22,-1,22), a contradiction. 

We have proved that d21S. 

(8.2.30) n=127, A={a1 Ii=1,7,13,21,27,29,31,47,55}, 11_ 1, 
64+19i . The code has zeros a , 0~1~9, so d~ll. Hence d212. 

Let c(x) be a codeword of weight 12 with zero-set S. 

The computer showed that c(ai)#O, i=3,5,15,23,43. 

The following sets are independent w.r.t. s: 
(75,-2Q75,-13,114,-7,30,-3,53,-1,65,-IO 92 14,106,-27,5,-20,5,-3,3, -- ---- -- ---
-1,1,-1,1), a contradiction. Then Theorem (3.1.4) gives d21S. 
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(8.2.31) n=127, A={a i ji=I,3,7,9,ll,23,27,43,47}, ~-1' 
87+21i . The code has zeros a , 0~~~13, so d~15. 

a) Let c(x) be a codeword of weight 12 with zero-set S. 

(i) c(a5)#0, since otherwise c(a3+21i)=0, 0~i517. 
( ~ ~) ( 55) 0 LL Suppose c a =. 

19 Then c(a )#0, since otherwise the following sets are independent 

w.r.t. S: 

(66,2] ,66,21 ,66,21 ,66,2 J ,66,21,66,21,66,21,66,21,66,21,66,21, -- -- -- -- -- - -- -- -- --
~,21 ,66,21 ,66,42,80,-21,1,-40,1). 

The following sets are independent w.r.t. S: 

(1,41,1,1, 100, 12 ,~,-2 ,100,51 ,~,21 ,66,-64,66,-21,66,9 ,E, 75, 

66,21,66,21,66,21,66,21,66,21,66), a contradiction. 
-- ~55 -- -- - --

Hence c(a )#0. 

The following sets are independent w.r.t. S: 

(66,21,66,21 ,66,21 ,~,-43,66,-42,~,25,~,-46,66,9,33,75,22.,21 ,66, 

21,66,21,66,21,66,21 ,66,21 ,~), a contradiction. 

So &16. 

b) Let c(x) be a codeword of weight 16 with zero-set S. 

(i) Again c(a5)#0. 

(ii) Suppose c(a55 )=O. 
19 Then c(a )#0, since otherwise the following sets are independent 

w.r.t. S: 

(66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66, -- -- -- -- ~ -- -- -- -- -- -
21 • 66,21 , 66,42, 80, - 21 ,1, -85, 40,45,2,) • 

The following sets are independent w.r.t. s: 
(2"41,2,, I, 100,12,38,-2, 100,51 ,66,21 ,66,-64,~,-21 ,66,42,E,-33, 

33,75,66,21,66,21,66,21,66,21,66,21,66), a contradiction. 
-- -55 -- -- -- - --

Hence c(a )#0. 

The following sets are independent w.r.t. S: 

(66,21 , 66,2 J ,66,2 J , 66,21 , 66, -43, 66, -42 ,~, 25 ,.2.!,., -46, 66,42, 33, - 33, 

21,75,66,21,66,21,66,21,22.,21,66,21,66), a contradiction. 

So d217. 

Then Theorem (3.1.4) gives d~19. 

(8.2.32) n=IS1, A={a 1 Ii=I,3,7,15,35}, 11_
1

, 

From Theorem (3.1.4) we know that dO~15, dO
E 3 mod 4. 

Furthermore, all even weights are divisible by 4. 
6]+3i . The code has zeros a • 05~58, so d~10. Hence d~J2. 



- so -

a) Let c(x) be a codeword of weight 12 or 16 with zero-set S. 

By computer, c(ai)#O, i=S,II,17,23,37. 

The following sets are independent w.r.t. S: 

10 44 10 ,40,2S, 139,-S,22,-1 ,22,-11 ,37 ,-7 .~,-26,~, 103,~,-22.ll.!., 

-3,~,-41 ,40,-SO,E,-11,E.-1 ,23..,-l,Jl), a contradiction. 

b) Let c(x) be a codeword of weight IS with zero-set S. 

Again by computer, c(ai)#O, i=5,11,17,23,37. 

The following sets are independent w.r.t. S: 

(~,-I ,~.56.]~.-1,36,-32,~,-14,} 19,-7 ,~.-27 135 -24,~,35.40.-13,80, 

-77 ,!!l,-37 ,~.-ll ,~,-I.~,-I ,..!..!.2.), a contradiction. 

We have proved that d~19. 

(8.2.33) n=151, !i=I,3,7,17,3S}, ]1-\" 

We know that dO~lS and that all even weights are divisible by 4. 

Let c(x} be a codeword of even weight ~12. 

Then, by computer, c(ai)#O, i=S,II,15,23,37. 

The following sets are independent w.r.t. the zero-set of c(x): 

(120,1,~,-10 67 14,54,-19S 10,134,-1,132,-28,144,-43,72,-10,134, --- --- --- -- ---
-48,72,-1,23..,-1 ,}2), a contradiction. 

Hence d;::lS. 

(8. 2.34) n = 15 I, A= {(J ! i = I ,3,7 , 11 , I 7}, II _\ . 
13+3i . The code has zeros a , O~1~7, so d;::9. Hence d~12. 

Let c(x) be a codeword of weight 12 with zero-set S. 
i By computer, c(a )#0, ,15,23,35,37. 

The following sets are independent w.r.t. S: 

(Q,2,94,-4,33,-4,125,-II07 ,~, -6 ,E,-34 ,40, -8 ,80, -28 ,~, -2, 

~,-I,~,-I,~), a contradiction. 

Hence, by Theorem (3.1.4), d~15. 

(8.2.35) n=161, A={ex
1

!i=5,11,35,69}, ll_I' 
1. The code has zeros ex , 132~i~138, so d~8. 

Let c(x) be a codeword of weight 8 with zero-set S. 

Then c(a I39 )#O by the BCH bound. 

The following sets are independent w.r.t. S: 

139 10I,~,-52,146,-9 139 1139 1,139,-1,139,-1,139,-1,139), 

a contradiction. 

Then, by Theorem (3.1.4), we have d;::12. 
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(8.2.36) n=223, A={c/I l,3,5}, ll_l' 

We know from Theorem (3.1.4) that dO~19 and that all even weights are 

divisible by 4. 

The BCH bound gives d~9. Hence d~12. 

Let c(x) be a codeword of weight 12 or 16 with zero-set S. 

Then, by computer, c(ai)#O, i=9,13,19. 

The following sets are independent w.r.t. S: 

(50,-4,50,-1 50 1,83,-3,106,-1,188,-23,~,-II,~,186,~,-47,177,-65, 

175,-5,89,-47,29,-18,2,-7,2,-1,2,-1,2.), a contradiction. 

We have proved that d~19. 

(8.2.37) n=233, A={a~'i=5,9,17,29}, 11_ 1• 

The code has zeros a
1

, 785i585, so d~9. Hence d~12, by Theorem (3.1.4). 

Let c(x) be a codeword of weight 12 with zero-set S. 

Then, by computer, c(ai)#O, i=I,3,7,27. 

The following sets are independent w.r.t. S: 

111 -1 ,~,-3, 183 ,-4, 189,-2, 188,-1 4 , 94,-3,89,-6,86,-1,86,-1, 

86,-1,86,-1,86), a contradiction. 

Hence d~16, by Theorem (3.1.4). 

(8.2.38) n=233, A={a i li=I,3,9,27}, ll_I' 
1 The code has zeros a , 695i577, so d~10. Hence d~12. 

Let c(x) be a codeword of weight 12 or 16 with zero-set S. 

By computer, c(a 1 )#O, i=5,7,17,29. 

The following sets are independent w.r.t. S: 

(49,-2, 139 ,-I ,~,-3,208,-5 ,44 ,-I ,~,-35 ,93 ,-23, 139,-47,58 ,-54,!:!.,-48, 

225,-80,147,-3,~,-68,~,-1,78,-1 78 1,78), a contradiction. 

Then Theorem (3.1.4) gives d~17. 

(8.2.39) n=233, A={a i li=1,17,27,29}, 11 7• 

We know that dO~17. 
131+17i The even-weight subcode has zeros a , 05i512, so d~14. 

Let c(x) be a codeword of weight 14 or 16 with zero-set S. 

By computer, c(ai)~O, i=3,5,7,9. 

The following sets are independent w.r.t. S: 

(~,-2,138,-3,164,-1 113 ,164,-1,183,-21,100,-26,56,-9,167,87,123, 

18 ,l!.., 126, 96, -26, 177 , 60 ,~, -3,1,-1 ,1, -1 .1), a contradiction. 

Hence d~17. 
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(8.2.40) n=241, A={a
i

li=5,9,11,13,25}, ]111' 

Theorem (3.1.4) gives dO~17. 
41+25i The even-weight subcode has zeros a , O~i~16, so the even-weight 

subcode has minimum distance ~18. 

Hence d~17. 

(8.2.41) n=241, A={a
1

Ii=I,5,9,13,25}, 11 11 , 

We know that dO~17. The even-weight subcode has minimum distance ~22, 
232+25i . since it has zeros a , 0~1~20. 

Let c(x) be a codeword of weight 17 with zero-set S. 

Then, by computer, c(ai)#O, ,7,11,21,35. 

The following sets are independent w.r.t. S: 

(J...l,-I 196 1,~,-4,219,-10 102 15,139,-7,213,-5,48,-21,89,-74,139, 

129,55,79 55 107,48,-56,~,-24,85,-26,!.l,-1,!.l,-1 11 , 

a contradiction. 

We have proved that d~19. 

(8.2.42) n=241, A={a
i

li=5,7,9,11,13}, )Jl1' 

We have dO~17. 

Let c(x) be a codeword of even ~14. 

Then, by computer, c(ai)#O, i=1,3,21,25,35. 

The following sets are independent w.r.t. the zero-set of c(x): 

(3±,-1 ,84,-1, 120,-3,235,-1, 156,-7 ,22,-20,~, 126,2!,-3 204 1,200, 

-96, 163,-39 27 7 ,_~,-l ,.!2,-1 ,.!3), a contradiction. 

Hence d~16. 
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Section 8.3 The table 

In this section we g1ve a table of all binary duadic codes of length 

5241. For each code we give 

(i) n the code-length. 

(ii) the idempotent e.g. the duadic code of length 49 has idempotent 

(iii) a defining set e.g. the duadic code of length 49 has defining 

set {~iliECJ U C21 }, where a is a primitive 

49-th root of unity. 

(iv) d 

(v) a 

the m1n1mum distance, or bounds for it. 

Most of the upper bounds are from [7]. 

Note that binary QR codes have an odd minimum distance 

(cL [10)). 

the splitting 18 given by 11 • . a 

(vi) a reference. 
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n idempotent defining set d a reference 

7 3 -) QR code, [ 1O] 

17 0,1 5 3 QR code, [7] 

23 7 -I QR code, [7] 

31 I ,5,7 1,5,7 7 -I QR code, [7] 

31 1,3,5 1,3,5 7 -1 Reed-Muller code, (2.2.2) 

41 0, I 9 3 QR code, [1] 

47 11 -I QR code, [7] 

49 0, 1,7 I ,21 4 -I (4.3. I) 

71 I I -1 QR code, (3.1.4) 

73 0,1,3,5,11 1,13,17,25 9 -I (8.1.6) 

73 0,1,3,5,13 3,9,11,17 9 -1 (8.1.3) 

73 0,1,5,9,17 1,9,11,13 12 3 [7] 

73 0,1 ,3,9,25 1,3,9,25 13 5 QR code, [1] 

79 IS -1 QR code, [7] 

89 0,1,3,5,13 1,9,13,33 12 -1 (8.2.1) 

89 0,1,3,5,19 3,9,11,19 12 -) (8.2.2) 

89 0, I ,3, 1 I ,33 I ,3, I I ,33 IS 5 [7] 

89 0,1,5,9,11 1,5,9,11 17 3 QR code, [7] 

97 0.1 15 5 QR code, (7] 

103 19 -I QR code, [7] 

113 0, I ,9 1,9 15 3 QR code, [7] 

113 0,1,3 1,3 18 9 [7] 

119 1,13,17,2] 1,11,21,51 4 3 BCH bound 

119 1,7,11,51 1,13,17,21 6 3 BCH bound 

119 1,7,13,17 3,7,13,51 8 3 (8.2.3) 

119 1,7,11,17 3,11,21,51 12 3 [7] 
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n idempotent defining set d a reference 

127 1,3,9,11,13, 1,3,5,7,9, 15 -1 Reed-Muller code, (2.2.2) 
15,21,27,47 11,13,19,21 

127 1,3,5,9,11, 3,5,7,11,19, 15 -1 (8.2.5) 
13,15,21,27 21,23,55,63 

127 1,3,9,13,15, 1,,3,5,7,9,19, 15 -I (8.2.6) 
19,21,29,47 23,29,43 

127 1,3,7,9,11, 3,5,7,9,11, 15 -I (8.2.7) 
13,19,21,47 23,27,43,63 

127 1,3,7,9,11, 9,11,13,15,19, 15 -I (8.2.8) 
13,21,27,47 31,43,47,63 

127 1,3,5,7,9, 1,3,5,15,19, 15 -I (8. I .3) 
13,19,21,29 21,23,29,55 

127 1,3,15,21,23, 3,7,9,13,19, 15 -I (8.2.9) 
27,29,47,55 21,29,47,63 

127 1,3,5,7,9, 3,9,11,15,21, 15 -I (8.2.10) 
19,21,23,29 23,27,47,63 

127 1,3,5,7,9, 3,5,7,19,23, 15 -I (8.2.11) 
11,21,23,27 29,43,55,63 

127 1,3,7,9,11, 1,5,13,15,27, 15 -1 (8.2.12) 
21,23,27,47 29,31,43,55 

127 1,3,7,9,11, 1,3,7,19,23, 15 -I (8.2.13) 
19,21,23,47 29,43,47,55 

127 1,3,7,9,13, 3,15, 19 ,21 ,23, 15 -I (8.2.14) 
21,27,29,47 29,47,55,63 

127 1,3,5,9,15, 3,5,9,13,15, 15-16 -1 (8.2.15) 
21,23,27,29 19,21,29,63 

127 1,3,9,13,15, 1,3,5,9,15, 15-19 -I (8.2.16) 
21,27,29,47 23,27,29,43 

127 1,3,5,9,13, 5,7,9,13,19, 15-19 -I (8.2.17) 
15,21,27,29 29,31,43,63 

127 1,3,9,15,21, 3,11,15,19,23, 15-19 -1 (8.2.18) 
23,27,29,47 43,47,55,63 

127 1,3,9,11,15, 9,13,15,19,21, 15-19 -1 (8.2.19) 
21,23,27,47 29,31,47,63 

127 1,3,7,9,21, 1,3,5,9,11, 15-19 -) (8.2.20) 
23,27,29,47 15,21,23,27 
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n idempotent defining set d a reference 

127 1,3,5,9,13, 3,9,15,23,27, 15-19 -I (8.2.21) 
15,19,21,29 29,43,47,63 

127 1,3,9,11,13, 1,3,7,11,19, 15-19 -I (8.2.22) 
15,19,21,47 21,23,47,55 

127 1,3,9,15,19, 5,7,11,13,27, 15-19 -I (8.2.23) 
21,23,29,47 31,43,55,63 

127 1,3,5,9,15, 1,3,5,11,15, 15-19 -1 (8.2.24) 
19,21,23,29 19,23,43,55 

127 1,3,11,13,15, 1,5,7,9,23, 15-19 -1 (8.2.25) 
21,27,47,55 27,29,31,43 

127 1,3,5,7,9, 1,5,9,11,13, 15-19 -1 (8.2.26) 
11,13,19,21 15,19,31,43 

127 1,3,5,7,11, 1,3,13,15,21, 19 -I (8.2.27) 
13,21,27,55 27,29,47,55 

127 1,3,5,7,21, 5,15,19,23,29, 15-19 -I (8.2.28) 
23,27,29,55 31,43,55,63 

127 1,3,5,7,9, 5,7,9,11,13, 15-19 -1 (8.2.29) 
21,23,27,29 19,21,31,63 

127 1,3,5,7,9, 1,7,13,21,27, 15-19 -1 (8.2.30) 
13,21,27,29 29,31,47,55 

127 1,3,5,7,9, 1,3,7,9,11, 19 -1 (8.2.31) 
11,13,21,27 23,27,43,47 

127 1,9,11,13,15, 1,9,11,13,15, 19 -1 QR code, [ 12] 
19,21,31,47 19,21,31,47 

137 0, I 13-21 3 QR code, (3.1.4) 

lSI 1,3,5,11,17 1 ,3,7 , 15 ,35 19 -1 (8.2.32) 

151 1,3,5,11,15 1,3,7,17,35 15-19 -1 (8.2.33) 

151 1,5,11,17,37 1,5,11,17,37 19 -1 QR code, [ 1 2) 

151 1,3,7,11,15 1,3,7,11,17 15-23 -1 (8.2.34) 

161 0,1,3,35,69 1,11,23,35 4 -1 BCH bound 

161 0,1,3,7,23 1,7,11,69 8 -1 BCH bound, (3.1.4) 

161 0,1,7,11,23 1,3,23,35 8 -1 BCH bound, 0.1.4) 

161 0,1,7,11,69 5,11,35,69 12-16 -1 (8.2.35) 
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n idempotent defining set d a reference 

167 15-23 -1 QR code, (3.1.4) 

191 15-27 -1 QR code, (3.1.4) 

193 0,1 15-27 5 QR code, (3.1.4) 

199 15-31 -1 QR code, (3.1.4) 

223 I ,3.9 1,3,5 19-31 -1 (8.2.36) 

223 1,9,19 1,9,19 19-31 -1 QR code, (3.1.4) 

233 0,1,7,9,29 1,7,9,29 17-25 3 QR code, (3.1.4) 

233 0,1,3,9,27 5,9,17,29 16-29 -I (8.2.37) 

233 0,1,3,7,27 1,3,9,27 17-29 -I (8.2.38) 

233 0,1,3,5,29 1,17,27,29 17-32 7 (8.2.39) 

239 19-31 -I QR code, (3.1.4) 

241 0,1,3,7,9,21 5 ,9 , 1 I , 13,25 17-25 1 1 (8.2.40) 

241 0,1,3,5,7,9 1 ,5 ,9, 1 3 , 25 19-30 11 (8.2.41) 

241 0,1,7,9,13,21 5,7,9,11,13 16-30 11 (8.2.42) 

241 0,1,3,5,9,25 1,3,5,9,25 17-31 1 1 QR code, (3.1.4) 

n=217 There are 88 possibly inequivalent duadic codes of length 217. 

All splittings are given by ]1_1' 

minimum distance 4 :::;24 

number of codes 16 32 240 448 144 144 
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length, 1 
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