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. Abstract

We define a class of gq~ary cyclic codes, the so~called duadic codes.
These codes are a direct generalization of QR codes. The results of
Leon, Masley and Pless on binary duadic codes are generalized. Duadic
vcodas of composite length and a low minimum distance are constructed.
We consider duadic codes of length a prime power, and we give an
existence test for cyclic projective planes, Furthermore, we give

bounds for the minimum distance of all binary duadic codes of length $241.
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List of symbols

GF(q) finite field of order g

0 zero vector

1 all-one vector

[n,k] linear code of length n and dimension k
[n,k,d] [n,k] code with minimum distance d
dim C dimension of the linear code C

wt(ﬁ) weight of the vector x

wt{c(x)) weight of the polynomial c(x)

d(x,y) distance of the vectors x and y

C extended code of the code C

ct dual code of the code C

(x,y) inner-product of the vectors x and y
GF(q) [x] polynomial ring over GF({q)
GF(Q)[X]/(XH-I) residue class ring GF(q)[x] mod (x"-1)
(a,b) greatest common divisor of a and b
<g(x)> ideal in GF(q)[x]/(xn“l) generated by g(x)
7 (x) ~ polynomial PP

GG leyreyle €6 .60}

C1 L C2 orthogonal direct sum of CI and C2
Ci cyclotomic coset containing 1

My permutation i-al mod n

ua:Sl pa 82 (2.1.1)

q=0 mod n (2.1.3)

q=¢ mod n (2.1.3)

ISI number of elements of the set S
OIdn(a) multiplicative order of a mod n
vp(m) (3.2.1)

p]a p divides a

pfa p does not divide a

p’lla pzla and pZ+lla

Sl,m’ SZ,m (3.2.5)

I identity matrix

J all-one matrix

AT transpose of the matrix A
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Preface

In 1984, Leon, Masley and Pless introduced a new class of binary cyclic
codes, the so-called duadic codes. These codes are defined in terms

of their idempotents, and they are a direct generalization of quadraﬁic
regidue codes.

In this thesis, duadic codes over an arbitrary finite field are defined
in terms of their generator polynomials. In the binary case, this
definition is equivalent to that of Leon, Masley and Pless.

In Chapter 1, we give a short introduction to coding theory.

In Chapter 2, duadic codes of length n over GF(q) are defined. We show
that they exist iff q=0 mod n, i.e., if n = p?'p?t... p?k is the prime
factorization of n, then duadic codes of length n over GF(q) exist

iff q=0 mod ;s i=1,2,...,k.

Examples of duadic codes are quadratic residue codes, some punctured
generalized Reed-Muller codes, and cyclic codes for which the extended
code is self-dual. Furthermore, we give a construction of duadic codes
of composite length with a low minimum distance. As an example, if

n is divisible by 7, then there is a binary duadic code of length n
with minimum distance 4.

In Chapter 3, we generalize the two papers of Leon, Masley and Pless

on binary duadic codes. We show e.g., that the minimum odd-like weight
in a duadic code satisfies a square root bound, just as in the case

of quadratic residue codes.

In Chapter 4, we study duadic codes of length a prime power. It turns
out that if pzﬂ(qt~l), where t=ordp(q), that duadic codes of length T
(m2z) over GF{(q) have minimum distance sz. If z=1, then we can
strengthen this upper‘bound, and we can also give a lower bound on

the minimum distance. As a consequence, we can determine the minimum
distance of duadic codes of length p" for several values of p. For
example, all binary duadic codes of length 7™ (m>1) have minimum
distance 4,

In Chapter 5, we consider tournaments which are obtained from splittings,
and we ask whether they can be doubly-regular.

In Chapter 6, we show that a duadic code, whose minimum odd-like weight
satisfies the specialized square root bound with equality, contains

a projective plane. Furthermore, we give an (already known) existence

test for cyclic projective planes.



Chapter 7 deals with single error-correcting duadic codes. We show
that a binary duadie code with minimum distance 4 must have a length
divisible by 7. In a special case we give an error-correction procedure.
It turns out that most patterns of two errors can be corrected.

In the last section of Chapter 7, we show that if a duadic code of
length n>9% over GF(4) with minimum distance 3 exists, then n is
divisible by 3.

In Chapter 8, we give lower bounds on the minimum distance of cyclic
codes. These bounds are used to analyze binary duadic codes of
length <241.

At the end of Chapter 8, we give a table of all these codes.



Chapter 1 : Introduction to error-correcting codes

In this chapter we give a short introduction to coding theory. For a

more extensive treatment the reader is referred to [10,12].

Section 1.1 : Definitions

Let q be a prime power, and let GF(g) be the field consisting of q
elements.

A code C of length n over GF(q) is a subset of the vector space

(GF(q))n. The elements of C are called codewords.

A k-dimensional subspace of (GF(q))n is called a linear code. We call
such a code a g-ary [n,k] code.

If x is a vector, then the weight wt(i) of x, is the number of its
non-zero coordinates. The distance d(x,y) of two vectors x and y,

is the number of coordinates in which they differ. Note that
d(x,y)=wt(x-y).

If C is a code, then the minimum distance d of C is defined as

d:=min{d(x,y) |x,y€C,xty}.

If C is a linear code, then the minimum distance d of C equals the
minimum non-zero weight, i.e., d=min{wt(§j]§§C,§f9}.

An [n,k] code with minimum distance d is denoted an [n,k,d] code.
A vector x in (GF(q))n is called even-like if 2 %, = 0, otherwise

it is called odd-like. If a code contains only even-like vectors,

then it is called an even-like code.

If q=2, then an even-like vector has even weight, and an odd-like
vector has odd weight.

Let C be an [n,k] code over GF(q).

The extended code C is the [n+1,k] code defined by

n+}
C := {(xl,xz,...,xnﬂ)l(x!,xz,...,xn)GC,iElxi = 0}.

Note that C is an even-like code.

The dual code C' of C is defined as
1 . .
C o:= {Eﬁ(GF(q))n}VYEC[(§,g}=0]}, where ( , ) is the usual inner-

— .l- ™ R
product, (§,z)—x]yl+x2y2+...+xnyn. C” is an [n,n-k] code.
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L . , L
If C=C", then the code C is called self~orthogonal, and if C=C ,

then C is called self-dual,

A generator matrix for C is a k x n matrix G, whose rows are a basis

. . . . L
for C. A parity check matrix H for C is a generator matrix for C,

The matrices G and H satisfy G.HT=O.
Note that x€C iff Hx' =0.

Section 1.2 : Cyclic codes

A linear code C of length n is called cyclic if

v [(c__,scqs-vesc__,)EC].
(co,c1,...,cn_1)€C n-1°0 n-2

Now make the following identification between (GF(q))n and the residue

class ring GF(q)[x]1/(x"-1) :

n 2 -1 n
(cgscyseere DEGF(@) " 2 cote xte, X+ te X €GF(q) [x}/(x"-1).

Then we can interpret a linear code as a subset of GF(q)[x]/(x"-1).

(1.2.1) Theorem : A linear code C of length n over GF(q) is cyclic
iff C is an ideal in GF(q)[x]/"-1).

We shall only consider cyclic codes of length n over GF(q) where (n,q)=1.

Let C be a cyclic code in (GF(q))n, and let g(x) be the unique monic
polynomial of lowest degree in C. Then the ideal € is generated by
g{x), i.e.,

C = <g(x)> := {a(x)g(x) mod (x"-1)|a(x)€GF(q)[x]}.

The polynomial g(x) is called the generator polynomial of C. If C

has dimension k, then g(x) has degree n-k. Note that g(x) is a divisor
of x'-1. It follows that there is a polynomial h(x), called the

check polynomial of C, such that x"-1 = g(x)h(x) (in GF(q)[x]).

This gives : c(x)€C iff c(x)h(x) = 0 ( in GF(q)[x]/(x"=1)).

The dual code of C equals <h(x)>¢; which is obtained from <h(x)>,

by reversing the order of the symbols.
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Let o be a primitive n-th root of unity in an extension field of GF(q),
and let S < {0,1,...,n~1}. We can define a cyclic code C of length n
over GF(q) as follows :

c(X)EC iff c(ab)=0, i3

(and every cyclic code can be defined in this way).

The set {ai‘iES} is called a defining set for C. If this set is the
maximal defining set for €, then it is called complete.

Note that if A is a complete defining set, we have atea = altea.

(1.2.2) Lemma : If a cyclic code C contains an odd-like vector, then

it also contains the all-one vector j(x).

Proof: Let g(x) resp. h(x) be the generator resp. check polynomial of C.
Since C contains an odd-like vector, we have g(1)#0, and hence h{1)=0.

n

So j(x) = 2__'1_1 = _1_1(%(_}_ -g(x) € C.

Section 1.3 : The idempotent of a cyclic code

(1.3.1) Theorem : A cyclic code C contains a unique codeword e(x),

which is an identity element for C.

Since (e(x))2 = e(x), this codeword is called the idempotent of C.
Furthermore, the code C is generated by e(x), since all codewords

c(x) can be written as c{x)e(x).

(1.3.2) Theorem : If C1 and 02 are cyclic codes with idempotents

ei(x) and ez(x), then
(1) C, N C, has idempotent e1(x)e2(x),

(ii) C, + C, has idempotent eg(x) + ez(x) - ej(X)ez(X)-

Let a be a primitive n-th root of unity in an extension field of GF(q),
and let C be the cyclic code of length n over GF{(q) with complete
defining set {a|i€S}.



(1.3.3) Theorem : If e(x) € GF(q)[x]/(x"-1), then e(x) is the idempotent
of C iff
e(a’) =0 if i€S, and e(a’) =1 if i€{0,1,...,n-11\S.

Proof : (i) Suppose e(ar) =0 if i€S, and e(a’) =1 if i€T:={0,1,...,n~11\S.
Let g(x) := M (x-a') (g(x) is the generator polynomial of C).
1€S

Then g(x) divides e(x), so e(x) € C.

. n

1 x -1 .. .
Let b =TT (%~ = . Then h divid 1 there is a
et h(x) iET(x a’) ) en h(x) divides 1-e(x), so the
polynomial b(x), such that t-e(x) = b(x)h(x).
Let a(x)g{(x) be a codeword in €. Then a(x)g{x)e(x) = a(x)g(x) mod (x"=1) .
Hence e(x) is an identity element for C.
(i1) If e(x) is the idempotent of C, then (e(x))2=eix),ané e(x)

generates the code.



Chapter 2 : Duadic codes

In this chapter we define duadic codes over GF(q) in terms of their
generator polynomials. We show that in the binary case our definition
is equivalent to that of Leon,Masley and Pless [6], who defined
binary duadic codes in terms of their idempotents.

Furthermore we investigate for which lengths duadic codes exist, and
we give some examples. In the last section of this chapter we give

a construction of duadic codes of composite length with a low minimum

distance.

Section 2.1 : Definition of duadic codes

Let q be a prime power, and let n be an odd integer, such that (n,q)=1.

If 0<i<n, then the cyclotomic coset of i mod n is the set

C, := {i,qi mod n,qzi mod n,q3i mod n,...}.

If a is an integer such that (a,n)=1, then g denotes the

permutation i - ai mod n.

(2.1.1) Definition : Let 81 and 82 be unions of cyclotomic cosets
mod n, such that S1 N 82 = () and S1 U 82 = {1,2,...,n=1},
Suppose there is an a, (a,n)=1, such that the permutation My

interchanges S1 and 82.

Then ua:81 B 82 ig called a splitting mod n.

Let a be a primitive n-th root of unity in an extension field of GF(qg),

and let ua:S1 S, bea splitting mod n.

2

Define g1(x) :=.ﬂ (x-ql), gz(x) :=.ﬂ (x—al).
i€ 1 1€52

Note that g1(x) and gz(x) are polynomials in GF(q){x], since

S

_ gk(xq) = (gk(x))q, k=1,2.

(2.1.2) Definition : A cyclic code of length n over GF(q) is called a
duadic code if its generator polynomial is one of the following:

g, (x), g,(x), (x-1)g, (x) or (x-1g,(x).
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(2.1.3) Example : Let n be an odd prime, such that q=0 mod n (i.e.,
there is an x#0 mod n, such that qﬁxz mod n; if such an x#0 mod n
does not exist, then we write g=¢ mod n).

Now take S  := {O<i<n|i=o mod n}, S, := {O<i<n|i=@ mod n}.

i 2

Since g=0 mod n, the sets S] and S2 are unions of cyclotomic cosets

mod n.

Let 3682, Then ua:S] b 82 is a splitting mod n, and the corresponding

duadic codes are quadratic residue codes (QR codes, cf. [10]).

Now let g=2.We shall show that Definition (2.1.2) is equivalent to the
definition of Leon,Masley and Pless in [6].

Let na:T < T, be a splitting mod n, and define

1

x*  (these are polynomials in GF(2)[x]).
2
Note that (ek(x)) = ek(x), k=1,2.

(2.1.4) Definition (Leon,Masley,Pless) :
A binary cyclic code of length n is called a duadic code if
its idempotent is ome of the following:

e](x), ez(x), l+e1(x) or ]+ez(x).

(2.1.5) Theorem : A binary cyclic code is duadic according to (2.1.2)

iff it is duadic according to (2.1.4).

Proof : Let o be a primitive n-th root of unity in an extension field
of GF(2).

(i) Let ua:S1 szZ be a splitting mod n, and let Ck be the duadic
code (according‘to (2.1.2)) with generator polynomial

gk(X) =11 (x~al), k=1,2. Suppose the code C, has idempotent

. k
1€Sk

ek(x) = % xl, k=1,2.
iETk

Since C1 n C2 = <g](x)g2(x)> = <j(x)> has idempotent j(x), we have

e](x)ez(x} = j(x).

Now dim(C1+Cz) = dimC, + dimC

i 9 dlm(Cl n Cz) = n,



so Cl+02=(GF(2))n. Comparing idempotents we find

e](x)+e2(x)+e](x)ez(x)nl, and hence

e](x)+e2(x) = x+x2+x3+...+xn_}.

It follows that T \{0} nT \{0} = ¢ and T \{O} UurT \{0} = {1,2,...,n-1}.
It is obv1ous that T and Tz are unions of cyclotomic cosets mod n.
Since e (a ){ 0 1f 1€Sz,

1if i€{0,1,2,...,0-11N8,,
we have ez(x) = e}(x?) (cf. Theorem (1.3.3)).
We have shown that ua:Tl\{O} P Tz\{O} is a splitting mod n, and hence
C, and C, are duadic codes according to (2.1.4).
By comparing zeros, we see that the duadic codes generated by (x—l)g](x)
resp. (x-l)gz(x) have idempotents 1+e2(x) resp. 1+e1(x), and hence
they are duadic codes according to (2.1.4).

(ii) Let ua:T ZT, be a splitting mod n, and let C,_ be the duadic

1 2 k
code (according to (2.1.4)) with idempotent ek(x) =g+ I xl, k=1,2
(e €GF(2) is chosen such that ek(x) has odd weight). leTk

Note that e, (x)+e X)=1+j (%) .

0

Suppose the code Ck has complete defining set {a 1168 }, k=1,2.
Obviously Sl and 82 are unions of cyclotomic cosets mod n, and 0€Sk,
k=1,2.

Since e (ai)+e (ai)=]+j(ai)=1 (i#0), we have S
5, U s, {1 2,...,n 1}

If 1€S], then ez(a ) =e, (a ) =0, so 3168

| n Sz=¢, and

It follows that ua.S1 2 82 is a Spllttlng mod n, so C1 and C2 are

duadic codes according to (2.1.2).
Let Ci resp. Cé be the duadic code with idempotent 1+e2(x) resp.

l+e1(x). By comparing zeros we see that C

k

of Ck’ S0 Cﬁ is duadic according to (2.1.2), k=1,2, o

is the even weight subcode

(2.1.6) Remark : In [14] Pless introduced a class of cyclic codes
over GF(4), called Q=codes, in terms of their idempotents. In the
same way as in Theorem (2.1.5) it can be shown that these codes are

duadic codes over GF(4) and vice versa.
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The next theorem tells us for which lengths duadic codes exist.

Again, let q be a prime power.

{2.1.7) Theorem : Let n = p?'pg‘... pEkbe the prime factorization
of the odd integer n.
A splitting mod n exists (and hence duadic codes of length n

over GF(q)) iff ¢=0 mod Pss i=1,2,...,k.
Before proving this theorem, we give some lemmas.

(2.1.8) Lemma : Let p be an odd prime.
A splitting mod p exists iff g=00 mod p.

Proof : (i) In (2.1.3) we have seen that a splitting mod p exists

if g=0 mod p.

(ii) Suppose a splitting mod p exists.

Let N be the number of non-zero cyclotomic cosets mod p, then N must
be even. Let G be the cyclic multipliecative group of GF(p), and let
H be the subgroup of G generated by gq. Let Q be the subgroup of G

consisting of the squares mod p. Note that each coset mod p contains |H| element

-

Then we have |G| = N.|H| = 2|Q|, and hence |H| divides |Q
Because a cyclic group contains for each divisor d of its order
exactly one subgroup of order d, we see that H is a subgroup of Q.

We have shown that q€Q, i.e. q=0 mod p,. u

(2.1.9) Lemma : Let p be an odd prime, such that g=pD mod p, and let

m>l. Then there is a splitting mod pm.

Proof : The proof is by induction on m.
For m=1 the assertion follows from Lemma (2.1.8).

Now let u,:s e S, be a splitting mod p", and let w:T be T, be a

1 1
splitting mod p (remark that both splittings are given by ua).

Define R_:= {ip|i€s, } U {i+jp]i€1‘k,0sj<pm}, k=1,2.

. . . . +
It 1s easy to show that pa:R] z R2 is a splitting mod pm ]. o
(2.1.10) Lemma : Let 1 and m be odd integers, (l,m)=1, such that

splittings mod 1 and mod m exist.

Then there is a splitting mod 1m.
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Proof : Let ua:S1 P 82 mod 1 and ub:T] b T2 mod m be splittings.
Define R := {im]iESk} u {i+jm|i€Tk,Osj<1}, k=1,2.

Choose ¢ such that c=a mod 1, c=b mod m (such a ¢ exists by the
Chinese Remainder Theorem). Note that (c,lm)=l.

Then uC:R] <R, is a splitting mod 1lm. a

2

Proof of Theorem (2.1.7) :
(1) Suppose g=0 mod ;s i=1,2,...,k. From Lemmas (2.1.9) and (2.1.10)

it follows that a splitting mod n exists.

(ii) Let ua:S e 82 be a splitting mod n, and let p be a prime, p[n.

1
Choose m such that n=pm.

Now define T, := {1Si<p[im€Sk}, k=1,2. Then ua:T1 T, is a splitting

k 2
mod p, and then Lemma (2.1.8) shows that g=0 mod p. o
. - m‘ m; mk . - .
(2.1.11) Examples : Let n = PRSP be the prime factorization of

the odd integer n.

(i) Binary duadic codes of length n exist iff pistl mod 8, i=1,2,...,k.

(ii) Ternary duadic codes of length n exist iff piﬁtl mod 12,
i=1,2,...,k.

(iii) Duadic codes of length n over GF(4) exist for all odd n.

(2.1.12) Theorem : Let n = p?'pgl... ptkbe the prime factorization
of the odd integer n. Let q be a prime power such that {(n,q)=1.

Then q=0 mod n iff g¢=0 mod P;> i=1,2,...,k.
We shall first prove the following lemma.

(2.1.13) Lemma : Let p be an odd prime such that pfq, and let m21.

If gq=0 mod pm, then ¢=0 mod pm+}.

Proof : Suppose g=0 mod pm. Then there are integers x and k, such
that g = x2+kpm. Now choose t such that 2xt=k mod p (note that (p,q)=1,

and hence (p,x)=1). Then qs(x+tpm)2 mod pm+1. o

Proof of Theorem (2.1.12)

Suppose =0 mod P> i=1,2,...,k. Then, by Lemma (2.1.13), we have
q=0 mod p?i i=1,2,...,k.

So there are integers Xss such that qsxi mod p?& i=1,2,...,k.

By the Chinese Remainder Theorem, there is an integer x, such that

= m, - My - My
X=X, mod Pys X=X, mod Pos eov 5 XEX mod Py -
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Then qsx2 mod p?é i=1,2,...,k, and hence quz mod n,

The converse 1s obvious,

(2.1.14) Corollary : Duadic codes of length n over GF(q) exist iff

q=0 mod n.

Section 2.2 : Examples of duadic codes

In the last section we saw that QR codes of prime length over GF(q)
are duadic codes. We now give some other examples. For a list of

binary duadic codes the reader is referred to Chapter 8.

(2.2.1) We take q=2r, n=q~1.

Remark that each cyclotomic coset mod n contains exactly one element.

. . o} Lon+l . . + .
Now let S1 e {1]1$1$~§—}, 5, := {1[—5—51Sn~1}. Then uq.S1 <8, is
a splitting mod n. The corresponding duadic codes of length n over

+
GF(q) are Reed-Solomon codes with minimum distance Eii (cf. [10D).

(2.2.2) Again take q=2r. Let m be odd, n:=qm~1‘

Let cq(i) be the sum of the’digits of i, if 1 is written in the q-ary
number system. We define
5, := {1si<n1cq(i)_m(q;>“,‘},, 5, = {1si<n|cq(i)£§i’2:l2l‘_‘.}.

Since cq(i) = cq(qi mod n), the sets S1 and 82 are unions of
cyclotomic cosets mod n.

Since cq(—i mod n) = m(q-])*cq(i), the sets S] and S2 are interchanged
by Hoye

Hence we have a splitting u"I:S] z s, mod n.

The corresponding duadic codes are punctured generalized Reed-Muller
codes RM(m’Q_‘(q‘__%_i_):_l_ Pm-1)
(cf. [9]).

If we take m=1, then we get the Reed-Solomon codes of (2.2.1).

,@)" with minimum distance }(q+2)q

-1 *
If g=2, we get the punctured Reed~Muller codes RM(9§~,m)
with minimum distance 2%(m+1) -1 {ecf. [12D).

(2.2.3) Theorem : Let C be a cyclic code of length n over GF(q), and
suppose that the extended code C is self-dual. Then C is a

duadic code , and the splitting is given by u_ye
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Proof : Let a be a primitive n—th root of unity, and let {aiIiES]}
be the complete defining set of C.

If 0€S,, then C is an even-like code, so it is an [n,E%i] self-dual
code, which is impossible. Hence OQS]. .
The code €' has complete defining set {a_1|i€sz U {0}}, where

S, = {1,2,...,n—1?\sl.

Let C' be the even~like subcode of C. Since C is self-dual, we have

c' «ct , and hence C' = ct {(note that dimC'=dimCl).

If we compare the defining sets of C' and Cl, we see that SQE-S mod n.

]

Hence u_I:S1 b 82 is a splitting mod n, which shows that C is a duadic

code. s}

Section 2.3 : A construction of duadic codes of composite length

Let BT, z T, mod 1 and iU, z U, mod m be splittings (both splittings
are given by ua).

Let o be a primitive n-th root of unity in an extension field of

GF(q), where n:=1m.

Then 8:=a1 is a primitive m—th root of unity.

Let C0 be the eYen-like duadic code of length m over GF(q) with complete
defining set {BlliGU1 U {0}} and minimum distance d.

We shall construct a duadic code of length n with minimum distance <d.
If we take 8, i= {im’i€Tk} U {i+jm|i€Uk,D$j<1}, k=1,2, then we have

a splitting ua:S1 pa 82 mod n.

Let C be the duadic code of length n over GF(q) with complete defining

set {alliESI}.
(2.3.1) Theorem : The code C has minimum distance =d.

Proof : Ler CO(X) be a codeword in C, of weight d. Then the word

c(x) := cO(xl) € GF(q)[x]Z(xn-i) alsg has weight d.

Note that c(ak)=c0(akl)'c0(8k)o

Let kES]. i

(i) If k=im mod n, where i€T], then c(ak)=c0(ﬁlm)=c0(l)=9.
(ii) If kei+jm mod n, where i€U,, 0<j<1, then c(a*)=c  (8")=0.

It follows that c(x) is a codeword in C. o
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(2.3.2) Remark : Since the codeword c(x) in the proof is even-like,

we see that the even—~like subcode of C also has minimum distance <d.

(2.3.3) Theorem : Let 1 and m be odd integers, (1,m)=1, and suppose
that splittings mod 1 and mod m exist. If an even-like duadic
code of length m has minimum distance d, then there is a

duadic code of length n:=lm with minimum distance =d.

Proof : Let M, Tesp. W give splittings mod 1 resp. mod m.

Choose c such that c=a mod 1, c=b mod m, and continue as on page Il. O

(2.3.4) Examples : (i) Take q=2, n divisible by 7 (we suppose that
duadic codes of length n exist).

Write n=7km, 7 .

The even-weight duadic code of length 7 has minimum distance 4.
According to (2.3.1) and (2.3.2) there is an even-weight duadic code
of length ?k with minimum distance <4,

If we apply Theorem (2.3.3) (suppose that m>1), we get a duadic code

of length n with minimum distance <4.

(ii) Now we take g=4, and n divisible by 3.
In the same way it can be shown that there is a duadic code of length

n over GF(4) with minimum distance <3.

In Chapter 7 we shall study binary duadic codes with minimum distance

4, and duadic codes over GF{(4) with minimum distance 3.
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Chapter 3 : Properties of duadic codes

In this chapter we generalize the results about binary duadic codes

from [7].

Section 3,1 : Some general theorems

Let ua:S] <5, be a splitting mod n, and let o be a primitive n-th

2
root of unity in an extension field of GF(q).

Let Ck be the duadic code of length n over GF(q) with defining set
{a1|i€Sk}, and with even-like subcode C!. Let ek(x) be the idempotent

k
of Ck (k=1,2).

(3.1.1) : Theorem :

—

n+1 n-

. . _n+l v _n-1

(1) dim Ck = =5 dim Ck 5 k=1,2.

(ii) ¢, N C, =<I>, C + = (GF(g)".

(iii) Ci n Cé = {0}, C' + C' {c€(GF(q)) |c even-like}l.

(iv) Ck = Cﬂ 1 <I>, k—],2 (1 denotes an orthogonal direct
sum).

(v) e](x)ez(x) = %j(x) (%-is the multiplicative inverse of

n = l+1+,..+1 in GF(qg)).

< n >
(vi) e, () *+ ey(x) = 1 + %j ).

(vii) C{

]

has idempotent l-ez(x), C,

has idempotent l—e](x).
Proof : (i) is obvious.

(ii) C] n C2 has defining set {al'i=1,2,...,n—l}, which shows that

C] n C2 = <1>. From dim (C]+C2)=dim C]+dim Cz—dim (C1 n C2)=n, it
follows that C]+C2=(GF(q))n. The proof of (iii) is the same.

(iv) Since C, contains odd-like vectors, we have lﬁCk, and so

k
Cé+§l> < Ck' The code Cé contains only even-like vectors, so
Cl'c N <1> = {0}. It follows that dim (C1'<+<l>)=dim Cp -
Since for all EﬁCﬂ, (c,1)=0, we have proved that Ci L <> = Ck’ k=1,2.

(v) and (vi) follow from (ii), (iii) and Theorem (1.3.2).
(vii) follows from Theorem (1.3.3).

(3.1.2) Theorem : The codes Ck and Cé are dual iff W gives the
splitting (k=1,2).
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Proof : Compare the defining sets of Cé and Ci. o

(3.1.3) Theorem : The codes C, and Cé are dual iff u_, leaves them

invariant.

Proof : Compare the defining sets of Ci and Cé. o

(3.1.4) Theorem : Let c be an odd-like codeword in C, with weight d.
Then the following holds:

(i) d%n.

Now suppose the splitting is given by Wy Then

(ii) d*-d+i>n,

(iii) if =2 and dzﬁd+1>n, then d2~d+12n+12,

k

(iv) if q=2, then d=n mod 4, and all weights in Cﬁ are divisible
by 4.

Proof : The proofs of (i),(ii) and (iii) are the same as for QR codes
(ef. [101,0[17D).

(iv) We know that n=t! mod 8 (from (2.1.11)). From Definition (2.1.4)
ntl n-1 Since
7 OT —5—-

this idempotent must have even weight, it follows that it has weight

it follows that the idempotent of Cé has weight

divisible by 4. Using Theorem (3.1.2), we see that Cé is self-orthogonal.

Hence all weights in Cé are divisible by 4.

There is a codeword ¢' in Cé such that c=c'+] (cf. Theorem (3.1.1)(iv)).

So d=wt(gf)+wt(l)—2(s’{l)5n mod 4. o

In Chapter 6 we shall consider duadic codes for which equality holds
in (3.1.4)(i1).

Section 3.2 : Splittings and the permutation u -1

In this section we investigate when a splitting is given by Hoys and
also when a splitting is left invariant by LI In both cases we know
the duals of the corresponding duadic codes by Theorems (3.1.2) and
(3.1.3).

(3.2.1) Notations : If a and n are integers, (a,n)=l, then ordn(a)

denotes the multiplicative order of a mod n.
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If p is a prime and m a positive integer, then we denote by vp(m)

the exponent to which p appears in the prime factorization of m.
The proof of the following theorem can be found in [8].

(3.2.2) Theorem : Let p be an odd prime, and let a be an integer
such that pya. Let t:=ordP(a), z:=vp(at—1), i.e.
pzu(at~]). Then

= t if msz,
ordpm(a) —z

= tp if m2z.

(3.2.3) Lemma : Let n = p?'p?*... p,¥be the prime factorization of

m

k

the odd integer n (assume that the pi's are distinct primes).

Let a be an integer such that (a,n)=l.

Then the following holds:

(1) ordn(a) = 1cm(ordpm£a))i=l
i

(ii) v,(oxd (a)) = vz(lcm(ordpi(a))i=;,2,,,‘,1()‘

3 2,..0,k?

Proof : (i) is obvious. The proof of (ii) follows from (3.2.2). n}
The following trivial lemma will be used several times.

(3.2.4) Lemma : If uy gives a splitting, then n i gives the same
splitting if i is odd, and it leaves

the splitting invariant if i is even.

(3.2.5) Remark : Let B8, < S, be a splitting mod n, where n=km,

k>1, m>1.

Define S(k) := {I<i<n|(i,n)=k}.

Since (a,n)=1, the permutation Wy acts on S(k), i.e. 1f i€S(k), then
ai mod n €S(k). So there are disjoint subsets Si,m of S(k) N Si’ i=1,2,
with S(k)=81’m U Sz,m, which are interchanged by .

If m is a prime, this splitting of S(k) looks like a splitting mod m,
except that all the elements of S{k) are multiples of k.
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(3.2.6) Lemma : Let n = p?‘pg‘... pzkbe the prime factorization of

the odd integer n, and let pa:S Zs, be a splitting mod n.

Let r:=ordn(a). Then the follow;ng hilds:

(i) r is even,

(ii) v gives the same splitting as L iff r=2 wmod 4,
(1ii) if M leaves the splitting invariant, then

ord  (a)=0 mod 4, i=1,2,...,k,
Py
{(iv) suppose vz(ordp'(a)) is the same for each i, say v,
i
then u gives the same splitting as L if v=1, and

by leaves the splitting invariant if v>1.

Proof : (i) follows from Lemma (3.2.4).

(ii) Suppose r=2 mod 4, i,e. u:=

[

iz odd. Let 1<£isgk, pi=p;, mi=m,.

Since “a gives the same splitting as u we ve see that u
a a

interchanges S and S (using the notation of (3.2.5)), and hence

u 1,p 2,p

a #1 med p.

We know that azusl mod p, so a’=-1 mod p. Now from azuzl mod pm and
since p cannot divide both a“+1 and a"-1, it follows that a"s-1 mod p"
Hence a“=-1 mod n, and My gives the same splitting as H_ye

Conversely suppose that v gives the same splitting as M_ge
Suppose r=0 mod 4.
By Lemma (3.2.3)(ii), there is an i, such that ordp(a)=4w for some w

. 2w_ .
(again p.—pi). Now a~ =-1 mod p, s0 u . interchanges Sl,p and SZ,p’

since L does. On the other hand (by Lemma (3.2.4)) u 2w leaves Sl’
a

and hence S! P’ invariant. So we have a contradiction.
»
(iii) Suppose B, leaves the splitting invariant.

Let Isigk, P:=p,, s:=ordp(a). We know that s is even, s=2t.

Then a‘=-1 mod P, so n  leaves §, P invariant, since u_, does.
a >

Lemma (3.2.4) shows that t is even, and hence s=0 mod 4.

(iv) Suppose v:=v2(ordp (a)) is the same for each i.
i
If v=1, then by Lemma (3.2.3)(ii) we have r=2 mod 4, so M, gives the

same splitting as H_ye

Suppose v>l. For each i there is an odd W, such that ord mga)=2vwi.
¢

2v—1w~ m§ i
¢ o=
=-1 mod P;* -1

1= v = - t.ﬂ.i
Let w: 1cm(wi)i=l,2,...,k' Then 2w ordn(a), and a 1 mod p;

It follows that a

for each 1i.

-1
So az Y=_1 mod n. Since szlw is even, u leaves the splitting

-1
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invariant. S =
(3.2.7) Theorem : Let n = p?'p?‘... pi“ be the prime factorization
of the odd integer n, such that g=0 mod P;> piE—l mod 4,
i=1,2,...,k.

Then all splittings mod n are given by u_,.

Proof : Let By give a splitting mod n, and let r:=ordn(a).

By Lemma (3.2.6) it suffices to show that r=2 mod 4.

Let 1<isk, P:=p;- We saw in (3.2.5) that My aits like a splitting
on S(%D. Hence s.=ordp(a) is even, and a?®=-1 mod p.

Since ~1=¢ mod p, it follows that = is odd.

2
Then Lemma (3.2,3)(ii) shows that r=2 mod 4. o

(3.2.8) Theorem : Let n be as in Theorem (3.2.7), except that at
least omne pizl mod 4.

Then there is a splitting mod n, which is not given by Moy

Proof : Suppose that plél mod 4.
Let niEﬁ mod Pi» i=1,2,...,k.

Let asn, mod p?a » i=1,2,...,k (such an a exists by the Chinese

Remainder Theorem).

Suppose there is an i such that pi[a. Then niaaEO mod p;s but

ni§¢ mod p;- So (a,n)=1.

Now consider W, as acting on the non-zero cyclotomic cosets mod n.

Then each orbit of v, has an even number of cvclotomic cosets:

Let I<x<n, b and m integers such that abxsqu mod n,S0 we have an orbit of b cosets.
Write x=yz, n=uz, (y,u)=1. Then u#l, and (ah~qm)y30 mod u.

Choose i such that pi]u, then (ab—qm)yEO mod P;-

Since (y,u)=l, we have ahsqm mod p;- Since a=@ mod 12 and

g=0 mod p;s we see that b is even.

Hence there are splittings given by M-

Let ua:S1 z 82 be such a splitting.
Then p_ interchanges 8 and § . Let kr=ord (a).
a g ,l’pl 2)p1 p]( )
Then k is even, and aiks—l mod p;- Since —1=0 mod pl,'§ must be even.
Hence u (8 )=8 , and U . cannot give the same splitting as p . O
-1 1ap1 ]’pl -1 a
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(3.2.9) Theorem : Let p=1 mod 4 be a prime, such that ¢=0 mod p,
and let m=].
Then either a splitting mod p" is given by W_ys OT it is

left invariant by M_ge
Proof ¢ This follows from Lemma (3.2.6) (iv).

(3.2.10) Theorem : Let n = p?'p?*... pgk be the prime factorization
of the odd integer n, such that g=0 mod P i=1,2,...,k.
Suppose there is an integer b, such that nl(qb*l).
Then p;=1 mod 4, i=1,2,...,k, and each splitting mod n is

left invariant by Moy

Proof : Since qbiwl mod Py, we have -1=0 mod P;>s and hence pisl mod 4.
Each cyclotomic coset mod n is left invariant by M_y> SO M_y leaves

each splitting mod n invariant.
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Chapter 4 : Duadic codes of length a prime power

In this chapter we give an upper bound for the minimum distance of
duadic codes of length a prime power. In a special case we can
strengthen this upper bound, and also give a lower bound for the
minimum distance. As a consequence, we can determine the minimum

distance of duadic codes of length pm for several values of p.

Section 4.1 : The general upper bound

Let p be an odd prime, q a prime power, (p,q)=l.
Let t:=ordp(q), and let z be such that pzh(qt~l).

Then, by Theorem (3.2,2), ord m(c1)=1;1:>m‘“Z if m2z,

p
Let m>z.

Now suppose i is an integer such that pfi, and let C; be the cyclotomic

coset mod p" which contains i, i.e. Ci={qu mod pmljZO}.
(4.1.1) Theorem : Ci + pz = Ci mod pm.

Proof : Let j20. We shall prove that qu + pz € Ci'
1
If k and k' are integers such that qktqu t mod pm,

(k-k")¢t -2z

then q =1 mod p", so tpm.zl(k—k’)t. It follows that ksk' mod p °.

m—z_l, are different mod pm.
z

WP

Then as k=0,l,2,...,pmﬁz~l, are different mod pmuz. Hence there is a

So the integers qkt~1, k=0,1,2,...,p

Now choose integers s k=0,1,2,...,pm—z~1, such that qkt~1=a

k, such that aksq—Ji—l mod pm—z (q—J and i-‘1 are inverses mod pm).
kt -3.-
Then q -1 = akpz = g I3 lpz mod pm, and hence
;| AkE.
qu + pz = qJ ktl mod pm. o

(4.1.2) Corollary

»e

If pmuzfi, then Ci + pm_l = Ci mod Pm‘

Let ua:S1 < 32 be a splitting mod n, where n:=pm, and let avbe a
primitive n~th root of unity in an extension field of GF(g).

Le? C be the duadic code of length n over GF(q) with defining set
{al]i€81} and with idempotent e(x).



- 20 -

Since e(xq)=(e(x))q=e(x}, we can write e(x) as

e{x) = X e, Z xJ , eiEGF(q), where 1 runs through a set of
i jECi

cyclotomic coset representatives.
m-1
Now consider the codeword c(x):=(1-xp Ye(x).

Corollary (4.1.2) shows that
-

1 .
e(x) = (1I-x° )} e. yx . Assume w.l.0.g. that 1€S,.
m*z[ . j€C.

1

Since c(a®)=(1-4°P Y#0, we have c(x)#0.

It is obvious that c(x) has weight sz. We have proved:

(4.1.3) Theorem : Let p be an odd prime, q a prime power, such that
g=0 mod p. Let t:=ordp(q), and let z be such that pzﬂ(qt—l).
Then -all duadic codes of length P, m>z, have minimum

. z
distance <p .

Section 4.2 : The case z=]

In this section p is an odd prime, q a prime power, such that q=0 mod p.

Furthermore, t:=ordp(q), and we assume that pzl(qt~l).

Let m>1.

(k) . K .. C
We denote by Ci the cyclotomic coset mod p which contains 1.
(4.2.1) Lemma : If pfi, then Céi) c Cﬁm).

(1)
i
Choose integers as s=0,1,2,.4.,p

, and let k be an integer such that quki mod p.
w1

Proof : Let j€EC
-1, such that qStulnaSp.
In the proof of Theorem (4.1.1) we have seen that the integers a s

S=0,],2,...,pm—1—1, are different mod pm_].

-k - Sy 3 - .1
So there is an s, such that a =4 ki 1( A_ﬂmi_) mod pm-] (q k and 1
. m-1 P
are inverses mod p ).

Then qk+8ti = qki (1+asp) = j mod p", and hence j€C(m)

. B 8]
1
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Let ua:S] z S2 be a splitting mod n, where n:=pm, and define

S! := {i€S

N k]1si<p}, k=1,2.

(4.2.2) Lemma : ua:s‘ s S§' is a splitting mod p.

1 2
. : 1 : (1) (m)
Proof : Let 1€Sl. From Lemma (4.2.1) it follows that Ci c Ci c Sl’
: t : (N (m) . T AD
50 qi mod p € S]. Since Cai L Cai < 82, we have al mod p € Sz.

Let a be a primitive n-th root of unity in an extension field of GF(q).
m-1
Then §:=af is a primitive p~th root of unity. We define

C as the duadic code of length n with defining set {alliESl} and

minimum distance d,

C' as the duadic code of length p with defining set {BlliESi} and

minimum distance d',

and C" as the even~like subcode of C', with minimum distance d4".
(4.2.3) Theorem : We have d'<dsd".

Proof : Let e(x) be the idempotent of C, e(x) = E e, z %3 . eiEGF(q),
i jEC. '
i

i runs through a set of cyclotomic coset representatives.
(i) Consider the codeword (of C)

m—1 m—1 .
c{x) := (1~-xp Ye(x) = (1-—xp ) z e, X %3 (cf. page 20).
m-1 l . jGCi

i:p i

c(x) has (possibly) non-zeros only on positions =0 mod pm?].

-1
. . * .
Now define a mew variable y:=xp , and let ¢ (y):=c(x), a vector in

GF(q) [y1/ (yP-1).
Let C* be the cyclic code of length p over GF(gq), generated by c*(y).

If we show that C = C", then we have proved that d<d".
o kgdy L x, ip™ i ™! i .
Since ¢ (B7) = ¢ (a Yy = ¢c{a”) = {I-a Ye(a ) =0 if 168; U {0},
#0 if 1i€8!,

*
we have C < C".
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Let g(y) be the generator polynomial of C".

Since gcd(c*(y),yp-l) = g(y), there are polynomials a(y) and b(y)
* *

such that a(y)c” (3)+b (v) (¢P-1)=g(¥), so g(y)=a(y)c (y) mod (yP-1),

and hence C" < C*.

{1ii) Let C0 1= {(co,c a-1°C mep?cc oS m_l){(CO,cl,...,cn_I)EC}.
2p (p-Dp
If we show that Cy = C', then we have proved that d'<d.
We know that Ci + pm-l = Ci mod pm if pm_lfi {cf. Theorem (4.1.2)).
It follows that the idempotent e(x) of C looks like {r:=pm_])
position: ¢ 12 3...(c~1) |r]| (x+1)...Qr-1) | 2| ... [(p=D)x| (p~Dx+1l... (0~
e(x) : * o} * ..C. * * E.

where the *'s are elements of GF(q).

Let e'{x) := z e, z x , then e(ak)=e'(ak), k=0,1,2,...,n~1.
jECi

[

b 1

m-ll.
m=]
Again define y:=xp R e*{y):ce'(x) € GF(q)[y]/(yp—]).
Since e*(Bk) = e'(ak) = e(ak) = 0 if k€S{,
{? 1 if kESé u {0},
the polynomial e*(y) is the idempotent of C' {cf. Theorem (1.3.3)).

Hence C' © CO'

Now consider xke(x) on the positions =0 mod pm—], call this vector Sy
(Sk has length p):

a) if k#0 mod pm—l, then ¢, € <I>,

k
. m-1 k * '
b) if k=bp for some Osb<p, then ¢ =y'e (y) € C".
Since the code CO is generated by the vectors Sy k=0,1,2,...,0-1,

e <C',I> = C', o

we have proved that CO I
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Section 4.3 : Examples

(4.3.1) Theorem : Let p=t] mod 8 be a prime, such that ord (2)=<£§l,
and suppose that p ,f(Zz(p D -1).

Let d be the minimum distance of the binary even-weight

QR code of length p, and let m>1.

Then all binary duadic codes of length pm have minimum

distance d.

Proof : Since the only duadic codes of length p are QR codes,
Theorem (4.2.3) shows that duadic codes of length pm have minimum
distance d-1 or d (here we use the fact that‘the QR code of length p
has minimum distance d-1). From Theorem (3.1.4) it follows that this

minimum distance must be even.

(4.3.2) Example : All binary duadic codes of length 31m, m>1, have

minimum distance 8.

Proof : Duadic codes resp. even-weight duadic codes of length 31
have minimum distance 7 resp. 8. The assertion follows from
Theorems (3.1.4) and (4.2.3).

(4.3.3) Remark : Let g=2. In Section 4.2 we only consider primes p
such that p 1(2 -1}, where t—ord (2). This condition is very weak:

There are just two primes p < 6. ]09, such that Zp =] mod pZ:

p=1093, t=364, 2%=1 mod p2, 2%=1064432260 mod p>,

and

= t_ 2 .t 3
p=3511, t=1755, 2 =1 mod p~, 2 =21954602502 mod p
(cf. [15D).

(4.3.4) Take gq=4. Let n be an odd integer, such that ordn(2) is odd.
Th?n binary and quat§rnary cyclotomic cosets mod n are equal, i.e.
{271 mod n|jz0} = {471 mod n|j20} for each i.

It follows that a duadic code C of length n over GF(4) is generated
by binary vectors. Pless {ef. [14]) has shown that in this case the
code C has the same minimum distance as its binary subcode, which is

a duadic code over GF(2).
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(4.3.5) Example : All duadic codes of length 7m, m>1, over GF(4)

have minimum distance 4.

Proof : This follows from (4.3.1) and (4.3.4).

(4.3.6) Example : All duadic codes of length 3™ , m>1, over GF(4)
Lxamplie g

have minimum distance 3.

Proof : Let C be a duadic code of length 3™ over GF(4). Theorem (4.2.3)
shows that C has minimum distance d= 2 or 3.
By Theorem (3.1.4), minimum weight codewords are even-like.

Then the BCH bound (cf. (8.1.1)) gives d=3.
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Chapter 5 : Splittings and tournaments

In this chapter we study tournaments which are obtained from splittings

given by Moy First we give some theory about tournaments (cf. [16]).

Section 5.1 : Introduction

A complete graph Kn is a graph on n vertices, such that there is an

edge between any two vertices. If such a graph is directed, i.e.

each edge has a direction, then it is called a tournament.

If x is a vertex of a directed graph, then the in-degree, resp.
out—~degree, of x is the number of edges coming in, resp. going out

of x.

A tournament on n vertices is called regular if there is a constant k,
such that each vertex has in-degree and out-degree k. It is obvious

that in that case n=2k+]. The tournament is called doubly-regular

if the following holds. There is a constant t, such that for any

two vertices x and y (x#y), there are exactly t vertices z such that
both x and y dominate z (% dominates z if there is an edge pointing
from x to z). In that case the number of vertices equals n=4t+3,

so n=3 mod 4.

Note that a doubly-regular tournament is also regular.

Let T be a tournament on n vertices. We assume w.l.o.g. that the
vertices of T are {0,1,2,...,n—1}.
Now define the n x n matrix A by

1 if i dominates i,
A, = (0<i,j<n)
] 0 otherwise. :

This matrix is called the adjacency matrix of the tournament.

From the definition of a tournament it follows that
T
Gty A+ A"+ 1 =7,

(5.1.2) Lemma : If the tournament is regular, then
(i)AJ=JA=%—I-J,

(ii) ATa = aal,
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Proof : (i) follows from the definition of a regular tournament,

and (ii1) follows from (5.1.1).

(5.1.3) Lemma : The following statements are equivalent:
(i) The tournament is doubly-regular,
‘s T _ n+l n-3
(i1) AA -—'Z;-—-I+~T—J,
(iii) A% + A + E%l I =-3%l J.
Proof : Apply the definition, (5.1.1) and (5.1.2),

Section 5.2 : Tournaments obtained from splittings

Let n be odd, q a prime power.

Let p . :S z S, be a splitting mod n (S8, and S, are unions of
-1 2 & 1

1 2

cyclotomic cosets {i,qi,qzi,...} mod n).
Now define the directed graph T on the vertices {0,1,2,...,n-1} as

follows:
i dominates j iff (j=i) mod n € S].

The adjacency matrix A of T is a circulant, and
1 if jwiES],
Ai. =
3 Lo if j-i€s, U {0}.
From the definition of a splitting it follows that T is a regular
tournament. If T is doubly-regular, then the splitting is called

doubly-regular.,

(5.2.1) Example : Let p=3 mod 4 be a prime, and let q be a prime power
such that g=0 mod p.
Let S, := {1gi<p|i=0 mod p}, S, := {i<i<p|i=# mod p}.
Then U—I:SI Z 82 is a splitting mod p. Let A be the adjacency matrix
of the corresponding tournament.
The n x n matrix S defined by
I if j-i€S],
Sij ;=4 ~1 if j~i€82,
0 if i=3,
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is a Paley-matrix and satisfies SST =pl ~-J, S+ ST =0 (cf. [10]).
Since A = §(S + J - I), it follows that AA: = E%l I+ 2%2 J, and

hence the splitting u_I:S] b S2 is doubly-regular.

I have not been able to find any other doubly-regular splittings.

(5.2.2) Theorem : A splitting u_]:S1 pe S, mod n is doubly-regular

iff s, N ($;+k)| = 323-, k=1,2,...,n-1.

Bzggﬁ : This follows from Lemma (5.1.3)(ii).

We shall use this theorem to give a nonexistence theorem.

(5.2.3) Theorem : Let p be an odd prime, q a prime power such that
q=0 mod p, z an integer such that pZH(qt—]), where t=ordp(q).

Let m>z. Then there is no doubly-regular splitting mod p.

Proof : Let u_]:S pe 82 be a splitting mod pm, and define

1

T, := {i€s,|i=0 mod p" 1, S1 1= §NT .
From Corollary (4.1.2) it follows that S; + pm_] = S{ mod pm.
m z
m— 1 -1 p -1
Therefore |Slmﬂ (Sl +p )| = |Si| = ‘Sl‘ - |T1| = 27—— i
> B3 . Now apply Theorem (5.2.2).

A
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Chapter 6 : Duadic codes and cyclic projective planes

In this chapter we study duadic codes for which equality holds in
Theorem (3.1.4) (11). Such codes "contain" projective planes. We shall
explain what we mean by this.

If ¢ is a vector, then the set {iIci¢0} is called the support of c.
Now if a code contains codewords such that their supports are the

lines of a projective plane [l, then we say that the code contains TI.

Furthermore, we give an existence test for cyclic projective planes.

For the theory of projective planes, the reader is referred to [3].

Section 6.1 : Duadic codes which contain projective planes

Let C be a duadic code of length n over GF(q), and suppose the splitting
is given by Moy
e.

d
1
Let e(x) “izl €i*  be an odd-like codeword of weight d.

We know that d?-d+1>n.

(6.1.1) Theorem : If dz—d+l=n, then the following holds:
(i) The code C contains a projective plane of order d-1,
(1i) € has minimum distance d,

(1i1) ci=cj for all 1si,jsd.

Proof ¢ (i) From Theorem (3.1.1){(ii) it follows that there is an A
in GF(q), A#0, such that c(x)c(x )=A.j(x), so

e.-e.

Z c.e. x - 1 = A(x+x2+...+xn-]).

Since d(d-1)=n~1, all exponents 1,2,...,n-1, appear exactly once as
a difference e.-e..
1]

So the set D := {él,e ..,ed} is a difference set in Z mod n.

27"
Now call the elements of Z mod n points, and call the sets D + k,

k=0,1,2,...,n~1, lines. Then we have a projective plane of order d-1.
-e,
.. . . ) i .
(ii) Consider the d x n matrix M, with rows X c(x), i=1,2,...,d.

The O-th column of M contains nonzero elements.
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Since d2=d+n-l and c(x)c(xwz)=A.j(x), every other column of M contains
exactly one nonzero element.

Let C' be the even-like subcode of C.

We know that ¢l = ¢' (cf. Theorem(3.1.2)).

Let c'(x) be a codeword of C', and assume w.l.o.g. that ¢'(x) has a
nonzero on position O, Since every row of M has inner—product 0 with

c¢'(x), we see that c'(x) has weight = d+1.

(iii) Consider again the matrix M. Let I<i<j<ksd (remark that dz3).
Every column of M {(except the O-th) contains exactly one nonzero element,
and all these elements are of the form e .Co Since the sum of the rows

3 a = o= LSO, . [n]
of M equals A.j(x), we have Cicj ciep cjck A, so s cJ N
In [13], Pless showed that there is a binary duadic code which contains
a projective plane of order 2° if and only 1f s is odd.
Furthermore, she showed in [14], that if s is either odd or s=2 mod 4,
then there is a duadic code over GF(4) which contains a projective

plane of order 25,

Section 6.2 : An existence test for cyclic projective planes

Consider a cyclic projective plane of order n.

The incidence matrix of this plane is the (n2+n+l)x(n2+n+l) matrix A,

which has as its rows the characteristic vectors of the lines of the
plane.

Let p be a prime such that plln, and let t=1, q:=pt, :=n2+n+1.

Let C be the cyclic code of length N over GF(q) generated by the matrix A.
Bridges, Hall and Hayden [2] have shown that dim C = I—q:;--l—-anc‘\ ¢t ec.
(6.2.1) Theorem : C is a duadic code of length N over GF(q) with

minimum distance n+l, and the splitting is given by Wy

Proof : Let o be a primitive N-th root of unity in an extension field
of GF{q), and let {al]iESI} be the complete defining set of C. The rows
of the matrix A are odd-like, so OQSI.

1 -1y,
The code C~ has complete defining set {a 1!1682 U {0}}, where
82:={1,2,...,N~}}\Sl. Since ¢' © C, we have §, < -§, U {0}, and hence
=$,=S, (note that IS]]=[82[).

2

So we have a splitting u_]:S] 'S, mod n, which shows that C is a

2
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duadic code.

Then Theorem (6.1.1) shows that C has minimum distance n+l. (]
(6.2.2) Remark : If the extended code C is self-dual, then p=2.

Proof : Let c be a row of the matrix A (so{g is a codeword in C).
Since Te, =n+l = 1 mod p, we have (c,-1) € C.
Now (c,-1) has inner-product O with itself, so n+1+1=2=0 mod p.

Hence p=2. o

(6.2.3) Theorem : Suppose a cyclic projective plane of order n exists.
Let p and r be primes, such that plin, r|(n2+n+l).

Then p=0 mod r.

Proof : By Theorem (6.2.1) there is a duadic code of length n2+n+1

over GF(p), and then Theorem (2.1.7) shows that p=0 mod r. o

(6.2.4) Remarks : (i) Theorem (6.2.3) is a weaker version of a theorem
in [1], which says:
Suppose a cyclic projective plane of order n exists. Let p and r be

primes, such that p[n, r[(n2+n+1), p= mod r. Then n is a square.

(ii) Wilbrink [18] has shown:

If a cyclic projective plane of order n exists, then
a) if 2n, then n=2,

b) if 3lln, then n=3.

(iii) In [5], Jungnickel and Vedder have shown:

If a cyclic projective plane of evén order n>4 exists, then n=0 mod 8.
We shall give some examples, which cannot be ruled out with Thecrem (6.2.3).

(6.2.5) Examples : (i) Suppose a cyclic projective plane of order 12

exists, Then according to Theorem (6.2.1) there is a splitting

PR ba §, mod 157, where §, and S, are unions of cyclotomic cosets
{i,31,321,...} mod 157. But 3395*1 mod 157, so all cyclotomic cosets
mod 157 are left invariant by u_,. Hence a splitting mod 157 cannot

be given by M_y» and the projective plane does not exist.
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(ii) Suppose a cyclic projective plane of order 18 exists.
By Theorem (6.2.1) there is a binary duadic code of length 182+18+1=7

with minimum distance 19,
But in Theorem (4.3.1) we have seen that binary duadic codes of length 7

have minimum distance 4. So we have a contradiction.
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Chapter 7 : Single error-correcting duadic codes

In this chapter we study binary duadic codes with minimum distance 4,

and duadic codes over GF(4) with minimum distance 3.

Section 7.1 : Binary single error-correcting duadic codes

Let € be a binary duadic code of length n>»7 (so n2l17, cf.

Example (2.1.11)). By Theorem (3.1.4) the odd weight wvectors in C
have weight at least 5.

Let a be a primitive n-th root of unity, and suppose w.l.o.g. that

o is in the complete defining set of C. Then the nonzero even-weight
vectors in C have ao,a],az as zeros, so their weights are at least 4
by the BCH bound (cf. (8.1.1)). We conclude that the code C has

minimum distance at least 4.

(7.1.1) Theorem : Let C be a binary duadic code of length n and
minimum distance 4.

Then n=0 mod 7.

Proof : Let c(x)=1+xl+xj+xk be a codeword in C of weight 4, and let

a be a primitive n-th root of unity such that c(a)=0.

.

If i+j=k mod n, then c(a)=(1+a1)(1+a3)=0, so a'=1 or aJ=1, which is

impossible. Hence

i+i#k, j+k#i, k+i#j mod n. (%)

.o . . - -ai, ~aj,  —ak
Suppose the splitting 1s given by M Then c(x a)=]+x Alyx 8342

is a codeword in C .

It follows that c¢{x) and c(x-a) have inner-product 0, so

{i,j,k} n {-ai,-aj,-ak} # @.

The rest of the proof consists of considering all possibilities.
We shall only give some examples, showing how these possibilities

lead to the theorem.

Suppose ai=-i mod n.

i k i -a i 21, i-aj, i-ak
The vectors c(x)=1+x +x3+x" and x clx T)=x"+x X Jix have

inner-product 0, so {0,3j,k} N {2i,i-aj,i-ak} # @.
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Now suppose e.g. that i=aj mod n, then i=~j mod n.

Since c(x) and q(x-a) have inmer-product 0, we have ak=-k mod n.
2ic(x—a) have imner-product G, so
{0,-i,k} N {21,31,k+2i} # ¢. Note that 2i#0, 3i#0 mod n.

Because of (%) there are two possibilities:

Also c¢{(x) and x

. . . i =i =31 i - i i 21
(i) ~i=k+21 mod n: Then c(x)=l+xl+x Lix 31 and x31c(x a)=x31+x41+x L

have inner-product 0, so {i,-i,-3i} n {2i,3i,4i)} # @.
Since (2,n)=(3,n)=(5,n)=1, it follows that 7i=0 mod n, so n=0 mod 7.

31c(x—a) have inner-product 0,

so {0,i,-i} n {21,41;61} # . Hence 7i=0 mod n, n=0 mod 7. o

(ii) k=3i mod n: In the same way, c(x) and x

(7.1.2) Remark : We saw in Example (2.3.4) that a binary duadic code

of length n>7 and minimum distance 4 exists, 1f n=0 mod 7.
We shall now give complete proofs of some special cases of Theorem (7.1.1).
(7.1.3) Lemma : Binary duadic codes of length n=2"-1 exist iff m is odd.

Proof : We apply Theorem (2.1.7).
(i) Let m be odd, p a prime, p[n. Then Zm_l.zzl mod p, so 2=0 mod p.
(ii) If m is even, then 3|n, but 2=¢ mod 3. ) o

(7.1.4) Theorem : Let C be a binary duadic code of length n=2"-1 V
(m odd) and minimum distance 4, and suppose the splitting
is given by Hae
Then n=0 mod 7.

Proof : Let c(x)=]+xl+xj+xk be a codeword of weight 4, and let o
be a primitive element of GF(2™) such that c(a)=0.
Choose an integer b such that ab(]+al)=1, and define

b - .
Ei=a , n:=ab+3. Then ab+l=£+l and ab+k=n+l.

b Q 9 9.9 9_
The codeword x c(x) has a” as a zero, so £ +{E+1) +n +(n+1) =0,

It follows that (g+n)8=g+n. Since E+n#0, we find (g+n)7=1. o

(7.1.5) Theorem : Let C be a binary duadic code of length n and
minimum distance 4. Suppose the splitting is given by H_ye
Then n=0 mod 7.
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Proof : Let c(x)=l+xl+x3+xk be a codeword of weight 4. In the proof

of Theorem (7.1.1) we have seen that
i+j#k, j+k#i, k+i#j mod n. (%)

By Theorem (3.1.4), all even weights in C are divisible by 4. Hence

ik 21 1+3 X1+k

(1+x1) c(x)=1+x7 +x +x is a codeword of weight 4.

So ]{O,J,k 2i 1+J,1+k}l =4, Because of (*) there are 4 possibilities:
(i) j=2i mod n: (l+x )c(x) I+x +xk+x31+xél+ k21

weight 4, so [{0,1,k,31,41,k+21}|=4.

is a codeword of

Again because of (%), we have two possibilities:
a) k=41 mod n: (I+x3i)c(x}=]+xi+xzi+x3i+x5i+x7i has weight 4, so
7i=0 mod n.
b) k+2i=0 mod n: (1+x31)c(x)=]+x2 +x +xél+x +x_ 21 has weight 4,

so 7i=0 mod n.

(ii) 1+3j=0 mod n: In the same way we find k=3i or k=-3i mod n, and

in both cases we get 7i=0 mod n.

The cases (iii) k=21 mod n, and (iv) i+k=0 mod n, are similar.

(7.1.6) Remark : From the above proof it follows that the codeword
c(x) is one of the following
1+xl+x21+x41, I+x1+x21+x- 1, ]+xl+x_l+x3l, ]+xl+x-l+x—31, where

71=0 mod n.

(7.1.7) Theorem : Let C be a binary duadic code of length n and
minimum distance 4, and suppose the splitting is given

by M- Then C contains exactly n codewords of weight 4.

Proof : Let c(x) be a codeword of weight 4, w.l.o0.g.
c(x)*l+xi*x21+xai, where 7i=0 mod n.

It is obvious that all shifts of c(x) are different. Hence C contains
at least n codewords of weight 4,

Let d{(x) be a codeword of weight 4, such that the coefficient of xo
is 1. We shall prove that d{x) is a shift of c(x).

By (7.1.6) there are four possibilities for d(x):

(i) d(x)=1+xj+x2j+xaj, 7320 mod n:

C(x}+d(x)=xi+x +x41+x + 23+x4j is a codeword of weight 0 or 4, so

{1,2i,4iY 0 {3,27,47) # 6. In each case we find c(x)=d(x).
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(ii) d(x)=1+xj+x2j+x—2j, 73=0 mod n:

Now we find {i,2i,4i} n {j,2j,-23j} # @.

If i=j, then c(x)+d(x)=x41+x"21 has weight 0, so 6i=0 mod n.

A contradiction.

If i=2j, then c(x)+d(x)=x4j+x-2j, so 6j=0 mod n. A contradiction.
If i=-2j, then xzjc(x)=d(x).

If Z2i=j, then c(x)+d(x)=x1+x"4l

, 80 5i=0 mod n. A contradiction.
If 2i=2j, then i=j mod n, a contradiction.

If 2i=~2j, then x2id(x)=c(x).

If 4i=j, then c(x)+d(x)=xzi+x~i, so 3i=0 mod n. A contradiction.
PEAi=24, then 7i=j, a contradict o,

L L3

If 4i=~23j, then x41d(x)zc(x).

(iii) d(x)=1+xd+x J4x>1, 7§20 mod n:

Consider de(x)=1+xJ+x23+x43, i.e. case (i).

(iv) d(x)=l+x3+x-3+x-33, 73=0 mod n:

Consider de(x), i,e, case (ii).

Section 7.2 : An error-correction procedure

In this section we give an error-correction procedure for binary
duadic codes with minimum distance 4 and splitting given by By

It turns out that most patterns of two errors can be corrected.

Let U*]:SI P 32 be a splitting mod n, with corresponding binary duadic

codes C] and C, of length n. Suppose the codes Cl and C2 have minimum

distance 4.

2i

Let cz(x)=1+x1+x +x41 (7i=0 mod n) be a codeword in C, of weight 4

(cf.(7.1.6)).

2

(7.2.1) Lemma : Let c(x) be a polynomial of weight 4.
Then c(x)GC] iff c(x)cz(x)EO mod (xn~]).

Proof : (i) Let c(x)€C]. Then c(x)cz(x)(iCl ne, = {0,1}.

Since c(x)cz(x) has even weight, we have c(x)cz(x)=0.
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(ii) Let c(x)=xJ+xk+xl+xm , such that c(x)cz(x)=0.

We may assume w.l.o.g. that j=0.

Each exponent of c(x)cz(x) must occcur an even number of times, e.g.
the exponent 0.

Because of symmetry, there are three possibilities:

41 1 =1
1=x1c2(x ) EC],

. 61 i
a) k+i=0 mod n: It turns out that c(x)=1+x Lixtex

or c(x)xl+x61+x51+x31=c2(x”]) €C}.

b) k+2i=0 mod n: In the same way we find
C(X)=1+X51+X1+X21=X21C2(X_}) €C],

51 6i, 31 -1
p:<

or c(x)=1+x""+x +X =c2( ) €C].
¢) k+4i=0 mod n: Here we get c(x)=1+x31+x61+x51=c2(x_l) €C], or
c(x)=]+x31+x41+x21=x41c2(x_]) ECI. a

(7.2.2) Theorem : Let e(x)=xj+xk be a polynomial of weight 2.
Suppose that for all h=0,1,2,...,n-1, we have
{i,k} ¢ {h,h+3i,h+5i,h+6i} mod n.
Then the polynomial e(x)cz(x) mod (x"-1) uniquely determines

the exponents ] and k.

Proof : Suppose (x3+xk)c2(x)=(x1+xm)c2(x), 1#m.
(1) 1f {j,k,1,m} <4, then {j,k}={1,m}.
(ii) Suppose {j,k,1l,m} =4. Then by Lemma (7.2.1) we have

xJ+xk+x1+xm€C . Since the only codewords of weight 4 in C, are

1 i
the shifts of c2(x ]), there is an integer h, such that

{j,k} © {h,h+3i,h+5i,h+6i}, a contradiction. o

Now error-correction goes as follows.

Let CI(X>€C be sent over a noisy channel, and suppose we receive r(x).

i
Let e(x):=r(x)~c](x) be the error-vector.

Since cl(x)cz(x) has even weight and c,ng, = {0,1}, we have
CI(X)Cz(X)=0'

Compute r(x)cz(x)=e(x)c2(x).
(1) 1If r(x)cz(x) is a shift of cz(x), then we assume that one error

has been made. Since all shifts of cz(x) are different, we can

determine e(x), and hence c](x).

(ii) If r(x)cz(x) is not a shift of cz(x), then more than one error
has been made.

Suppose e(x) satisfies the conditions of Theorem (7.2.2).

Then we can find e(x), and hence cl(x).
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There are ( ; ) ways of making two errors. From the condition of

4
Theorem (7.2.2), we see that at most ( 9 ).n patterns of two errors
cannot be corrected. Hence with the above procedure we can correct

at least { g } - 6n patterns of two errors.

Section 7.3 : Duadic codes over GF(4) with minimum distance 3

Let C be a duadic code of length n>3 over GF(4).
In the same way as at the beginning of Section 7.1 we find that C

has minimum distance at least 3.

(7.3.1) Theorem : Let C be a duadic code of length n>3 over GF(4)
with minimum distance 3.

Then n=5 or n=7 or n=0 mod 3.

Proof : Suppose nz1l. Let GF(&)={O,1,w,w2}, w2+m=1.

Let C(X)=l+cixi+cjxj be a codeword of weight 3.

By Theorem (3.1.4), c¢(x) is even—like, so ci+c.=1. It follows that

{ci,cj}={w,w2}. Take w.l.0.g. c =w, cjzwz.

Suppose the splitting is given by M, Then c(x_a) is a codeword in CL.

So ¢(x) and c(x~a) have inner-product O.

Therefore {i,j} N {-ai,~aj} # @. We consider all possibilities.

(i) ai=-i mod n: Since c¢{x) and c(x_a) have inner-product 0, we

have aj=-~j mod n.

Also c(x) and xic(x"a) have inner-product 0, so {0,j} N {2i,i+j} # &.

There are two possible cases:

a) 2i=j mod n: c(x) and xic(x—a) have inner-product 0, so 3i=0 mod n,
and hence n=0 mod 3.

b) i+j=0 mod n: In the same way we find 3i=0 mod n.
(ii) aj=-j mod n: In the same way we find n=0 mod 3.

(iii) ai=~j mod n: Since c(x) and xaic(x—a) have inner—product O,

we have {i,-ail N {ai,ai+azi} # 6.

a) ai+aziEi mod n: xalc(x) and c(x_a) have imner-product 0, so
{ai,i+ai} N {-ai,i-ai} # @.
1) i=22i mod n: ai+a2i53azi

2. .
9 so a 1=0 mod n, a contradiction.
i=2ai=4a”1

2) i=-2ai mod n: Let o be a primitive n-th root of unity such
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that c(ua)=0, SO 1+waa1+w2aaj=0.

Take the square: 1+w2azal+waal=0 (2aj=ai mod n).

Add these two relations: an=azal, go j=21i mod n.
Now c(x)=]+wx1+wzx21 and c(x*a)=]+wx21+w2x1 have inner-product
I+m3+m3=1%0. Contradiction.

22

4109, and
(c(0®)2=1+0%a?2 upa o0,
If we add these equations, then we find 3i=0 mod n.

21+w2xl have inner-product #0.

. . a i
b) ai=-21i mod n: c(a )=1+waa +w o

But c(x)=l+wx1+w2x21 and c(x-a)=1+wx

Contradiction.

(iv) aj=-i mod n: This gives in the same way a contradiction.

(7.3.2) Remark : We have proved in Example (2.3.4) that a duadic
code of length n>3 over GF(4) with minimum distance 3 exists
if n=0 mod 3.
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Chapter 8 : Binary duadic codes of length <24l

In this chapter we give some bounds on the minimum distance of
cyclic codes. These bounds will be used to analyze binary duadic

codes of length =241,

Section 8.1 : Bounds on the minimum distance of cyclic codes

Let o be a primitive n-th root of unity in an extension field of GF(q).

i, i i
2 . .
The set A={a ],a 5o ooyt ™ is called a consecutive set of length m ,

if there is a primitive n-th root of unity B, and an exponent i,
C e, .
such that a={g%,s**!,... g™y,

The proofs of the next two theorems can be found in [10].

(8.1.1) Theorem (BCH bound) : Let A be a defining set for a cyclic

code with minimum distance d. If A contains a consecutive

set of length 8-1, then dz§

(8.1.2) Theorem (HT bound, Hartmann and Tzeng) :

Let A be a defining set for a cyclic code with minimum
distance d. Let B be a primitive n~th root of unity, and
suppose that A contains the consecutive sets

" IR St
(gl ja’Bl 1 Ja’...’sl § 2+Ja}

Then dz8+s.

, 0<j<s, where (a,n)<$.

(8.1.3) Examples : (i) gq=2, n=73. Let a be a primitive n—th root

of unity, and let C be the duadic code of length n with defining

set {a3,a9,a]],m]?}. The complete defining set of C, i.e.

{al]i€C3UC9UC]1UCl7}, contains {Billsis8}, where B:=u3.

So by the BCH bound, the code C has minimum distance 29.

(ii) q=2, n=127. Let C be the duadic code of length n and defining

set {uili=1,3,5,15,]9,21,23,29,55} (again a is a primitive n~th

root of unity). The complete defining set of the even-weight subcode

contains {ai|i=3,12,21,30,39,48,57,66,?5,84,93} U
{ai[i=37,46,55,64,73,82,91,100,109,118,0}.

Then the HT bound shows that the evenwweight subcode of C has minimum

distance 213, hence 214, Since the splitting is given by Mops

Theorem (3.1.4) shows that C has minimum distance =15,
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The next bound is due to van Lint and Wilson [11]. First we need a

definition.

(8.1.4) Definition : Let S be a subset of the field F. We define
recursively a family of subsets of F, which are called

independent with respect to S, as follows:

(1) ¢ is independent w.r.t. S,
(ii) if A is independent w.r.t.S, A < S, b#S, then
AU {b} is independent w.r.t.S,
(iii) if A is independent w.r.t. S, c€F, c#0, then cA is

independent w.r.t.S.

(8.1.5) Theorem : Let c(x) be a polynomial with coefficients in F,

and let S := {a€F|c(a)=0}. Then for every A < F which is

(8.1.6) Example : q=2, n=73. Let o be a primitive n-th root of unity,
and let C be the duadic code of length n with defining set
{ai]i=1,l3,1?,25} and minimum distance d.

The complete defining set of C contains {ai‘49sis55}, hence dz8

by the BCH bound.

Now suppose c(x) is a codeword of weight 8.

1f c(u3)=0, then c(ai)=0, 48<i<55, so Wt(c(x))29, a contradiction.

If c(a9)=0, then c(ai)=0, i=61,62,...,72,0,1,2, also a contradiction.
So if § := {a]c(a)=0}, then {aiii€C3UC9} ns=g.

The following sets are independent w.r.t. S:

1
¢, {a 65} (o 64}’ {o 64 65}’ {a6}, aéz}’ {uﬁl,aﬁz,aés}, {ao,ul,aé,a 2}’
63 64 65 67 2

(o 027 0%, {a48,a49’a50,a51 QSB 0Ltﬁl}

{a 32 33 34 35 3? 45 46}’ (o 61 62 63 64, 65,u66,a1,32}

5@ 51 52 53 54 55 63 64 3
{o” ,0 ,0 1.

Then Theorem {8.1.5) shows that wt(c(x))29, a contradiction.

»

We have proved that d=9.

(8,1.7) Remark : In [4], Hogendoorn gives a program that searches for
sequences of independent sets, In the next section, this program will be

used several times.
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Section 8.2 : Analysis of binary duadic codes of length s241

In [7] there is a list of all binary duadic codes of length <241,
defined in terms of idempotents (cf. Definition (2.1.4)).

For each code, the minimum distance, or an upper bound for it, is
given.

Since we want to apply the theorems of Section 8.1 to get lower
bounds for the minimum distance, the zeros of the idempotents were
determined by computer.

The lower bounds were found either by hand, or using a program of
Hogendoorn [4], cf. (8.1.7).

In the rest of this section we shall give the details.

In each case, n is the code-length, a is a primitive n-th root of
unity, A is a defining set for the binary duadic code C,]la gives
the splitting, d is the minimum distance of C, and dO is the

minimum odd weight of C.

(8.2.1) n=89, A={a'|i=1,9,13,33}, P
Since the complete defining set contains {alli=15,30,&5,60,75,1,16,31},

we have d29. Then Theorem (3.1.4) gives dz12,

(8.2.2) n=89, a={a’]i=3,9,11,19}, u_,.
The code has zeros al, i=19,38,57,76,6,25,44,63, so d29.
Again Theorem (3.1.4) gives d>12,

(8.2.3) n=119, A={a’[i=3,7,13,51}, Mg

The complete defining set contains {a'|101<i<105}, so d26.

Let c(x) be a codeword of weight 6 with zero-set S.

Then c¢{(a)#0, since otherwise c(ai)=0, i=117,118,0,1,2,...,10.
Also c(a]l)%o since otherwise c(ai)=0, i=107,108,...,117,118,0.
The following sets are independent w.r.t. S (we only give the
exponents of a):

¢, {4}, {4,5}, {4,5,6}, {95,101,102,103}, {96,100,102,103,104},
{104,108,109,110,111,112}, {97,101,102,103,104,105,1}.

So wt{c(x))27, a contradiction. Hence d>7. Then Theorem (3.1.4)

gives d=8,
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(8.2.4) Notation : We introduce a notation to abbreviate a sequence
of independent sets.’
The string (30,30,24,31,32,52,...) has to be interpreted as the

following sequence of sets:

+s +s

Ag*sp*sy Aty 3 ag*tspts ts, ayrsyts, 3,
{a L0 ,a 1, {a 5,0 0 Y,

As an example, the sequence of independent sets in (8.2.3) is

abbreviated as (4,1,4,1,4,97,95,1,100,8,109,-7,1).

(8.2.5) n=127, A={a']i=3,5,7,11,19,21,23,55,63}, u_

91 !

The code has zeros u] 1€i<12, so d=13.

Theorem (3.1.4) gives d=15.

(8.2.6) n=127, A={ai|i=],3,5,7,9,19,23,29,43}, W_y

By Theorem (3.1.4), d0215, and by the BCH bound, d211, hence d=12.
Let c(x) be a codeword of weight 12.

Then c(all)#O by the BCH bound. The following sets are independent
w.r.t. the zero-set of c(x):
(11,-1,11,-1,11,-6,11,53,88,9,69,-59,22,2,11,-8,22,2,11,14,44,~15,
22}63,11), so wt(c(x))213, a contradiction.

Then Theorem (3.1.4) gives d=15.

(8.2.7) n=127, A={ui|i=3,5,7,9,1],23,27,43,63}, Wy

The code has zeros agi, 1€i<8, so d>9. Hence dz12, by Theorem (3.1
Let c(x) be a codeword of weight 12 with zero-set S,

By the BCH bound, c(a)#0 and c(a]9)¢0.

Using Hogendoorn's program, the computer showed that the code with
defining set A U {aZI} has minimum distance at least 13.

So c(azl)#O. The following sets are independent w.r.t. S:
(1,84,2,-62,1,23,25,-2,21,-11,41,34,1,-22,1,-53,41,-8,32,-21,8,-1,
l}—l,l), so wt(c(x))=213, a contradiction.

By Theorem (3.1.4), we have d>15.

(8.2.8) n=127, A={a’]i=9,11,13,15,19,31,43,47 63}, u_

The code has zeros u90+251, 0<i<13, so dz15.

1

4.
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(8.2.9) n=127, A={a*|i=3,7,9,13,19,21,29,47,63}, u_

; 1
1004111 105413, so dz15.

The code has zeros o

(8.2.10) n=127, A={ai[i=3,9,11,15,21,23,27,@7,63}, Wy

The complete defining set of C contains {a31]151510}, so dzl1.

Then Theorem (3.1.4) gives d=12. Let c(x) be a codeword of weight 12
with zero-set §.

Then c(as)%o, since otherwise c(aBi)zo, O<igl2.

The following sets are independent w.r.t. S:
(66,-19,66,2,80,-8,66,3,66,-45,33,-3,33,-3,33,-3,33,-3,33,-3,33,-3,
80,96,66), so wt(c(x))z13, a contradiction.

Hence d=15, by Theorem (3.1.4).

(8.2.11) n=127, A={o']i=3,5,7,19,23,29,43,55,63}, u_,.
The code has zeros a23+5i, 0<i<8, so dz10, and hence d=212 by

Theorem (3.1.4). Let c(x) be a codeword of weight 12 with zero-set S.
Then c(mg)%o (otherwise c(a23+51)=0, 0=1<12) and c(a13)¥0 (otherwise
T6+71y 0, o<i<13).

The following sets are independent w.r.t. S:
(9,47,9,69,68,-58,68,66,81,~76,52,53,68,-5,68,~5,68,-5,68,-5,68,~5,
2}47,2), so wt(c(x))213, a contradiction. Then, by Theorem (3.1.4),
d=15,

cla

(8.2.12) n=127, A={a1|i=],5,13,15,27,29,31,43,55}, My
The code has zeros a541, 1<i<12, so dz13. Hence by Theorem (3.1.4),
d=15.

(8.2.13) n=127, A={a*|i=1,3,7,19,23,29,43,47,55}, Wy
We know that d0215. Let c(x) be a codeword of even weight <12 with
zero-set S,

(1) C(als)¥0, since otherwise c(a97+151)=0, 0<i<14.

(ii) Suppose c(a5)=0. Then c(alB)%O, since otherwise c(u57+351

)=0,
0<i<14. The following sets are independent w.r.t. S:
(60,-21,60,-10,60,30,60,-40,30,36,35,-10,35,30,35,-10,35,51,
29)-10,22}—]0,29,~10,§9), so wt{c(x))=213.

Hence c(u5)¥0.
(iii) c(a27)%0, since otherwise we have the following independent

sets w.r.t. S:
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(15,1,15,71,13,19,30,-16,15,-12,113,-74,5,-1,40,21,26,33,60,
-1,60,-1,60,-1,60) so wt(c(x))=13.

(iv) c(a11)¥0, since otherwise we have the following independent sets
we.r.L. S:
(5,-1,5,-2,5,41,89,50,104,-8,5,-74,10,-8,5,-2,13,46,51 ,-1,51,

-1,51,-1,51).

The following sets are independent w.r.t. S:
(é)—Ssﬁ_é_nBSE_:] 3_?_9_,19,_6_93“]?9£5849§_?_9-&4’_5_1_529_Z_"'9_,_&6:£:89’ 113,-35,
153—55,15), so wt(c(x))213, a contradiction.

We have proved that d>14., Then Theorem (3.1.4) shows that d=15.

(8.2.14) n=127, A;{ai|i=3,15,19,21,23,29,47,55,63}, M

The code has zeros algi, 1<i<8, so d29. Hence dz12 by Theorem (3.1.4).
Let c(x) be a codeword of weight 12 with zero-set S.

93431y, osisil.

(ii) C(QSI)#O, since otherwise c(al)=0, 113<i<127.

(1) c(a27§¢0, since otherwise c(a

(iii) Suppose c(a’)=0.

a) c(a)#0, since otherwise c(a]9+91

)=0, 0O<ig12.

b) c(a5)¥0, since otherwise we have the following independent
sets w.r.t. S:
(1,64,1,-9,1,1,64,~9,64,1, 1,-9,1,~1,64,79,64,1,1,-9,1,
~-1,64,-9,1).

The following sets are independent w.r.t. S:

(1,-1,1,-1,1,95,40,1,103,-4,40,34,5,-16,108,-17,40,20,115,-1,

115,-1,108,-17,108), so wt(c(x))z13, a contradiction.

Hence c(m7)¢0.

37491y o, o<isi2.

{(iv) Suppose c(0)=0. Then c(ag)%O, since otherwise c(a
The following sets are independent w.r.t. S:
(2&3“10,5_6_; 19&_5‘399;_5__9:&4 ;_9_9"9 929"9329'9 3_23"9 9_9_a-9 9_9_3—9 92_’_9,

9,-8,9). So c(a)70.

The following sets are independent w,r.t. S:
(1,81,108,2,102,-81,121,9,121,12,97,76,108,1,1,-8,102,-1,1,-71,1,
70,1,-8,1), so wt(c(x))213, a contradiction. Hence dz13.

Then Theorem (3.1.4) gives d=15.

(8.2.15) n=127, A={a'|i=3,5,9,13,15,19,21,29,63}, M-
By the BCH bound we have d>11, hence d212 by Theorem (3.1.4).



- 45 -

Let c(x) be a codeword of weight 12 with zero-set S.

Then c(aBl)%d and c(a]])%O by computer (i.e., the computer showed
that the codes with defining sets A U {aal} and A U {all} both have
minimum distance at least 13, using Hogendoorn's program).

The following sets are independent w.r.t. S:
(31,-5,121,24,124,-29,115,45,31,50,79,-3,79,-8,115,-31,22,-1,22,-1,
22,-1,22,-1,22), so wt(c(x))z13.

We have proved that dz13, and hence dz215.

(8.2.16) n=127, A={ai|i=l,3,5,9,15,23,27,29,43},11_1.

The code has zeros a57+7i, 0<i<9, so dz1!, and hence dz12.

Let c(x) be a codeword of weight 12 with zero—-set S.

Then c(azl)%o, since otherwise c(a3i)=0, O<ic<l4,

The following sets are independent w.r.t. S:
(21,-21,21,24,21,-21,21,24,21,-21,21,24,21,-21,21,24,21,-21,21,24,21,
-21,21,3,21), a contradiction.

Then, by Theorem (3.1.4), d=15.

(8.2.17) n=127, A={a*|i=5,7,9,13,19,29,31,43,63}, u_,.

Let c(x) be a codeword of even weight <12.

Then, by computer, c(ai)%o, i=3,21,23,47,55,

The following sets are independent w.r.t. the zero-set of c(x):
(3,17,87,16,61,-22,59,-1,96,-13,46,-11,55,-46,117,-12,84,42,55,-20,
21,-1,21,-1,21), so wt(c(x))213,

Hence, by Theorem (3.1.4), d=15.

(8.2.18) n=127, A={af|i=3,11,15,19,23,43,&7,55,63}, u_y-

The code has zeros al, 435i<50, so dz29, and hence d=12.

Let c{x) be a codeword with weight 12 and zero-set S,

By computer, c(ui)#o, i=5,7,21,27,31,

The following sets are independent w.r.t. S:
(77,-29,102,7,108,14,42,-4,33,-8,31,-19,14,-16,77,-27,51,-2,51 ,-1,
51,-1,51,-1,51), a contradiction.

So dz15, by Theorem (3.1.4).

(8.2.19) n=127, A={a'|i=9,13,15,19,21,29,31,47,63}, -

The code has zeros al, 11951126, so dz9, and hence dz12.
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Let c(x) be a codeword of weight 12 with zero-set S.

The computer showed that c(ai)#O, i=5,11,27.

The following sets are independent w.r.t. S:
(77,38,80,47,88,-4,80,-6,77,~6,69,-30,40,-3,77,-39,40,-1,20,-1,

20,-1,20,-1,20), a contradiction. Hence dz15.

(8.2.20) n=127, A={a'‘]i=1,3,5,9,11,15,21,23,27}, -
The code has zeros aal, 1112, s0 d=13.
Then Theorem (3.1.4) gives dz=15.

(8.2.21) n=127, A={a’]i=3,9,15,23,27,29,43,47,63}, u_, .
The code has zeros a96+3i, 0<i<10, so dz12,

Let c¢(x) be a codeword with weight 12 and zero-set S.

By computer, c(ai)%O, i=1,7,21,55. The following sets are independent
w.r.t. S:
(2,-3,2,-3,2,16,1,84,37,-10,56,-3,56,-26,1,-3,110,-9,42,-53,2,-2,

1,-1,1), a contradiction. Hence d>15.

(8.2.22) n=127, A={a*|i=1,3,7,11,19,21,23,47,55}, Wy
The complete defining set of C contains {a50+17ll051$11},

so dz13. Then Theorem (3.1.4) gives dz15.

(8.2.23) n=127, A={aili=5,?,}1,13,2?,31,43,55,63}, .

The code has zeros m103+3i, 0<i<7, so d29. Hence dz12.

Let c¢(x) be a codeword of weight 12.

Then, by computer, c(ui)#O, i=3,9,21.

The following sets are independent w.r.t. the zero-set of c(x):
(9,26,9,-2,42,7,84,-18,96,~11,41,-6,36,-9,6,~30,12,-5,6,-7,12,-1,

12,-1,12), a contradiction. So dzl15.

(8.2.24) n=127, A={ui[i=1,3,5,11,15,19,23,43,55}, M-

We know that d0215. Let c(x).be a codeword of even weight <12 with
zero-set S. By computer, c(al)#O, i=7,13,63.

The following sets are independent w.r.t. S:
(26,-1,26,-20,26,-1,52,28,119,-31,95,-19,67,-10,56,-34,70,-17,7,-3,
7,-1,7,-1,7), so wt(c(x))213, a contradiction.

Hence, by Theorem (3.1.4), d=15.
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(8.2.25) n=127, A={a*|i=1,5,7,9,23,27,29,31,43}, u_

89+131i L

The code has zeros o , 0gisl, so d213,

Then, by Theorem (3.1.4), 4215,

(8.2.26) n=127, A={ai|i=1,5,9,11,13,15,19,33,43}, Wy

The complete defining set of C contains {u51l1si510}, so dz11.

Hence d212. Let c(x) be a codeword of weight 12 with zero-set S.

By computer, c(ai)%o, 1=21,27,47.

The following sets are independent w.r.t. S:
(89,24,89,-70,27,26,54,-1,51,~42,27,~1,61,-8,54,32,87,~14,74,-1,74,
-1,74,-1,74), a contradiction.

Then Theorem (3.1.4) gives dz15.

(8.2.27) n=127, A={a*|i=1,3,13,15,21,27,29,47,55}, v _

1
351

The code has zeros o 1<i<14, so 4215,
a) Let c(x) be a codeword of weight 15 with zero-set S.
(1) c(ag)%O, since otherwise c(a351)=0, 1<i<15,
(ii) Suppose c(a19)=0.
Then c(a45)¢0, since otherwise the following sets are independent
w.r.t., S:
(9,29,9,39,9,12,34,21,68,-26,68,~13,68,~13,68,-13,68,-13,68,~13,
68,-13,68,-13,68,-13,68,~13,68,-13,68) .
The following sets are independent w.r.t. S:
(17,67,45,36,45,-26,68,-17,106,4,68,-26,68,-13,68,~13,68,-26,68,
-13,68,-13,68,-13,68,-13,68,-13,68,-13,68), so wt(c(x))z16, a
contradiction. Hence c(ulg)%O.
The following sets are independent w.r.t. S:
(17,92,17,-15,72,-13,72,50,50,-2,72,-33,17,22,72,21,38,~52,100,29,
72,-33,17,-35,17,-35,17,-35,17,-35,17), a contradiction.
We have proved that d=z16.
b) Let c(x) be a codeword of weight 16 with zero-set §.
(i) c(a9)¢0, since otherwise c(a35i)=0, 0=<i<15.
(ii) Suppose c(a}9)=0.
Then c(m45)%0, since otherwise the following sets are independent
w.r.t. S:
(68,52,68,~13,68,63,72,17,34,21,68,-26,68,-13,68,~13,68,-13,68,
-13,68,-13,68,-13,68,-13,68,~13,68,-13,68,-13,68).
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The following sets are independent w.r.t. S:

(17,-24,68,-13,68,~14,18,1,68,-17,106,4,68,-26,68,~13,68,-13,68,

-26,68,-13,68,-13,68,-13,68,-13,68,-13,68,-13,68).

Hence c(alg)%o.
The following sets are independent w.r.t. S:
(17,57,100,17,34,-4,100,22,17,-13,50,-2,72,-33,17,22,72,21,38,~52,
100,29,72,-33,17,-35,17,-35,17,-35,17,-35,17), so wt(c(x))217, a
contradiction.

Hence d=17. Then Theorem (3.1.4) shows that d=19.

(8.2.28) n=127, A={a'|i=5,15,19,23,29,31,43,55,63}, w_,-

The code has zeros u7]+7i, 0<i<7, so dz9.

Hence d>12, by Theorem (3.1.4).

Let c(x) be a codeword of weight 12 with zero-set S.

Then, by computer, c(ai)#O, i=1,3,7.

The following sets are independent w.r.t. S:
(112,-66,112,12,48,-8,96,3,12,-20,4,-4,24,-4,24,-5,14,-23,96,-3,1,
-1,1,-1,1), a contradiction.

Then Theorem (3.1.4) gives d=15.

(8.2.29) n=127, A={ai|i=5,7,9,]],13,19,21,31,63}, T

The code has zeros a7i, 1<i<10, so dzll. Hence dz12.

Let c{x) be a codeword of weight 12.

Then, by computer, c(ai)%O, i=3,23,27,29,55.

The following sets are independent w.r.t. the zero—set of c(X):
(3,33,3,-3,46,-2,110,~6,83,-4,101,-3,96,-24,89,-39,51 ,-13,12,-1,12,
-1,12,-1,12), a contradiction.

We have proved that d=15.

(8.2.30) n=127, A;{aili=1,7,13,21,27,29,31,47,55}, W
The code has zeros a64+191, 05i<9, so dz11. Hence dz12.

Let ¢{x) be a codeword of weight 12 with zero-set S.

The computer showed that c(ai)%O, i=3,5,15,23,43.

The following sets are independent w.r.t. S:
(75,-2075,-13,114,-7,30,-3,53,-1,65,-10,92,-14,106,-27,5,-20,5,-3,3,

-1,3,-1,3), a contradiction. Then Theorem (3.1.4) gives dz15.
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(8.2.31) n=127, A={a']i=1,3,7,9,11,23,27,43,47}, u_

The code has zeros a87+2]1, 0<i<13, so dz15,

1"

a) Let c(x) be a codeword of weight 12 with zero-set S.
(1) c(as)#o, since otherwise c(a3+211)=0, 0<i<17.,
(ii) Suppose c(a55)=0.
Then c(alg)#O, since otherwise the following sets are independent
w.r.t, S:
(66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,
66,21,66,21,66,42,80,-21,5,-40,5) .
The following sets are independent w.r.t. S:
(5,41,5,1,100,12,38,~2,100,51,66,21,66 ,-64,66,-21,66,9,33,75,
66,21,66,21,66,21,66,21,66,21,66), a contradiction.
Hence c(ass)%O.
The following sets are independent w.r.t. S;
(66,21,66,21,66,21,66,-43,66,-42,118,25,91,-46,66,9,33,75,66,21,66,
21,66,21,66,21,66,21,66,21,66), a contradiction.
So dz16.

b) Let c¢(x) be a codeword of weight 16 with zero-set S.
(i) Again c(a”)#0.
(ii) Suppose c(a55)=0.
Then c(alg)#o, since otherwise the following sets are independent
w.r.t. S:
(66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,
21,66,21,66,42,80,-21,5,-85,40,45,5).
The following sets are independent w.r.t. S:
(5,41,5,1,100,12,38,-2,100,51,66,21,66,-64,66,-21,66,42,33,-33,
33,75,66,21,66,21,66,21,66,21,66,21,66), a contradiction.
>%)40.
The following sets are independent w.r.t. §:
(§E)21,§§,2],§§}2],§§,21tﬁé,—43,§§,—42,li§}25,213—46,§§,42,§§)—33,
33,75,66,21,66,21,66,21,66,21,66,21,66), a contradiction.
So dz17.

Hence c (o

Then Theorem (3.1.4) gives dz19.

(8.2.32) n=151, A={a’|i=1,3,7,15,35}, M-
From Theorem (3.1.4) we know that dgz15, dy=3 mod 4.
Fuarthermore, all even weights are divisible by 4.

61431

The code has zeros a , 02i<8, so dz10. Hence dz12.
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a) Let c¢(x) be a codeword of weight 12 or 16 with zero-set S.
By computer, c(ai)%O, i=5,11,17,23,37.
The following sets are independent w.r.t. S:
(10,44,10,-3,40,25,139,-5,72,-1,72,-11,37,-7,5,-26,39,103,29,-22,121,
-3,5,-41,40,-50,72,-11,72,-1,72,-1,72), a contradiction.

b) Let c(x) be a codeword of weight 15 with zero-set S.
Again by computer, c(ui)%O, i=5,11,17,23,37.
The following sets are independent w.r.t. S:
(5,-1,5,56,36,~1,36,-32,78,-14,119,-7,18,~27,135,-24,119,35,40,-13,80,
-77,113,-37,119,-11,119,-1,119,-1,119), a contradiction.

We have proved that d4=19.

(8.2.33) n=151, A:{aili=1,3,?,1?,35}, g

We know that dyz15 and that all even weights are divisible by 4.

Let ¢(x) be a codeword of even weight <12.

Then, by computer, c(ai)%O, i=5,11,15,23,37.

The following sets are independent w.r.t. the zero-set of c(x):
(120,1,67,-10,67,~14,54,-1,95,~10,134,-1,132,-28,144,-43,72,-10,134,

-48,72,-1,72,-1,72), a contradiction.

Hence d=15.

(8.2.34) n=151, A={aili=1,3,?,]1,17}, My

The code has zeros al3+31, 0<1<7, so d>9. Hence dx12.

Let c{x) be a codeword of weight 12 with zero—set S.

By computer, c(ai)%ﬁ, i=5,15,23,35,37.

The following sets are independent w.r.t. S:
(23,2,94,-4,33,~4,125,-1,107,-3,92,-6,37,-34,40,-8,80,-28,5,-2,
5,-1,5,-1,5), a contradiction.

Hence, by Theorem (3.1.4), dz15.

(8.2.35) n=161, A=f{a’]i=5,11,35,69}, u_,.

The code has zeros ul, 132<1<138, so d428.

Let c(x) be a codeword of weight 8 with zero-set S.

Then c(a139)#0 by the BCH bound.

The following sets are independent w.r.t. S:
(139,-101,131,-52,146,-9,139,-1,139,-1,139,-1,139,-1,139,~1,139),

a contradiction.

Then, by Theorem (3.1.4), we have dz12,
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(8.2.36) n=223, A;{mi]i=1,3,5},11*1.

We know from Theorem (3.1.4) that d0219 and that all even weights are
divisible by 4.

The BCH bound gives d29. Hence dx12.

Let c(x) be a codeword of weight 12 or 16 with zero—set S.

Then, by computer, c(ai)%o, i=9,13,19.

The following sets are independent w.r.t. S:
(50,~4,50,~-1,50,~1,83,~3,106,-1,188,-23,19,-11,19,186,81,-47,177,-65,
175,-5,89,~47,29,-18,9,-7,9,-1,9,-1,9), a contradiction.

We have proved that dz19,

(8.2.37) n=233, A={a']i=5,9,17,29}, u_,.

The code has zeros al, 7851585, so dz9. Hence d>12, by Theorem (3.1.4).
Let c(x) be a codeword of weight 12 with zero-set S.

Then, by computer, c(ui)%O, i=1,3,7,27.

The following sets are independent w.r.t. $:
(111,-1,108,-3,183,~4,189,-2,188,~1,4,-7,94,-3,89,~6,86,-1,86 -1,
86,-1,86,-1,86), a contradiction.

Hence dz16, by Theorem (3.1.4).

(8.2.38) n=233, A:{u%|i=1,3,9,27}, oy

The code has zeros al, 69<i<77, so d=10. Hence dzi2.

Let c(x) be a codeword of weight 12 or 16 with zero—set S.

By computer, c(ai)#O, i=5,7,17,29,

The following sets are independent w.r.t. S:
(49,-2,139,-1,56,-3,208,-5,44,-1,44,-35,93,-23,139,-47,58,~54,41 ,-48,
225,-80,147,-3,141,-68,78,-1,78,-1,78,~1,78), a contradiction.

Then Theorem (3.1.4) gives dz17.

(8.2.39) n=233, A={a1[i=1,1?,27,29},117.
We know that dOZl?.

The even-weight subcode has zeros 3131+171

, 0<i<12, so d=l4.

Let c(x) be a codeword of weight 14 or 16 with zero-set §.

By computer, c(ai)¥0, i=3,5,7,9.

The following sets are independent w.r.t. S:
(200,-2,138,-3,164,-1,113,-7,164,-1,183,-21,100,-26,56,-9,167,87,123,
18,31,126,96,-26,177,60,5,-3,3,-1,3,-1,3), a contradiction.

Hence dz17.
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(8.2.40) n=241, A={aili=5,9,ll,13,25}, Mg

Theorem (3.1.4) gives d0217. i1a25i '
The even-weight subcode has zeros o , 0<i<16, so the even-weight
subcode has minimum distance 218.

Hence d=17.

(8.2.41) n=241, A={a']i=1,5,9,13,25}, u ;.

We know that dOEi?. §g§+§§§n—weight subcode has minimum distance 222,

since it has zeros o , 0<i<20,

Let c{x) be a codeword of weight 17 with zero-set S.

Then, by computer, c(ai)¥0, i=3,7,11,21,35.

The following sets are independent w.r.t. S:
(11,-1,196,-1,61,-4,219,-10,102,-15,139,-7,213,-5,48,~21,89,-74,139,
129,55,79,55,-107,48,-56,131,-24,85,-26,11,-1,11,~1,11),

a contradiction.

We have proved that dx19.

(8.2.42) n=241, A={0Li|i=5,7,9,11,13}, Wy

We have d0217.

Let c¢(x) be a codeword of even weight <14,

Then, by computer, c(ai)#O, i=1,3,21,25,35.

The following sets are independent w.r.t. the zero-set of c(x):
(24,-1,84,-1,120,~3,235,-1,156,-7,73,-20,151,126,71,-3,204,-51,200,
-96,163,-39,27,-7,12,-1,12,-1,12), a contradiction.

Hence d=16.
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Section 8.3 : The table

In this section we give a table of all binary duadic codes of length

<241, For each code we give
(1) n : the code-length.

(ii) the idempotent : e.g. the duadic code of length 49 has idempotent

0 i i
X + z x + E X .

1€Cl 1€C7
(iii) a defining set : e.g. the duadic code of length 49 has defining
set {alliEC] ) CQI}’ where o is a primitive

49-th root of unity.
(iv) 4 : the minimum distance, or bounds for it.
.~ Most of the upper bounds are from [7].
Note that binary QR codes have an odd minimum distance
(cf. [10]).

(v) a : the splitting is given by11a.

(vi) a reference.
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n idempotent defining set | d a reference

7 ] 1 3 -1 | QR code, [10]
17 0,1 1 5 3 QR code, [7]
23 1 1 7 -1 | QR code, [7]
31 1,5,7 1,5,7 7 -1 | QR code, [7]
31 1,3,5 1,3,5 7 -1 Reed-Muller code,
41 0,1 1 9 3 QR code, [7]
47 1 1 11 -1 | QR code, [7]
49 0,1,7 1,21 4 -1 | (4.3.1)

71 1 1 11 ~1 QR code, (3.1.4)
73 0,1,3,5,11 1,13,17,25 9 -1 | (8.1.6)

73 0,1,3,5,13 3,9,11,17 9 -1 | (8.1.3)

73 0,1,5,9,17 1,9,11,13 12 3 [7]

73 0,1,3,9,25 1,3,9,25 13 5 QR code, [7]
79 1 1 15 -1 | QR code, [7]
89 0,1,3,5,13 1,9,13,33 12 -1 | (8.2.1)

89 0,1,3,5,19 3,9,11,19 12 -1 ](8.2.2)

89 0,1,3,11,33 1,3,11,33 15 5 [7]

89 0,1,5,9,11 1,5,9,11 17 3 QR code, [7]
97 0,1 1 15 5 QR code, [7]
103 1 1 19 -1 QR code, [7]
113 0,1,9 1,9 15 3 QR code, [7]
113 0,1,3 1,3 18 9 [7]

119 1,13,17,21] 1,11,21,51 4 3 BCH bound
119 1,7,11,51 1,13,17,21 6 3 BCH bound
119 1,7,13,17 3,7,13,51 8 3 (8.2.3)

119 1,7,11,17 3,11,21,51 12 3 [7]
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23,27,29,47

15,21,23,27

n idempotent defining set |d a reference

127 1,3,9,11,13, 1,3,5,7,9, 15 -1 Reed-Muller code, (2.2.2)
15,21,27,47 | 11,13,19,21

127 1,3,5,9,11, 3,5,7,11,19, 15 -1 (8.2.5)
13,15,21,27 | 21,23,55,63

127 1,3,9,13,15, | 1,3,5,7,9,19, |15 -1 | (8.2.6)
19,21,29,47 | 23,29,43

127 | 1,3,7,9,11, | 3,5,7,9,11, 15 -1 | (8.2.7)
13,19,21,47 23,27,43,

127 | 1,3,7,9,11, | 9,11,13,15,19,]15 -1 | (8.2.8)
13,21,27,47 31,43,47,63

127 | 1,3,5,7,9, 1,3,5,15,19, |15 -1 | (8.1.3)
13,19,21,29 21,23,29,55

127 | 1,3,15,21,23,] 3,7,9,13,19, |15 -1 | (8.2.9)
27,29,47,55 21,29,47,63

127 | 1,3,5,7,9, 3,9,11,15,21, |15 -1 |(8.2.10)
19,21,23,29 | 23,27,47,63

127 1,3,5,7,9, 3,5,7,19,23, |15 -1 | (8.2.11)
11,21,23,27 29,43,55,63

127 | 1,3,7,9,11, 1,5,13,15,27, |15 -1 {(8.2.12)
21,23,27,47 29,31,43,55

127 1,3,7,9,11, 1,3,7,19,23, |15 -1 | (8.2.13)
19,21,23,47 29,43,47,55

127 | 1,3,7,9,13, | 3,15,19,21,23,|15 -1 | (8.2.14)
21,27,29,47 29,47,55,63

127 1,3,5,9,15, 3,5,9,13,15, 15-16 -1 (8.2.15)
21,23,27,29 19,21,29,63

127 1,3,9,13,15, | 1,3,5,9,15, 15-19 | -1 |(8.2.16)
21,27,29,47 23,27,29,43

127 1,3,5,9,13, |5,7,9,13,19, |15-19 |-1 |(8.2.17)
15,21,27,29 | 29,31,43,63

127 1,3,9,15,21, | 3,11,15,19,23,|15-19 |-1 |(8.2.18)
23,27,29,47 43,47 ,55,63

127 1,3,9,11,15, [ 9,13,15,19,21,[15-19 |-1 |(8.2.19)
21,23,27,47 29,31,47,63

127 1,3,7,9,21, 1,3,5,9,11, 15-19 |-1 |(8.2.20)
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n idempotent defining set {d a reference

127 1,3,5,9,13, 3,9,15,23,27, |15-19 |-1 | (8.2.21)
15,19,21,29 | 29,43,47,63

127 1,3,9,11,13, 1,3,7,11,19, 15-19 | ~1 (8.2.22)
15,19,21,47 21,23,47,55

127 1,3,9,15,19, | 5,7,11,13,27, |15-19 |~1 (8.2.23)
21,23,29,47 31,43,55,63

127 1,3,5,9,15, 1,3,5,11,15, |15-19 |=1 | (8.2.24)
19,21,23,29 19,23,43,55

127 1,3,11,13,15,| 1,5,7,9,23, 15-19 | -1 (8.2.25)
21,27,47,55 | 27,29,31,43

127 1,3,5,7,9, 1,5,9,11,13, 15-19 | =1 (8.2.26)
11,13,19,21 15,19,31,43

127 1,3,5,7,11, 1,3,13,15,21, {19 -1 (8.2.27)
13,21,27,55 27,29,47,55

127 1,3,5,7,21, 5,15,19,23,29,115-19 | ~i (8.2.28)
23,27,29,55 31,43,55,63

127 1,3,5,7,9, 5,7,9,11,13, |15-19 |-1 | (8.2.29)
21,23,27,29 19,21,31,63

127 1,3,5,7,9, 1,7,13,21,27, |15-19 {-1 | (8.2.30)
13,21,27,29 29,31,47,55

127 1,3,5,7,9, 1,3,7,9,11, 19 -1 (8.2.31)
11,13,21,27 ,27,43,4

127 1,9,11,13,15,] 1,9,11,13,15, |19 -1 | OR code, [12]
19,21,31,47 19,21,31,47

137 0,1 1 13-21 |3 QR code,

151 1,3,5,11,17 1,3,7,15,35 19 -1 (8.2.32)

151 1,3,5,11,15 1,3,7,17,35 15-19 | -1 (8.2.33)

151 1,5,11,17,37 | 1,5,11,17,37 |19 -1 |QR code, [12]

151 1,3,7,11,15 1,3,7,11,17 15-23 | -1 |(8.2.34)

161 0,1,3,35,69 1,11,23,35 4 -1 | BCH bound

161 0,1,3,7,23 1,7,11,69 8 -1 |BCH bound, (3.1.4)

161 0,1,7,11,23 1,3,23,35 8 -1 |BCH bound,

161 0,1,7,11,69 5,11,35,69 12-16 | -1 (8.2.35)

(3.1.4)

(3.1.4)
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n idempotent defining set | d a reference

167 1 1 15-23 | -1 QR code, (3.1.4)

191 1 1 15-27 -1 QR code, (3.1.4)

193 0,1 1 15-27 |5 QR code, (3.1.4)

199 1 1 15~31 -1 QR code, (3.1.4)

223 1,3,9 1,3,5 19-31 | -1 (8.2.36)

223 1,9,19 1,9,19 19-31 | -1 | QR code, (3.1.4)

233 0,1,7,9,29 1,7,9,29 17-25 |3 QR code, (3.1.4)

233 0,1,3,9,27 5,9,17,29 16—-29 | -1 (8.2.37)

233 | 0,1,3,7,27 1,3,9,27 17-29 | -1 | (8.2.38)

233 0,1,3,5,29 1,17,27,29 i7-32 | 7 (8.2.39)

239 1 1 19-31 | -1 | QR code, (3.1.4)

241 0,1,3,7,9,21 |5,9,11,13,25 | 17-25 |11 | (8.2.40)

241 0,1,3,5,7,9 1,5,9,13,25 19-30 |11 | (8.2.41)

241 0,1,7,9,13,21}5,7,9,11,13 16-30 | 11 (8.2.42)

241 0,1,3,5,9,25 | 1,3,5,9,25 17-31 | 11 | QR code, (3.1.4)

n=217 : There are 88 possibly inequivalent duadic codes of length 217.
All splittings are given by LR

minimum distance ‘ 4 <8 <12 <16 £20 <24

number of codes l 16 l 32 l 240 i 448 ‘ 144 144
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