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Abstract. We describe a new randomized data structure, the sparse partition, for solving the
dynamic closest-pair problem. Using this data structure the closest pair of a set of n points in
D-dimensional space, for any fixed D, can be found in constant time. If a frame containing all the
points is known in advance, and if the floor function is available at unit cost, then the data structure
supports insertions into and deletions from the set in expected O(logn) time and requires expected
O(n) space. This method is more efficient than any deterministic algorithm for solving the problem in
dimension D > 1. The data structure can be modified to run in O(log? n) expected time per update
in the algebraic computation tree model. Even this version is more efficient than the best currently
known deterministic algorithm for D > 2. Both results assume that the sequence of updates is not
determined in any way by the random choices made by the algorithm.
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1. Introduction. We consider the dynamic closest-pair problem: We are given
an initially empty set S of points in D-dimensional space and want to keep track of
the closest pair of points in S, as S is being modified by insertions and deletions of
individual points. We assume that D is an arbitrary constant and that distances are
measured in the L;-metric for some fixed ¢, 1 <t < oco. Recall that in the L;-metric,
the distance dy(p, q) between two points p = (p™"),...,p™)) and ¢ = (¢V,...,¢P)
in D-dimensional space is defined by

1/t

D
d(p,q) = | D 10 — ¢
i=1

if 1 <t < o0, and for t = 00, it is defined by

— (i) _ ()
doo(p, q) : @aéxDlp q\’|-

Throughout this paper, ¢ will be implicit, and we will write d(p, q) for d;(p, q)-

The precursor to this problem is the classical closest-pair problem which is to
compute the closest pair of points in a static set S, |S| = n. Shamos and Hoey [20] and
Bentley and Shamos [2] gave O(nlogn)-time algorithms for solving the closest-pair
problem in the plane and in arbitrary but fixed dimension, respectively. This running
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time is optimal in the algebraic computation tree model [1]. If we allow randomization
as well as the use of the (non-algebraic) floor function, we find algorithms with better
(expected) running times for the closest-pair problem. Rabin, in his seminal paper
[16] on randomized algorithms, gave an algorithm for this problem which ran in O(n)
expected time [16, 5]. Since then, alternative methods with the same running time
have been discovered. In addition to the randomized incremental algorithm presented
in [11], there is a different approach, described by Khuller and Matias [12], which
uses a randomized “filtering” procedure. This method is at the heart of our dynamic
algorithm.

There has been a lot of work on maintaining the closest pair of a dynamically
changing set of points. When restricted to the case where only insertions of points
are allowed (sometimes known as the on-line closest-pair problem) a series of papers
culminated in an optimal data structure due to Schwarz, Smid and Snoeyink [23].
Their data structure required O(n) space and supported insertions in O(logn) time.

The existing results are not as satisfactory when deletions must be performed If
only deletions are to be performed, Supow1tj£24 gave a data structure with O(log n)
amortized update time which uses O(nlog ) space. When both insertions and
deletions are allowed, Smid [22] described a data structure which uses O(nlog” n)
space and runs in O(logD nloglogn) amortized time per update. Another data struc-
ture due to Smid [21], with improvements stemming from results of Salowe [17] and
Dickerson and Drysdale [7], uses O(n) space and requires O(y/nlogn) time for up-
dates. Very recently, after a preliminary version of this paper was presented, Kapoor
and Smid [13] devised a deterministic data structure of linear size which achieves
polylogarithmic amortized update time, namely O(log” ! nloglogn) for D > 3 and
O(log”® n/(loglogn)*) for the case D = 2, where £ is an arbitrary non-negative integer
constant.

In this paper we discuss a randomized data structure, the sparse partition, which
solves the dynamic closest-pair problem in arbitrary fixed dimension using O(logn)
expected time per update. The data structure needs O(n) expected space. This time
bound is obtained assuming that the floor function can be computed in constant time
and that the algorithm has prior knowledge of a frame which contains all the points
in S at any time (this assumption enables the algorithm to create and use dynamic
hash tables). Without either of the above assumptions, we obtain an O(log®n) ex-
pected update time in the algebraic computation tree model. Even this version of the
randomized algorithm is more efficient than the currently best known deterministic
algorithms for solving the problem for D > 2, and almost matches the running time
of the recently developed method of Kapoor and Smid [13] in the case D = 2. Indeed,
our algorithm is the first to obtain polylogarithmic update time using linear space for
the dynamic closest-pair problem.

Our results require that the updates are generated by an oblivious adversary,
who fixes a worst-case sequence of operations in advance and reveals it to the data
structure in an on-line manner. Hence, the adversary’s knowledge of the internal state
of the data structure (which is a random variable) is limited to that which can be
obtained a priori, and in particular, the sequence of updates is not determined in any
way by the random choices made by the algorithm.

Given a set S of points, the sparse partition that stores S will be a randomly
chosen one from many possible structures. In one version of the data structure, the
probability that a particular structure is the one that is being used will depend only
on the set S that is being stored and not upon the sequence of insertions and deletions
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that were used to construct S. In this sense, the data structure is reminiscent of skip
lists or randomized search trees [15, 19].

The paper is organized as follows. In Section 2, we give an implementation-
independent definition of the sparse partition, give a static algorithm to build it, and
show how to augment this data structure to find the closest pair in constant time. A
grid-based implementation of the sparse partition is given in Section 3, and algorithms
for updating the sparse partition are given in Section 4. In Section 5, we show how
to modify the grid-based data structure in order to obtain an algorithm which fits in
the algebraic computation tree model. Section 6 contains extensions of the method.
We show how to modify the data structure to achieve O(n) worst case space rather
than only expected, at the cost of making the update time bound amortized. We also
give high probability bounds for the running time of a sequence of update operations.
Section 7 contains some concluding remarks.

2. Sparse partitions. We start with some notation. Let S be a set of n points
in D-dimensional space. The minimal distance of S is §(S) := min{d(p,q) : p,q €
S, p # q}. A closest pair in S is a pair p,q € S such that d(p, q) = 6(S). The distance
of p to its nearest neighbor in S is denoted by d(p, S) := min{d(p,q) : ¢ € S\ {p}}.
For convenience, we often speak of the closest pair although there might be more
than one. This causes no problems since, as we shall see, our data structure not only
allows us to find a single closest pair, but also to report all pairs of points attaining
the minimal distance in time proportional to their number.

We now describe an idealized version of our data structure. Although the final
data structure will be different in many significant ways, the idealized description may
offer some insight into the working of the final data structure. For now, assume that
the points are in general position, and define the sparseness of a point p € S as being
simply d(p, S). We will assume the existence of a data structure which, for some fixed
é > 0, maintains a set T of points under insertions, deletions and queries of the form
“is d(p,T) > 67" for an arbitrary point p, and “enumerate all ¢ € T with d(p,q) < §”.
Insertions, deletions and the former query are assumed to take constant time, while
the latter query takes constant time per element reported.

Our idealized data structure partitions the points of S based on their sparseness.
Suppose the set S initially contains n points, and we pre-process S to obtain a distance
threshold § such that between 1/3 and 2/3 of the points have sparseness greater than
d. This pre-processing can be done in O(n) expected time as follows: Simply pick
a random p € S, compute § = d(p, S), and check how many points have sparseness
greater than §. The fundamental observation of [12] is that p’s position in a list of
the points in S ordered by sparseness is also random, and hence O(1) such random
trials suffice on average to compute a suitable threshold.

We now perform a sequence of c¢n updates to S, for some sufficiently small constant
¢ > 0. Let S’ denote the set of points in S at any time during this sequence of updates
whose sparseness is greater than §. Since the sparseness of a point changes only when
its nearest neighbor in S changes, and a point can only be the nearest neighbor of O(1)
points in the set, each update can only change the sparseness of O(1) other points.
Hence, during this sequence of updates, S’ will continue to contain a constant fraction
of points in S. Furthermore, no point in S’ will be part of a closest pair in S. At the
end of this sequence of updates we can re-compute a suitable threshold in linear time,
the cost of which can be amortized over the ©(n) updates since the last threshold
computation. Applying the partitioning idea recursively to the set S\ S’ then leads,
modulo some details, to a solution to the closest-pair problem with O(logn) expected
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amortized time per update—in essence, there will be O(logn) levels of recursion, and
each update results in O(1) amortized expected work per level of recursion.
The most significant problem with this idealized approach is that the “distance
threshold” queries that we postulated appear difficult to answer in reality. However,
we can quite easily answer the approzimate versions of these queries, which can dis-
tinguish between the cases d(p,T) > (1 + €)d and d(p,T) < ¢ for some fixed € > 0,
but may give an arbitrary answer for values in between (a grid-based implementa-
tion using the floor function will doubtless occur to a reader familiar with Rabin’s
algorithm [16]). This causes many problems with the above approach which we have
not been able to overcome in a direct manner. The main differences are that the sets
“sieved out” at each level have to be more carefully defined, and that the rebuilding
rules now contain probabilistic components rather than being purely deterministic as
above. A few more complications arise when we go from the grid-based algorithm to
the algebraic one.
We now present an abstract framework which captures all the properties that we
need from the sets sieved out at each level, and prove some basic facts about these
sets in the abstract framework.
DEFINITION 2.1. Let S be a set of points in D-space. A sparse partition for
the set S is a sequence of 5-tuples (S;, S}, pi, i, 0:), 1 < i < L, where L is a positive
integer, such that:
(a) Fori=1,...,L:
(a.1) S #0;
(a.3) pi,qi € Si and p; # q; if |Si| > 1;
(a-4) 6; = d(pi, i) = d(pi, Si)-

(b) For all1<i< L, and for allp € S;:
(b.1) If d(p, S;) > 8;/2 then p € S};
(b.2) If d(p, S;) < 6;/4D then p & S;.

(c) For all1<i< L, and for all p € S;:

If p € Siy1, then there is a point ¢ € S; such that d(p,q) < 8;/2 and q € Sit1.

(d) Sl =5 andforl S’L'SL—]., Si+1 :S,\Sl’

For each i, we call the points of S} the sparse points in S;, and the set S} the
sparse set. Fach 5-tuple itself is also called a level of the partition.

Conditions (b.1) and (b.2) govern the decision on whether a point of S; is in the
sparse set S; or not. The threshold values given in (b.1) and (b.2) depend on the
nearest neighbor distance d(p;, S;) of the point p; € S;, which will be called the pivot
in the following. For a point p € S; such that d(p;, S;)/4D < d(p, S;) < d(pi, Si)/2, the
decision may be arbitrary as far as the results of this section are concerned and will be
made precise by the implementation later. Condition (c) is used while implementing
updates to the sparse partition efficiently. Some readers may now wish to adjourn
to Section 3 and read up to the end of the proof of Lemma 3.3, where a concrete
implementation of a sparse partition is discussed, before continuing with the rest of
this section.

LEMMA 2.2. Any sparse partition for S satisfies the following properties:

(1) The sets S}, for 1 < i < L, are non-empty and pairwise disjoint. For any

1<i<L, Si=Ujs;S;. In particular, {S1,S3,...,S} is a partition of S.

(2) For any1<i< L, di+1 < 8;/2. Moreover, 6,/4D < §(S) < L.

Proof. Part (1) is obvious. To prove the first part of (2), let 1 < 4 < L. Since
Pit1 € Sit1, we know from Condition (c) in Definition 2.1 that there is a point ¢ € S;
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such that d(p;41,q) < 9;/2 and ¢ € S;j+1. Therefore,
bir1 = d(pit1, Sit1) < d(pit1,9) < 6i/2.

To prove the second part of (2), let p, g be a closest pair in S. Let ¢ and j be such
that p € S} and ¢ € S}. Assume w.lo.g. that i < j. Then it follows from (1) that p
and g are both contained in S;. It is clear that 6(S) = d(p,q) = d(p,S;). Condition
(b.2) in Definition 2.1 implies that d(p, S;) > 0;/4D, and from the first part of (2),
we conclude that §(S) > 8;/4D > 61, /4D. The inequality §(S) < 1, obviously holds,
because §r, is a distance between two points of S. O

DEFINITION 2.3. Let S; be some set of points and let (S;, S}, pi,qi,0;) be a 5-
tuple chosen randomly from some distribution. This 5-tuple is called uniform if, for
al p € S;, Pr[p = p;] = 1/|S;|. Now let (S:, S}, pi,qi,0:), 1 < i < L, be a sparse
partition for the set S chosen randomly from some distribution on all of the sparse
partitions on S; = S. The set S is said to be uniformly stored by the sparse partition
if all its 5-tuples are uniform.

We now give an algorithm that, given an input set S, stores it uniformly as a sparse
partition:

Algorithm Sparse_Partition(S):
(i) S1:=85;i:=1.
(ii) Choose a random point p; € S;. Calculate §; = d(p;, S;). Let ¢; € S; be such that
d(pi, gi) = ;.
(iii) Choose S} to satisfy (b.1), (b.2) and (c) in Definition 2.1.
(iv) If S; = S} stop; otherwise set S;11 := S; \ S}, set i := i + 1 and goto (ii).
LEMMA 2.4. Let S be a set of n points in IRP. Run Sparse_Partition(S) and let
(Si, S}, pisqi,0:), 1 < i < L, be the 5-tuples constructed by the algorithm. Then this
set of 5-tuples is a uniform sparse partition for S, and we have E(z:iL:1 |Si]) < 2n.
Proof. The output generated by algorithm Sparse_Partition(S) obviously fulfils
the requirements of Definitions 2.1 and 2.3. To prove the bound on the size of the
structure we first note that L < n by Lemma 2.2. Define Sp41 := Sp42 = ... =
= 0. Let s; := E(|S;]) for 1 <i < n. We will show that s;11 < s;/2, from which
it follows that s; < n/2"1. By the linearity of expectation, we get E(Ei:1 [Si]) <
Y n/2t < 2n.
It remains to prove that s;11 < s;/2. If s; = 0, then s;; = 0 and the claim holds.
So assume s; > 0. We consider the conditional expectation E(|Sit1| | [Si| =1). Let
r € S; such that d(r,S;) > §;. Then, Condition (b.1) of Definition 2.1 implies that
r€ S, ie,r¢&Sit.
Take the points in S; and label them 71,72, ..., r; such that d(rq, S;) < d(r2,S;) <
. < d(rl,S ). The point p; is chosen randomly from the set S;, so it can be any of
the r;’s with equal probability. Thus E(|Si1| | |Si| =1) < 1/2, from which it follows
that Si+1 = El E(|51+1| | |S,| = l) . PI‘(|S,| = l) S S,'/Q. 0
We remark that the procedure Sparse_Partition is the essential component of
Khuller and Matias’ algorithm [12], where it was used as a filtering procedure to
compute dr, and only kept track of the current set S;. Our dynamic algorithm stores
the sets S; and S} at all the levels. As we now show, the minimal distance is closely
related to the sparse sets S}, i.e. the points that were thrown away in each step of the
iteration in [12]. This enables us to use the sparse partition to find §(S) quickly.
DEFINITION 2.5. Let S1,S55,...,S7 be the sparse sets of a sparse partition for S.
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For any p € IRP and 1 < i < L, define the restricted distance

&; (p) = min (8, d(p, |J 5})),

1<j<i

i.e., the smaller of 6; and the minimal distance between p and all points in Sj U S U
... US;.
For convenience, we define, for all i < 0, S} := 0, §; := oo, and d}(p) := oo for any
point p.

LEMMA 2.6. Let p € S and let i be the index such that p € S,.

(1) d:(p) > 6/4D.

(2) If g€ S}, where 1 < j <i— D, then d(p,q) > d;-

(3) di(p) = min (6;, d(p,S;_p,US}, piU...US)).

Proof. The proof of (1) is obvious. To prove (2), let ¢ € S}, where 1 <j <i—D.
Since d(p, q) > /4D, Lemma 2.2 implies that

d0; Si—p—1 _ 2PH1g;

— > > > 0;.
dp,9)> 52 —p 2 —4p 29

(3) follows immediately from (2). O
LEMMA 2.7.

5(S) = min mind*(p) = mi in d*(p).
(S) Bin, min : () ,pin_, mi ; (p)

Proof. The value d} (p) is always the distance between two points in S. Therefore,
0(S) < minj<i<r minpes; dj (p)- Let p,q be a closest pair, with p € S; and ¢q € Sj.
Assume w.l.o.g. that j <. Clearly, d(p,q) = d(p,U,<; S;) > d; (p). This implies that
4(S) > mini <;<z minyeg: d; (p), proving the first equality.

It remains to prove that we can restrict the value of i to L— D, L—D +1,..., L.
We know from Lemma 2.6 (1) that minyes: d; (p) > 0;/4D. Moreover, we know from
Lemma 2.2 (2), that for i < L — D, 51'/4D > 5L—D—1/4D > (2D+1/4D) -0, > 01 >
4(S).0

Now we are ready to describe how to find the closest pair using the sparse par-
tition. According to the characterization of §(S) in Lemma 2.7, we will augment the
sparse partition with a data structure which stores, for each level ¢ € {1,..., L}, the
set of restricted distances {d}(p) : p € S.}.

The data structure that we use for this purpose is a heap. (See e.g.[6, Chapter 7].)
A heap storing n items can be built in linear time, and the operations insert(item),
delete(item), and change_key(item, key)—which changes the key of the item item to
the value key—are supported in O(logn) time. Also, operation find_min(H) can be
performed in O(1) time, and find_all_min(H), which returns all A items with minimum
key, can be performed in time O(A).

So, for each i € {1,..., L}, we maintain a min-heap H; which stores items having
the restricted distances {d}(p) : p € S}} as their keys. How we compute these values
depends on the way we implement the sparse partition, which will be described in the
following sections, where we also describe the exact contents of our heap items.

LEMMA 2.8. Let S1,S5,...,S} be the sparse sets of a sparse partition for S,
and for each 1 < i < L, let the set {d}(p) : p € S} of restricted distances be stored
in a min-heap H;. Then the minimum distance 6(S) can be found in constant time.
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Moreover, all point pairs attaining this minimum distance can be reported in time
proportional to their number.

Proof. For i <0, define H; as the empty heap. Lemma 2.7 characterizes §(5) as a
minimum of certain restricted distances. In particular, Lemma 2.7 says that §(5) can
only be stored in one of the heaps Hr,_p, H,—py1,- .., Hr. To find §(S) it is therefore
enough to take the minima of these D + 1 heaps and then to take the minimum of
these D + 1 values. Moreover, we can report all closest pairs in time proportional to
their number, as follows: in all of the at most D +1 heaps whose minimum key is §(S),
we report all items whose key is equal to §(S). From the discussion of heaps above,
this can be done in time proportional to the number of items that are reported. O

We close this section with an abstract description of our data structure.

The closest-pair data structure for set S.

e A data structure storing S uniformly as a sparse partition according to Defi-
nitions 2.1 and 2.3.

e The heaps Hy, Hs, ..., Hy, where H; stores the set of restricted distances
df(p), cf. Definition 2.5, for all points p in the sparse set S;.

In the rest of the paper,we discuss two different ways to implement the data
structure. First, we describe a grid based implementation. Since this data structure
is the most intuitive one, we describe the update algorithms for this structure. Then,
we define the other variant of the data structure. Concerning implementation details
and update algorithms, we then only mention the changes that have to be made in
comparison to the grid based implementation in order to establish the results.

3. A grid-based implementation of the sparse partition. Let S be a set
of n points in D-space. To give a concrete implementation of a sparse partition for
S, we only have to define the set S}, i.e. the subset of sparse points in S;, for each i.

3.1. The notion of neighborhood in grids. We start with some definitions.
Let § > 0. We use Gs to denote the grid with mesh size § and a lattice point at
(0,0,...,0). Hypercubes of the grid are called boxes. More precisely, a box has the
form

[ilé : (il =+ 1)5) X [12(5 : (’iQ + 1)(5) X ... X [Zk(s : (Zk =+ 1)(5),

for integers i1,...,4;. We call (i1,...,i;) the inder of the box. Note that with
this definition of a box as the product of half-open intervals, every point in IR
is contained in exactly one grid box. The neighborhood of a box b in the grid Gs,
denoted by N (b), consists of b itself plus the collection of 3 — 1 boxes bordering on
it. Let p be any point in IRP and let bs(p) denote the box of G5 that contains p. The
neighborhood of p in Gs, denoted by Ns(p), is defined as the neighborhood of bs(p),
i.e. N5(p) := N(bs(p)). Let V be a set of points in IRP. The neighborhood of p in Gs
relative to V, is defined as

Ns(p,V) := Ns(p) N (V \ {p})-

We say that p is sparse in Gs relative to V if N5(p,V) = 0, i.e. if, besides p, there are
no points of V in Ns(p). In cases where V and § are understood from the context we
will simply say that p is sparse.

The following observations follow directly from the definitions:

LEMMA 3.1. Let V be a set of points in IRP, and let p and q be arbitrary points
in IRP.
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(N.1) If Ns(p,V) =0, then d(p,V) > 4.
(N.2) If g € Ns(p,V), then d(p,q) < 2D9
(N.3) g € Ns(p) <= p € N;s(q)-
We are now in a position to define the sets S} precisely. For i > 1, let

(3.1) S;:={p € Si : psparsein Gs, /4p relative to S;}.

For convenience, we now modify the the abstract definition of the sparse parti-
tion given in Definition 2.1 and replace it by one which is defined in terms of grid
neighborhoods. Recall that in Definition 2.1 S} was not fully specified; the definition
only gave conditions, specifically (b.1), (b.2), (¢) and (d), which S} had to satisfy. We
now replace those conditions by Equation (3.1); with this new definition the sparse
partitions are totally specified and we will be able to use them in Section 4 to develop
and later analyze our update algorithms.

DEFINITION 3.2. A sparse partition for the set S is a sequence of 5-tuples
(Si, S}, pi i 0i), 1 <i < L, where L is a positive integer, such that:

1. Fori=1,...,L:
(b) piyq; € Si and p; # q; if |Si| > 1;
(c) & = d(pi,qi) = d(pi, Si)-
() Si=1{p€S: : Ny,/an(p.5:) = 0}.
2. Sl =S cmdforl SiSL—l, Si_|_1 =S,\S,ll

LEMMA 3.3. Let (Si,S},pi,q:i,0:), 1 < i < L, be a set of 5-tuples satisfying
Definition 3.2. Then this set of 5-tuples also satisfies Definition 2.1.

Proof. We only have to prove Conditions (b) and (c) of Definition 2.1. Let
1<i< Landletp € S;. First assume that p ¢ S;. Then, there is a point ¢ € S; which
is in the neighborhood of p. By (N.2), d(p, S;) < d(p,q) < 2D -§;/4D = §;/2. This
proves Condition (b.1). To prove (b.2), assume that p € S;. Then, the neighborhood
of p relative to S; is empty. Hence, by (N.1), d(p, S;) > 6;/4D.

To prove (c), let 1 <4 < L and let p € S;iy1 = S; \ 5. It follows that there is
a point ¢ € S; such that ¢ € Ny, /4p(p). By the symmetry property (N.3), this is
equivalent to p € Nj, 4p(q) and therefore ¢ € S;y;. From Condition (b.1), we also
have d(p, q) < §;/2.

In Figure 3.1 we provide an example of a sparse partition based on Definition 3.2
O

We now come to some additional properties of the sparse partition as defined in
Definition 3.2 that will be used in the dynamic maintenance of the data structure.
For this purpose, we give some additional facts about neighborhoods.

We start with some notation. Let p be a point in IRP. We number the 3
boxes in the neighborhood of p as follows. The number of a box is a D-tuple over
{-1,0,1}. The j-th component of the D-tuple is —1, 0, or 1, depending on whether
the j-th coordinate of the box (i.e. its lower left coordinate) is smaller than, equal
to or greater than the corresponding coordinate of bs(p). We call this D-tuple the
signature of a box. We denote by by (p) the box with signature ¥ in Ns(p).

We now define the notion of partial neighborhood of a point p. (See Figure 3.2.)
For any signature ¥, we denote by Ny’ (p) the part of p’s neighborhood that is in the
neighborhood of bY (p). Note that N (p) contains all the boxes b¥' (p) of Nj(p) whose
signature ¥’ differs from ¥ by at most 1 for each coordinate—these are exactly the
boxes bordering on b¥ (p) including b¥ (p) itself. In particular, Ny=°(p) = Nj(p), i.e.
the partial neighborhood with signature 0, ..., 0 is the whole neighborhood of p.



THE DYNAMIC CLOSEST PAIR PROBLEM

9
Sy :p1 =16, 6; = d(16, 12) S
o2 a6 17 o2
o5 e o5
®|10 *9 11 ®10
ot ol . 12
o8
3
o7 o7
o4 o4
6 6
52 P2 = 17, (52 = d(17, 5) Sé
C : .6 i7
i 014
11 11
B 13 .
.8
1 o1
3
S3:p3=5,d3 = d(5,9) S
<5 .5
.9 9

Fic. 3.1. A sparse partition. Although the sets Sg are also stored in grids, we have not shown
the corresponding grids.
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N5 (p)
-1,1 0,1 L1 | =< byl (p)
®p
-1,0 0,0 1,0

Fic. 3.2. The neighborhood of a point p in Gs. The dark shaded area denotes the box b;’l(p) mn
the upper right corner of p’s neighborhood. This boz also belongs to Nél’l(p), the partial neighborhood
of p with signature 1,1. The light shaded area shows the other three bozes of N;’l(p).

The following properties will let us relate the neighborhoods of a point in different
grids and more specifically in the different grids that correspond to different levels of
the same sparse partition.

LEMMA 3.4. Let 0 < &' < §"/2 be real numbers and let p € RP. Then
(N.4) Ny (p) C N (p)-

(N.5) For any signature ¥ € {—1,0,1}: b3, (p) C N\ (p).

Proof. For any grid size 6 and 1 < j < D, denote by héL’j ,hfs’j , hg’j,hf’j the j-th
coordinates of the four hyperplanes bounding the grid boxes of p’s neighborhood in
the j-direction, ordered from “left” to “right”. See Figure 3.3.

Let ¢ = (¢V,¢®,...,¢'?) € RP, and let ¥ = (ay,...,ap) € {—1,0,1}” be a
signature. Then ¢ € by (p) in s if and only if, for all 1 < j < D:

hy? < g\ <hyd if a; =0
hy? < gl < pfH if a; =1
hyd < ¢ <l if a; =—1

Also, g € N{(p) if and only if, for all 1 < j < D:

hy? < g9 <hf if a; =0
BT < gD < B if a; =1
hyd < ¢ <hy if aj =—1

Figure 3.3 shows the neighborhoods of p in the two grids G5 and Gs» .
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L1 11 1 R,1
hdll héll hgll h(sll
R,2
12 1,1
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R,2
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~---1_ 41,1
,,,,,,,,,,,,,,, b ;(p) hT‘,Q
6/
*p
1,2
L2
hgy g hs:
5/
L,2
L2 e i hs/
L,2
h EE N S
6/[

L,1 1 1 1
hyt Rgh R by

F1a. 3.3. The neighborhoods of a point p in grids Gs: and Gsn where §' < §" /2.

Now observe that, since §' < §"/2,

L.,j L.j
(3.2) hhd > nli
R,j R’ j
(3.3) hid < plti

for 1 < j < D. These facts are equivalent to Ng(p) C Ng» (p), which is claim (N.4).
Furthermore, by the definition of the hyperplanes w.r.t. p,

(3.4) hy? > hbi
l’ j 9, j
hhi < B3

for 1 < j < D. This proves claim (N.5): by (p) C N (p). O

Notation: Consider a set S which is stored in a set of 5-tuples (S;, S}, pi, ¢, %),
1 <4 < L, according to Definition 3.2. Since we will only use grids Gy, 4p for
the data structures that store level i of the partition, we will use the abbreviations
Gi := Gs,/4p and N;(p) := Ns,/4p(p) from now on. We use the same convention for
the neighborhood relative to a set.

COROLLARY 3.5. Let p be an arbitrary point of RP, and let (S;, S!,pi, gi,6:),
1<i <L, be a sparse partition. Then, for any 1 <i < j < L, N;(p) C N;(p).

Proof. Apply (N.4) from Lemma 3.4 with 6" = §;/4D,d" = /4D, noting that
¢' < 4"/2 by Lemma 2.2. O

In particular, if N;(p, S;) = 0 for a point p € IRP, i.e. if p is sparse in G; relative to
Si, then, since S;1 C S;, Corollary 3.5 implies N;1(p, Si+1) = 0, which means that
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p is also sparse in G; 1 relative to S;y1. This property will be crucial to our update
algorithms.

The following lemma will also be useful later on.

LEMMA 3.6. Let (Si,S},pi,qi,0i), 1 < i < L, be a sparse partition. Then, for
anyp € S\ Sit1,1 <i <L,

Proof. We use induction on ¢. If i = 1, then for any p € S\ Sz = 57, Ni(p,S) =
Ni(p,S1) = 0 by definition. Now let ¢ > 1 and assume that, for any p € S\ S;, we
have Ni,]_(p, S) = @

1.Ifp € S\ S;, then N;(p,S) C N; 1(p,S) = 0 by Corollary 3.5 and our
induction hypothesis, respectively.
2. If p € S}, then N;(p, S;) = 0 by definition. It remains to show that N;(p, S\
S;) = (. This is true because if there were a point ¢ € S\ S; such that ¢ €
N;(p), then by the symmetry property (N.3), we have p € N;(g), contradicting
Ni(q,S) = 0, which was shown in item 1 above.
We have thus shown that N;(p,S) =0 for any p € S\ Sit1 = (S\ S;))US]. O

3.2. Storing a point set according to a grid. We now explain how to store
the point sets involved in the sparse partition of our input set S. Let § be a grid size
and V C S a subset of S. We store each each non-empty box in the grid Gs in a
hash table, using the index of the box in G5 as a key. Associated with each box b, we
store a list containing the points in V' N b, in arbitrary order. We call this storing V
according to Gs, and the data structure itself is called the box dictionary.

The dynamic perfect hashing algorithm of [10] allows us to store a set of integer-
valued keys in linear space such that the information stored at a given key can be
accessed in O(1) worst case time, and permits a key to be inserted or deleted in O(1)
expected time. This algorithm needs to know in advance the range of integers from
which the keys to be inserted or deleted may be drawn, but this range can easily be
computed from ¢ if we know a frame containing all the points in S.

If V is stored according to Gs, then we can answer the question “are any points of
V in boz b?” in O(1) worst case time. Moreover, if the answer is yes, we can report
all points in V' Nb in time proportional to their number. By checking all boxes in the
neighborhood of an arbitrary point g, we can check in O(1) time if ¢ is sparse in the
grid Gs relative to V, and by doing this for each point in V' we can, in linear time,
find the subset V' C V of sparse points in V.

3.3. The complete data structure. Recall that, when discussing a sparse
partition, we use G; as a short form for the grid of mesh size §;/4D. Our data
structure now consists of the following:

Foreach 1 <i¢ < L:

e the pivot p; € S;, its nearest neighbor ¢; in S; and §; = d(p;, ¢;),

e S; stored according to G;.

e S! stored according to G;.

e the heap H;.

Note that this means that S; and S} are kept in two separate grid data structures

defined on G;. We now add some more details to the description. Let b be a box of
G; which is non-empty w.r.t. S; or S;. The list of points in S; N'b will be called £(b),
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and the list of points in S} N b will be called £'(b). Each element of £(b) is a record
containing the following information:

p € L(b): record | point: p| upperpin S;_ 1 |[lower : tpin S;yq

Here, “tpin V” means a pointer to the representation of point p in the data structure
storing V. The pointers are nil if the corresponding representation of the point does
not exist.

Each element of £'(b) is a record with the following information:

p € L'(b): record | point: p|it: tit(p) in H; [left:Tpin S;

Here, “tit(p) in H;” means a pointer to the heap item it(p) with key d}(p). (See be-
low.) Note that each list £'(b) normally contains at most one point, by the sparseness
property of the set S}, but may temporarily contain more than one point during an
update.

Now let us turn to the heaps. The key of an item in heap H; is the value d} (p) for
some p € S}. Let ¢—if it exists—be such that d}(p) = d(p,q) < &;, and let [ be such
that 0 <1 < D and ¢ € S_,. Then the heap item it(p) of H; contains the following
information:

item it(p) € H;: record| key: d;(p)| point: Tpin S;| point2: 1qin S;_,

If the point ¢ does not exist, i.e. if d}(p) = d;, then the pointer point2 is nil.

We are now in a position to describe a complete procedure which constructs the
sparse partition and its auxiliary data structures. It will be convenient to have two
slight variants of the procedure. The first, called Build(T),j), takes as arguments a
set of points T' and an integer j, and stores set T uniformly in levels j,j + 1,... of a
sparse partition. The second, Near_Build(T,p, j), again stores the given set of points
T uniformly in levels j,j 4+ 1, ... of a sparse partition, but uses the given point p € T
as the pivot for level j. In all invocations of Near_Build, p will be chosen at random
from T.

Algorithm Near_Build(T, p,j)
1. i:=4; S;:=T; p; :=p.
Calculate 6; := d(p;, S;)- Let ¢; € S; be such that d(p;,q;) = ;-
Store S; according to G;.
Compute S} := {p € S; : p sparse in G; relative to S;}.
Store S} according to G;.
Compute the restricted distances {d}(p) : p € S;} and, using a linear time
algorithm, construct a heap H; containing these values with the minimal
value at the top.
7. If S; = S} stop; otherwise set S;11 := S; \ S}; choose a random point p;11 €
Sit+1; set i := 14 + 1; and goto 2.
Algorithm Build(T, j)
Choose a random point p € T and call Near_Build(T, p, j)-
For the sake of simplicity, we did not mention in this algorithm how to establish
the above described links between the various parts of the data structure. The links
between heap items and points in a list £'(b), i.e. points stored in a sparse set S}, can be
installed during the construction of the heaps. The pointers between representations
of a point p in subsequent non-sparse sets S;, S;+1 can be easily established in step 7,
when S;;1 is obtained by stripping off the sparse set S} from S;.

S Gk W
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LEMMA 3.7. Let (S;,S},pi,q:,0:),1 < < L, be a sparse partition, and let p € S]
for some i € {1,...,L}. If we have the data structures storing the sets S} according
to G; available for 1 < j <, then the value d}(p) can be computed in O(1) time.

Proof. We know from Lemma 2.6 (2) that if d} (p) = d(p,q) with d(p,q) < d;
then ¢ must be in one of the sets S}, S;_;,...,S;_p. Furthermore, there are only a
constant number of boxes in the grids G;, i — D < j < 4, in which the point ¢ can
possibly appear: since the boxes in the grids G; have side length §;/4D > 6;/4D,
these are the grid boxes that are within 4D boxes of the box in which p is located.
Finally, because of the sparseness of the sets S;-, there can be at most one point in
each grid box and using the hash tables storing S;-, i—D < j <1, we can find all
points contained in these boxes and compute d}(p) in O(1) time. O

LEMMA 3.8. Let T be a set of points in IRP. The procedures Build(T,j) and
Near_Build(T,p,j) complete in O(|T|) expected time and produce sparse partitions
of O(|T) expected size.

Proof. For k =0,1,..., consider the k-th iteration of algorithm Build(T, j), for
which the loop index i has value j+k. Step 2 can be performed in O(|S;|) deterministic
time by calculating the distance between p; and all other points in S;. Steps 3 and
5 build the grid data structures for S; and S} and take O(|S;|) and O(|S}|) expected
time, respectively. By the discussion at the end of Subsection 3.2, step 4, which
computes S} from S;, can be performed in O(|S;|) deterministic time. This implicitly
includes the work of step 7.

Since we have the data structures for S, j <1 < j + k, available in the k-th
iteration of the algorithm, we can apply Lemma 3.7 to conclude that computing the
restricted distances {d}(p) : p € S}} in step 6 takes O(|S}|) worst case time. The
heap H; can be constructed within the same time bound.

Therefore the expected running time of the algorithm is bounded by O(E(>_, |Si)),
which is also the amount of space used. Lemma 2.4 shows that this quantity is O(|T|).

The analysis for Near_Build is similar. O

Recall that given this data structure, we can find the closest pair in S in O(1)
time by Lemma 2.8.

4. Dynamic maintenance of the data structure. In this section, we show
how to maintain the sparse partition when the input set S is modified by insertions
and deletions of points. The algorithms for insertions and deletions turn out to be very
similar. We will demonstrate the ideas that are common to both update operations
when we treat insertions. Then, we give the deletion algorithm.

4.1. The insertion algorithm. We start with an intuitive description of the
insertion algorithm. Let S be the current set of points, and assume we want to insert
the point ¢q. Further assume that S is already uniformly stored in the sparse partition.
Our goal is to randomly build a sparse partition which uniformly stores S U {g¢}.

If we were to build a uniform sparse partition of S U {¢} from scratch then ¢
would be the pivot of S; with probability 1/(]S1| + 1); otherwise one of the points in
S is chosen at random as the pivot. By assumption, p; (the pivot of Sy) is a random
element of S; = S. Therefore, to generate a pivot for S;U{q} it suffices to retain p; as
pivot with probability |S1|/(|S1]|+1) and to choose g with probability 1/(]|S1|+1). If ¢
is chosen, then we discard everything and run Near_Build(S1 U{q}, ¢, 1), terminating
the procedure. The latter event happens, however, only with probability 1/(]|S1| + 1)
and so its expected cost is O(1).

Assume now that p; remains unchanged as the pivot. We now check to see if
¢q1—the nearest neighbor of p;—and hence, 41, have to be changed. First note that ¢
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can be the nearest neighbor of at most 3 —1 < 3P points in S;. (See [8].) This means
that §; changes only if p; is one of these points. Since the updates are assumed to be
independent of the coin flips of the algorithm, and since p; is chosen uniformly from
Sy, it follows that the probability of §; changing is at most 3°/|S;|. If §; changes,
we run Build(S; U {q},1) and terminate the procedure. The expected cost of this is
O(1). The previous two steps are called “check for rebuild” in the later part of this
section.

Assume now that pi, ¢1 and d; remain unchanged. Let us denote SU {q} by S.
We now need to determine the set SQ, which contains the non-sparse points in S =35.
If g is sparse in Sy, it will go into Sl, and nothlng further needs to be done, that is,
the tuples (S;, S}, pi, gi, 0;) and (SZ, Sz,pz, G, 5; ) are identical for 2 < ¢ < L. So, in this
case, we can terminate the procedure. Otherwise, S, contains q and possibly some
points from S]. The set of points which are deleted from Sj due to the insertion of ¢
is called down;. This completes the construction of the first 5-tuple. Two of the three
cases that may occur while constructing the first 5-tuple are given in Figures 4.1 and
4.2. The algorithm for constructing the new 5-tuples for S;,7 > 1 follows the same
general idea. We now describe more formally how to construct the new 5-tuples for
S;,i > 1, and extend the notion of the set down; from the first level to the other
levels of the sparse partition.

Let ¢ > 1 and take downg := 0. The following invariant holds if the algorithm
attempts to construct the 5-tuple for S; without having performed a rebuilding yet:

Invariant INS(7):
(a) For 1< ] <1
(a.l) g€ S and the set of 5-tuples (S],Sj,p],q]ﬁ ), satisfies Definitions 3.2
(sparse partition) and 2.3 (uniformity), where p; = p;,q; = ¢;, (5~j =0;;
(a.2) Sj+1 = Sj \ S],

(b) The sets down;,0 < j < i, have been computed and S; = S;Udown; 1 U {q}.
Note that at the start of the algorithm, INS(1) holds because downg = . We will
show later that 3P is an upper bound on the size of the union of all the down sets.
Thus, each single down set has size at most~3D.

Now let us construct the 5-tuple for S;. From invariant INS(7) (b), we have
S; = S; Udown;_1 U {q}. As discussed above, to construct the first 5-tuple we had to
take the new point q as new pivot with probability 1/(1+|S1]). In general, constructing
(5'}, §§,ﬁi,@-,5~i) from (S;, S}, pi,qi,d;) requires that up to 3” + 1 points (g as well as
the points in down;—;) be considered as new pivots, and also increases the chance
of one of these points being closer to the old pivot than the pivot’s previous nearest
neighbor. This would result in a rebuilding (see Figure 4.3), but as the probabilities
only increase by a constant factor, the effect is negligible.

If no rebuilding takes place, we determine S}, the set of sparse points in S We
define the set down;, which consists of the points of S that were already sparse at
some level j < 4, but that will not be sparse at level ¢ due to the insertion of ¢, as
follows. Let D; := S} U down;_;. Then:

(4.1) down; ;= N;(¢,D;) ={z € D; : x € Ni(q)}.

The set D; is called the “candidate set” for down;. We can compute §Z’ as follows:
throw out from D; all elements that belong to down; and add g, if it is sparse in S;.
(We shall prove later that the set S} computed in this way actually is the set of sparse
points in S;.)
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F1G. 4.1. This is the sparse partition that resulted when point 18 was inserted into the sparse

partition of the previous example. Point 18 was not chosen to be the pivot and was sparse in S1
with the old pivot py = 16. Thus 18 € Sj.
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F1G. 4.2. This is the sparse partition that results when the same point 18 is inserted as in the
previous example but with point 18 now being chosen to be the pivot, something that occurs with
probability 1/18. Note that in this case every point in S1 becomes sparse so the partition only has
one level.

We have constructed the 5-tuple (§i,§§,ﬁi,§,’,gz~) and can now compute §i+1 =
S; \ §;, the next subset of our new sparse partition for S. If g € §Z’ then, by the
definition of the down sets, down; = § and S;y1; = §,~+1. This means that the levels
i+1,...,L of the sparse partition remain unchanged, and we are finished with the
construction of the sparse partition for S. Otherwise, ¢ € S;11. So, g and the points
in down; are not sparse in §z and we can add ¢ and down; to S;y1, giving the set
S;+1. The invariant INS(i + 1) holds, as we will prove later. We then continue with
level 7 + 1.

After the sparse partition has been updated, it remains to update the heaps. It is
clear that the new point ¢ has to be inserted into the heap structure appropriately. To
see what kind of changes will be performed for the points of S, let us examine the point
movements between the different levels of the sparse partition due to the insertion of
g more closely. Let us look at level 4, where ¢ > 1. From invariant INS(7) (b) (resp.
INS(i+1) (b)), the points in down;_; (resp. down;) move at least down to level i (resp.
level i+1). The construction rule for S} now implies S!\ {q} = (S!Udown;_1)\ down;.
Thus, we have the following:

LEMMA 4.1. Let p be a point in S: B

(i) p € down; \ down;_1 <= p € S andp ¢ S},

(i) p € down; 1 \ down; < p ¢ S} andp € S,

(iil) p € down;—1 Ndown; <= p ¢ S} andp ¢ §;

That is, the points in (i) start moving at level 7, the points in (ii) stop moving at
level i, and the points in (iii) move through level i. For all the points satisfying (i) or
(ii), we have to update the heaps where values associated with these points disappear
(i) or enter (ii).

The complete insertion algorithm is given in Figure 4.4.

It remains to describe the procedures that actually perform the heap updates. Be-
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F1G. 4.3. In this diagram a different point 18 is added to the first sparse partition. This point
18 1is not sparse; it has neighbors 2, 15 and 10. In fact, because of the insertion of 18, these three
points, which used to be sparse, are no longer sparse and are therefore placed in downi. When the
algorithm reached S it then decided, probabilistically, that 10 should be the new pivot of that level.
After making 10 the pivot it found that all points were sparse and so terminated the algorithm.

fore we do this, however, we will show that steps 1-3 in lines (3)-(21) of the algorithm
actually produce a sparse partition for the new set S. o _

LEMMA 4.2. Assume algorithm Insert(q) has computed 5-tuples (S;, S}, Pj, j,d;),
1<j<i, and a set S;, that satisfy INS(i). Then, if no rebuilding occurs, the i-th
iteration of the algorithm constructs the 5-tuple (gz,gz’,ﬁz,@,gz) and the set Sij1,
which satisfy INS(Z + 1) (a.1)-(a.2). Furthermore, if q ¢ 5’;’, then INS(i + 1) (b) also
holds.

Proof. Let us first prove (a.1), saying that the 5-tuple (§i,§z’., Di» i, 0;) satisfies
Definitions 3.2 and 2.3, with p; = pi,§; = ¢; and 0; = &;. The 5-tuple is certainly
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uniform, and it retains the pivot as well as the pivot’s nearest neighbor when the
algorithm has passed step 2 (check for rebuild) of the algorithm without a rebuilding,
cf. the discussion at the beginning of this section.

Tt remains to show that N;(p, S;) = ) <= p € S/ for any p € S;, see Definition 3.2,
1(d). We have S; = Sip1 U S! U down;_y U {q} from invariant INS(i) (b). Since
Ni(p,S;) # 0 for p € Siy1, it remains to prove the claim for p € D; = = S/ U down;_y
and p = ¢q. Note that, since D; C S\ S;+1, we have N;(p,S) = 0 by Lemma 3.6 and
therefore, for any p € D;,

Ni(p,S) =0 <= q¢ Ni(p)
< pé¢ N;(qg) Dby symmetry (N.3)
< p ¢ down; Dby definition of down;
= pes! by definition of S!.

If p = g, then N;(p,S;) = 0 < g€ S! by lines (17)-(19).

Next, we show that S;;1 = S; \S' After line (16), we have S;11 = Siy1 U down;
and S’ = (SjUdown;_1) \down,, and at the end of step 3, ¢ has been added to exactly
one of these sets. Thus SZ+1 U S = (SZ+1 U S}) Udown;—1 U{q} = S; Udown,;_ 1 U {q¢}
which equals S; by INS(i) (b). Since Si;1 and S’ are disjoint, it follows that Si11 =
Si\ Sl

Finally, if ¢ ¢ §;, INS(i +1) (b) holds because, Siy1 = Siy1 Udown; U {q} by lines
(16) and (20). O

COROLLARY 4.3. At the end of step 3 of algorithm Insert, we have computed a
uniform sparse partition for S according to Definitions 3.2 and 2.3.

Proof. Refer to Figure 4.4. Let ¢ denote the value of i after the last completion
of step 3. This in particular means that for each level 1 < j < 4, no rebuilding has
yet occurred and g ¢ S;. By induction on the number of levels, INS(?) (a)-(b) hold.
(We have already seen that INS(1) vacuously holds, forming the base of the induction.
The induction step is established by Lemma 4.2.)

Invariant INS(7) (a) implies that the 5-tuples at levels 1,. 1 satisfy Defini-
tions 3.2 and 2.3. Now, the last iteration at level 7 is either a rebulldlng or produces
a 5-tuple such that ¢ € S;.

In the former case, the algorithm Build(S;,7) computes a uniform sparse partition
for SZ, and the result is a uniform sparse partition for the set S.

In the latter case, another application of Lemma 4.2 establishes INS(i+1) (a). Let
L denote the number of levels of the partition at the end of step 3. If L= 1, then all
the levels have been reconstructed and satisfy Definitions 3.2 and 2.3. Otherwise, if
L> i, then some levels of the partition have not been reconstructed and thus L=1L.
In this case, the 5-tuples for S; are the old 5-tuples for Sj, ¢ < j < L, which fulfill
the desired property anyway. Therefore all the 5-tuples (§,~,§;,m,q;~,[5}), 1<i<IL,
are uniform and §i+1 =S \§,’ for 1 <i < L. Tt follows that this set of 5-tuples is a
uniform sparse partition for S.O

Having established the correctness of the algorithm, we now go into the implemen-
tation details in order to establish the running time. First, as promised, we examine
the sizes of the down sets. The crucial fact which enables us to estimate the total size
of the down sets is that at any level of the partition, only the new point ¢ can make
a previously sparse point non-sparse. We express this in the following lemma.
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LEMMA 4.4. Let the sets down;,1 < j <1, be defined, and let p € down; for a
level j € {1,...,i}. Then

(1) p € Nj(q) and

(2) Ny(p,S) =0

Proof. The first claim is obvious from the definition of down, cf. Equation (4.1).
The second claim is true because p € down; implies p € S\ S;+1, and by Lemma 3.6,
N;(p,S) =0 for each pe S\ Sj;1. O

LEMMA 4.5. Let the sets downy, . .. ,down; be as defined in Equation (4.1). Then

U down]-‘ < 3P,
1<j<i

Proof. Assume that p € down; for some j <i. Then p € N;(¢q) and N;(p,S) =0
by Lemma 4.4. Moreover, let ¥ € {—1,0,1}” be such that p € by (g). The partial
neighborhood N ;I’ (q) is the intersection of ¢’s neighborhood with the neighborhood
of p in the grid G;. Refer to Figures 3.2 and 3.3. Since N;(p,S) = 0, N;*(g) contains
no point of S\ {p}.

Now, consider a point p' € down, for any £ > j. From Lemma 4.4, we know
that p’ € Ny(q). Furthermore, assume that p' is in the box of ¢’s neighborhood with
signature ¥, i.e. p' € b} (q). Since & < ;41 < §,;/2 by Lemma 2.2 (2), Lemma 3.4
(property (N.5)) gives p' € N}’ (q), from which it follows that p' must be identical to
D

This means that at levels j + 1 < £ < 4, there cannot be any point in down,
with signature ¥ except p itself. (Note that a point can be in several down sets.) It
follows that for each ¥ € {—1,0,1}2, there is at most one point p in S which satisfies
p € downj Ap € b} (q). O

Computing the down sets in constant time. We have just shown that the
total size of the down sets is constant, implying in particular that each single down set
has constant size. Now we show that, given the candidate set D; = S;Udown;_1, where
S} is stored according to grid G;, we can compute down; in constant time. According to
Equation (4.1), we want to find all p € S;Udown;_1 such that p € N;(q, S;Udown,;_1).
How do we find these points? The elements in S} are already stored at that level,
whereas the elements in down;_1 U {q} are not. We tentatively insert these points
into the data structure storing the sparse set S, and then search in the neighborhood
of ¢q. This proves that we can find down; in constant time.

Performing the changes in the data structures storing the sparse par-
tition. Of course, the changes from (S;, S}, p;, i, 0;) to (S, S}, Pi, @i, 0;) also have to
be performed in the data structures that actually store the 5-tuple. We will now fill
in these details.

_ The operations that we have to take care of are computing the new sparse set
S} in line (16) and (18), and computing the new set S;y1 in lines (16) and (20) of
algorithm Insert.

To compute S! = (S} U down;_1) \ down;, we just have to insert and delete a
constant number of points in the data structure storing the sparse set S;. To insert
a point p into g; (resp. Sit1), we add p to the list £/(b) (resp. L£(b)) where b is the
box containing p. We also have to insert the box b into the box dictionary of the grid
data structure, if it was not there before. This takes O(1) expected time. (The same
holds for the deletion of a box from the box dictionary.)
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Now let us turn to the deletion of points. Note that during the insertion algorithm,
deletions are performed in the sparse sets S}, more specifically there may be points
that are in S} but are not in g{ . We can easily delete those points because we know
that the lists £'(b) can only contain a constant number of points: at most one point
at the start of the operation by the sparseness property, plus the points in down;_1
that might have been tentatively inserted into the list. We remark here that instead
of actually deleting the points of down; from the data structure storing the sparse
set, we only mark them as deleted. The reason for this is that in step 4, when we
update the heaps, we need to access both the old set S} and the new set S;. The
actual deletions will be performed after step 4 has been completed.

The lists £(b) for the non-sparse set S;;1 can contain more than a constant
number of points. However, observe that a point is only deleted from a non-sparse
set S;+1 during the insertion algorithm if a rebuilding occurs.

To sum up, performing the changes from the old 5-tuple (S;, S}, pi, g;, d;) to the
new 5-tuple (S;, §§,;5,~, G, 6~,) of the sparse partition takes O(1 + |down;_1| + |down;|)
expected time.

LEMMA 4.6. Steps 1-3 of algorithm Insert(q) take expected time O(logn).

Proof. Consider one iteration of the steps 2 and 3. If no rebuilding occurs, the
running time of step 2 is constant. (Recall that we assume that we can obtain a
random number of O(logn) bits in constant time.) By the discussion in the two
paragraphs before the lemma, the expected running time of step 3 at level ¢ is O(1 +
|down;_1| + |down;|) = O(1).

We now give a probabilistic analysis for the insertion time, taking rebuildings into
account. We show that the expected running time over all iterations of steps 1-3 is
O(logn). The expectation is taken both over the new random choices and over the
expected state of the old data structure.

Let the initial set of tuples be (S;, S}, pi, i, 6;), 1 < i < n, padding the sequence
out with empty tuples if necessary. Let T; be the time to construct S; from S;
assuming no rebuilding has taken place while constructing Si,...,S;—1. Clearly, the
overall running time X satisfies X < Y7 | T;. For 1 <4 < n, we have the following:
with probability at most min(1,¢/|S;|) for some constant ¢, a rebuilding happens
at level i and therefore E(T;) = O(|S;|) in this case. Otherwise, E(T;) = O(1).
These expected time bounds stem from the running times of the hashing algorithms
that are used to rebuild or to update the structure, respectively. Since the random
choices made by the hashing algorithms are independent of the coin flips made by our
algorithms Insert and Build to choose the pivots, we can multiply the probabilities of
the events with the expected running times that are valid for the event and so obtain
that the expected value of T; is O(1), independently of the previous state of the data
structure.

We now note that E(3°1 , T;) = O(|Sk|) for any 1 < k < n. This is because
either a rebuild occurs at level k, requiring O(|Sk|) expected time, and we are done.
Otherwise E(T}) = O(1) and by induction, E(3"7_, | Ti) = O(|Sk411)- Since [Sp41]| <
|Sk| —1 (the pivot at level N is always sparse) we can choose the constant within the
big-oh large enough to conclude that E(}"7_, T;) = O(|Sk|) in this case as well.

Let N = [logn]. From the above discussion:

E(X) <> E(T;) + E( Zn: T;)

i=N+1

< O(logn) + O(E(|Sn+1])) = O(log n)
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since E(|STiog n1+1]) is O(1). O

Remark: Note that not only the running time at each level of the sparse partition,
but also the number of levels is a random variable, and its value can be as high as n.
This means in particular that the running times of consecutive update operations are
not independent.

Discussion of the heap updates. We are now ready to discuss step 4 of the
insertion algorithm. Heap updates are necessary when points move to a different level
due to the insertion of q.

Assume point p moves to a different level. Then heap updates are necessary (i)
when p starts moving at level ¢ and (ii) when p stops moving at some level j, where
1 < j. In the first case, we basically perform a deletion of the heap values associated
with p, while in the second case, we perform the corresponding reinsertions into the
heap structure. Note that the latter case does not occur if the data structure has
been rebuilt at some level ¢ < [ < j. In this case, the rebuilding algorithm inserts the
values associated with p into the heap structure.

Note that, at each level 4, a point can be associated with only a constant number
of heap values, which are located in the heaps Hy,¢ < ¢ < ¢+ D: From Lemma 2.6
(3), we know that d}(p) = min (d;, d(p, S!_p U...US})). Thus, a point p € S! can
be associated with a heap in two different ways: Either there is a value d}(p) in H;,
or for each ¢ < £ < i+ D, there may be points r € .S} such that d(r,p) gives rise to
d; (’I‘) in Hg.

Recall that L denotes the last level of the sparse partition after the update. In
our heap update procedures given below, we want to rearrange the heaps such that
heap H;,1 < j < L, contains the values

{d;(p) — min (Sj,d(pﬁ;._D u.._u§;)) pe §;.}.

At the moment, the heaps contain the restricted distances w.r.t. the old sparse parti-
tion, except for the levels that have been rebuilt. We therefore take care that we only
rearrange heaps at levels that have not been rebuilt. In step 4, a parameter h occurs.
It denotes the last level that has not been rebuilt if such a rebuilding has taken place.
Otherwise, h = co. The heap update procedures are shown in Figures 4.5 and 4.6.

LEMMA 4.7. After step 4 of algorithm Insert(q), the heap H; stores the set
{d¥(p) : p€ §z’}, for all levels 1 < i < L. Also, the running time of the procedures
addtoheap and removefromheap is O(1) plus the time spent on the heap operations.
The number of heap operations that are performed in step 4 is constant.

Proof. Recall that at the beginning of step 4, the new sparse partition is com-
puted, and since the elements of S} that are not in S} have only been marked deleted,
we have both sparse sets at hand at each level.

Notation: For each level 4, we call points that remain sparse, i.e. the points in S;m§; ,
the passive points, and the points that cease or start being sparse, i.e. the points in
(Si\ S)HU(S;\S;]), the active points.

Claim: Exactly those restricted distances which can change due to the change of the
sparse partition and which have not been handled by rebuilding have been treated by
the procedures shown in Figures 4.5 and 4.6.

Proof of Claim: At the beginning of step 4, we know h, the index of the last level
for which heap Hj has to be reconstructed, if a rebuilding has taken place. In this
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case, the data structure has been rebuilt at level h + 1. (Otherwise h = 0o0.) We can
therefore guarantee that our heap update procedures do not treat levels whose heaps
have already been correctly computed by a rebuilding.

Now consider the levels where the heaps have to be rearranged. Heap H; contains
the restricted distances of points p € S; to points in S;_,, U...US;. For the active
points, the claim is clear: These are the points in the symmetric difference of S
and §; . By Lemma 4.1, these are exactly the points in the symmetric difference of
down;_1 and down;. Our heap update procedures are called exactly for these points
and the restricted distances of these points are deleted in line (4) of removefromheap
and inserted in line (6) of addtoheap, respectively.

For a passive point p, we only have to examine, at levels j = 4,...,7 — D, the
points that are:

1. active at level j and

2. closer to p than the threshold distance d;.
These are exactly the points that are treated in lines (5)-(9) of removefromheap and
in lines (7)-(11) of addtoheap.
Also note that for every point that is treated by the heap update procedures, either the
corresponding heap item is deleted, if it belongs to the set of points that ceases being
sparse at that level, or its restricted distance according to the new sparse partition is
computed (and inserted if it is a point which starts being sparse). This establishes
the correctness of the heap update procedures and step 4 of algorithm Insert.

Now let us look at the running time of the heap update procedures. Each re-
stricted distance can be computed in O(1) time by Lemma 3.7. Moreover, from the
proof of Lemma 3.7 we know that the restricted distances can be computed by search-
ing the area of at most 4D boxes away from p in the grids that store the sparse sets
Siy1;0 <1 < D. Outside this area, the restricted distance of a point r cannot be
affected by removal or insertion of p. Since we assume that the dimension D is fixed,
the total number of heap operations carried out by the procedure is constant, and the
time spent by the procedure not counting the heap operations is also constant. O

LEMMA 4.8. Algorithm Insert(q) correctly maintains the data structure and takes
expected time O(logn).

Proof. From Lemma 4.2, steps 1-3 establish that SU{q} is stored uniformly as a
sparse partition. Also, from Lemma 4.7, the heaps are maintained correctly by step
4. This proves the correctness of the algorithm.

As shown in Lemma 4.6, steps 1-3 have expected cost O(logn). Now consider
step 4. From Lemma 4.5 we know that the heap update procedures are only called for
a constant number of points. Since, by Lemma 4.7, one procedure call only performs
O(1) heap operations and, apart from these operations, performs only O(1) additional
work, the total time for step 4 is O(logn). O

4.2. The deletion algorithm. Now we come to the algorithm that deletes a
point ¢ from the data structure. Let S denote S\ {q}. Deletion is basically the reverse
of insertion, and may involve some points becoming sparse at their current levels due
to the deletion of ¢, thus causing them to move up a few levels. In particular, points
which move to lower levels during an insertion of ¢ move back to their old levels when
q is deleted directly afterwards (provided no rebuilding takes place).

An insertion ends at the level where the new point ¢ is sparse. Therefore, assuming
that ¢ € S}, we have to delete ¢ from S; and also from all the sets S;, 1 < i < £. Note
that in order to be able to delete q efficiently from the non-sparse sets S; containing
it, we linked the occurrence of a point in S; to its occurrence in S; 1 and vice versa,
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if the corresponding level exists.

Although it looks natural to implement a deletion starting at the level £ where ¢
is sparse, and then walking up the levels, it is much easier to implement the deletion
algorithm in a top-down fashion, as in the insertion algorithm. In the insertion algo-
rithm, we collected in down; the points that were sparse at some level j < i but that
were no longer sparse at level ¢ due to the insertion of ¢. Now, we want to collect in
up; the points that are non-sparse at level ¢ but will be sparse there after a deletion.

The deletion algorithm starts at the top level and moves downward, as algorithm
Insert. We define up, := @). Let ¢ > 1. The following invariant, which is analogous to
invariant INS(7) in algorithm Insert, holds if the algorithm attempts to construct the
5-tuple for S; without having performed a rebuilding yet:

Invariant DEL(7) :
(a) Identical to INS(7), saying that the new 5-tuples at the levels 1,...,4 — 1
satisfy Definitions 3.2 and 2.3.
(b) The sets up;,0 < j < 4, have been computed and Si = (S; \up; 1)\ {q}-
Note that at the start of the algorithm, DEL(1) holds because up, = 0.

To construct the 5-tuple for §z, the deletion algorithm first checks if a rebuilding
has to be performed, as does the insertion algorithm. Having done that, it constructs
the new sparse set S’ and, along with it, the non-sparse set Sz+1 S is computed
from the previous sparse set S} by adding the points of up,; and deletlng the points of
up;_s- Also, we obtain S,+1 by deleting the points of up, from S;;11. Now, ¢ is still in
S or Siy1, depending on whether it was in S} or Sit1 before, respectively. Deleting ¢
from the set containing it finishes the computation of S; and S,+1. If ¢ was sparse at
level ¢, then S;11 = §,-+1 and the construction of the new sparse partition is complete.
(Note that up; must be empty in this case.) Otherwise, we go into the next iteration
and construct the 5-tuple for Siyi.

When the new sparse partition is computed, the heaps have to be updated. Anal-
ogously to the insertion algorithm, (i) p € up, ; \ up; means p starts moving at level
i,i.e.pe Sjandp¢ §z’, (ii) p € up; \up;_, means p stops moving at level i, i.e. p ¢ S}
and p € §{, and (iii) p € up;_; N up; means that p moves through level i, i.e. p ¢ S}
and p ¢ §z’ . As before, the points that start or stop moving cause heap updates. The
deletion algorithm is described in Figure 4.7.

From the similarity of invariants INS(¢)(b) and DEL(%)(b), it is easy to see that
the arguments used in Lemma 4.5 to derive the bound on the size of the down sets
carry over to the up sets, and thus we obtain ||, <, up;| < 3P.

The computation of the up sets is slightly different from the computation of the
down sets. In order to compute the down sets efficiently, we gave an alternative but
equivalent definition for these sets (Equation (4.1)), and showed that the alternative
definition could be efficiently realized. The difficulty there was that the points in
down; could come from the set S\ S;11 = S] U...U S}, and there seemed to be no
direct way of extracting the points of down; from this set. In contrast to the insertion
case, the points that are non-sparse at level ¢ but will be sparse there after a deletion
are all contained in S;. We can compute the set up; in constant time as follows.
From DEL(3)(b), it follows that p € up; if and only if N;(p,S;) = {¢}. Checking this
condition means finding all points in S; having only ¢ in their neighborhood. Using
the symmetry property (N.3), this can be done in O(1) time.

LEMMA 4.9. Algorithm Delete(q) correctly maintains the data structure and takes
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expected time O(logn).

Proof. The proofs of correctness and running time are analogous to those for the
insertion algorithm and are therefore omitted. O

We summarize the results of this section in the following theorem:

THEOREM 4.10. There exists a data structure which stores a set S of n points in
IRP such that the minimal distance 6(S) can be found in O(1) time, and all point pairs
attaining 6(S) can be reported in time proportional to their number. The expected size
of the structure is O(n), and we can maintain the data structure as S is modified by
insertions or deletions of arbitrary points, in O(logn) expected time per update. The
algorithms run on a RAM and use randomization. The bounds are obtained under
the assumption that we know a frame that contains all the points that are in the set
S at any time, that the floor function can be computed in constant time, and that the
updates do not depend upon the random choices made by the data structure.

5. An algebraic computation tree implementation. The solution from the
previous section uses a somewhat inelegant model, which is an uneasy marriage of
the unit-cost RAM and the algebraic computation tree. This algorithm may also be
a poor one to use in practice, as the integers (box indices) which are computed as
intermediate results may be so large that they cannot be manipulated in constant
time by the hashing routines. Even if we implement the box dictionary by search
trees, dividing point coordinates by very small numbers (interpoint distances) may
lead to numerical problems.

We now present an algorithm which fits into the algebraic computation tree model.
It can be verified that the algorithm requires only addition, subtraction, comparison
and multiplication of real numbers to maintain the closest pair (although computing
the actual value of the minimum distance 6(S) in the L; metric for 1 < ¢ < oo
will require the ¢t-th root function as well). However, it is well known that the floor
function used by the previous algorithm is very powerful: The maximum-gap problem
requires 2(nlogn) time in the algebraic computation tree model, but can be solved
in O(n) time by adding this function. Hence, we may expect some increase in the
time complexity of the operations, and this does indeed turn out to be the case.

Note that the floor function was only used to compute the grid box containing
a given point. Therefore, we will modify the algorithm Theorem 4.10 by using a
degraded grid for which we only need algebraic functions. The method we use already
appears in [9] and [11]. We sketch the structure here and refer to these papers or [18]
for details.

Consider a standard grid of mesh size §. Fixing the origin as a lattice point, we
divide the space into slabs of width ¢ in each dimension. Since we can identify a slab
using the floor function, this gives rise to an implicit storage of the slabs. To avoid
the use of the floor function, we store these slabs explicitly, by keeping a dictionary
for the coordinates of its endpoints in each dimension.

In contrast to the standard grid, a degraded grid is defined in terms of the point
set stored in it. To emphasize this, we use the notation DGy for a degraded d-grid
defined by the points of a set V' CIR? in comparison to the grid Gs. In a degraded
d-grid DGs,v, all boxes have sides of length at least d, and the boxes that contain a
point of V' have sides of length at most 2. See Figure 5.1.

The degraded grid can be maintained under insertions and deletions of points in
logarithmic time, and the box containing a point can be identified in logarithmic time
as well.

In order to implement our data structure, we only have to define the sparse sets



26 M. GOLIN, R. RAMAN, C. SCHWARZ, and M. SMID

S]. The alignment of boxes in slabs enables us to transfer the notion of neighborhood
directly from standard grids to degraded grids. The neighborhood of a box consists
of the box itself plus the 3 — 1 boxes bordering on it.

Consider a degraded d-grid DGs,v. As in the grid case, the neighborhood of a
point p € RP is defined as the neighborhood of the box bs,v(p) that contains p, i.e.
Ns,v(p) := N(bs,v(p))- The notion of partial neighborhood is also defined analogously.
See Figure 3.2. We number the 3” boxes in the neighborhood of a point p as described
there, giving each box a signature ¥ € {—1,0,1}”. The box with signature ¥ is
denoted by bg:v(p). The boxes of p’s neighborhood which are adjacent to bgfv(p) form
the partial neighborhood of p with signature ¥, denoted by N 5, V(p)

We now define the neighborhood of a point relative to a set of points. For any set
V, the nelghborhood of p in DG;,y relative to V, denoted by Ns,v (p, V) is defined as
Ns,v(p, V) = Ns,v(p) N (V \ {p})- Note that in this definition, the set ¥ need not be
identical to the defining set V of the degraded grid. As before, we say that a point p
is sparse in the degraded grid relative to V' if N v (p,V) = 0.

The basis of correctness and running time of the grid algorithms were the neigh-
borhood properties (N.1)-(N.5). We now adapt these to handle degraded grids. Two
changes are needed. First, we change the constants in response to the fact that a
non-empty box might now have side length up to 26. Second, although we defined the
neighborhood relative to a set v independently of the defining set V' of the degraded
d-grid, a lot of properties will only continue to hold if V C V. This is because boxes
of a degraded 4-grid DGs v that do not contain a point of the defining set V' may be
unbounded. For example, this may cause a point q € V to be in the neighborhood
Ns,v(p) of a point p €IRP even if it is arbitrarily far away from p.

LEMMA 5.1. Let V be a set of points in IRP, and let p,q € V. Consider a
degraded §-grid DG,y .

(N.1°) If g ¢ Ns,v(p), then d(p,q) > 9.
(N.2’) If g € Ns,v(p), then d(p,q) < 4Dé.
(N.3") ¢ € No,v(p) < p € Ns,v(9)-

LEMMA 5.2. Let 0 < &' < §"/4 be real numbers. Consider a degraded §'-grid
DGs v and o degraded 6" -grid DGsn v, and let p,q € V'. Then
(N4) qe N V’( ) —qc Ngn V”(p)

(N.5’) For any signature ¥ € {—1,0,1}P, let q € bé, v (D). Then q € N(;I,’,,V,, (p)-

Proof. Refer to the proof of (N 4) and (N.5). By the organization of the degraded
grid boxes in slabs, the argument carries over directly, except that we have to care
about the width of the slabs. Since p,q € V', the slabs containing p and ¢ w.r.t.
each coordinate have width at most 20’. Since ¢’ < 6”/4, equations (3.2) and (3.3)
hold, which proves (N.4’). Once (N.4’) is proved, stating that the neighborhood in
the smaller grid is contained in the neighborhood of the larger grid, (N.5’) follows
completely analogous to (N.5) by equations (3.4) and (3.5), because these equations
hold by the definition of the hyperplanes employed in the proof. See Figure 3.3. O

Now we are ready to define our degraded grid based sparse partition. Let g; :=
0i/16D. We store the set S; in a degraded g;-grid DG, s;. Analogously to Equa-
tion (3.1) for standard grids, we define

(5.1) S;:={p € S; : p sparse in DG, s, relative to S;}.

The sparse set S; will also be stored in a degraded g;-grid DG, s;. Defining the sets
S} for each i by Equation (5.1) yields a definition of a sparse partition analogous to
the one given in Definition 3.2 for the grid case.
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We adapt the abstract definition of the sparse partition (Definition 2.1) to de-
graded grids by changing “0;/2” to “9;/4” and “4;/4D” to §;/16D”. The bounds in
Lemma 2.2 then become d; < d;41/4 and 65,/16D < §(S) < 01, respectively. The
constants in the other lemmas of Section 2 are changed analogously. Using a proof
completely analogous to the one of Lemma 3.3, using (N.1’)-(N.3’) instead of (N.1)-
(N.3), we get

LEMMA 5.3. Using the definition for S} given in Equation (5.1), we get a sparse
partition according to Definition 2.1, with the constants changed as outlined above.

The degraded grid based data structure. For each 1 <4 < L:
e the pivot p; € S;, its nearest neighbor ¢; in S;, and §; = d(pi, @),
e §; stored in a degraded g;-grid DG, s,,

o S! stored in a degraded g;-grid DG, s,
e the heap H;.

Now let us examine the update algorithms. In Section 4, we defined the sets
down;. The definition remains the same here, with the notion of neighborhood in
degraded grids. The down sets describe the point movements between the levels of
the sparse partition during an insertion. Similarly, the up sets contain the points that
move to a different level during a deletion.

Due to the point movements between the levels, the defining set of the degraded
grid at level i may contain extra points additional to the ones of S;. We therefore use
a distinguished name for the defining set of the degraded grid at level 7, we call it V;.

When the insertion algorithm reaches level ¢ without having yet performed a
rebuilding, it brings along the points of down;_; and the new point ¢, see Section 4.
Therefore, V; = S; Udown;_1 U{q}. It is important to see that, as for the sets S;, we
have

(5.2) Vi2V22...0 V5.

In the deletion algorithm, no additional point is introduced at any level, except
in the sparse sets S;. We therefore have V; = S;. (Points which vanish from level i
because they move upward may be deleted from the defining set V; at the end of the
deletion algorithm.)

Remark: The defining set V; may differ from the non-sparse set at level i only
during an update algorithm. After completion of an update operation, these sets are
equal. In particular, the update algorithms maintain the degraded grid DG; s, for
both S; and S;. That is, a point p which is new in S; due to an update is also added
to the degraded d-grid storing the sparse set S}, even if it is not contained in Sj.

In the remainder of this section, we discuss the analysis of the insertion algorithm.
The crucial point is the estimate on the size of the down sets. We transfer the relevant
results to the degraded grid case, using the adapted neighborhood properties (N.4"),
(N.5’) given in Lemma 5.2. These properties hold with a restriction to the defining set
of the degraded grid, whereas the original properties (N.4), (N.5) were valid without
restriction to any point set. The nesting property (5.2) allows us to carry over the
results nevertheless.

Analogously to the grid case, we use the following convention to describe neigh-
borhoods in the sparse partition. For any point p, we let N;(p) := Ny, v; (p). We use
the analogous notation for the neighborhood relative to a set.

For the following statements, let (S;, S}, pi, i, 0:),1 < i < L, be a sparse partition
as defined above, where V; denotes the defining set of the degraded grid at level 4.
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The corresponding results to Corollary 3.5 and Lemma 3.6, obtained using (N.4’),
are

e Forany 1 <4< j <L andanype€Vj, N;(p,V;) C Ni(p, V).
e Foranype (S\S;iy1)NV;,1<i< L, Ni(p,SNV;)=0.
Now assume that algorithm Insert(q) processes the levels 1,...,4 without a re-

building, and the sets down;,1 < j < 4, are defined according to Equation (4.1). The
corresponding statement to Lemma 4.4, which is obtained by using the above two
statements, is

(5.3) Let p € down; for a j € {1,...,i}. Then p € N;(g) and N;(p,SNV;) = 0.
With these preparations, we can prove that Lemma 4.5 remains valid, i.e.

U doumj‘ <3P
1<j<i

We recall the proof of Lemma 4.5 together with the changes that are needed. The
proof is now done with (5.3) and (N.5’) replacing Lemma 4.4 and (N.5), respectively.

Assume that p € down; for some j < 4. Then p € N;(q) and N;(p,SNV;) =0 by
(5.3). Let ¥ € {—1,0,1}? be a signature such that p € b}I’(q). Refer to Figures 3.2
and 3.3. Note that the boxes b;-I’ (¢) and b;(g) have side lengths between g; and 2g;
in the degraded g;-grid, because both p and g are in V;. The partial neighborhood
N} (q) is equal to N;(g) N N;(p). Since N;(p, SNV;) = 0 by (5.3), N;*(g) contains no
point of (S NV;)\ {p}.

Now, consider a point p' € down, for any £ > j. Then p',q € V;, and we have
p' € Ny(q) by (5.3). Assume that p' € bf(q). Since &; < 811 < §;/4, (N.5") gives
p' € Nj(q). We also have p' € Vj, because p' € V; and V; C V; by the nesting
property (5.2). However, we know from above that N J‘I’ (g) contains no point of SNV;
except p. Therefore, p' = p.

This shows that, for each signature ¥ € {—1,0,1}", all boxes b} (¢),1 < j <4,
together contribute at most one element to the union |, . ;; down;, which completes
the proof.

Now let us turn to the running time of the algorithm. In Theorem 4.10, the box
dictionary, which stores the indices of the non-empty grid boxes, was implemented
using perfect hashing. Clearly, we can also store these indices in a balanced binary
search tree. Since identifying the box containing a given point now takes O(logn)
time anyway on a structure of size n, the cost of searching for that box in the box
dictionary (also O(logn)) may be ignored. As we are now doing in logarithmic time
what previously took constant time, the overall running time is also increased by a
logarithmic factor. We conclude:

THEOREM 5.4. There exists a data structure which stores a set S of n points in
IRP such that the minimal distance 6(S) can be found in O(1) time, and all point pairs
attaining 6(S) can be reported in time proportional to their number. The expected size
of the structure is O(n), and we can maintain the data structure as S is modified by
insertions or deletions of arbitrary points, in O(log® n) expected time per update. The
data structure is randomized and fits in the algebraic decision tree model. The time
bounds are obtained assuming that the updates do not depend upon the random choices
made by the data structure.

Note that the degraded grid not only depends on g;, as in the grid case, but also
on the set S; stored in it (resp. on the set V; D S; during the insertion algorithm).
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Actually, it even depends on the way S; has developed by updates. This means that
this data structure no longer has the property that its distribution is independent of
the history of updates. This does not affect the analysis of the algorithms, however.

6. Extensions. The data structure, as described so far, uses O(n) ezpected
space. In this section, we give a variant of the data structure that achieves linear
space in the worst case. The update time bounds on this structure are amortized
in that they will bound the expected running time of a sequence of update opera-
tions. We also show that this variant executes an update sequence quickly with high
probability.

6.1. A data structure with linear space in the worst case. Recall that
the space requirements are bounded by the sum of the sizes of the non-sparse sets
Si,...,S8L of the sparse partition, whose expected value was shown to be O(n). To
turn this into a worst case bound, our first step is to slightly modify the algorithm
Sparse_Partition given in Section 2.

The modification is as follows: After picking the pivot of the grid randomly we
determine the set of sparse points induced by this random choice. If at least half of
the points are sparse, we call the pivot good and retain it as the pivot. Otherwise, we
discard it and make a new random choice, continuing this process until a good pivot
is found. We then continue on to the next set, making sure it has a good pivot as
well, etc. Note that if all of the pivots in the sparse partition are good then, for all 4,
ISi] > [Sil/2 so |Sit1] < [Sil/2, 32;5;1Si] = O(|Si]) and the data structure will use
O(n) space. Furthermore, since |S;11] < |S;|/2, the sparse partition has only O(logn)
levels.

Note that at least half of the elements of a set are good pivots, and so at most
two trials are needed on average until a good pivot is found. Using the same data
structures as before to implement the sparse partition, we can easily prove that:

LEMMA 6.1. Let S be a set of n points in RP. The modified version of algorithm
Sparse_Partition produces a sparse partition for S of worst-case size O(n) in O(n)
expected time.

Note that the above lemma only discusses creating the sparse partition itself,
and does not discuss creating the auxiliary data structures. This additional work can
however be completed within the same time bound and we therefore do not discuss
it. In the next section, in which we discuss high probability bounds, we will need to
distinguish between constructing the sparse partition itself on the one hand and the
complete data structure on the other. For the remainder of this section we assume
that the procedures Build and Near_Build have been modified as above to produce
sparse partitions of worst-case linear size.

We now move on to the update algorithms. The idea will be to maintain a sparse
partition all of whose pivots are good, or at least not too far from being good. We
make the following observations:

1. The uniformity property (Definition 2.3) is lost. However, since at least half
of the elements are good pivots, the probability of an element being the pivot
right after the construction of a new sparse partition is 2/n for a set of size
n.

2. Updates can gradually unbalance the data structure in the sense that more
than a constant proportion of the elements at that level can become non-
sparse. In the earlier version of the algorithm the uniformity condition guar-
anteed that the data structure was, probabilistically, well balanced. Lacking
the uniformity condition we enforce the balance of the sparse partition “by
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hand” to ensure that the data structure uses linear space. That is, we count
the number of update operations that affect a level of the data structure,
rebuilding after this count has reached a suitable constant fraction of the
cardinality of the set at that level at the time of the last rebuilding. This
will ensure that |S}| is always at least some constant proportion of |S;|. In
the sequel we call these rebuildings amortized to distinguish them from the
probabilistic rebuildings that can be caused by a particular update.

We now sketch the modifications to the update algorithms, using the notation
from Section 4. We associate two variables, last; and count;, with level i of the
current sparse partition. last; equals |S;| after the last (amortized or probabilistic)
rebuilding that affected S;, i.e. the last rebuilding performed at a level j < i. count;
denotes the number of update operations since the last rebuilding that affected level
i. In what follows, ¢ > 1 is a sufficiently large constant.

In the insertion algorithm (Figure 4.4), let ¢ be the newly-inserted point, and
suppose we are at level ¢, down;_; has been computed, and g,» = S; Udown;_1 U{q}.
Only Step 2 (checking for rebuild) is changed as follows:

1. count; := count; +1; if count; > last;/c then Build(gi,i); stop;
2. if ¢ or an element of down; ; is closer to the pivot p; than its previous
nearest neighbor
then Build(S;,7); stop;
The first item is the amortized rebuilding discussed above, and the second item is
one component of the probabilistic rebuilding in the original algorithm. Note that
the first part of that rebuild step—which ensured the uniformity of the pivots by
probabilistically deciding whether to make one of the elements in down;_1 U {q} the
new pivot—does not appear here. Since we do not have complete uniformity here
anyway (bad elements cannot be pivots), we treat a newly inserted element as if it
were a bad element.
In the deletion algorithm (Figure 4.7), suppose again that we are at level i, up,

has been computed and we have S; = (S; \ up;_;) \ {¢}. Only Step 2 is changed as
follows: _
1. count; := count; +1; if count; > last;/c then Build(S;,i); stop;
2. if ¢ or an element of up, , is either the pivot p; or its nearest neighbor g¢;
then Build(gi,i); stop;

It is clear that the above modifications do not affect the correctness of the update
algorithms. We now analyze its cost. Firstly note that immediately after a rebuilding
|Si| > |Si|/2. A single update may only add or subtract a constant number of items
to or from S; and S}. Thus, if ¢ is taken to be large enough, the amortized rebuildings
guarantee that |S}| > |S;|/4 always holds, ensuring that (i) the data structure has
O(logn) levels and (ii) the size of the structure is O(n). (Note that the constant
number of points that can be moved at each step depends upon the dimension D, so
¢ must be chosen dependent upon D as well.)

As long as no rebuilding occurs, the algorithm uses a constant number of dic-
tionary operations at each level. Since there are O(logn) levels the total expected
cost of all dictionary operations is O(logn). The heap updates cost O(logn) time as
before. Thus the total expected time required for an update operation which does
not perform a rebuilding is O(logn).

Recall now that there are two types of rebuildings; amortized and probabilistic.
We start by analyzing the amortized rebuildings. Note that an amortized rebuilding
occurs on a set S; of size m only if a sequence of ©(m) updates has occurred without a
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rebuilding of S;. Since a rebuilding costs O(m) expected time each of the sequence of
©(m) updates incurs an O(1) amortized cost for the rebuilding of S;. Summing over
all O(logn) levels in the data structure gives an amortized expected cost of O(logn)
per update operation.

For the probabilistic rebuildings, we will show that for each update which affects a
set S; of size m, the probability of a rebuilding is at most ¢’ /m for some fixed constant
¢'. Since the expected cost of a rebuilding is O(m) this means that the expected cost
of rebuilding a set at a given level at any particular step will be O(1). Summing over
all O(logn) levels yields a total expected cost of O(logn) per update.

To show that the probability of a rebuilding is at most ¢'/m for some ¢' we note
that immediately after a rebuilding the probability of rebuilding a set S; of size m
is ¢'/m where ¢’ = 2. Between rebuildings, an adversary gains knowledge about the
possible pivots of the data structure permitting him to force a rebuilding with an
appropriately chosen insert or delete command. However, we have already seen that
an adversary can only exclude at most a constant number of points from being a
pivot in each update operation. Thus, if ¢ is taken to be large enough that after m/c
updates at a level of initial size m, the adversary still must consider |S;|/4 possible
good pivots, this implies that the probability of a probabilistic rebuilding (i.e. item 2
of the modified updates) is still O(1/m). This proves the following:

THEOREM 6.2. The data structure of Theorem 4.10 can be modified to use O(n)
worst-case space. The modified data structure has O(logn) amortized expected update
time, and the time complexities of all other operations are unchanged.

Applying the same modifications to the data structure of Theorem 5.4 we get:

THEOREM 6.3. The data structure of Theorem 5.4 can be modified to use O(n)
worst-case space. The modified data structure has O(log® n) amortized expected update
time, and the time complezities of all other operations are unchanged.

6.2. High probability bounds. The previous theorem yields the expected run-
ning time of the dynamic closest pair algorithm on a sequence of updates. We now
discuss the probability that the running time of the data structure of Theorem 6.3 on
such an update sequence deviates significantly from its expectation. In what follows
we say that an event occurs with n-polynomial probability if, for any fixed s > 0, it
occurs with probability 1 — O(n~*®). A process is said to take O(f(n)) time with n-
polynomial probability if, for any fixed s > 0, the process takes at most ¢(s) f(n) time
for sufficiently large n, where c(s) is a constant dependent upon s, with probability
1-0(n*%).

THEOREM 6.4. Let S be a set of n points in IRP. The data structure of Theo-
rem 6.8 performs a sequence of n updates on S in O(n log? n) time with n-polynomial
probability.

Remark: We can also prove that the data structure of Theorem 6.2 processes a
sequence of ©(n) updates, starting with a set of size n, in O(nlog®n) time with
n-polynomial probability; see [18] for details.

Proof. First note that the theorem is obviously correct if we only count the costs
of the part of the updates that do not include rebuildings. The non-rebuilding part
of the update consists of O(1) heap operations, each costing O(logn) time for a total
of O(logn) time, and of O(logn) dictionary operations each costing O(logn) time
for a total of O(log®n) time. (Recall that our data structure has O(logn) levels in
the worst case for a set of size n.) Hence, if no rebuilding occurs, an update takes
O(log” n) time in the worst case.



32 M. GOLIN, R. RAMAN, C. SCHWARZ, and M. SMID

We now analyze the rebuilding cost, and show that rebuilding a sparse partition
for a set of size m will require O(mlogn) time with n-polynomial probability. First
note that, during the rebuilding of a level, the chance of a random pivot being a
good one is at least 1/2; the probability of not finding a good pivot after k trials is
therefore at most 2% so, with n-polynomial probability, only O(logn) pivots need to
be checked before finding a good one. At first sight, it appears as if even checking
if a single pivot is good should take O(mlogn) time, since checking to see if a point
is sparse appears to require O(1) queries to the box dictionary, each costing O(logn)
time.

However, if we only want to check if a pivot is good, we can avoid queries to the
box dictionary as follows: During the building of the degraded grid data structure, we
can link each non-empty box with the non-empty boxes in its neighborhood, where
we mean the occurrences of the boxes in the box dictionary (not only in the geometric
representation, which is trivial). We can use these pointers to find the sparse points
of the point set which is being stored in linear time, as follows: Walk through the list
of non-empty boxes of the grid. With the help of the above described pointers, we can
access the point lists associated with the neighboring boxes in constant time, replacing
the queries in the box dictionary. (This faster method was not mentioned earlier as
computing the sparse points of a set was never a bottleneck previously.) Thus we can
identify the sparse points and decide whether the pivot is good in O(m) time; it is
only in the computing of the restricted distances where we will need ©(m logn) time.

We conclude that a good pivot can be found, and the grid for that level built and
processed in O(mlogn) time with n-polynomial probability. Since the levels decrease
geometrically in size, good pivots for all succeeding levels of the partition can also be
found in O(mlogn) time with n-polynomial probability. The remainder of the Build
procedure takes O(mlogn) time as before.

We now analyze the amortized and probabilistic rebuildings separately, studying
the amortized ones first. Actually, using the same reasoning as developed in the
previous subsection, we find that an amortized rebuilding of set S; of size m is only
performed if ©(m) previous updates did not rebuild S;. Now, rebuilding S; requires
O(mlogn) time with n-polynomial probability, so, with n-polynomial probability, the
amortized rebuilding cost per update of S; is O(logn). Since there are O(logn) levels,
this adds up to O(nlog®n) time with n-polynomial probability.

Before analyzing the cost of the probabilistic rebuildings, i.e., the rebuildings
caused by a deletion of a pivot or insertion/deletion of the nearest neighbor to a
pivot, it will help to quickly review what we are trying to study. As we start with
a data structure which contains n points and then make n updates to it, the data
structure contains at most 2n items at any update step. Since |S}| > |S;|/4 we have
[Si+1] < 3|Si|/4 so the data structure never contains more than L = logy/3(2n) =
O(logn) levels. Now suppose that |S;| = m. Then, as described in the previous
subsection, S; is rebuilt with probability O(1/m). The cost of rebuilding S; will be
O(mlogn) with n-polynomial probability. Let m;; denote the size of S; at the end
of update t—1,for 1 <i < Land 1<t <n. If S; does not exist at the end of update
t — 1 set m;; = 1 by convention. Now define the random variables

., = 1 mig with probability 1/m; ¢
“ET 0 with probability 1 — 1/m;

Then the cost of probabilistically rebuilding S; at update ¢, counting both degraded
grid and heap operations, is O(X; ; logn) with n-polynomial probability by the above



THE DYNAMIC CLOSEST PAIR PROBLEM 33

discussion. Hence the total cost of probabilistic rebuildings over all updates is bounded
by O(Mlogn) with n-polynomial probability, where M = >_, , X;;. We now show
that M itself is O(nlogn) with n-polynomial probability. The proof of Theorem 6.4
will follow.

The first complication we encounter in bounding M is that the X;; are not
independent because the m;; depend upon each other. Nevertheless, since |S| < 2n
and the amortized rebuilding ensures that |S;y1| < 3|S;|/4, the relation

(6.1) miy < max{1,2- (3/4)" - n}

must always hold. We sidestep the dependence issue by showing that, for any values of
m;, that satisfy Equation (6.1), M has n-polynomial probability of being O(nlogn).
This allows us to assume that we are given some fized (but arbitrary) values m;
which satisfy (6.1), and that the variables X;, are as defined above and independent
of each other.

The following lemma is obtained by a straightforward modification of the proof
of the Chernoff bound given in [14, p.68]:

LeEMMA 6.5. Let Y7, ..., Yy be independent random variables, and let a1, ..., ax €
[1, A] for some A > 1. Fori=1,... k suppose that

y. = | @ with probability 1/a;
71 0 with probability 1 —1/a;

and let Y = Ele Y;. Then, for any 6 >0

€

5 k/A
(T +0)0%0 ]

(6.2) Pr[Y > (1 +0)k] < [

Proof. Let A = (In(1 + §))/A and note that A > 0. Then:

Pr[Y > (1+4)k] = Pr[e?Y > *(1+9)k]
E(e)\Y)
S A0k
_ I Ee)
T eMI+ok
Hf:l (a%.@)‘a" +1- a%)

YR

However, f(z) = e’*/x + 1 — 1/z can easily be seen to be an increasing function of

z, for > 0. Therefore:

AM A1) a+d/) e
eX(1+d)k 1+ 5)(1+6)k/A 1+ 5)(1+6)

Let s be a given positive integer. We apply Lemma 6.5 to X; = Y1 | X;; for
each 1 < ¢ < 5loglogn, noting that m;; < 2n for this range of . By choosing
d = c-logn/loglogn — 1 for sufficiently large ¢ > 0 and A = 2n, we obtain that, for
all 1 <i<5loglogn:

mw>u+®mg(

5 k/A
| o

(6.3) Pr[X; > c-n-logn/loglogn] < n 1
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We now apply Lemma 6.5 to X; = Y"1 | X, for each 5loglogn < i < L, noting
that m;; < n/logn for this range of i. By choosing § = ¢’ — 1 for sufficiently large
¢ >1and A =n/logn, we obtain that, for all 5loglogn < i < L:

(6.4) Pr[X; >c -n]<n !

From (6.3) and (6.4) we conclude that M = Y | X; = O(nlogn) with prob-
ability at least 1 — n~*%, and hence M = O(nlogn) with n-polynomial probability.
a

7. Concluding remarks. In this paper, we have given the first solution to the
fully-dynamic closest pair problem which achieves linear space and polylogarithmic
update time simultaneously. After a preliminary version of this paper was published,
Kapoor and Smid [13] achieved this goal with a deterministic method which has
amortized update time O(log” ' nloglogn) for D > 3 and O(log® n/(loglogn)t) for
the case D = 2, where £ is an arbitrary non-negative integer constant. Also, Callahan
and Kosaraju [4] gave a deterministic data structure achieving O(log® n) update time
while using linear space, for any fixed dimension. Finally, Bespamyatnikh [3] gave
an optimal deterministic solution for the dynamic closest pair problem: for any fixed
dimension, his technique achieves O(logn) update time and uses O(n) space.
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(1) Algorithm Insert (q);
(2) begin
(3) 1. initialize: i := 1; downg := 0; h:=
(*+ From invariant INS(i) (b), we know that S; = S; U down;_; U {g}. We want to
determine §; Before that, we check if the data structure has to be rebuilt. )
2. check for rebuild:

(4) flip an |§,~|—sided coin, giving pivot p; of §i;
(5) if 51 ¢ S; then
(6) Near_Build(gi,ﬁ,-, i); h:==1—1; goto 4.
(7 else
(8) the old pivot p; of S; is also the pivot for S;
(9) fi;
(10) if d(p;,p) < d; for some p € down;_; U{q} then
(11) Build(S;,i); h:=i—1; goto 4.
(12) else
(13) do nothing (x di = d(pi, S;) = d(pi, Si) *)
(14) fi;
3. Determine gz’
(15) compute the set down; from its candidate set D; = S; U down;_1, see Eq. (4.1);
(16) gz = Dz' \ doum,-; §i+1 = Si+1 U doumi; (* now §z’+1 = (gl \ g:) \ {q} *)
(17) if Ni(q,S;))=0 then
(18) add ¢ to §;, goto 4. (* ¢ is sparse in §,-, and so §,-+1 = Siy1 %)
(19) fi (* ¢ is not sparse in S; )
(20) add g to §Z~+1;
(21) t:=1+1; goto 2.
4. Update heaps:
(* Invariant: ¢ ¢ §é for £ <.
Also min{i, h} is h =i — 1, if a rebuilding was performed.
Otherwise, h = oo and so min{i, h} = i. *)
(22) for £:=1 to min{i,h} do
(23) forall p € downy \ down, ; do
(24) removefromheap(p, £)
(25) od
(26) forall p € downg_1 \ down, do
(27) addtoheap(p, £)
(28) od;
(29) od;
(30) if g€S. i then
(31) addtoheap(g, min{i, h})
(32) fi;
(33) end;

?

Fic. 4.4. Algorithm Insert(q). The heap update procedures addtoheap and removefromheap
called in step 4 will be given later.
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proc removefromheap (p, h);
begin
(* p starts moving at level 4, i.e. p € S}, but p ¢ S’;’ *)
DELETE(H;, it(p));
for ¢/:=i to min{i+ D,h} do
forall r e S)NS) such that d(r,p) <& do
CHANGE_KEY (it(r), d; (r))
od
od;
end;

F1G. 4.5. Procedure removefromheap(p, h).

proc addtoheap (p, h);
begin
(* p stops moving at level j, i.e. p ¢ S}, but p € §; %)
compute d(p); let r be such that d}(p) = d(r,p) if it exists;
it(p) :== new item; it(p).key := d;(p); it(p).point := p; it(p).point2 := r;
INSERT(Hj, it(p));
for /:=j to min{j+ D,h} do
forall r e S}NS) such that d(r,p) <& do
CHANGE_KEY(it(r), d; (1))

od
od;
end;

F1G. 4.6. Procedure addtoheap(p, h).
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Algorithm Delete (q);
begin
1. initialize: i:=1; upy :=0; h:= 0
(+ From invariant DEL(i) (b), we know that S; = (S; \ up;_,) \ {q}- *)
2. check for rebuild :
(* we do not need to flip a coin for a new pivot x)
if g or an element of up,_; is the pivot p; or the nearest neighbor of p; then
Buz’ld(gi,i); h:=i—1; goto4.
fi; (¢ di =d(pi, Si) = d(pi, Si) *)
3. Determine S :
compute ups = {p € 5.+ N(p,) = ()}
Si = (S{Uup;) \up;_y; Siy1 := Sit1 \ up;; (* now S;1 US, =S;U{q} *)
if ¢€S; then
delete ¢ from :5’1’, goto 4. (x ¢ is sparse in §,~, and so §z~+1 = Siy1 *)
fi; (* g is not sparse in g,- *)
delete ¢ from §i+1;
t:=1+1; goto 2.
4. Update heaps:
Completely analogous to algorithm Insert. At levels 1 < £ < min{i, h},
we execute the heap update procedures for the points in the
symmetric difference of up;_; and up;, and for the deleted point g,
if we are on a level where ¢ contributes a heap value.
end;

F1g. 4.7. Algorithm Delete(q).
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F1G. 5.1. Ezample of a degraded é-grid. It is dependent on the set stored in it.



