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Abstract

Let S be a subdivision of the plane into polygonal regions, where each region has an associated positive
weight. The weighted region shortest path problem is to determine a shortest path in S between two points
s, t ∈ R2, where the distances are measured according to the weighted Euclidean metric—the length of a
path is defined to be the weighted sum of (Euclidean) lengths of the sub-paths within each region. We show
that this problem cannot be solved in the Algebraic Computation Model over the Rational Numbers (ACMQ).
In the ACMQ, one can compute exactly any number that can be obtained from the rationals Q by applying a
finite number of operations from +, −, ×, ÷, k

√
, for any integer k ≥ 2. Our proof uses Galois theory and is

based on Bajaj’s technique.
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1. Introduction

The weighted region shortest path problem is one of the classical path problems in computational geometry
and has been studied over the last two decades. It was originally introduced by Mitchell and Papadimitriou [13]
as a generalization of the two-dimensional shortest path problem with obstacles. There are several well
known approximation algorithms for this problem (see [1, 5, 12, 13] for instance). In this paper, we show that
determining the exact shortest path distance in this setting is an unsolvable problem in an algebraic model of
computation, confirming the suspicion expressed by Mitchell and Papadimitriou [13, Section 4]. Thus, we
provide further justification for the search for approximate solutions as opposed to exact ones.

The algebraic complexity of geometric optimization problems was first studied by Bajaj, who showed
that Euclidean shortest paths among polyhedral obstacles in three dimensions [3] and solutions to the Weber
problem and its variations [4] cannot be expressed as finite algebraic expressions. More recently, the algebraic
complexity of semi-definite programming [14] and shortest paths through certain cube complexes [2] were
investigated. De Carufel et al. [6] studied a variant of the Fréchet distance that has a lower sensitivity to the
presence of outliers than the usual one. They showed that this variant cannot be computed exactly within the
Algebraic Computation Model over the Rational Numbers (ACMQ). In the ACMQ, one can compute exactly
any number that can be obtained from the rationals Q by applying a finite number of operations from +, −,
×, ÷, k

√
, for any integer k ≥ 2. In this paper, we employ Bajaj’s technique [4] to show that the weighted

region shortest path problem is unsolvable within the ACMQ. The technique is as follows.
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As a consequence of the fundamental theorem of Galois [10], we know that there is no general formula to
solve a polynomial equation of degree d ≥ 5 by radicals. However, there are some polynomial equations of
degree d ≥ 5 that can be solved by radicals. The Galois group Gal(p) of an irreducible polynomial p over
Q determines the solvability of p by radicals: the equation p(x) = 0 is solvable by radicals if and only if
Gal(p) is solvable (refer to [10]). Intuitively, p is unsolvable by radicals if its coefficients are algebraically
independent, i. e., not related by an algebraic expression.

We will present an instance of the weighted region shortest path problem such that solving this instance
exactly within the ACMQ is equivalent to the statement that the polynomial equation p12(x) = 0 in
Equation (5) is solvable by radicals. However, we will show that the Galois group of p12 is S12 (i.e., the
symmetric group over 12 elements) up to isomorphism. This is proved using the following theorem.5

Theorem 1 (Bajaj [4]). Let p be a polynomial of even degree d ≥ 6. Suppose that there are three prime
numbers q1, q2 and q3 that do not divide the discriminant ∆(p) of p, such that

p(x) ≡ pd(x) (mod q1) , (1)

p(x) ≡ p1(x)pd−1(x) (mod q2) , (2)

p(x) ≡ p′1(x)p2(x)pd−3(x) (mod q3) , (3)

where pd(x) is an irreducible polynomial of degree d modulo q1; pd−1(x) (respectively p1(x)) is an irreducible
polynomial of degree d− 1 (respectively of degree 1) modulo q2; pd−3(x) (respectively p′1(x) and p2(x)) is an
irreducible polynomial of degree d− 3 (respectively of degree 1 and of degree 2) modulo q3. Then Gal(p) ∼= Sd.

If d ≥ 5 is odd, the same result holds if we replace (3) by

p(x) ≡ p2(x)pd−2(x) (mod q4) ,

where q4 is a prime number such that q4 - ∆(p) and pd−2(x) (respectively p2(x)) is an irreducible polynomial
of degree d− 2 (respectively of degree 2) modulo q4.

Observe that (1) implies that p(x) is irreducible over Q, which implies that Gal(p) is a transitive group.
Conditions (2) and (3) guarantee the existence of a (d− 1)-cycle and an element with cycle decomposition
(2, d− 3) in Gal(p). These two elements, together with the transitivity of Gal(p), imply that Gal(p) ∼= Sd.

Lemma 2 ([10, Chapter 4]). A symmetric group Sn over n elements is solvable if and only if n ≤ 4.

2. Unsolvability

Consider the situation depicted in Fig. 1, where s = (0, 0) is the source and t = (6, 2) is the target. The
three regions r1, r2 and r3 have weights w1 = 1, w2 = 2 and w3 = 3, respectively. The three regions are
r1 = {(x, y) ∈ R2 | x ≤ 1}, r2 = {(x, y) ∈ R2 | 1 ≤ x ≤ 3} and r3 = {(x, y) ∈ R2 | x ≥ 3}.

The optimal path satisfies Snell-Descartes law [13]. We denote by θi the angle made by the incident ray in
ri (1 ≤ i ≤ 3). For simplicity, we let θ = θ1. Hence, we must have sin(θ2) = w1

w2
sin(θ) and sin(θ3) = w1

w3
sin(θ).

Since the sum of the vertical distances travelled in all regions must be equal to the y-coordinate of t, we
need to solve

tan(θ) + 2 tan(θ2) + 3 tan(θ3) = 2. (4)

Since tan(θ) = sin(θ)√
1−sin2(θ)

for 0 ≤ θ < 1
2π, this can be rewritten as

φ(X) =
X√

1−X2
+ 2

w1

w2
X√

1−
(
w1

w2
X
)2 + 3

w1

w3
X√

1−
(
w1

w3
X
)2 = 2 ,

5Alternatively, it can be verified using symbolic computation software. For example, GAP uses the algorithm from [9] to
test the solvability of polynomials up to degree 15 via the command isSolvable, and MAGMA implements an extension of the
algorithm in [11], that works for polynomials of arbitrary degree, limited only by time and space constraints.
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Figure 1: An instance of the weighted region shortest path problem where the shortest path has two bends, namely u1 and u2.

where X = sin(θ). By appropriately squaring three times, this can be transformed into6

p12(u) = 419904− 3545856u+ 12394944u2 − 24006816u3 + 28904608u4 − 22882588u5 (5)

+ 12204109u6 − 4396586u7 + 1060979u8 − 168272u9 + 16843u10 − 970u11 + 25u12 = 0 ,

where u = X2.

Theorem 3. The weighted region shortest path problem cannot be solved exactly within the ACMQ.

Proof. Following the notation of Theorem 1, and the above example, we have p(u) = p12(u), d = 12 and
∆(p) = 257 · 398 · 522 · 1847 · 814585609.

With numerical methods, one finds that for 0 ≤ θ < 1
2π, there exists a unique number α such that

φ(α) = 2. This number α is such that 0.60206 < α < 0.60208; it corresponds to u = X2 ≈ 0.36249 in (5) and
to θ ≈ 0.64610 in (4).

However, with q1 = 79, q2 = 31 and q3 = 11, one finds

p(x) ≡ 19 + 59u+ 2u2 + 20u3 + 9u4 + 78u5 + 31u6 + u7 + 9u8 + 77u9 + 16u10 + 57u11 + 25u12 (mod 79),

p(x) ≡ 25(20 + u)(10 + 27u+ u2 + 6u3 + 30u4 + 14u5 + 5u6 + 28u7 + 12u8 + 17u9 + 28u10 + u11) (mod 31),

p(x) ≡ 3(u+ 9)(8 + u+ u2)(8 + 10u+ 3u2 + 6u3 + 3u4 + u5 + 6u7 + 4u8 + u9) (mod 11).

Therefore, Gal(p) ∼= S12 by Theorem 1. Moreover, Lemma 2 tells us that S12 is non-solvable.
Hence, α cannot be computed within the ACMQ otherwise this would contradict the non-solvability of

S12. Therefore, in general, the weighted region shortest path problem cannot be solved exactly within the
ACMQ. �

Remark 1. If a problem is solvable within the ACMQ, then we can express its solution as a finite sequence
of the allowed operations on the rational input data. For practical applications however, we may need to
rely on approximations of such an explicit representation, due to the occurrence of roots. The latter can
hardly be avoided for the weighted region shortest path problem, as the length of a path is the weighted
sum of Euclidean distances. A problem may be unsolvable in the ACMQ even though its solution can be
approximated with sufficient precision in practice. Nonetheless, we use the ACMQ as a viewpoint to gain
insights about algebraic complexity and applicability of symbolic computation. One of the advantages of
symbolic computation is the reusability of a result without cascaded approximation error. Unsolvability on
the other hand concludes any search for a closed formula for solutions and provides further justification for
the employment of approximation approaches.

Remark 2. Let P be a problem that can be translated into a (system of) polynomial equation(s), and
assume that we want to use Theorem 1 to prove that P cannot be solved exactly within the ACMQ. In

6Some algebraic simplifications were done using Wolfram|Alpha.
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general, P admits infinitely many different instances leading to infinitely many different polynomial equations.
Our experience shows that most of the time, Theorem 1 applies on the first instance of P we can think
of. Otherwise, one can use a symbolic computation software as a black box and compute Gal(p). To use
Theorem 1, we need to find three prime numbers that satisfy the constraining properties. Bajaj [4] explains
why trying d+ 1 prime numbers that do not divide ∆(p) will most likely be sufficient. As for the factorization
of a polynomial modulo a prime number, refer to [8] for standard algorithms that perform this task.

3. Generalization to n Regions

We have shown that one instance of the weighted region shortest path problem is unsolvable, which shows
this problem is unsolvable in general. One usual way of getting around this problem is to assume that we
work in a model of computation where it takes O(1) time to solve any polynomial equation of bounded degree.
However, we can extend our example to n regions, for arbitrarily large values of n, where we get to solve

tan(θ) + 2 tan(θ2) + ...+ n tan(θn) = 2,

which leads to
X√

1−X2
+ 2

w1

w2
X√

1−
(
w1

w2
X
)2 + ...+ n

w1

wn
X√

1−
(
w1

wn
X
)2 = 2.

This last equation can be transformed into a polynomial equation of degree n 2n−1. Hence, the degree of the
polynomial equations involved in this problem is unbounded.

It would be useful to know how likely is it for an instance of the weighted region shortest path problem
to be unsolvable. If we know the sequence of regions that the shortest path goes through, then we know
that the path itself is made up of a sequence of line segments passing through the interiors of the prescribed
regions and bending only on the boundaries of these regions. Furthermore, the shortest path is locally optimal
between any two bendpoints. That is, if we treat the bendpoints ui and ui+3 as fixed, then the intermediate
bendpoints ui+1 and ui+2 must be optimal with respect to ui and ui+3. This implies that any instance of the
weighted region shortest path problem in which the shortest path goes through at least three regions, will
contain a generalization of the given counter-example. In particular, the equations involved in the solution
will have the same form, but with different coefficients. This will be true, except in very specific cases. Thus,
a generic instance of the weighted region shortest path problem in which the path passes through at least
three regions is more likely to be unsolvable.

4. Conclusions and Future Work

The method we employed, Bajaj’s technique, will be a useful tool-kit to prove similar unsolvability
results and guide more realistic analysis of problems in computational geometry with algebraic components.
When the degree of the polynomial equations involved in the solution of a problem is unbounded, then an
unsolvability result like the one presented in this paper justifies the search for an approximate solution.
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