
Doron Nussbaum COMP 5900 - Windows
Programming

1

Window programming

Doron Nussbaum COMP 5900 - Windows
Programming

2

Objectives

• Understand the mechanism of window
programming

• Understand the concept and usage of of
callback functions

• Create a simple application

Doron Nussbaum COMP 5900 - Windows
Programming

3

• Overview
• Windows system
• “Hello world!”

Doron Nussbaum COMP 5900 - Windows
Programming

4

Overview

• Multi-user multi-
application operating
system
– Operating must be able to

interact with multiple
applications
“simultaneously”

• What does it mean?
– Hardware is shared by all

applications/users
– Application cannot (should

not) access the hardware
directly (cpu, memory,
screen)

Doron Nussbaum COMP 5900 - Windows
Programming

5

Overview

• Operating system
manages the resources

• All applications must
interact with the OS to
obtain access to resources
– Applications

“instruct/request” the OS to
do something for them (e.g.
show a window)

memorymemory memory

App 1 App 2 App 3

Doron Nussbaum COMP 5900 - Windows
Programming

6

OS Resource Management

• How does an application know that a user has pressed the
left mouth button?

• How does the application know that the user has scrolled
the mouth over one of its windows?

• OS controls (manages) the resources
– OS tracks the different resources and their state
– OS determines whether a change in state has the potential to affect

an application, and
– if so informs the application

Doron Nussbaum COMP 5900 - Windows
Programming

7

Event Driven Programming

• Application
– waits until an event (related

to the application) occurred
– Reacts to the event (if it

knows about the event)
– Events types – window is

visible, window was resized
• OS

– Tracks the state change
– Determine if it is related to

an application
– Alerts the application by

sending it an event

Raise
Event

Response

OS

Internal
Processing

Appllication

Track
Resource States

Doron Nussbaum COMP 5900 - Windows
Programming

8

Raise
Event

Response OS

Internal
Processing

App 1

Track
Resource States

Internal
Processing

App 2

Raise
Event

Response

Doron Nussbaum COMP 5900 - Windows
Programming

9

Event Based Programming

OS Event
Generation

* OS Traps the change in state
(e.g., mouth click on App. 1)

* OS sends an event message to
the application (into app.’s
message queue)

Window Resize

Mouse release
Event

Left Mouse Button
Pressed Event

Event Queue App 1

Close Window
EventMouse release

Event
Mouse Move

Event

Event Queue App 2

Application
Event Handling

Loop

Continuously check
whether a new event
has arrived.

When app is ready -
* Remove next event
from queue
* dispatch message
to the corresponding
function (win. proc)

App1winProc

This procedure
is written by the
designer and it
is associated
with a particular
window.

The function is
assigned to the
window at
creation time.

Application
Event Handling

Loop

App2winProc2 App2winProc1

Doron Nussbaum COMP 5900 - Windows
Programming

10

Window Components

Doron Nussbaum COMP 5900 - Windows
Programming

11

Window Program Overview

While (TRUE) {

if (GetMessage(..)) {
/* Event Processing */
TranslateMessage();
DispatchMessage();

}
}

WinMain()

hWnd = CreateWindow(…)

registerClass(&wc)

Initialization
Msg Loop

Clean up

Doron Nussbaum COMP 5900 - Windows
Programming

12

The main() function in Win32

• “WinMain()” replaces the “main()” function in C/C++

• Windows entry point for initializing the program WinMain()
– hInstance: a handle for this application
– hPrevInstance: for pre-32 bit apps that use the same address space for the

same app
– lpCmdLine: command line arguments
– nCmdShow: directive for controlling the window appearance (can be

ignored in our case

int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow);

Doron Nussbaum COMP 5900 - Windows
Programming

13

Event Driven Programming (Win32)

• OS controls the activities (multi tasking)
• As needed the OS invokes the application

– Requires an entry point a callback function

Window myWndProc()
Callback Fun.?

“myWndProc”

Register ClassCreate Window

Doron Nussbaum COMP 5900 - Windows
Programming

14

Create A Window

• Create the Window Class by registering wc class
• Create a Window using CreateWindow()

• Return a handle for this newly created window

wc.lpfnWndProc = myWndProc;
wc.winClassName = “myGame”;
wc.style = CS_HREDRAW | CS_VREDRAW;
...
registerClass(&wc);

hWnd = CreateWindow(NULL, “myGame”,
"First D3D Program”,
WS_OVERLAPPEDWINDOW,
0, 0, 300, 400,
NULL, NULL,
hInstance, NULL);

The entry point into program
(callback function)

Doron Nussbaum COMP 5900 - Windows
Programming

15

WNDCLASS wc; // the windows class structure

wc.style = CS_HREDRAW | CS_VREDRAW; // redraw behaviour attribtes
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance; // application instance
wc.hCursor = LoadCursor(NULL, IDC_ARROW); // the cursor type
wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); // bg colour of client rea
wc.lpszMenuName = NULL; // no menu
wc.lpfnWndProc = myWndProc; // the callback win. proc.
wc.lpszClassName= “myGame”; // class name - links window and callback
wc.hIcon = NULL; // an icon of the class (if NULL system uses the default)

RegisterClass(&wc) ;

Doron Nussbaum COMP 5900 - Windows
Programming

16

Create Window Function

HWND CreateWindow(
ClassName, // window class name (link to win proc)
WindowName, // the window name (title)
Style, // the window style
x, y, // the window location on the screen
Width,Height, // the window size
WndParent, // the parent window
Menu, // the menu associated with the window
Instance, // the application instance
Param // not used
);

Doron Nussbaum COMP 5900 - Windows
Programming

17

Handling Windows Events and Messages

Continue

GetMessage()

TranslateMessage()

DispatchMessage()

myWndProc()

Known
Msg?

Process
Msg

1. Key Pressed (Enter)

2. Mouse moved (Loc)

3. …

OS Event Queue

App. Msg Loop

Doron Nussbaum COMP 5900 - Windows
Programming

18

OS creates a link between the created window and the window class

Creating a windowRegistering a window class

Raise
Mouse action event.
Invoke myWndProc()
(using class name)

Request OS
to create

MessageBox

OS

Internal
Processing

myWndProc()

myWndProc()

CreateWindow()
(presentation

attributes)
Class Name

Hello WorldHello World

Captured mouse
 action on window

WNDCLASS
(behaviour
attributes)

Class Name

Doron Nussbaum COMP 5900 - Windows
Programming

19

Wnd1 Wnd4Wnd3

WndProc1

Wnd2

WndProc2

Doron Nussbaum COMP 5900 - Windows
Programming

20

int executeMsgLoop(void)
{

int rc = 0;
MSG msg;

while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);

}

return ((int) msg.wParam);
}

Ask OS to forward
message to window

Listen to messages

Doron Nussbaum COMP 5900 - Windows
Programming

21

LRESULT CALLBACK myWndProc(
HWND hWnd, // handle to the window
UINT msg, // the message that was sent
WPARAM wParam,
LPARAM lParam)

{
switch (msg) {

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return DefWindowProc(hWnd, msg, wParam, lParam);

}
return 0;

}

Doron Nussbaum COMP 5900 - Windows
Programming

22

switch (msg) {
case WM_LBUTTONDOWN:

::MessageBox(NULL, "Hello World!", "My Hello App", MB_OK);
break;

case WM_RBUTTONDOWN:
char s[128], char title[64];
int xPos, yPos;
xPos = GET_X_LPARAM(lParam);
yPos = GET_Y_LPARAM(lParam);
sprintf(title,"Hello Cursor!");
sprintf(s,"Hello World! \n The cursor position is (%d, %d)",xPos, yPos);
::MessageBox(hWnd, s, title, MB_OK); // show a message box
break;

case WM_DESTROY:
PostQuitMessage(0);
break;

default:
return DefWindowProc(hWnd, msg, wParam, lParam);

Doron Nussbaum COMP 5900 - Windows
Programming

23

“main”
function

Init
Application

Callback
Function

Message
Loop OS

Inform OS about the callback function (associate name)
RegisterClass()

Tell OS to create a new window and associate it with callback
CreateWindow()

invoke

Return
control

invoke

Send message to
application

Tell OS to dispatch
message to window

Invoke callback with message

Instruct OS(e.g, redraw window)

Send terminate
message

Return
control

Time

