
Doron Nussbaum COMP 5900 - Network Games Part I 1

Network Games Infrastructure

Doron Nussbaum COMP 5900 - Network Games Part I 2

Network Games

• Introduction
• Infrastructure
• Communication
• Threads

Doron Nussbaum COMP 5900 - Network Games Part I 3

• What makes network games attractive?
– Social
– Interaction
– Anonymous

• can be someone else
– Play forever

• there is always somebody

Doron Nussbaum COMP 5900 - Network Games Part I 4

Definition

• A network game is a that is played by two
or more players at the same time where
each player has a personal view of the
game and interaction communication is
handled by a third party.

• Examples are:
– Chess by mail
– War games

Doron Nussbaum COMP 5900 - Network Games Part I 5

Characteristics

• Two or more players
• Usually asynchronous
• Simultaneous
• Uses 3rd party to communicate
• Each player has a personal view of the game
• Game mimics real-life

– The game does not stop
– Waiting for others

Doron Nussbaum COMP 5900 - Network Games Part I 6

Issues

• Delays
– Better communication

• Synchronization
– Decide on game style

• Congestion
– Scalability
– Changing behaviour patterns

• Accuracy
– deploy approximation/prediction techniques

• Boot strap
– Determine entry point(s)

Doron Nussbaum COMP 5900 - Network Games Part I 7

Network Games Types

• Token Based
– Board games – Chess, Rummy

• Synchronous
– Card games – poker, bridge

• Asynchronous
– Racing game
– War games
– Most MMORPG

Doron Nussbaum COMP 5900 - Network Games Part I 8

Network Games –
technological Requirements

• Communication
– Network

• Accurate board game
– Visualization
– Game status

• Interaction between players
– Voice, text

Doron Nussbaum COMP 5900 - Network Games Part I 9

Synchronous games

Pros
• Simple
• All players have same

view
• Game state is preserved

Cons
• Wait for all players
• Slow
• Must communicate with

all players all the time
• Harder to implement

– Keep tab on players

• Poor fault tolerant

Doron Nussbaum COMP 5900 - Network Games Part I 10

Asynchronous games

Pros
• Simple
• Fast

– no waiting for input
– Little overhead

• Communication is based
on game events

• Easier to implement
• Better fault tolerant

– Not impacted by missing
players

Cons
• Game state is not

preserved
• Player boards may not be

correct
• Must know who is

affected by recent
changes

Doron Nussbaum COMP 5900 - Network Games Part I 11

Communication needs

• Speed
• Reliability
• Ease of use
• Flexibility
• Scalability
• Concurrency
• …

Doron Nussbaum COMP 5900 - Network Games Part I 12

HW –
What Has Changed / Is Changing?
• Computation ability increases

– Clock speed
– # of transistors
– Instruction based (concurrent processing)
– Multi processors

• Affordability
– Cheap

• Resources
– More resources
– More options for add on

Doron Nussbaum COMP 5900 - Network Games Part I 13

HW –
What Has Changed / Is Changing?
• Implications

– Software cannot keep up
– Backwards compatibility
– Expensive to build special purpose HW
– Life expectancy of HW is short – 2-7 years

• Gaming
– Must work with what we have
– Affects how we play
– Creates hardship (e.g., delays)
– Limits the imagination
– Limits the available options

Doron Nussbaum COMP 5900 - Network Games Part I 14

For example: Concurrency

• Is concurrency available?
– Yes an no?

• Concurrency on the surface
– Multicore (parallelization)
– Multiprocessor
– Serial communication
– Can process one thing at a time

Doron Nussbaum COMP 5900 - Network Games Part I 15

Network games and CS

• Benefits from other areas of CS
– Parallel computing
– Distributed computing
– Protocol development

• There is a difference – the objectives
– A program has a goal in mind – find protein

structure, data mining, etc.
– Games do not have a goal – the players do

Doron Nussbaum COMP 5900 - Network Games Part I 16

Today's technologies

• SMP
– Symmetric multi processing
– Shared memory processing

• Cluster of computers
– Workstations
– Fast intercommunications

• Past technologies – can benefit from the logic
– All to all
– Ring (with/without chords)
– Mesh/torus
– hypercube

Doron Nussbaum COMP 5900 - Network Games Part I 17

Computer Networks

• Relatively young technology
– Started in the 70 with ARPA net
– Still evolving
– Dynamic

• Wired – telephone, cable, fiber optics…
• Wireless

• Standard technologies
– Telephone lines - Modems
– Local Area Networks (LAN) - Ethernet
– Internet – Wide Area Network (WAN)

Doron Nussbaum COMP 5900 - Network Games Part I 18

Network overview (last)

H1

H3

H2
Token

ring
Network

gateway

H4 H20

vv

v

v

v

Doron Nussbaum COMP 5900 - Network Games Part I 19

How to view a network?

• Model a network as a graph G=(V,E)
– Nodes
– Links

• Define the connectivity interaction
• Define the topology interaction

Doron Nussbaum COMP 5900 - Network Games Part I 20

Game Architectures

Unstructured
– Peer-to-peer

Structured
• Client/Server

– One server per game

• Self server
– A player is also a server

• Distributed servers
– Multiple servers

Doron Nussbaum COMP 5900 - Network Games Part I 21

Peer-to-Peer

• All to all topology
• All are equal
• Minor overhead

– Implementation
dependent

Player 1

Player 5

Player 4

Player 3

Player 2

Doron Nussbaum COMP 5900 - Network Games Part I 22

Peer-to-Peer

• Simple version (synchronous)
– Each client transmits its state/changes to

other
– Wait until everyone receives the data
– Proceed to next step

Doron Nussbaum COMP 5900 - Network Games Part I 23

Peer-to-Peer – synchronous version

Pros
• Simple
• inexpensive
• Server not required
• Good for token-based games
• Good for low bandwidth NW
• Good for wireless?

– within range

Cons
• Frame rate depends on

– Slowest machine
– Worst connection

• Hackable
• Not good for real-time games
• Bootstrap
• Many messages
• Bad scalability

Doron Nussbaum COMP 5900 - Network Games Part I 24

Peer-to-Peer – asynchronous version

Pros
• Simple
• inexpensive
• Server not required

– Including the Game’s authors!
• Good for real-time games

– Missing information not crucial

Cons
• Game can go out of synch

– Slowest machine
– Bad connection

• Hackable
• Not good for real-time games
• Bootstrap
• Many messages
• Poor scalability

Doron Nussbaum COMP 5900 - Network Games Part I 25

Client Server

Player 1

Player 5

Player 4

Player 3

Player 2

Server

Doron Nussbaum COMP 5900 - Network Games Part I 26

Client/Server

Pros
• Scalable
• Bootstrap
• Easy to control the game

– Server has a global view of
game

• Independent of players’
HW

• Less hackable
• Better scalablity

Cons
• Server must be provided
• Expensive
• Single point of failure
• Server must be

– powerful
– Excellent connectivity

Doron Nussbaum COMP 5900 - Network Games Part I 27

Client as a Server Provider

• Peer-to-peer
• Server resolves the action
• One peer is the server

Doron Nussbaum COMP 5900 - Network Games Part I 28

Multiple Server – Servers Farm
Player 1

Player 5

Player 4

Player 3

Player 2

server

server

serverserver

server

server

• Many machines
coordinate service

• Used for large virtual
worlds

• Player is assigned to
a server

Doron Nussbaum COMP 5900 - Network Games Part I 29

Multiple Server

Pros
• Many machines

coordinate the game
• No single point of failure
• Load balancing
• Easy maintenance
• Used for large virtual

worlds
• Easy maintenance
• Harder to hack
• Permits control of players

Cons
• Expensive
• Some synchronization

may be required
• Run time load balancing

may suffer
• bootstrap

Doron Nussbaum COMP 5900 - Network Games Part I 30

Multiple Server

1

Player 1 Player 4Player 3Player 2

server

server

server

server

server

3

2

New Player

Login server

server

Doron Nussbaum COMP 5900 - Network Games Part I 31

Networking – under the hood

Doron Nussbaum COMP 5900 - Network Games Part I 32

The OSI Model

• Developed in the late
70’s
– Framework for the

development of
standards.

– Guidelines only (no
specifications)

Physical

Data Link

Session

Transport

Network

Application

Presentation

Doron Nussbaum COMP 5900 - Network Games Part I 33

The OSI Model – 4 layer model

Physical

Data Link

Session

Transport

Network

Application

Presentation

Data Link

Process

Transport

Network

Doron Nussbaum COMP 5900 - Network Games Part I 34

OSI Hierarchy
Host 2Host 1

v

Data Link

Process

Transport

Network

Physical
network

v

v

v

Data Link

Process

Transport

Network

v

v

Doron Nussbaum COMP 5900 - Network Games Part I 35

Messages

• Unicast
– 1-1 – communication

• Multicast
– 1-K – one to selected

few

• Broadcast
– 1- N - one to all

N0

N4

N3N2
N1

Network

N0

N4

N3N2
N1

Network

N0

N4

N3N2
N1

Network

Doron Nussbaum COMP 5900 - Network Games Part I 36

Protocol

• Agreed Rules of communication between
– Two applications or
– Two instances of an application

• Consists of
– Message format
– Message Semantics
– Error behaviour

Doron Nussbaum COMP 5900 - Network Games Part I 37

The TCP/IP protocol

v

Hardware Interface

User
Process

TCP
(Transmission Control Protocol)

IP
(Internet protocol)

v

v

Data Link Layer

UDP
(User Datagram Protocol)

User
Process

Network Layer

Transport Layer

Process Layer

v

v

Doron Nussbaum COMP 5900 - Network Games Part I 38

The TCP/IP protocol
Host 2Host 1

v

Ethernet

FTP

TCP

IP

Ethernet Protocol
Physical Connection

v

v

v

Ethernet

FTP

TCP

IP

v

v

IP Protocols

TCP Protocols

FTP Protocols

Doron Nussbaum COMP 5900 - Network Games Part I 39

Data Encapsulation

Data

FTP
Header

FTP message

Data

TCP message

IP Packet

FTP
Header

DataTCP
Header

FTP
Header

DataTCP
Header

IP
Header

IP Packet

FTP
Header

DataTCP
Header

IP
Header

Ethernet
Header

Ethernet
Trailer

400 Bytes4B 4B8B20B14B

• Network router
– 100Mb/s

• Message
– 450 bytes = 3,600 bits

• Transmission time
– 100m/3600 = 0.036ms
– Send to 100 users = 0.36ms

• Message
– 1550 bytes = 12,400 bits

• Transmission time
– 100m/12400 = 0.12ms
– Send to 100 users = 12ms

Doron Nussbaum COMP 5900 - Network Games Part I 40

IP Address

• IP address is a 32 bit address
– Unique to each host within its network

• Four classes of addresses
– Specify the network
– Specify the host

Doron Nussbaum COMP 5900 - Network Games Part I 41

Ports

• Issues
– How can a server handle many clients?
– How can a client connect/talk to different services on

the same host?

• Solution
– Provide an application (client or server) with a special

“mail box” – a port

Doron Nussbaum COMP 5900 - Network Games Part I 42

Ports

• A port is a a 16 bit unique identifier
– No two applications should use the same port on the same host

• Reserved ports
– Some ports are reserved

• Port 80 for http://
• Port 21 for FTP

– Well known applications – 1-1023
– Registered ports – 1024 – 49151
– Dynamic ports – 49152-65535

• Other systems may use different ranges

Doron Nussbaum COMP 5900 - Network Games Part I 43

Putting it all together

• Each interaction can be viewed as a 5 touple

{Protocol, source add., source process, dest. add., dest. process}

{Protocol, source add., source port, dest. add., dest. port}

{TCP, 134.117.27.23, 5500, 134.117.27.25, 1622}

Doron Nussbaum COMP 5900 - Network Games Part I 44

Putting it all together

Host
kiwi

134.117.27.23

Client
raven

137.1178.27.25

Server
{TCP, kiwi, 5500}

Client
{TCP, raven, 50152}

Client
{TCP, raven, 50153}

Server
{TCP, kiwi, 5500}

connection

connection

Client
sparrow

137.1178.27.35

Client
{TCP, raven, 50152}

Server
{TCP, kiwi, 5500}

connection

Doron Nussbaum COMP 5900 - Network Games Part I 45

Internet User Protocols

• TCP
– Connection based
– Reliable
– Bytes arrive in order

they were sent
– Collects small packets

and transmits them
together

– Stream of bytes

• UDP
– Connectionless
– Unreliable
– Arbitrary arrival order

Doron Nussbaum COMP 5900 - Network Games Part I 46

TCP

• Reliable stream of bytes
– Implies the need for a “connection”

• Connection sets up data structures
– Hold incoming packets
– Hold outgoing packets
– Handle retransmits

Doron Nussbaum COMP 5900 - Network Games Part I 47

• Each data requires –
– send-Receive-Acknowledge

• Sender retains data until an ACK is received
• If an ACK was not received Sender retransmits data

TCP Reliability

Doron Nussbaum COMP 5900 - Network Games Part I 48

TCP

• Send-Receive-Ack round trip is expensive (time)
• Solution: overlaying the send and ack messages
• Side effect – more work

– Ensure that messages are received
– Maintain a queue in sender and receiver

time

sender senderreceiver

Msg 1

Ack 1
Msg 2

Ack 2
Msg 3

Ack 3

Doron Nussbaum COMP 5900 - Network Games Part I 49

TCP Sender Queue

• Sends data and insert it into a send queue
• Sets a timer on this queue item
• If timer expires, and no ack then

– Re-send data
– Set a new timer (longer)

• If ack is received then
– If the corresponding queue item is the oldest,

• Free the slot for new data
– Otherwise mark as received

• If no queue space avail
– sender waits!

Doron Nussbaum COMP 5900 - Network Games Part I 50

TCP Receiver Queue

• Send an ACK for each received packet
• If the packet is the next in the sequence

– Forward packet to application
• Otherwise keep packet in queue

Doron Nussbaum COMP 5900 - Network Games Part I 51

TCP – communication behaviour

• May halt the transmission temporarily
– (e.g., when no ack messages are received)

• Attempt to re-establish the communication
– Sends test message(s)
– Slowly increases the transmission rate

• Transmission rate changes
– Cut transmission rate by half each time
– Increase transmission rate by a constant

Doron Nussbaum COMP 5900 - Network Games Part I 52

TCP Wrap-up

• Connection based
– Reliable arrival: Retransmit
– Reliable order: Sequence numbers

• TCP can minimize the overhead of small data
– buffers up data on 200ms intervals

• TCP Has an “emergency” channel
– OOB Out Of Band

Doron Nussbaum COMP 5900 - Network Games Part I 53

UDP

• Connectionless!
– Does not worry about the data

• Unreliable transmission
– Lost packets are lost forever
– Must be handled outside of protocol

• Race condition
– Arrival order may not match transmission order
– Must be handled outside of protocol

• Fast
– When data is received the application received it

Doron Nussbaum COMP 5900 - Network Games Part I 54

UDP

• Losing Packets!
– No knowledge if and what was lost - critical data!!
– Must be self managed

• Arrival order may be time sensitive
– Past location may be meaningless
– Mixing up order can be critical – car racing

Doron Nussbaum COMP 5900 - Network Games Part I 55

Sockets

• An interface/library that implements the
TCP/IP protocol

• Consists of a set of functions that enable
communication between two or more
hosts over a network.

• Resemble file I/O

Doron Nussbaum COMP 5900 - Network Games Part I 56

Server
• Initialize Winsock.
• Create a socket.
• Bind the socket.
• Listen on the socket for a

client.
• Accept a connection from a

client.
• Receive and send data.
• Disconnect.

Client
• Initialize Winsock.
• Create a socket.
• Connect to the server.
• Send and receive data.
• Disconnect.

Doron Nussbaum COMP 5900 - Network Games Part I 57

Connection Based Interaction

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 58

Connectionless Based Interaction
ClientServer

socket()

close()

sendto()

receivefrom()

bind()
socket()

sendto()

receivefrom()

Process Request

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 59

IP Strucutres

• IPV4 and IPV6 – will use IPV4

struct sockaddr {
short sa_family;
char sa_data[14];

}

The family of communication protocol
(Use AF_xxxx) AF_INET

Size of data depends on the protocol

struct in_addr {
u_long address;

}

Internet Family Structure

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Doron Nussbaum COMP 5900 - Network Games Part I 60

struct addrinfo *servAdd = NULL,hints;

ZeroMemory(&hints, sizeof (hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_PASSIVE;

// Resolve the local address and port to be used by the server
rc = getaddrinfo(NULL, DEFAULT_PORT, &hints, &servAdd);

if (rc != 0) {
printf("getaddrinfo failed: %d\n", iResult);
WSACleanup();
return 1;

}

Doron Nussbaum COMP 5900 - Network Games Part I 61

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 62

Creating a socket

SOCKET listenSocket = INVALID_SOCKET;

// Create a SOCKET for the server to listen for client connections
listenSocket = socket(AF_INET, AFSTREAM, IPPROTO_TCP);

if (listenSocket == INVALID_SOCKET) {
// handle the error;
// clean up

return 1;
}

// Create a SOCKET for the server to listen for client connections
SOCKET socket(int family, int type, int protocol)

Address Family of protocols is used
AF_UNIX AF_INET AF_INET6 … What communication type is used

SOCK_STREAM SOCK_DGRAM ..

A socket descriptor
An int like file I/O

The protocol
IPPROTO_TCP
IPPROTO_UDP

Doron Nussbaum COMP 5900 - Network Games Part I 63

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 64

Bind

• Purpose: the server informs the system what is its address. (All
messages to this address are to be delivered to the server.)

// Setup the TCP listening socket

Rc = bind(listenSocket, myAddress, addrLength);
if (rc == SOCKET_ERROR) {

// error clean up

}

// Setup the TCP listening socket

int bind(SOCKET socket, struct sockaddr *myAddr, int addressLenght);

Internet Family Structure

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Doron Nussbaum COMP 5900 - Network Games Part I 65

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 66

Connect

• Purpose: establishes a connection with the server.
• For connectionless the call is not required.

– However it stores the addresss of the server for futrue calls to read,
write, recev and send.

// connecting to the server

rc = connect(mySocket, ServerAdd, addrLength);
if (rc == SOCKET_ERROR) {

// error clean up

}

// Setup the TCP listening socket

int connect(SOCKET socket, struct sockaddr *serverAddr, int addressLenght);

Internet Family Structure

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Doron Nussbaum COMP 5900 - Network Games Part I 67

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 68

Listen

• Purpose: tells the system how many connection requests can be
queued

rc = listen(listenSocket, 5) ;

if (rc == SOCKET_ERROR) {
// error clean up

}

// Setup the TCP listening socket

int connect(SOCKET socket, int backlog);

Doron Nussbaum COMP 5900 - Network Games Part I 69

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 70

Accept

• Purpose: accepts a connection
– This is a blocking call

clientSocket = INVALID_SOCKET;

// Accept a client socket
clientSocket = accept(ListenSocket, NULL, NULL);

if (ClientSocket == INVALID_SOCKET) {
// error clean up

}

// Setup the TCP listening socket

SOCKET accept(SOCKET listeSocket, struct sockaddr *clientAddress, int *addrlen);

Doron Nussbaum COMP 5900 - Network Games Part I 71

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 72

Send and Recv

• Purpose: read data from the client and send data to the client
– This is a blocking call

// Sending data over the connection
int send (SOCKET clientSocket, char *buf, int bufSize, int flags);

// receiving data over the connection
int recv (SOCKET clientSocket, char *buf, int bufSize, int flags);

// Flags
MSG_OOB send or receive data out-of-band
MSG_PEEK peek at incoming message (recv, recvfrom
MSG_DONOTROUTE bypass routing (send or sendto

Number of bytes that
were sent or received

If 0 then connection
was closed

Doron Nussbaum COMP 5900 - Network Games Part I 73

Sendto and Recvfrom

• Purpose: read data from the client and send data to the client
– This is a blocking call
– connectionless

// Sending data over the connection
int sendto(SOCKET clientSocket, char *buf, int bufSize, int flags, struct sockaddr *to, int addrelen);

// Sending data over the connection
int receivefrom(SOCKET clientSocket, char *buf, int bufSize, int flags, struct sockaddr *to, int *addrelen);

Doron Nussbaum COMP 5900 - Network Games Part I 74

Send and Recv
#define DEFAULT_BUFLEN 512
char recvbuf[DEFAULT_BUFLEN];
int rc, iSendResult;

// Receive until the peer shuts down the connection
do {
rc = recv(ClientSocket, recvbuf, DEFAULT_BUFLEN, 0);
if (rc > 0) {

// Echo the buffer back to the sender
rc = send(ClientSocket, recvbuf, rc, 0);
if (iSendResult == SOCKET_ERROR) {
// error

}
printf("Bytes sent: %d\n", rc);

} else if (rc == 0) {
printf("Connection closing...\n"); {

} else {
// error

}
} while (iResult > 0);

Doron Nussbaum COMP 5900 - Network Games Part I 75

Client

Server

socket()

close()

write()

read()

accept()

listen()

bind()

socket()

write()

read()

connect()

Process Request

Establish Connection

close()

Data Request

Data Reply

Terminate
Terminate

Doron Nussbaum COMP 5900 - Network Games Part I 76

Close the connection

• Purpose: close the socket

// close the socket
int closesocket (SOCKET clientSocket);

Unix call is
close();

// allows graceful termination of connection

int shutdown SOCKET clientSocket, int howTo);

Flags determine how to shut down
SD_RECEIVE 0
SD_SEND 1
SD_BOTH 2

Doron Nussbaum COMP 5900 - Network Games Part I 77

Utility Functions

• Htonl(address)
•

The htonl function converts a u_long from host to TCP/IP network byte order (which is big endian).
u_long htonl(u_long hostlong);

The htons function converts a u_short from host to TCP/IP network byte order (which is big-endian)
u_short htons(u_short hostshort);

The ntohl function converts a u_long from TCP/IP network order to host byte order
(which is little-endian on Intel processors).
u_long ntohl(u_long netlong);

The ntohs function converts a u_short from TCP/IP network byte order to host byte order
(which is little-endian on Intel processors).
u_short ntohs(u_short netshort);

The inet_addr function converts a string containing an IPv4 dotted-decimal address into a proper
address for the IN_ADDR structure.
unsigned long inet_addr(char *cp);

The inet_ntoa function converts an (Ipv4) Internet network address into an ASCII string in
Internet standard dotted-decimal format.
char* inet_ntoa(struct in_addr in);

Doron Nussbaum COMP 5900 - Network Games Part I 78

Windows specific for sockets

// Start Winsock up
WSAData wsaData;
if ((rc = WSAStartup(MAKEWORD(2,2), &wsaData)) != 0) {

cerr << "WSAStartup() returned error code " << rc << "." << endl;
return(1);

}
.
.
program
.
.

WSACleanup();

Doron Nussbaum COMP 5900 - Network Games Part I 79

Questions?

