Network Games Infrastructure

Doron Nussbaum COMP 5900 - Network Games Part |

Network Games

 Introduction
 Infrastructure

e Communication
e Threads

Doron Nussbaum COMP 5900 - Network Games Part |

 What makes network games attractive?
— Social
— Interaction

— Anonymous
* can be someone else

— Play forever
* there is always somebody

Doron Nussbaum COMP 5900 - Network Games Part |

Definition

» A network game is a that is played by two
or more players at the same time where
each player has a personal view of the
game and interaction communication is
handled by a third party.

« Examples are:
— Chess by mall
— War games

Doron Nussbaum COMP 5900 - Network Games Part |

Characteristics

* Two or more players

» Usually asynchronous

» Simultaneous

» Uses 3" party to communicate

* Each player has a personal view of the game

* Game mimics real-life
— The game does not stop
— Waiting for others

Doron Nussbaum COMP 5900 - Network Games Part |

Issues

Delays

— Better communication
Synchronization

— Decide on game style
Congestion

— Scalability

— Changing behaviour patterns
Accuracy

— deploy approximation/prediction techniques
Boot strap

— Determine entry point(s)

Doron Nussbaum COMP 5900 - Network Games Part |

Network Games Types

» Token Based
— Board games — Chess, Rummy

* Synchronous
— Card games — poker, bridge

* Asynchronous
— Racing game
— War games
— Most MMORPG

Doron Nussbaum COMP 5900 - Network Games Part |

Network Games —
technological Requirements

 Communication
— Network

« Accurate board game
— Visualization
— Game status

 Interaction between players
—Voice, text

Doron Nussbaum COMP 5900 - Network Games Part |

Synchronous games

Pros

* Simple

» All players have same
view

» Game state is preserved

Cons
e Wait for all players

Slow

Must communicate with
all players all the time
Harder to implement

— Keep tab on players
Poor fault tolerant

Doron Nussbaum

COMP 5900 - Network Games Part | 9

Asynchronous games

Pros

* Simple

* Fast
— no waiting for input
— Little overhead

e Communication is based
on game events

» Easier to implement

» Better fault tolerant

— Not impacted by missing
players

Cons

Game state is not
preserved

Player boards may not be
correct

Must know who is
affected by recent
changes

Doron Nussbaum

COMP 5900 - Network Games Part | 10

Communication needs

Speed

» Reliability

» Ease of use

 Flexibility

» Scalability

« Concurrency

.

Doron Nussbaum COMP 5900 - Network Games Part 1

HW —
What Has Changed / Is Changing?

» Computation ability increases
— Clock speed
— # of transistors
— Instruction based (concurrent processing)
— Multi processors

» Affordability
— Cheap

 Resources
— More resources
— More options for add on

Doron Nussbaum COMP 5900 - Network Games Part | 12

HW —
What Has Changed / Is Changing?

» Implications
— Software cannot keep up
— Backwards compatibility
— Expensive to build special purpose HW
— Life expectancy of HW is short — 2-7 years

* Gaming

Must work with what we have
Affects how we play

Creates hardship (e.qg., delays)
Limits the imagination

Limits the available options

Doron Nussbaum COMP 5900 - Network Games Part | 13

For example: Concurrency

 |s concurrency available?
—Yes an no?

« Concurrency on the surface
— Multicore (parallelization)
— Multiprocessor
— Serial communication
— Can process one thing at a time

Doron Nussbaum COMP 5900 - Network Games Part | 14

Network games and CS

» Benefits from other areas of CS
— Parallel computing
— Distributed computing
— Protocol development

» There is a difference — the objectives

— A program has a goal in mind — find protein
structure, data mining, etc.

— Games do not have a goal — the players do

Doron Nussbaum COMP 5900 - Network Games Part |

15

Today's technologies

e SMP
— Symmetric multi processing
— Shared memory processing
» Cluster of computers
— Workstations
— Fast intercommunications

» Past technologies — can benefit from the logic
— Allto all
— Ring (with/without chords)
— Mesh/torus
— hypercube

Doron Nussbaum COMP 5900 - Network Games Part |

16

Computer Networks

* Relatively young technology
— Started in the 70 with ARPA net
— Still evolving
— Dynamic
» Wired — telephone, cable, fiber optics...
» Wireless

» Standard technologies
— Telephone lines - Modems
— Local Area Networks (LAN) - Ethernet
— Internet — Wide Area Network (WAN)

Doron Nussbaum COMP 5900 - Network Games Part |

17

Network overview (last)

E

H20

H2 gateway

Doron Nussbaum COMP 5900 - Network Games Part |

18

How to view a network?

» Model a network as a graph G=(V,E)
— Nodes
— Links

» Define the connectivity - interaction
» Define the topology - interaction

Doron Nussbaum COMP 5900 - Network Games Part | 19

Game Architectures

Unstructured Structured

— Peer-to-peer * Client/Server
— One server per game

» Self server
— A player is also a server

+ Distributed servers
— Multiple servers

Doron Nussbaum COMP 5900 - Network Games Part | 20

Peer-to-Peer

 All to all topology
» All are equal brayer 1

* Minor overhead

— Implementation
dependent

Player 3

Player 5

A\

Player 4

Doron Nussbaum COMP 5900 - Network Games Part | 21

Peer-to-Peer

« Simple version (synchronous)
— Each client transmits its state/changes to
other
— Wait until everyone receives the data

— Proceed to next step

Doron Nussbaum COMP 5900 - Network Games Part | 22

Peer-to-Peer — synchronous version

Pros cons
* Simple « Frame rate depends on
* inexpensive — Slowest machine
» Server not required — Worst connection
« Good for token-based games * Hackable
+ Good for low bandwidth NW * Not good for real-time games
« Good for wireless? * Bootstrap
— within range * Many messages

« Bad scalability

Doron Nussbaum COMP 5900 - Network Games Part | 23

Peer-to-Peer — asynchronous version

Pros Cons
» Simple * Game can go out of synch
e inexpensive — Slowest machine
+ Server not required — Bad connection
— Including the Game’s authors! ~ * Hackable
« Good for real-time games * Not good for real-time games

— Missing information not crucial * Bootstrap
¢ Many messages
« Poor scalability

Doron Nussbaum COMP 5900 - Network Games Part | 24

Client Server

Player 1

AN

Player 2

/

Server

T~

Player 5 Player 3
Player 4
Doron Nussbaum COMP 5900 - Network Games Part | 25
Pros Cons
e Scalable » Server must be provided
* Bootstrap * Expensive

Easy to control the game
— Server has a global view of

game

Independent of players’

HW
Less hackable

Better scalablity

Doron Nussbaum

 Single point of failure

» Server must be
— powerful
— Excellent connectivity

COMP 5900 - Network Games Part | 26

Client as a Server Provider

» Peer-to-peer
e Server resolves the action
* One peer is the server

Doron Nussbaum COMP 5900 - Network Games Part | 27

Multiple Server — Servers Farm

* Many machines
coordinate service

» Used for large virtual
worlds

» Player is assigned to

a server

Player 3
Player 5

Player 4

Doron Nussbaum COMP 5900 - Network Games Part | 28

Multiple Server

Pros

* Many machines
coordinate the game

* No single point of failure
» Load balancing
» Easy maintenance

» Used for large virtual
worlds

» Easy maintenance
» Harder to hack
» Permits control of players

Cons

Expensive

Some synchronization
may be required

Run time load balancing
may suffer

bootstrap

Doron Nussbaum COMP 5900 - Network Games Part |

29

Multiple Server

New Player Player 1 Player 2

Player 3 Player 4

|
|

Login server

I

{4

((a

Doron Nussbaum COMP 5900 - Network Games Part |

30

Networking — under the hood

Doron Nussbaum COMP 5900 - Network Games Part | 31
* Developed in the late Application
70’s
Presentation
— Framework for the
development Of Session
standards.
— Guidelines only (no Transport
specifications)
Network
Data Link
Physical
Doron Nussbaum COMP 5900 - Network Games Part | 32

The OSI Model — 4 layer model

Network
Network
Data Link .
Data Link
Physical
Doron Nussbaum COMP 5900 - Network Games Part | 33
Host 1 Host 2
Process Process
$ 4
¥ ¥
Transport Transport
¢ '
¥ ¥
Network Network
¢ H
¥ ¥
. P Physical . f
Data Link network Data Link
34

Doron Nussbaum COMP 5900 - Network Games Part |

Messages

Unicast ®
— 1-1 — communication w
© & @9

* Multicast O

— 1-K — one to selected

few w
® 0 ®%

» Broadcast O

— 1-N -onetoall

Doron Nusshaum COMP 5900 - Networ @ ° ° 35

Protocol

» Agreed Rules of communication between
— Two applications or
— Two instances of an application

» Consists of
— Message format
— Message Semantics
— Error behaviour

Doron Nussbaum COMP 5900 - Network Games Part | 36

The TCP/IP protocol

Process Layer

User User
Process Process
TCP UDP
(Transmission Control Protocol) (User Datagram Protocol)

Transport Layer

Sa ~
IP
Network Layer
(Internet protocol)
i
T
Data Link Layer Hardware Interface
Doron Nussbaum COMP 5900 - Network Games Part | 37

The TCP/IP protocol

Host 1 Host 2
FTP - ————- FTP Protocols — — — — ~ - = FTP
4 !
¥ L
TCP - —— —— - TCP Protocols — — — — = TCP
4 ¢
¥ v
IP - ————— IP Protocols— — — — — ~ - = IP
4 4
¥ L

Ethernet Protocol .
Ethernet Physical Connection Ethernet

Doron Nussbaum COMP 5900 - Network Games Part | 38

Data Encapsulation

.
Data
fal Data
Header °
-« FTP message — — — — —»
FTP
.
Header EE
———— TCP message — — — — — — -
1P FTP
Header Header DB
. — e ———] IP Packet — — — — — — — — — — - A4
Ethernet P FTP Data Ethernet
Header Header Header Trailer
.
14B 208 8B 4B 400 Bytes 4B
- IP Packet- — — — — ——— — — —— — — — — >

Network router
— 100Mb/s

Message

— 450 bytes = 3,600 bits
Transmission time

— 100m/3600 = 0.036ms

— Send to 100 users = 0.36ms

Message

— 1550 bytes = 12,400 bits
Transmission time

— 100m/12400 = 0.12ms

— Send to 100 users = 12ms

Doron Nussbaum COMP 5900 - Network Games Part | 39
» |P address is a 32 bit address
— Unique to each host within its network
» Four classes of addresses
— Specify the network
— Specify the host
Doron Nussbaum COMP 5900 - Network Games Part | 40

Ports

e |ssues
— How can a server handle many clients?

— How can a client connect/talk to different services on
the same host?

e Solution

— Provide an application (client or server) with a special
“mail box” — a port

Doron Nussbaum COMP 5900 - Network Games Part | 41

Ports

* Aportis aa 16 bit unique identifier
— No two applications should use the same port on the same host

* Reserved ports
— Some ports are reserved
e Port 80 for http://
e Port 21 for FTP
— Well known applications — 1-1023
— Registered ports — 1024 — 49151
— Dynamic ports — 49152-65535

» Other systems may use different ranges

Doron Nussbaum COMP 5900 - Network Games Part | 42

Putting it all together

» Each interaction can be viewed as a 5 touple

{Protocol, source add., source process, dest. add., dest. process}

{Protocol, source add., source port, dest. add., dest. port}

{TCP, 134.117.27.23, 5500, 134.117.27.25, 1622}

Doron Nussbaum COMP 5900 - Network Games Part | 43
Client
raven
137.1178.27.25
Host -
kiwi Client
|
134.117.27.23 {TCP, raven, 50152}
cccccc /
Server T Client
{TCP, kiwi, 5500} /—v {TCP, raven, 50153}
Server //
{TCP, kiwi, 5500}
S sparrow
Wi r—
M [~omecion 137.1178.27.35
Client
{TCP, raven, 50152}
44

Doron Nussbaum

COMP 5900 - Network Games Part |

Internet User Protocols

« TCP « UDP
— Connection based — Connectionless
— Reliable — Unreliable
— Bytes arrive in order — Arbitrary arrival order

they were sent

— Collects small packets
and transmits them
together

— Stream of bytes

Doron Nussbaum COMP 5900 - Network Games Part |

TCP

» Reliable stream of bytes
— Implies the need for a “connection”
« Connection sets up data structures
— Hold incoming packets
— Hold outgoing packets
— Handle retransmits

Doron Nussbaum COMP 5900 - Network Games Part |

TCP Reliability

» Each data requires —
— send-Receive-Acknowledge

-

* Sender retains data until an ACK is received
« |f an ACK was not received = Sender retransmits data

Doron Nussbaum COMP 5900 - Network Games Part | a7

TCP

» Send-Receive-Ack round trip is expensive (time)
» Solution: overlaying the send and ack messages

» Side effect — more work
— Ensure that messages are received
— Maintain a queue in sender and receiver

‘ sender ‘ ‘ receiver ‘ ‘ sender ‘

time %\
\@\,
\@\,
—Hck3)

\ 4 A 4 Y
Doron Nussbaum COMP 5900 - Network Games Part | 48

Send

TCP Sender Queue

¢ Sends data and insert it into a send queue
» Sets a timer on this queue item
 If timer expires, and no ack then

— Re-send data
— Set a new timer (longer)

» Ifack is received then
— If the corresponding queue item is the oldest,
« Free the slot for new data
— Otherwise mark as received
* If no queue space avail
— sender waits!

Doron Nussbaum COMP 5900 - Network Games Part |

49

TCP Receiver Queue

* Send an ACK for each received packet

* If the packet is the next in the sequence
— Forward packet to application

» Otherwise keep packet in queue

Doron Nussbaum COMP 5900 - Network Games Part |

50

TCP — communication behaviour

» May halt the transmission temporarily
— (e.g., when no ack messages are received)

» Attempt to re-establish the communication
— Sends test message(s)
— Slowly increases the transmission rate

» Transmission rate changes

— Cut transmission rate by half each time
— Increase transmission rate by a constant

Doron Nussbaum COMP 5900 - Network Games Part | 51

TCP Wrap-up

» Connection based
— Reliable arrival: Retransmit
— Reliable order: Sequence numbers

e« TCP can minimize the overhead of small data
— buffers up data on 200ms intervals

« TCP Has an “emergency” channel
— OOB Out Of Band

Doron Nussbaum COMP 5900 - Network Games Part | 52

UDP

Connectionless!
— Does not worry about the data

Unreliable transmission
— Lost packets are lost forever
— Must be handled outside of protocol

Race condition
— Arrival order may not match transmission order
— Must be handled outside of protocol

Fast
— When data is received the application received it

Doron Nussbaum COMP 5900 - Network Games Part | 53

UDP

» Losing Packets!
— No knowledge if and what was lost - critical data!!
— Must be self managed

 Arrival order may be time sensitive
— Past location may be meaningless
— Mixing up order can be critical — car racing

Doron Nussbaum COMP 5900 - Network Games Part | 54

Sockets

« An interface/library that implements the
TCP/IP protocol

e Consists of a set of functions that enable
communication between two or more
hosts over a network.

 Resemble file I/10

Doron Nussbaum COMP 5900 - Network Games Part | 55
Server Client
 Initialize Winsock. ¢ Initialize Winsock.
» Create a socket. « Create a socket.
e Bind the socket. e Connect to the server.
« Listen on the socket for a « Send and receive data.
client. « Disconnect.
» Accept a connection from a
client.

* Receive and send data.
» Disconnect.

Doron Nussbaum COMP 5900 - Network Games Part | 56

Connection Based Interaction

Doron Nussbaum

Server

bind()

Client

accept()

socket()

lish Co connect()

write()
e meques— L0 __|
-—

read()

Process Request

—

Rep‘y\‘C‘E

00 - Network

57

Connectionless Based Interaction

Doron Nussbaum

Server Client

bind()
L]

Data Request
receivefrom() —

Process Request

[Data Reply___|

COMP 5900 - Network Games Part |

58

|IP Strucutres

e IPV4 and IPV6 — will use IPV4

The family of communication protocol
(Use AF_xxxx) AF_INET

struct sockaddr {

short sa_family;

char sa_data[14]; [size of data depends on the protocol

} L
Internet Family Structure
struct sockaddr_in {
struct in_addr { short sin_family;
u_long address; u_short sin_port;
} - struct in_addr sin_addr;
char sin_zero[8];
b
Doron Nussbaum COMP 5900 - Network Games Part | 59
/ struct addrinfo *servAdd = NULL,hints; \
ZeroMemory(&hints, sizeof (hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = Al_PASSIVE;
/I Resolve the local address and port to be used by the server
rc = getaddrinfo(NULL, DEFAULT_PORT, &hints, &servAdd);
if (rc 1= 0) {
printf("getaddrinfo failed: %d\n", iResult);
WSACIeanup();
return 1;
k /
60

Doron Nussbaum COMP 5900 - Network Games Part |

Doron Nussbaum

Server

==

accept()

Client

=

read() T

Process Request

close()

Connectior

Data Request
| —

[Data Reply—__|

0 - Network Ga

connect()

write()

61

Creating a socket

An int like file I/O

A socket descriptor |

/I Create a SOCKET for the server to listen for client connections

SOCKET socket(int family, int type, int protocol)

-

Address Family of protocols is us
AF_UNIX AF_INET AF_INET6 ...

k
\

What communication \ype is used
SOCK_STREAM SOCK_DGRAM ..

/I clean up

return 1;

_

if (listenSocket == INVALID_SOCKET) {
/I handle the error;

éOCKET listenSocket = INVALID_SOCKET;

/I Create a SOCKET for the server to listen for client connections
listenSocket = socket(AF_INET, AFSTREAM, IPPROTO_TCP);

~N

J

Doron Nussbaum

COMP 5900 - Network Games Part |

The protocol
IPPROTO_TCP
IPPROTO_UDP

62

Server

Client

Connectior connect()

write()

Data Request
read() -

Process Request

[Data Reply—__|

Doron Nussbaum

0 - Network Ga

63

Bind

» Purpose: the server informs the system what is its address. (All
messages to this address are to be delivered to the server.)

/I Setup the TCP listening socket

int bind(SOCKET socket, struct sockaddr *mg(Addr, int addressLenght);

Internet Family Structure

/I Setup the TCP listening socket struct sockaddr_in {
short sin_family;
Rc = bind(listenSocket, myAddress, addrLength); u_short sin_port;
if (rc == SOCKET_ERROR) { struct in_addr sin_addr;
/I error clean up char sin_zero[8];
I
}

Doron Nussbaum COMP 5900 - Network Games Part |

64

Server

bind()
Client
|-———Establish Connection—— Ill

write()

Data Request
read() -

Process Request

[Data Reply—__|

Doron Nussbaum

0 - Network Ga s

Connect

» Purpose: establishes a connection with the server.

» For connectionless the call is not required.

— However it stores the addresss of the server for futrue calls to read,
write, recev and send.

/I Setup the TCP listening socket

int connect(SOCKET socket, struct sockaddr *serverAdd(, int addressLenght);

/f connecting to the server Internet Family Structure

rc = connect(mySocket, ServerAdd, addrLength);
if (rc == SOCKET_ERROR) {
/I error clean up

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

2

Doron Nussbaum COMP 5900 - Network Games Part | 66

Server

accept()

Client

Connectior connect()

write()

Data Request
read() -

Process Request

[Data Reply—__|

Doron Nussbaum

0 - Network Ga o7

Listen

» Purpose: tells the system how many connection requests can be
queued

/I Setup the TCP listening socket

int connect(SOCKET socket, int backlog);

rc = listen(listenSocket, 5) ;

if (rc == SOCKET_ERROR) {
/I error clean up

}

Doron Nussbaum COMP 5900 - Network Games Part | 68

Server

Client

Connectior connect()

write()
Data Request
read() -

Process Request

[Data Reply—__|

Doron Nussbaum 0 - Network Ga 69
d Purpose: accepts a connection
— This is a blocking call
/I Setup the TCP listening socket
SOCKET accept(SOCKET listeSocket, struct sockaddr *clientAddress, int *addrlen);
clientSocket = INVALID_SOCKET;
/I Accept a client socket
clientSocket = accept(ListenSocket, NULL, NULL);
if (ClientSocket == INVALID_SOCKET) {
/I error clean up
}
Doron Nussbaum COMP 5900 - Network Games Part | 70

Server

Client

accept()

connect()

Connectior

write()

Data Request
| —

Process Request

[Data Reply—__|

0 - Network Ga 71

Doron Nussbaum

Send and Recv

» Purpose: read data from the client and send data to the client
— This is a blocking call

/I Sending data over the connection

Number of bytes that int send (SOCKET clientSocket, char *buf, int bufSize, int flags):

were sent or received

/I receiving data over the connection
int recv (SOCKET clientSocket, char *buf, int bufSize, int flags);

——

If 0 then connection
was closed

/I Flags
MSG_0O0OB send or receive data out-of-band
MSG_PEEK peek at incoming message (recv, recvfrom

MSG_DONOTROUTE bypass routing (send or sendto

Doron Nussbaum COMP 5900 - Network Games Part | 72

Sendto and Recvfrom

» Purpose: read data from the client and send data to the client

— This is a blocking call
— connectionless

/I Sending data over the connection
int sendto(SOCKET clientSocket, char *buf, int bufSize, int flags, struct sockaddr *to, int addrelen);

/I Sending data over the connection
int receivefrom(SOCKET clientSocket, char *buf, int bufSize, int flags, struct sockaddr *to, int *addrelen

Doron Nussbaum

COMP 5900 - Network Games Part |

73

Send and Recv

Doron Nussbaum

#define DEFAULT_BUFLEN 512
char recvbuf[DEFAULT_BUFLEN];
int rc, iSendResult;

/I Receive until the peer shuts down the connection
do {
rc = recv(ClientSocket, recvbuf, DEFAULT_BUFLEN, 0);
if (rc > 0) {
/I Echo the buffer back to the sender
rc = send(ClientSocket, recvbuf, rc, 0);
if (iSendResult == SOCKET_ERROR) {
/I error
}
printf("Bytes sent: %d\n", rc);
} elseif (rc == 0) {
printf("Connection closing...\n"); {
}else {
/I error

}
} while (iResult > 0);

COMP 5900 - Network Games Part |

74

Server

Client

accept()

Connectior connect()

write()
Data Request
read() T

Process Request

[Data Reply—__|

0 - Network Ga 75

Doron Nussbaum

Close the connection

» Purpose: close the socket

/I close the socket Unix call is
int closesocket (SOCKET clientSocket); close();

I/ allows graceful termination of connection Flags determine how to shut down
SD_RECEIVE 0
int shutdown SOCKET clientSocket, int howTo); SD_SEND 1

SD_BOTH 2

Doron Nussbaum COMP 5900 - Network Games Part | 76

Utility Functions

ﬁehtonl function converts a u_long from host to TCP/IP network byte order (which is big endian).
u_long htonl(u_long hostlong);

The htons function converts a u_short from host to TCP/IP network byte order (which is big-endian)
u_short htons(u_short hostshort);

The ntohl function converts a u_long from TCP/IP network order to host byte order
(which is little-endian on Intel processors).
u_long ntohl(u_long netlong);

The ntohs function converts a u_short from TCP/IP network byte order to host byte order
(which is little-endian on Intel processors).
u_short ntohs(u_short netshort);

The inet_addr function converts a string containing an IPv4 dotted-decimal address into a proper
address for the IN_ADDR structure.
unsigned long inet_addr(char *cp);

The inet_ntoa function converts an (Ipv4) Internet network address into an ASCII string in

Internet standard dotted-decimal format.
W inet_ntoa(struct in_addr in);

Windows specific for sockets

ﬁ/ Start Winsock up \
WSAData wsaData;

if ((rc = WSAStartup(MAKEWORD(2,2), &wsaData)) != 0) {
cerr << "WSAStartup() returned error code " << rc << "." << endl;
return(1);

}

brogram

QSACIeanup(); /

Doron Nussbaum COMP 5900 - Network Games Part |

78

Questions?

Doron Nussbaum COMP 5900 - Network Games Part |

79

