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Abstract

Many optimization problems in computer science have been proven to be NP-hard, and it is unlikely that

polynomial-time algorithms that solve these problems exist unless P = NP. Alternatively, they are solved

using heuristics algorithms, which provide a sub-optimal solution that, hopefully, is arbitrarily close to

the optimal one. Such problems are found in a wide range of applications, including arti�cial intelligence,

game theory, graph partitioning, database query optimization, etc. Consider a heuristic algorithm, A.

Suppose that A could invoke one of two possible heuristic functions. The question of determining which

heuristic function is superior, has typically demanded a yes/no answer { one which is often substantiated

by empirical evidence. In this paper, by using Pattern Classi�cation Techniques (PCT), we propose a

formal, rigorous theoretical model that provides a stochastic answer to this problem. We prove that given

a heuristic algorithm, A, that could utilize either of two heuristic functions H1 or H2 used to �nd the

solution to a particular problem, if the accuracy of evaluating the cost of the optimal solution by using

H1 is greater than the accuracy of evaluating the cost using H2, then H1 has a higher probability than

H2 of leading to the optimal solution. This unproven conjecture has been the basis for designing numerous

algorithms such as the A* algorithm, and its variants. Apart from formally proving the result, we also

address the corresponding database query optimization problem that has been open for at least two decades.

To validate our proofs, we report empirical results on database query optimization techniques involving a

few well-known histogram estimation methods.

1 Introduction

1.1 Overview

The area of computer science has still quite a few open, unsolved problems. In this paper, we are concerned

with one such problems, namely that of using heuristics to solve optimization problems.
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Any arbitrary optimization problem1 is typically de�ned in terms of instances which are drawn from a

(�nite) set, X , an objective function, and some feasibility functions. The aim is to �nd an (and hopefully, the

unique) instance of X , which leads to the maximum (or the minimum) value of the objective function subject

to the feasibility constraints. A formal de�nition of an optimization problem can be found in [10]. But to be

more speci�c, consider the well-known Traveling Salesman Problem (TSP), in which the cities are numbered

from 1 to n, and the salesman starts from city 1, visits every other city once, and returns to city 1. An instance

of X is a permutation of the cities, for example, 1 4 3 2 5, if we are considering a world consisting of �ve cities.

The objective function for that instance, f(1 4 3 2 5) is obtained by performing the summation of the inter-city

distances: 1 ! 4, 4 ! 3, 3 ! 2, 2 ! 5, and 5 ! 1. The optimal solution is the instance that minimizes the

value of f .

A heuristic algorithm is an algorithm that attempts to �nd a certain instance of X that maximizes f (or

the pro�t) by iteratively invoking a heuristic function. The instance that maximizes f will be the optimal

solution2 to the optimization problem. A heuristic is a method that performs one or more modi�cations to a

given solution or instance, in order to obtain a di�erent solution which is either superior, or which leads to a

superior solution. The heuristic, in turn, invokes a heuristic function, which estimates (or measures) the cost

of the solution at the particular state in the search process. This is the context in which we use these terms.

Many heuristic algorithms and heuristic functions have been reported in the literature, where the former

include the alpha-beta search [11], backtracking, hill-climbing [10], simulated annealing [1], genetic algorithms

[13], tabu search [7], learning automata [15], etc. The issue of how heuristic functions are used in such heuristic

algorithms in searching, game playing, etc., can be found in [16, 24] and is, indeed, an enormous �eld of study

in itself. This question is not addressed here.

To clarify issues, let us consider the classical n-puzzle problem [16]. This problem consists of a square board

containing n square tiles and an empty position called the \blank". The aim is to rearrange the tiles from some

pre-de�ned (usually random) initial con�guration into a pre-determined goal con�guration, by sliding any tile

adjacent to the blank into the blank position. A heuristic algorithm solves this problem by examining, using

a heuristic function, some of the possible valid movements. Viewed from the perspective of the underlying

state graph, the possible states encountered at the next level form the children nodes of the current node in

the search structure. Other variants of heuristic algorithms involve the examination of lower levels as well.

The breadth-�rst search and depth-�rst search schemes are examples of heuristic algorithms, useful in any

such problem solving strategy. An example of a heuristic function, however, is the measurement (or estimate)

of the number of tiles that are out of place. Another measure is the sum of the depth of the node and the

number of tiles that are out of place.

One of the better-known solutions to the n-puzzle problem is the A* algorithm. This algorithm is a graph

search algorithm that is used to �nd the path of minimum cost between two nodes, the start node and the

goal node. The A* maintains a tree which stores the paths that are already explored. Using these paths, a

1Every optimization problem can also be formulated as a decision problem [6].
2We use the term \solution" to refer to an element x 2 X , and the term \pro�t" to refer to the value of f(x). In minimization

problems, f(:) will be a cost funtion.
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measure, f , of the potential advantage of choosing each path is calculated. The value of f , which is the cost of

traversing the graph between two nodes, can be calculated by using di�erent heuristic functions. A heuristic

is said to be admissible, and the A* converges to the correct result, if the heuristic function is an upper bound

of the true cost from all nodes to the goal node.

In general, for any arbitrary problem, the question of how useful a heuristic function is, in determining

the cost of traversing from one node to another, has no known analytic solution { it has traditionally been

empirically analyzed. In this paper, we present a formal analysis that provides a stochastically positive answer

to the question of comparing the relative advantages of potential heuristic functions.

The A* algorithm and its variants (like the A+ algorithm) have also been successfully applied to other

problems, such as object recognition using deformable templates [16, 26, 28]. Various solutions to optimiza-

tion problems using di�erent heuristic functions are found in [28]; we shall use this paper, [28], to highlight

the di�erence between the heuristic algorithms, and the e�ect of the same algorithm using various potential

heuristic functions. The authors of [28] address the problem of tracking roads in satellite images using the

twenty-question search paradigm, and the A+ algorithm, a \cousin" of the A* algorithm. Using these algo-

rithms the roads can be represented in terms of straight-line segments. The various paths are expanded by the

application of an ensemble of heuristic functions. One such heuristic function is the one based on the condi-

tional entropy measurements of the branches, which are used to choose the most \promising" path. While the

paper discusses other heuristic functions, the question of how one can compare the solutions obtained using

the various heuristic functions is achieved by comparing the empirical simulation results. We hope that our

formal analysis can be a tool to achieve a more rigorous comparison of these heuristic functions in [28], and

other similar scenarios3.

The tools we propose to use are drawn from the well-established theory of Pattern Recognition (PR)

[5, 27] { a prominent �eld of machine intelligence. Broadly speaking, PR involves decision-making, based on a

priori and learned knowledge of the classes and objects being recognized. More speci�cally, the system learns

information about the features of a set of classes. Subsequently, given an object of unknown identity, and this

information, the system attempts to recognize the unknown object as belonging to one of the known classes

with some arbitrary accuracy. Necessarily, our overview of PR is brief!

There are many applications of PR, including face and speech recognition, �ngerprint identi�cation, char-

acter recognition, medical diagnosis, etc. In each of these applications, the information about the classes can

be structural or statistical. In the former, we deal with the �eld of structural and syntactic pattern recognition,

and in the latter, with the �eld of statistical pattern recognition. Furthermore, in the latter, the statistical

information, or features, about the classes is represented by random vectors. The procedure of obtaining the

features consists of mapping the feature values of each sample to a vector. Feature values, for example, can

be the width or the height of a �gure, the value of a pixel of an image, etc. Statistical pattern recognition

can also be subdivided into two well-de�ned approaches, parametric and non-parametric. In the former, the

random vectors have a known probability distribution, e.g. normal (or Gaussian), exponential, multinomial,

3The model presented here has some limitations when investigating the quality of solutions yielded by an A*-like algorithm.
These limitations will be discussed in a later sub-section.
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etc. No such model is assumed in a non-parametric case.

Although we are aware of the use of PR principles in real life scenarios, we are not aware of any previous

results in which PR principles have been used to solve a theoretical unsolved problem in a completely di�erent

�eld.

Our result can be crystallized as follows: Given two heuristic functions, the question of determining which

is superior, has typically demanded a yes/no answer which is often substantiated based on empirical evidence.

We have solved the problem of deciding on the superior heuristic function by using PR techniques. It should

be mentioned that there are numerous well-known techniques that have been utilized in the context of pattern

classi�cation, such as hypthesis testing, bootstrap methods, Neyman-Pearson methods, etc. A good reference

for such methods can be found in [21]. However, the results derived in this paper essentially use the methods

that have been traditionally applied to optimal Bayesian Classi�cation, as described in the statistical pattern

recognition literature [4]. Using these principles, we prove the following assertion: Given two heuristic func-

tions, H1 and H2, used by a heuristic algorithm in �nding a solution to a particular problem, if the accuracy in

obtaining the optimal solution by using H1 is greater than that of using H2, then H1 has a higher probability

of leading to the optimal solution than H2. To the best of our knowledge, this is an open problem. However,

this unproven conjecture has been the basis for designing numerous algorithms such as the A* algorithm, and

its variants, in searching, game playing, and numerous other applications [16, 24, 25, 28].

Our strategy for achieving this analysis is as follows. The �rst task is to model the cost of the solution.

Since the optimal \true" cost is unknown, we represent it in terms of its estimate, as estimated using the

heuristic function. Observe that since the latter is inaccurate, this \cost" is represented in terms of a random

variable. Note that by \cost", we do not mean the cost of the search process involved in determining the

optimal solution, but rather the cost of the optimal solution, as estimated by the heuristic function. This

di�erence is crucial.

Now that the modelling of the heuristic function is in place, the question of quantifying the quality of

any heuristic function has to be considered. Informally speaking, we can say that this papers concerns this

\heuristic-function quality assessment" problem, which is addressed, in turn, by viewing it as a pattern recog-

nition problem. We solve this pattern recognition problem by considering two independent random variables,

the �rst for the optimal solution and the second for the sub-optimal one, both of them being pursued by a

heuristic function, H1. We use a reasonable model for the accuracy of the heuristic function, in which the

error of H1 is a doubly-exponential random variable4. This distribution, which as we shall presently see, is

used to approximate the Gaussian distribution, is typically used in reliability and failure models, and hence is

reasonable in this scenario. In our model, the accuracy of the heuristic function is related to the variance of

the random variable used to represent it. The analysis for the Gaussian distribution follows thereafter.

If we now consider another heuristic function, H2, whose variance is greater than that of H1, and whose

mean is the same as that of H1, we have a model by which the eÆciency of heuristic functions can be compared.

4The reasoning used in this paper assumes that the errors are on either side of the true value. However, we believe that if the
distribution is one-sided, similar arguments will be true as long as the distribution is not \heavily-tailed". We are grateful to the
anonymous referee who brought this to our attention.
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Indeed, using this model, we have theoretically proven thatH1 is more likely to succeed in obtaining the optimal

solution than H2. For this model, we have also proved the uniqueness of the result, and the conditions for

which both heuristic functions lead to coincident probabilities of success.

The doubly exponential distribution is actually meant to be an approximation of the Gaussian distribution,

typically used to model errors. However, the algebraic analysis for Gaussian distributions is impossible as there

is no closed-form expression for integrating its probability density function. Consequently, we have extended the

analysis for the doubly exponential distribution to formulate a reasonable analysis for the Gaussian distribution

using numerical integration. By means of this analysis, we have corroborated the validity of our hypothesis

for Gaussian distributions also.

We also provide empirical results on using a few histogram-like estimation methods in database query

optimization, which demonstrate the validity of our theoretical analysis.

1.2 Applications

There are many heuristic algorithms that can be used to solve a wide variety of NP-hard problems. Such

problems can be found in a wide range of applications spanning the whole spectrum of arti�cial intelligence,

and include game playing and game theory, graph theory, database query optimization, networking, computa-

tional geometry, number theoretic problems, parallel processing, etc. The results presented in this paper are

applicable to any heuristic algorithm that uses di�erent heuristic functions to solve a particular problem. In

this introductory section, we just describe a few of them.

In the area of database query optimization, when more than two tables have to be joined, intermediate join

operations are performed to ultimately obtain the �nal relation. As a result, the same query can be performed

by means of di�erent intermediate (join) operations. A simple sequence of join operations that leads to the

same �nal result is called a query evaluation plan (QEP). Each QEP has associated an internal cost, which

depends on the number of operations performed in the intermediate joins. The problem of choosing the best

QEP is a combinatorially explosive optimization problem. This problem is currently solved by estimating the

query result sizes of the intermediate relations and selecting the most eÆcient QEP.

Since the analysis of selecting the best QEP must be done in \real" time, it is not possible to inspect the real

data in this phase. Consequently, query result sizes are usually estimated using statistical information about

the structures and the data maintained in the database catalogue. This information is used to approximate

the distribution of the attribute values in a particular relation. Hence the problem of selecting the best QEP

depends on how well that distribution is approximated.

In [8], it has been shown that errors in query result size estimates may increase exponentially with the

number of joins. Since current databases and the associated queries increase in complexity, numerous e�orts

have being made to devise more eÆcient techniques that solve the query optimization problem.

Many techniques have been proposed to estimate query result sizes, including histograms, sampling, and

parametric techniques [9, 12, 14, 22]. Histograms are the most commonly used form of statistical information.

They are incorporated in most of the commercial database systems such as Oracle, Microsoft SQL Server,
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Teradata, and DB2, which mainly use the Equi-depth histogram. The prominent models of histograms known

in the literature are: Equi-width [2, 9], Equi-depth [14, 22], the Rectangular Attribute Cardinality Map (R-

ACM ) [18], the Trapezoidal Attribute Cardinality Map (T-ACM ) [19], and the V-Optimal Histograms [8, 23].

In this scenario, the heuristic algorithm is the actual algorithm that uses a histogram as the heuristic

function, and obtains an optimal (or a sub-optimal) QEP. The heuristic function used by this algorithm is the

actual histogram that approximates the distribution of the attribute values of the relevant tables. Thus, in our

model (and using our terminology), Equi-width, Equi-depth, the R-ACM and the T-ACM are the heuristic

functions.

Other areas in which our model can be used to answer open questions are in the �elds of game theory and

game playing [25]. In game playing, the most widely used structure used to analyze the best possible move

and strategy is a game tree, whose root node represents the initial status of the board. All possible moves

of the �rst player are the edges from the root to the �rst level, the edges of each child represent all possible

moves of the second player, the opponent. Continuing in the same fashion, the game is played (or rather plans

executed) until one of the players wins. The aim is to optimize the moves of the �rst player based on searching

all the branches of the tree until the leaves, and perform the best move based on maximizing the reward of

the �rst player and minimizing that of the second one.

There are many techniques used to optimize the moves of the �rst the player. One of them is the minimax

search algorithm, which searches over a �xed number of levels of the entire tree, and �nds the best moves at

each node. This exhaustive searching procedure has a complexity that grows exponentially with the number

of nodes of the tree. A more eÆcient mechanism is the alpha-beta search algorithm [11], a heuristic that

signi�cantly reduces the number of nodes explored. Both of these assume that the heuristic function that

they use, which typically evaluate the position of the board viewed from the perspective of the �rst player, is

advantageous in determining a superior strategy. This is the question that we address in this paper. The model

presented in this paper has important consequences in choosing such a heuristic function. Such a heuristic

function could be, for example, the cost of a path from the current state to a goal state, which unfortunately

is not exactly known, but is estimated. The searching scheme, such as the alpha-beta search and the minimax

search algorithm, uses this heuristic function to search for a, hopefully, optimal path in the game tree.

Another application of our result is in graph theory, for example, in solving the uniform graph partitioning

problem. Given a complete graph on 2n vertices, G = (V ; E), along with a cost function f : E ! Z
+
Sf0g,

the aim is to �nd a partition whose sum of costs of the individual subsets is minimized. This problem

is also known to be NP-hard, and has several applications especially in VLSI design, hydrology, networks,

etc. Many heuristic algorithms have been proposed to solve this problem, including simulated annealing,

genetic algorithms, learning automata, etc. [10, 20]. When considering a particular heuristic algorithm, we

can incorporate di�erent heuristic functions to approximate the sum of costs of the individual subsets of a

particular partitioning. It is intuitive that a more accurate heuristic function is more likely to succeed in

�nding the optimal solution. However, this is not what happens in all cases. We rather provide a stochastic

answer to this question. By means of a rigorous theoretical analysis, we prove that a particular heuristic

function, which provides more accurate approximations for the sum of costs of the individual subsets, is more
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likely to obtain the minimal cost for a partitioning, than a less accurate heuristic function.

1.3 Problem Statement

In this paper, we propose a theoretical model that solves this fundamental open problem in computer science,

namely that of relating heuristic functions with solution optimality, using the principles of the theory of pattern

classi�cation. This problem has been (to our knowledge) open. In particular, the corresponding database query

optimization problem has been unsolved for more than two decades.

More speci�cally, we prove the following: Given a heuristic algorithm, A, that invokes two heuristic func-

tions, H1 and H2, used in a decision problem, if the accuracy in approximating the optimal solution by using

H1 is greater than that of using H2, then H1 has a higher probability of leading to the optimal solution than

H2.

The importance of the results of this paper is that we show that the answer to the accuracy/optimality

question is \stochastically positive". In other words, we prove that although a superior heuristic function

may not always yield a better solution, the probability that the superior heuristic function yields an optimal

solution exceeds the probability that an inferior heuristic function yields an optimal solution. This paper thus

justi�es and gives a formal rigorous basis for why heuristic functions work.

We analytically prove that under the well-acclaimed models of inaccuracy, the better the accuracy of a

heuristic function, the greater the probability of it choosing the optimal solution. We have also provided some

empirical results related to the �eld of database query optimization. These results show the superiority of the

R-ACM over the traditional histogram estimation methods, the Equi-width and the Equi-depth. The empirical

results obtained by testing these properties for many of the above histogram methods in random databases

show that the R-ACM is signi�cantly superior to both the Equi-width and the Equi-depth schemes.

1.4 Restrictions of Our Model

As mentioned above, this paper addresses the problem of quantifying the quality of a heuristic function, and it

achieves this by posing the problem in a fairly general framework. However, for the results to be applicable for

a particular application domain5 which uses a speci�c search strategy such as the A� algorithm, the logistics

of the search process itself will have to be considered.

Informally speaking, the main result of our paper proves the following: Given two heuristic functions eval-

uating the same \cost", a search mechanism utilizing these functions will converge (with a higher probability )

to a superior solution, when it utilizes a function with a lesser variance. However, comparing the performance

of heuristic functions in the search process initiated by A� is a more complicated issue. The reason for this

can be argued as follows. In each iteration, A� computes the values of the heuristic function (say, \f(:)") for

all candidate nodes (the OPEN list), which represent how promising they are. A� then selects the one with

the highest value of f(:), generates its children, computes their values of f(:), and inserts them into the OPEN

list. For an algorithm like A�, the most we can claim is that it is more expedient to use a heuristic function

5We are grateful to the anonymous referee who brought this limitation to our attention.
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which better estimates the \cost", than one which estimates it poorly. The question of how the nodes in the

OPEN list lead to solutions, is really a problem-dependent question which we cannot answer here. We intend

to study this problem in the database query optimization domain mentioned later, by incorporating a search

strategy to search the set of QEPs whose costs are estimated by the various histogram methods. Note that

this does not invalidate the query-optimization results presented in this paper, because, in our simulations, we

exhaustively search the QEP space without using any intelligent search strategy like A�.

2 Heuristic Function Accuracy vs. Optimality

Consider a heuristic algorithm, A, that invokes either of two heuristic functions, H1 and H2. The probability

of correctly estimating a cost value of a particular solution by H1 and that of estimating a cost value by H2 are

represented by two independent random variables. In our model, we assume that these two heuristic functions

are independent, and thus, the value obtained by one heuristic function should not a�ect the value obtained

by the second.

For the analysis done below, we work with two models for the error function: the doubly exponential

distribution and the normal distribution. In the former, the probability of obtaining a value that deviates

from the mean (or true value) falls exponentially as a function of the deviation. The exponential distribution

is more typical in reliability analysis and in failure models, and in this particular domain, the question is one

of evaluating how reliable the quality of a solution is if only an estimate of its performance is available. More

importantly, it is used as an approximation to the Gaussian distribution for reasons which will be clari�ed

momentarily. The Gaussian model is much more diÆcult to analyze, since there is no closed-form algebraic

expression for integrating the probability density function. However, a formal computational proof is included,

which con�rms our hypothesis.

2.1 Analysis Using Exponential Distributions

A random variable, X , is said to be doubly exponentially distributed with parameter � if the density function

is given by:

fX(x) =
1

2
�e��jx�cj �1 < x <1 : (1)

If X is a doubly exponential random variable, by elementary integration and straightforward algebraic

steps, it can be shown that:

E[X ] = c ; and (2)
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Figure 1: An example of doubly exponential distributions for the random variables X
(opt)
1 , X

(opt)
2 , X

(subopt)
1

and X
(subopt)
2 , whose parameters are �1 = 0:4 and �2 = 0:2.

Var[X ] =
2

�2
: (3)

Without loss of generality, if the mean of the cost of the optimal solution is c1, by shifting the origin by

c1, we can work with the assumption that the cost of the best solution is 0, which is the mean of these two

random variables. The cost of the second best solution is given by another two random variables (one for H1

and the other one for H2) whose mean, c2 > 0, is the same for both variables. An example will help to clarify

this.

Example 1. Suppose that using H1 leads to the optimal cost with a probability represented by a doubly

exponential random variable, X
(opt)
1 , whose mean is 0 and �1 = 0:4. This heuristic function also leads to

another sub-optimal cost according to X
(subopt)
1 whose mean is 8 and �1 = 0:4.

H2 is another heuristic function using which the optimal cost is chosen with a probability distribution

given by X
(opt)
2 whose parameters are c1 = 0 and �2 = 0:2. It leads to the second sub-optimal cost value with

a probability density given by X
(subopt)
2 whose parameters are c2 = 8 and �2 = 0:2.

The fact that 2
�21

< 2
�22

signi�es that the probability of using H1 could lead to a sub-optimal cost is smaller

than the probability of using H2 leading to a sub-optimal cost. This scenario is depicted in Figure 1, and is

formalized presently.

The result depicted above is formalized in the following theorem, which is the �rst primary result of

this paper, and answers the open question referred to above. The theorem is formulated in terms of the
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probabilities that the two heuristic functions lead to the wrong decision, which we show is inherently related

to the probability that these heuristic functions lead to the convergence to the sub-optimal solutions. The

formulation of the result and the proof utilize techniques typically foreign to database theory, game theory,

arti�cial intelligence, or for that matter any computer science area in which this approach can be applied.

They belong to the theory of PR.

The second theorem, extends the results of the �rst, and shows how the results can also be geometrically

interpreted.

Theorem 1. Suppose that A is a heuristic algorithm that can potentially utilize either of two heuristic

functions, H1 and H2. Let:

� X1 and X2 be two doubly exponential random variables that represent the estimated costs of the optimal

solutions obtained by using H1 and H2 respectively.

� X 0
1 and X 0

2 be two other doubly exponential random variables representing the estimated costs of non-

optimal solutions obtained by using H1 and H2 respectively.

� 0 = E[X1] = E[X2] � E[X 0
1] = E[X 0

2] = c .

� p1 and p2 be the probabilities that H1 and H2 respectively lead to the wrong decision.

Then,

if Var[X1] = Var[X 0
1] =

2

�21
� 2

�22
= Var[X2] = Var[X 0

2]; p1 � p2 :

Proof. Consider a particular cost, x. The probability that x leads to a wrong decision when A uses H1 is

that of incorrectly classifying x as being obtained from the non-optimal solution. This is, indeed, the error

in classi�cation, and is the area under the curve of the pdf function of X 0
1 or the cumulative probability of

x under the pdf of H1 when it refers to the sub-optimal solution. Because of the discontinuity of the doubly

exponential function at c, this area is decomposed into the following two integrals:

I11 =
R x
�1

1
2�1e

�1(u�c) du if x < c ; and

I12 =
R c
�1

1
2�1e

�1(u�c) du+
R x
c

1
2�1e

��1(u�c) du if x > c :

(4)

Solving the integrals, (4) results in:

I11 =
1
2e

�1(x�c) � limu!�1
1
2e
��1(u�c) = 1

2e
��1(x�c) ; and

I12 = limu!�1
1
2e
��1(�u+c) + 1

2 � 1
2e
��1(x�c) + 1

2 = 1� 1
2e
��1(x�c) :

(5)
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The probability that using H1 leads to the wrong decision for all the values of x is the following function

of �1 and c:

p1 = I(�1; c) =

Z 0

�1

I11
1

2
�1e

�1x dx+

Z c

0

I11
1

2
�1e

��1x dx +

Z 1

c

I12
1

2
�1e

��1x dx : (6)

which, after applying the distributive law and substituting the values of I11 and I12, can be written as:

Z 0

�1

�1

4
e2�1x��1c dx�

Z c

0

�1

4
e��1c dx+

Z 1

c

�
�1

2
e��1x � �1

4
e�2�1x+�1c

�
dx : (7)

After solving the integrals, (7) is transformed into:

1

8
e��1c +

1

4
�1ce

��1c +
3

8
e��1c =

1

2
e��1c +

1

4
�1ce

��1c : (8)

Similarly, we do the same analysis for p2, which is a function of �2 and c:

p2 = I(�2; c) =
1

2
e��2c +

1

4
�2ce

��2c : (9)

We have to prove that:

p1 =
1

2
e��1c +

1

4
�1ce

��1c � 1

2
e��2c +

1

4
�2ce

��2c = p2 : (10)

Multiplying both sides by 2, and substituting �1c for �1 and �2c for �2, (10) can be written as follows:

e��1 +
1

2
�1e

��1 � e��2 +
1

2
�2e

��2 : (11)

Substituting �2 for k�1, �1 � 0 and 0 < k � 1, (11) results in:

q1 = e��1 +
1

2
�1e

��1 � e�k�1 +
1

2
k�1e

�k�1 = q2 : (12)

We now prove that q1 � q2 � 0. After applying natural logarithm to both sides of (12) and some algebraic

manipulations, q1 � q2 � 0 implies:

11



F (�1; k) = k�1 � �1 + ln(1 +
1

2
�1)� ln(1 +

1

2
k�1) � 0 : (13)

To prove that F (�1; k) � 0, we use the fact that lnx � x� 1. Hence, we have:

F (�1; k) = �1(k � 1) + ln

�
1 + 1

2�1

1 + 1
2k�1

�
(14)

� �1(k � 1) +
1 + 1

2�1

1 + 1
2k�1

� 1 (15)

= �1(k � 1) +
�1 � k�1

2 + k�1
(16)

=
k�1 + k2�21 � �1 � k�21

2 + k�1
(17)

=
�1(k � 1)(k�1 + 1)

2 + k�1
� 0 ; (18)

because:

(i) 0 < k � 1 and �1 � 0 ) �1(k � 1) � 0 and k�1 + 1 > 0: Hence �1(k � 1)(k�1 + 1) � 0, and

(ii) 0 < k � 1 and �1 � 0 ) 0 < k�1 � �1 ) k�1 + 2 > 2 > 0.

Hence the theorem.

The above theorem can be viewed as a \suÆciency result". In other words, we have shown that q1�q2 � 0

or that p1 � p2. We now show a \necessity result" stated as a uniqueness result. This result states that the

function p1 � p2 has its equality only at the boundary condition where the two distributions are exactly

identical.

To prove the necessity result, we consider q2 � q1 which, derived from (12), can be written, as a function

of �1 and k, as:

G(�1; k) = e�k�1 +
1

2
k�1e

�k�1 � e��1 � 1

2
�1e

��1 : (19)

By examining its partial derivatives, we shall show that there are two solutions for equality. Furthermore,

when �1 � 0 and 0 < k � 1, we shall see that for a given k, there is only one solution, namely �1 = 0 and k,

0 < k � 1, proving the uniqueness.

Theorem 2. Suppose that �1 � 0, 0 < k � 1. Let G(�1; k) be:

G(�1; k) = e�k�1 +
1

2
k�1e

�k�1 � e��1 � 1

2
�1e

��1 : (20)
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Then G(�1; k) � 0, and there are exactly two solutions for G(�1; k) = 0, being: f�1 = �1; k = 1g and

f�1 = 0; kg .

Proof. We must prove that, as de�ned in the theorem statement, G(�1; k) � 0.

We shall prove that this is satis�ed by determining the local minima for G(:; :), where �1 � 0 and 0 < k � 1.

We �rst �nd the partial derivatives of (20) with respect to �1 and k:

@G

@�1
= � 1

2ke
�k�1 � 1

2k
2�1e

�k�1 + 1
2e
��1 + 1

2�1e
��1 = 0 ; and (21)

@G

@k
= � 1

2�1e
�k�1 � 1

2k�
2
1e
�k�1 = 0 : (22)

We now solve (21) and (22) for �1 and k. Equation (22) can be written as follows:

�1

2
�1e

�k�1 =
1

2
k�21e

�k�1 ; (23)

which, after canceling some terms results in k�21+�1 = 0. Solving this equation for �1, we have: �1 = � 1
k

and �1 = 0. Substituting �1 = � 1
k
in (21), and canceling some terms, we obtain:

1

2
e��1 +

1

2
�1e

��1 = 0 ; (24)

which results in the solution to be �1 = �1, and consequently, k = 1.

The second root, �1 = 0, indicates that the minimum is achieved for any value of k.

We have thus found two solutions for (21) and (22), f�1 = 0; kg and f�1 = �1; k = 1g . Since �1 � 0, it

means that �1 can have at least a value of 0, and hence the local minima is in f�1 = 0; kg. Substituting these
two values in G, we see that G(�1; k) = 0, which is the minimum. Therefore, G(�1; k) � 0 for �1 � 0 and

0 < k � 1.

Hence the theorem.

To get a physical perspective of these results, let us analyze the geometric relation of the function G and

the heuristic functions. G is a positive function in the region �1 � 0, 0 < k � 1. When �1 ! 0, G ! 0.

This means that for small values of �1, G is also small. Since �1 = �1c, the value of �1 depends on �1 and c.

When c is small, G is very close to its minimum, 0, and hence both probabilities, p1 and p2, are very close.

This behavior can be noticed in Figure 2, and the phenomenon is observed if the heuristic functions are both

comparable and almost equally eÆcient.

In terms of histogram methods and in database query optimization, when c is small, the optimal and the

sub-optimal QEP are very close. Since histogram methods such as Equi-width and Equi-depth produce a
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Figure 2: Function G(�1; k) plotted in the ranges 0 � �1 � 1 and 0 � k � 1.

G(�1; k)

k �1

larger error than the R-ACM and the T-ACM, the former are less likely to �nd the optimal QEP than the

latter.

Interpreted alternatively, G is very small when �1 is close to 0. This means that Var[X1] is very large.

Since Var[X1] � Var[X2], Var[X2] is also very large, and both are close each other (In Figure 1, we would

observe almost 
at curves for both distributions). Random variables for histogram methods such as Equi-

width and Equi-depth yield similar error estimation distributions with large and similar variances. Hence,

the probabilities p1 and p2 are quite close, and consequently, similar results are expected for these estimation

methods. However, when the heuristic functions yield widely di�erent estimated costs (as in the case when

the new histogram methods, the R-ACM and the T-ACM, are compared to the traditional methods), these

e�ectively imply random variables with smaller variances being compared to random variables with larger

variances. In such a case, the value of G is very high { implying that the former would yield superior solutions.

2.2 Analysis Considering Normal Distributions

For the analysis done in this section, we consider that we are given two heuristic functions, H1 and H2, for

which the probabilities of choosing optimal or suboptimal solutions are represented by two normally distributed

random variables, X1 and X2, whose means are �1 and �2, and whose variances are �21 and �22 respectively.

Although the model using normal distributions is more realistic in real life problems, the analysis becomes

impossible because there is no closed-form algebraic expression for integrating the normal probability density

function. Alternatively, we have used numerical integration and we have obtained rather representative values

for which the implication between eÆciency and optimality is again corroborated.

Without loss of generality, if the mean cost of the optimal solution is �1, by shifting the origin by �1, we

14
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again assume that the cost of the best solution is 0, which is the mean of these two random variables. The cost

of the second best solution is given by another two random variables (one for using the heuristic function H1,

and the other one for using the heuristic function H2) whose mean, �2 > 0, is the same for both variables. We

also assume that, by scaling both distributions6, the variance of using H1 and leading to the optimal solution

is unity. An example will help to clarify this.

Example 2. Suppose that using H1 leads to the optimal cost with probability represented by the normal

random variable X
(opt)
1 whose mean is 0 and standard deviation is �1 = 1. This heuristic function also

estimates another sub-optimal cost according to X
(subopt)
1 whose mean is 4 and �1 = 1.

H2 is another heuristic function that is used to estimate the optimal cost with probability given by X
(opt)
2

whose parameters are � = 0 and �2 = 1:4. The other corresponding sub-optimal cost given by the heuristic

function H2 is obtained with probability given by X
(subopt)
2 whose parameters are � = 4 and �2 = 1:4.

Observe that �1 < �2, and hence we are expecting that the probability of using H1 and leading to a wrong

decision is smaller than that of using H2. The probability density functions for these four random variables

are depicted in Figure 3. Note that, as in the doubly exponential distribution, given a particular value of x,

if its probability under X
(opt)
1 is high, then the area for which using H1 leads to the wrong decision (i.e. its

cumulative probability under X
(subopt)
1 ) is small. Since these two quantities are multiplied and integrated, the

�nal value is smaller than that of using H2, since �2 is greater than �1 = 1. This is what we formally show

below.

6This can be done by multiplying �2
1
and �2

2
by ��2

1
, and �1 and �2 by ��1

1
. This is a particular case of the simultaneous

diagonalization between d-dimensional normal random vectors for which d = 1 [5].
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Result 1. 7

Suppose that A is a heuristic algorithm that can potentially utilize either of two heuristic functions, H1

and H2. Let:

� X1 and X2 be two normally distributed random variables that represent the costs of the optimal solution

obtained by H1 and H2 respectively.

� X 0
1 and X 0

2 be two other normally distributed random variables that represent the costs of non-optimal

solutions obtained by using H1 and H2 respectively.

� 0 = E[X1] = E[X2] � E[X 0
1] = E[X 0

2] = � .

� p1 and p2 be the probabilities that using H1 and H2 respectively lead to the wrong decision.

Then,

if Var[X1] = Var[X 0
1] = �21 � �22 = Var[X2] = Var[X 0

2]; p1 � p2 :

Computational Proof. To achieve this proof, we proceed by doing the same analysis that we did for the doubly

exponential distributions (Theorem 1). If we consider a particular cost x, the probability that x leads to a

wrong decision made by using H1, is given by:

I1 =

Z x

�1

1p
2��1

e
� (u��)2

2�21 du : (25)

The probability that using H1 leads to the wrong decision for all the values of x is obtained by integrating

the function resulting from multiplying every value of I1 for each x with the respective probability density

function of X
(opt)
1 , which results in:

p1 =

Z 1

�1

I1
1p
2��1

e
� x

2

2�2
1 dx : (26)

Similarly, p2 can also be expressed as follows:

p2 =

Z 1

�1

I2
1p
2��2

e
� x

2

2�2
2 dx ; (27)

where I2 is obtained in the same way as in (25) for the distribution with variance �22 .

7We cannot claim this result as a theorem, since the formal analytic proof is impossible. This is because there is no closed-form
expression for integrating the Gaussian probability density function. However, the computational proof that we present renders
this to be more than a conjecture.
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�1 !
�2
#

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

1:00 1.0000
2:00 33.6276 1.0000
3:00 73.9210 2.1982 1.0000
4:00 102.5081 3.0483 1.3867 1.0000
5:00 122.1988 3.6339 1.6531 1.1921 1.0000
6:00 136.2472 4.0516 1.8431 1.3291 1.1150 1.0000
7:00 146.6138 4.3599 1.9834 1.4303 1.1998 1.0761 1.0000
8:00 154.7078 4.6006 2.0929 1.5092 1.2660 1.1355 1.0552 1.0000
9:00 161.0448 4.7891 2.1786 1.5710 1.3179 1.1820 1.0984 1.0410 1.0000
10:00 166.1716 4.9415 2.2480 1.6211 1.3598 1.2196 1.1334 1.0741 1.0318 1.0000

Table 1: Ratio between the probability of making the wrong decision for two normally distributed random
variables whose standard deviations are �1 and �2.

Since there is no closed-form algebraic expression for integrating the normal probability density function,

no analytical solution for proving that p1 � p2 can be formalized.

Alternatively, we have invoked a computational analysis by calculating these integral for various represen-

tative values of �1 and �2 by using the trapezoidal rule. The values of G = p2
p1
� 1 (i.e. for 1 � �1 � 10

and 1 � �2 � 10, where �1 � �2) are depicted in Table 1 in the form of a lower-diagonal matrix. All the

values of the upper-diagonal matrix (not shown here) are less than unity. Note that by making the value of

�1 = 1, the analysis reduces to the �rst and second columns of this table. For example, if �1 = 1 and �2 = 2,
p2
p1
� 33:6276. For more neighboring values of �1 and �2, e.g. �1 = 9 and �2 = 10 (�1 = 1 and �2 � 1:2345

after scaling), p2
p1
� 1:0318, which is very close to unity. The ratio for �1 = 1 and �2 = 10 is much bigger, i.e.

more than one hundred times.

In order to get a better perspective of the computational analysis, we study the behavior of the function

G = p2
p1
. Using the values of G given in Table 1, we have plotted this function in the three-dimensional space

as G(�1; �1), where �1 = k�1, 1 � k � 10. The plot is depicted in Figure 4.

In order to enhance the visualization of G, we have approximated it by using the regression utilities of the

symbolic mathematical software package Maple V [3]. When k = 1, the surface lies on the z = 0 plane, in the

form of a straight line x = y (labeled \k = 1 or �1 = �2" in the �gure). This is the place in which G reaches

its minimum, when both heuristic functions have identical variances. When k is larger (i.e. k = 10), the

function G becomes much larger (up to 166 in in Table 1). This clearly shows the importance of minimizing

the variance in deciding on a heuristic function.

When it concerns histograms in database query optimization, when k is small, it implies that the optimal

and sub-optimal QEP are very close. Therefore, histogram methods like the Equi-width and the Equi-depth

are less likely to �nd the optimal QEP, since they produce larger errors than histogram approximation methods

such as the R-ACM and the T-ACM. The latter produce very small errors, and hence, when comparing any

of them with the Equi-width or the Equi-depth, we will have a much larger value of k. This will be re
ected
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in our empirical results presented in the next section.

3 Simulation Results for Database Heuristic Functions

3.1 Empirical Results

In order to provide practical evidence of the theoretical results presented above8, we have performed some

simulations in database query optimization. In the experiments we have conducted four independent runs. In

each run, 100 random databases were generated. Each database was composed of six relations, each of them

having six attributes. Each relation was populated with 100 tuples.

For each database, a random query including the six relations and arbitrary attributes was performed.

The cost of executing the query using the estimates of the histograms obtained from the Equi-width, the

Equi-depth, and the R-ACM was evaluated. This cost is calculated by counting the number of tuples of the

intermediate relations involved in the query processing tree. More details of the simulations can be found in

[17].

The eÆciency of the R-ACM was compared with that of the Equi-width and the Equi-depth after performing

these simulations using 50 values per attribute. We set the number of bins for the Equi-width and the Equi-

depth to be 22. In order to be impartial with the evaluation, we set the number of bins for the R-ACM to

be approximately half of that of the Equi-width and the Equi-depth, because the former needs twice as much

storage as that of the latter.

8The empirical results presented in this paper are not intended to compare the various histogram methods: Equi-width,
Equi-depth, R-ACM, T-ACM, V-optimal, etc. The experimental results submitted are merely included to demonstrate that the

18



Simulation R >W W > R R > D D > R

1 26 12 35 12
2 24 15 42 13
3 35 11 46 8
4 29 15 46 8

Total 114 53 169 41

Table 2: Simulation results for the R-ACM, the Equi-width, and the Equi-depth, after optimizing queries on
400 randomly generated databases. The column labeled \R > W" contains the number of times in which R-
ACM obtained a better solution than the Equi-width on 100 randomly generated databases. The information
contained in the other columns has a similar interpretation, where \R", \W" and \D" stand for the R-ACM,
the Equi-width and the Equi-depth respectively. The last row contains the sum of the values in each column.

The simulation results obtained from 400 independent runs, used to compare the eÆciency of the R-ACM

with that of the Equi-width and that of the Equi-depth, are given in Table 2. The column labeled \R > W"

is the number of times that the R-ACM obtains a better solution than that of the Equi-width. The column

labeled \W > R" indicates the number of times in which the Equi-width leads to a better QEP than the

one determined by the R-ACM. Similarly, the column labeled \R > D" represents the number of times that

the R-ACM yields a better solution than the Equi-depth, and the column labeled \D > R" is the number of

times in which the Equi-depth is superior to the R-ACM. The last row, the total of each column, gives us the

evidence that the superiority of the R-ACM over the Equi-width is demonstrated more than twice as often.

The same factor relating the superiority of the R-ACM over the Equi-depth is about four.

3.2 Geometric Justi�cation of the Rationale

We now present a di�erent perspective for the formulation of the QEP model that has been used earlier.

Indeed, we shall analyze the suitability of using the doubly exponential distribution for the query optimization

problem. To demonstrate this suitability, we examined 200 randomly selected queries. Since the cost of each

query is di�erent for each database, we computed the di�erence between the actual cost of executing the query

and the estimated cost. For each of the histogram methods, namely the Equi-width, the Equi-depth and the

R-ACM, we obtained two hundred points9. Using these points (or samples) we estimated the parameters of

the doubly exponential distribution, �, for each histogram method, using a Maximum Likelihood Estimate

(MLE) method [4].

Given N samples, fx1; : : : ; xNg, obeying a doubly exponential distribution, it is easy (almost purely

algebraic) to see that the maximum likelihood parameter, �̂, satisfying the distribution obeys:

�̂ =
NPN

i=1 jxij
: (28)

theoretically proven results can be experimentally justi�ed.
9Since these histograms always tend to under-estimate the costs of the queries, we have shifted all the points so that the

estimated mean of these samples is zero. In this way, we could work with zero-mean random variables.
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Using the estimate of (28), we computed the parameters for the doubly exponential distribution for the

Equi-width, the Equi-depth, and the R-ACM, which resulted in 0.6399, 0.6120, and 0.7089 respectively. We

have also calculated their variances as in (3) { they are 4.8834, 5.3401, and 3.9791 for the Equi-width, the

Equi-depth and the R-ACM respectively. As expected, the variance for the R-ACM is smaller than that of

the Equi-width and the Equi-depth. This can also be observed in Figure 5, in which the corresponding doubly

exponential probability distribution functions are plotted for the three histograms. This slight di�erence

between the R-ACM, the Equi-width and the Equi-depth schemes re
ects in the corresponding results leading

to superior QEPs as shown in Table 2. Clearly, the R-ACM, whose variance is smaller than that of the the

Equi-width and the Equi-depth, is a superior heuristic function.

In order to observe the similarities between the doubly exponential distribution and the distribution of the

actual cost of executing a query, we have plotted the expected values of the doubly exponential distribution

and the actual costs obtained when optimizing queries using the R-ACM histogram. The plot depicted in

Figure 6 was obtained by grouping the data in bins of width two, for the values in the ranges [x1; x2), where

x2 = x1 + 2, and x2 = 2i for i = �4; : : : ; 5. In the �gure, \R-ACM" (in light gray) represents the actual

cost values of the queries, and \d-exp" (in dark gray) represents the expected population in each bin when

the random variable is doubly exponential with a value of � being determined by using (28). Observe the

similarity between both the histograms. We further corroborate the validity of our model for the database

query optimization problem.
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Figure 6: Expected values for a doubly exponential random variable, and the actual costs obtained after
optimizing queries on 400 random databases using the R-ACM histogram.

4 Conclusions

The theory of PR is quite developed, and has many applications. In this paper, we have applied pattern

classi�cation techniques to solve a fundamental open problem in computer science that relates heuristic function

accuracy and solution optimality. More speci�cally, in this paper, we have discussed the eÆciency of using

heuristic functions for optimization problems and resolved an open problem, which has been (to our knowledge)

open for at least twenty years. The problem involves how the accuracy of a heuristic function relates to the

quality of the corresponding solution obtained. The eÆciency has been quanti�ed by means of the probability

of the heuristic function leading to the optimal solution. We have shown analytically (using a reasonable

model of accuracy, namely the doubly exponential distribution for errors) that as the accuracy of a heuristic

function increases, the probability of it leading to a superior solution also increases.

Due to the constraints involved in deriving a closed-form expression for integrating the normal probability

density function, we have presented a computational analysis of the accuracy/optimality result for the Gaussian

distribution. Again, our analysis corroborates the result that heuristic functions producing smaller errors lead

more often to optimal solutions.

For the �eld of database query optimization, we have highlighted that for histogram methods that produce

errors with similar variances (the Equi-width and the Equi-depth), the query processing results are also

quite similar. However, we have also shown that the R-ACM and the T-ACM, which produce errors with

smaller variances than the traditional methods, yield better query optimization plans more often. This result,

earlier shown theoretically, has been experimentally veri�ed. Thus, our empirical results on database query

optimization show that the R-ACM provides superior solutions more than twice as many times as the Equi-
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width, and more than four times as often as the Equi-depth. More detailed empirical results including the

design of random databases and random queries in these random databases can be found in [17].

We have also estimated the parameters of the doubly exponential distributions representing the Equi-width,

the Equi-depth and the R-ACM, and shown graphically how our experiments relate to the theoretical model

presented in this paper.
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