
NORTH- HOLLAND

String Alignment With Substitution, Insertion, Deletion,
Squashing, a n d E x p a n s i o n O p e r a t i o n s *

B. JOHN OOMMEN
School of Computer Science, Carleton University, Ottawa, Canada KIS 5B6

A B S T R A C T

Let X and Y be any two strings of finite length. The problem of transforming
X to Y using the edit operations of substi tution, deletion, and insertion has been
extensively studied in the literature. The problem can be solved in quadrat ic
t ime if the edit operations are extended to include the operation of t ransposit ion
of adjacent characters, and is NP-complete if the characters can be edited repeat-
edly. In this paper we consider the problem of transforming X to Y when the set
of edit operations is extended to include the squashing and expansion operations.
Whereas in the squashing operation two (or more) contiguous characters of X
can be transformed into a single character of Y, in the expansion operat ion a
single character in X may be expanded into two or more contiguous characters
of Y. These operations are typically found in the recognition of cursive script.
A quadrat ic t ime solution to the problem has been presented. This solution is
opt imal for the infinite-alphabet case. The strategy to compute the sequence of
edit operations is also presented.

1. I N T R O D U C T I O N

In the s t u d y of t he compar i son of t ex t pa t t e rns , syl lables , sound pho-
nemes, and biological macromolecu les , a ques t ion t h a t has in te res ted re-
searchers is t h a t of quan t i fy ing the d i s s imi la r i ty be tween two str ings. A re-
v iew of such d i s t ance measures and the i r app l i ca t ions is given by Hal l and
Dowling [2] and Pe te r son [16]. We r e c o m m e n d to the reader an excel-
lent book ed i t ed by Sankoff and Kruska l [18] which discusses in de ta i l the
p r o b l e m of sequence compar i son .

T h e mos t p romis ing of all d i s t ance measures which c o m p a r e two s t r ings
seems to be the one t h a t re la tes t h e m using var ious edi t ope ra t i ons [18, pp.

*Partially supported by the Natural Sciences and Engineering Research Council of
Canada,

INFORMATION SCIENCES 83, 89-107 (1995)
(~) Elsevier Science Inc., 1995
655 Avenue of the Americas, New York, NY 10010

oo2o-o255/95/$9.5o
SSDI 0020-0255(94)00110-W

90 B . J . OOMMEN

37-39]. The edit operations most frequently considered are the deletion of
a symbol, the insertion of a symbol, and the substitution of one symbol
for another [2, 5-11, 13, 15, 16, 18-20]. This distance, referred to as the
generalized Levenshtein distance (GLD), between two strings is defined as
the minimum sum of the edit costs 1 associated with the edit operations
required to transform one string to another. Apart from being a suitable
index for comparing two strings, this measure is closely related to other
numerical and nonnumerical measures that involve the strings, such as the
longest common subsequence (LCS) [3-6, 12, 14] and the shortest common
supersequence [12].

Various algorithms to compute this distance have been proposed. The
most straightforward algorithm to achieve this has been independently pub-
lished by many authors (see [18]), but the algorithm is generally associated
with Wagner and Fischer [19]. A faster algorithm for the finite-alphabet
case (and the unbounded-alphabet case for unit costs) has been invented
by Masek and Paterson [13]. For the infinite-alphabet case and arbitrary
edit costs, it has been shown that Wagner and Fischer's algorithm is op-
timal [20]. Related to these algorithms are the ones proposed to compute
the LCS of two strings by Hirschberg [3, 4], Hunt and Szymanski [5], and
Needleman and Wunsch [14]. Bounds on the complexity of the LCS prob-
lem have been given by Aho et al. [1]. In this context, it is noteworthy
that techniques similar to those described in [19] have been used in the
correction of noisy strings, substrings, and subsequences [2, 8, 10, 11, 16,
21, 22], both when the transmission channel is unrestricted and when the
channel is restricted to not making consecutive errors [9]. In this case the
dictionary is represented as a trie.

All of the above-mentioned algorithms consider the editing of one string,
say X, to transform it to Y, with the edit process being absolutely uncon-
strained. Sankoff [17] pioneered the study of constrained string editing. His
algorithm is an LCS algorithm which involves a specialized constraint that
has its application in the comparison of amino acid sequences. Later in
[25], Oommen presented the first known solution to the problem of editing
X to Y subject to any general edit constraint which could be arbitrarily
complex, so long as it is specified in terms of the number and type of edit
operations to be included in the optimal edit transformation. Using the
fundamental principles of constrained string editing and considering the
properties of a noisy channel which can garble transmitted sequences, the
first algorithm to correct noisy subsequences was presented in [21]. The

• 1 These costs are called distances if they obey metric properties such as the triangular
inequality. Note that the GLD obeys the triangular inequality even when the individual
operation costs do not.

STRING ALIGNMENT WITH SUBSTITUTION OPERATIONS 91

accuracy of the algorithm to correct long subsequences with low "signal-
to-noise" ratios was demonstrated in [21, 22], and a related algorithm has
also been applied in encryption [231.

Research in editing typically approaches the problem from two distinct
perspectives. In the first, the problem is one of finding a minimum cost
series of edit operations transforming one string into the other. But if a
character can be edited at most once in this series, a restricted form of
editing results, usually called an alignment. Indeed, when the costs on the
edit operations obey a triangular inequality, finding an optimal alignment
is equivalent to finding an optimal series, since transforming a character
several times is necessarily more costly than transforming a character once.
Generally, except for the very first papers on string editing, the literature
has not made an issue of the distinction between computing an optimal
alignment and computing an optimal series, or between assuming the tri-
angle inequality and allowing general operation costs. This informality
is permissible because, when the edit operations are restricted to inser-
tion, deletion, and substitution of characters, an algorithm that computes
a minimum cost alignment can be used to solve the minimum cost edit
series problem even when the triangle inequality does not hold--given ap-
propriate preprocessing. The preprocessing constructs a new set of costs
that do obey the triangle inequality by determining, for every pair (a, b) of
characters, the minimum cost of a series to transform a to b. This can be
carried out with an all-pair shortest path computation on a graph whose
vertices correspond to characters in the alphabet, and whose edges are
weighted by the original edit costs.

In all the above-mentioned results, the types of edit operations (or gar-
bling operations if the transmission channel is modelled as a garbling mech-
anism) are the well-known substitution, insertion, and deletion operations.
To our knowledge, there are only few reported papers which study the case
when the set of edit operations is expanded [24, 26-28]. In [24], apart from
the latter three operations, the set of edit operations has been expanded
to also include the transposition operation. The string editing problem
with transposition of adjacent characters is NP-complete. When the prob-
lem is restricted to series in which any character is edited at most once
(this reduces to finding a minimum cost alignment), the problem can be
solved in quadratic time. The complexity of the string editing problem
with transposition of nonadjacent characters is open.

As opposed to [24], in this paper we consider the problem of editing X to
Y when the set of edit operations is extended to include the squashing anct
expansion operations. Wherea~s in the squashing operation two (or more)
contiguous characters of X can be transformed into a single character of
Y, in the expansion operation a single character in X may be expanded

92 B . J . OOMMEN

into two or more contiguous characters of Y. These extensions are appli-
cable in the recognition of cm'sive script. This is because, in cursive script
processing, various squashing and expansion scenarios are encountered: It
is not uncommon for the letter "y" to be mistaken for the combination of
the characters "i j" and vice versa, and similarly, it is not uncommon for
the letter "w" to be mistaken for the combination of the characters among
which are "ui" or "iu" and vice versa. Similar examples of squashing and
expansion are encountered in applications when the demarcat ion between
the boundaries of the individual symbols is not apparent, as in the recogni-
lion of handwrit ing and phoneme sequences [18]. Indeed, in that sense, our
result is a genera l i za t ion more in the flavor of [26] where the expansion and
the squashing do not necessarily have to involve the same character. Our
work is similar to the excellent results catalogued in [27], except tha t we
are more interested in the alignment problem as opposed to the problem
of processing a series of edit operations. Thus, we would require a rather
straightforward tr iangular inequality which ensures tha t a sequences of edit
operations tha t can be effected by a single operation does not have a lesser
cost than the single operation itself. The question of how our algorithms
can be optimized in the fi'amework of [27] remains open.

Without a triangle inequality, however, finding a minimum cost series of
edit operations, with squashing and expansion, is ill fact NP-complete. To
see this, note tha t we can accomplish a transposit ion of adjacent symbols
x, y by a squashing operation x y ~ axy followed by an expansion operation
axy ~ y z , where axy is a new alphabet symbol. Let us suppose tha t
we now assign these squashing and expansion operations the cost 0.5, all
other squashing operations infinite cost, and the insertion, deletion, and
substi tut ion operations a cost of unity. Then, an algorithm that finds a
minimum cost edit series with squashing and expansion operations will
find a minimum cost edit series with transposit ion of adjacent symbols,
which is NP-complete [28].

In this paper, we present a quadratic t ime solution to the problem of
string alignment for the expanded set of edit operations. As a corollary
to [29], our solution is optimal for the infinite-alphabet case. The tech-
nique to compute the opt imal sequence of edit operations is also presented.
Also, throughout this paper, we shall consider the squashing and expan-
sion operations to be such that two contiguous symbols of one string can
be transformed into a single symbol of the second. The case when multi-
ple contiguous symbols (more than two) of one string can be t ransformed
into a single symbol of the other can be generalized from the principles
described here.

S T R I N G A L I G N M E N T W I T H S U B S T I T U T I O N O P E R A T I O N S 93

1.1. NOTATION

Let A be any finite a lphabet , and A* be the set of strings over A. 0, the
null symbol (0 ~ A) , is dist inct from #, the empty string. Let A = AU{0} .

is referred to as the appended alphabet. A string X E A* of the form
X = x l . . . X N , where each x~ c A, is said to be of length IXI = N. Its
prefix of length i will be wri t ten as X~, for 1 < i < N. Uppercase symbols
represent strings, and lowercase symbols, elements of the a lphabet under
considerat ion.

Let Z ~ be any element in A*, the set of strings over * . The compression
operator 02 is a mapp ing from A* to A*: 02(Z') is Z ~ with all occurrences
of the symbol 0 removed. Note tha t ff preserves the order of the non-0
symbols in Z ~. For example, if Z' - fOoOr. ~ (Z ~) = for.

1.2. THE E L E M E N T A R Y EDIT DISTANCES

As ment ioned earlier, t h roughou t this paper, we shall only consider the
case when the squashing and expansion operat ions involve t ransforming
two cont iguous symbols of one string into a single symbol of the other.
Bear ing this in mind, we now define the costs associated with the individual
edit operat ions. If R + is the set of nonnegat ive real numbers, we define
the e lementary edit distances using five e lementary functions ds (., .), d~(.),
d~(., .), dsq(., .), and d ~ (. , .) defined as follows:

(i) ds(p,q) is a map from A x A --~ R + and is called the subst i tu t ion
map. In part icular, ds(a, b) is the distance associated with subst i tu t -
ing b for a, a, b c A. For all a C A, d, (a, a) is generally assigned the
value zero, a l though this is not mandatory .

(ii) di(') is a map from A -~ R + and is called the insertion map. The
quant i ty di(a) is the distance associated with inserting the symbol
a ~ A .

(iii) d,~(.) is a map from A--~ R ~- and is called the deletion or erasure
map. The quant i ty d~(a) is the distance associated with deleting (or
erasing) the symbol a E A.

(iv) dsq(" , ") is a m a p from A 2 x A -~ R + called the squashing map.
The quan t i ty dsq (ab, c) is the distance associated with squashing the
s tr ing ab into a single character c, where a, b, c ~ A.

(v) d~x(-,.) is a map from A x A 2 ~ R + called the expansion map.
The quan t i ty d~x (c, ab) is the distance associated with expanding the
character c into the str ing ab, where a, b, c C A.

94 B . J . OOMMEN

1.3. THE SET OF EDIT POSSIBILITIES: Fx,v

For every pair (X, Y), X, Y c A*, the finite set Fx,v is defined by means

of the compression operator g, as a subset of A* × A*, as

Fx,y = {(X', Y')I (X', Y') ~ A* × A*, and each (X', Y') obeys

(i) ¢ (x ') = x , ¢ (Y ') = Y,
(ii) IX'I = IY'I,

' = ' = e} . (1) (iii) For all 1 < i < [X'I, it is not the case that x i Yi

By definition, if (X ' ,Y ') e Fx,z, then Max(IXl, lYI) _< IX'l = IY'l -<
f x l + IYI.

Viewed from the perspective of the three elementary operations, the
meaning of the pair (X', Y') C F x , z is interesting. Indeed, every element
in F x , z corresponds to one way of transforming X into Y, using the edit
operations of substitution, deletion, and insertion. The edit operations

x t t themselves are specified for all 1 < i < IX' I by (i, Y~), which represents
' to y~. The cases below consider the three edit the transformation of x~

operations individually:

/ / / (i) If x i C A and Yi E A, it represents the substitution of y~ for xi.
t I ! (ii) If x i E A and Yi = 0, it represents the deletion of x~.
/ / (iii) If x i E 0 and y~ C A, it represents the insertion of y~.

Px,y is an exhaustive enumeration of the set of all the ways by which
X can be transformed to Y using these three elementary edit operations
where a symbol which is obtained by an edit operation is not subsequently
edited. However, on examining the individual elements of Px,y, it becomes
clear that each pair contains more information than that. Indeed, in each
pair, there is also information about the various ways by which X can be
edited to Y even if the set of edit operations is grown so as to include
squashing and expansion. Thus, when (X', Y') = (abO, cde), apart from
the operations described above, the pair also represents the substitution of
"a" by "c" and the expansion of "b" by "de." Observe that the transfor-
mation of a symbol a E A to itself is also considered as an operation in
the arbitrary pair (X', Y') C Fx ,y . Finally, note tha t the same set of edit
operations (alignment) can be represented by multiple elements in Fx,y.
This duplication serves as a powerful tool in the proofs of various analytic
results [6, 7, 9, 10, 21, 25].

E X A M P L E 1. L e t X = f a n d Y = g o . Then,

F x , y {(fO, go), (Of, go), (f88, Ogo), (OfO, g8o), (88f, goO)}.

STRING ALIGNMENT WITH SUBSTITUTION OPERATIONS 95

In particular the pair (f f , go) represents the edit operations of inserting
the "g" and replacing the " f" by an "o." It also represents the expansion
of " f" to "go."

Since the edit distance between X and Y is the minimum of the sum of
the edit distances associated with operations required to change X to Y,
this distance D (X , Y) has the expression

D (X , F) =

Min
((x',Y')Erx.v)

[~ , [distances associated with the in (X', Y')I|
]

operations
J i = 1

(2)

where (X ~, Y ') represents J~ possible edit operations.

2. THE RECURSIVE PROPERTIES OF THE EDIT DISTANCE

Let D(X , Y) be the edit distance associated with transforming X to Y
with the edit operations of substitution, insertion, deletion, squashing, and
expansion. In this section, we shall describe how D(., .) can be computed.
To achieve this, we shall first derive the properties of D (X , Y) which can
be derived recursively in terms of the corresponding quantities defined for
the prefixes of X and Y (Xi and Yj, respectively), with the assumption
that D(#, #) is zero. Indeed, in this case, we first claim the following
straightforward results. They can be proved in the identical way in which
the analogous results are proved for the edit distance which entails only
the three elementary edit operations [6, 7, 9, 10, 19, 21, 25]. They can also
be proved by straightforward enumeration. 2

LEMMA 0a. Let X = X~ = x l . . . x i be the prefix of X and Y = #,
the null string. Then D (X i , #) obeys

D(Xi ,p) = D (X i - I , p) + de(xi).

LEMMA 0b.
D (# , Y j) obeys

Let X = #, and Yj = yl . . . Yj be the prefix of Y .

D(#, Yj) = D(#, Ys-1) + d,(yj).

Then

*2All the following lemmas can be combined as special cases of Theorem 1. We have
separated them just to distinguish the various cases encountered in implementing the
algorithm.

96 B . J . OOMMEN

LEMMA 0c. Let X = Xx and Y = Yl. Then D (X , Y) obeys

D(X , Y) = Min [D(#, Y) + de(x1), D(X, #) + di(yl), ds(xl , Yl)].

LEMMA 0d. Let X i : X l . . . x i with i > 2 be the prefix of X , and
Y = Yl, the string consisting of the first character of Y . Then D(Xi , Y)
obeys

D(X~, Y) = Min[D(Xz_l , Y) + de(xi), D(X~, p) + di(yl),

D(X i -1 , #) ÷ ds(xi, Yl), D(X~-2, p) + dsq(Xi_lXi, Yl)]-

LEMMA 0e. Let X = xl be the string consisting of the first character
of X and Y = Yl . . . yj be the prefix of Y with j > 2. Then D(X , Yj) obeys

D (X , Yj) = Min[D(#, Yj) + d~(xl), D(X , ~ - 1) + di(yj),

D(p, Yj-1) + d~(X l, yj), D(#, Y j - 2) + d ~ (xl , Yj- lYj)].

We shall now state and prove the main result of our paper.

THEOREM 1. Let Xi = xl .. . xi and Yj = Yl •. • Yj with i, j > 2. Also,
let D(X i , Yj) be the edit distance associated with transforming Xi to Yj
with the edit operations of substitution, insertion, deletion, squashing, and
expansion. Then the following is true:

D(Xi , Yj) = Min[D(Xi_l, Yj) + d¢(x~), D(Xi , Yj-1) + di(yj),

D(Xi_ 1, Yj-1) ÷ ds(xi, yj), D(Xi_2, Yj-1)

+ dsq(Xi-lXi, yj), D(X i -1 , Yj-2) + d~x(x~, Yj-lYj)].

Sketch of Proof." Let Fx~,y, be the set of all ways by which X~ can
be edited into Yj defined as in (1) for Xi and Yj. Consider the distance
D(Xi , Yj), which has the expression

D(Xi, Yj) :

Min
(~x~,Y')~ r;,-.v)

I~-~ [distances associated with operations in (X~, YJ~)]/ 1
/ i ~ 1

STRING ALIGNMENT WITH SUBSTITUTION OPERATIONS 97

where (X{ , Y j) • Px , , y , represents J ' possible edit operations. Through-
X ' out this proof, a we shall assume that the arbitrary element (i,Ya') E

Fx,,yi is of length L and is of the form given as

x ; = ' ' and ~/ . v ; , y ; : . . v ; ~ . X i l X i 2 • . . .TiL ~ = .

The proof itself is now tedious and involves partitioning the set Fx,,~<,
into nine mutually exclusive and exhaustive subsets as follows:

r~ , ,y , =

p2
Xi Y.;

F3, ,z~ =

F 4x , , v:~ =

I'SX , ,v, =

F 6, ,~<~ =

F 7 , , ~ =

F8, ,v~ =

rgx,,yj =

{ (X ~ , Y j ') I (X ~ , Y j) E F x , , y , , with X~iL_l

O, XliL = O, Y S L - 1 = Y 3 - 1 , I~]SL =- Y j } ,

{(X~, Yj')I (X~,]77') ~ Fx,,y~, with X'iL_ 1

o , < ~ ' ~ = o}, = x z , Y j L - 1 = Y j , 9 k

{(X~,Yj) [(X~,Yj) C Fx , y , , with X'iL_ l

O,X:L = "Ti,Y~L--1 = Yj - -1 , ~ L = Y J } ,

((x ;U) I (x ; U) c r.~.,,~.,, with xk_ ,

Xi , XliL ~-

{ (x ; ~')

Xi , 2gilL =

{(x;, U)
! l

X i _ _ l ~ X i L = X i ~ Y j L _ _ 1

I I X ! ((x ~ , ~) l (~ , ~ ') •

X~_l,<~ =x~,~_,
((x;, ~')I (x ; ~')

(X ' Y ~ X ' , ,, , ,1(~ , U) c
! !

Z i _ l , X i L = 2 g i , Y j L _ 1

YaL- i = & YjL = YJ },

I(X¢, Yj') c rx, ,vi , with X'iL_ 1

o,y~_l = yj-~, ~G = yj},
X 1 / i(~, Yj) C Fx,,z,, with X'iL_ 1

' = 0}, O, Y j L

F x , , v , , with X'iL_l
= o, y k = y ,} ,

Fx~,y,, with X'~L_ 1

= yj, y~ = 0},

Fx~,v,, with Xt~n_l

The proof now involves minimizing the terms over each of these sets.

* 3This n o t a t i o n is not re l ig iously correct. Indeed, the length of the a r b i t r a r y e lement

in F x i , y . i shou ld be L (X ~ , Y j ') . But th i s will make an a l ready ted ious n o t a t i o n even
more cumbersome. We reques t the reader to pe rmi t us th i s breach in n o t a t i o n wi th t he
u n d e r s t a n d i n g t h a t he r emember s t h a t L is dependen t on the e lement itself.

98 B . J . OOMMEN

We shall go through the mechanics of minimizing over F 1 Yi" In every

pair in F~:~,y~, we know that the last two elements of each string in the
pair are

' = 8 , ' = O, ' XiL-1 XiL Y j L - 1 = Yj- t , YjL = Yj"

Hence,

min
((x; X;)e rL,y. ~

IJ'l
E [distances associated with operations in ~ *, a J~
i=1

Id'l
mm E [distances associated with operations

((xs~')er~ r) i=1

(a)

(X I y~ ~I l in t iL-1, jL -1IJ ~- di(YjL). (4)

For every element in F I y j , there is a unique element in Fx ,y j_I and
vice versa, where Fx,,y,_l is the set of all ways by which Xi can be trans-
formed into Yj-1 defined as in (1) for Xi and Yj-1. This unique element is
obtained by merely reducing the length of the strings X~ and Yj' by unity.
By the inductive hypothesis, the first term in (4) is exactly D(X~, Yj-1).
Since YjL = YJ' this tells that the above expression simplifies to

D(X. ~-1) + d~(yD.

In an analogous way, the following result for the other eight

STRING ALIGNMENT WITH SUBSTITUTION OPERATIONS 99

minimizations:

minimizing over F~ ,y , leads to D(X~_I,Yj) + de(xi),
minimizing over F3,,y~ leads to D(X~_I,Yj-1) + ds(x~,yj) and

D(X~-2, Yj-1) + dex(x~, Yj-lYj),
minimizing over F4~,y~ leads to D(X~,Yj_I) + d~(yy),
minimizing over F5. ,y~ leads to D(X~, Yj_ 1) + d~(yy) and

D(X~_I, Yj-2) + d~x(x~, yj-lYy),
minimizing over F6,,yj leads to D(Xi-I,Yj) + d~(xi),
minimizing over F~,,y~ leads to D(X~-I,Yj-1) + ds(x~,yj) and

D(X~_2, Yj-,) + d~q(x~_lxi, yj),
minimizing over F s , ~ leads to D(X~-I,Yj) + de(xi) and

D(X~_2, Yj-,) + d~q(X~-lXi, yy),
minimizing over F9y.~ leads to D(X~_I,Yj-1) + ds(xi, yy).

Combining these minimizations proves the theorem.
A note about the modus operandus of the proof of Theorem 1 is not out

of place. Our result is not merely a direct application of dynamic program-
ming to the current problem, for there is a very fine point in which our
proof differs from the proofs currently described in the literature. Indeed,
the filndamental difference is that in the current proof, whenever the set
over which the minimization is achieved is grown, it is not merely a single
optimization scenario which is encountered. Thus in Case 3 of the proof,
there are two possible scenarios by which the minimization can be achieved.
The first of the scenarios appears again in the processing of Case 7 and in
the processing of Case 9. The second appears again in the processing of
Case 5. Thus the same five terms appear in their different combinations
in various cases encountered in the minimization process. This makes our
proof more interesting and a trifle more "intriguing" and different from the
proof of [19, 27]. Rather, the concept seems to be reminiscent of a control
system in which various outputs are computed in terms of the same state
variables by using different "output functions."

3. THE COMPUTATION OF D(X,Y)

To compute D(X, Y), we make use of the fact that this index has the
recursive properties given above. The idea is essentially one of computing
the distance D(X~, Yj) between the prefixes of X and Y. The computa-
tion of the distances has to be done in a systematic manner, so that any

100 B . J . OOMMEN

quanti ty D(Xi , Yj) is computed before its value is required in any further
computation. Just as in the case of the previous string edit algorithms
[3-6, 10, 11, 13, 15, 18, 19, 21,251, this can be actually done in a straight-
forward manner by tracing the underlying graph, commonly referred to as
a trellis, and maintaining an array Z('t , j) defined for all 0 < i < N and
0 _< j _< M, when iXl = N and IYi = M. The quantity Z (i , j) is noth-
ing but D(Xi , Yj). We will discuss the properties of our particular trellis
subsequently.

Initially, the weight associated with the origin Z(0, 0) is assigned the
value zero, and the weights associated with the vertices on the axes are
evaluated. Thus, Z(i, 0) and Z(0, j) are computed using Lemmas 0a and 0b
for all 1 < i < N and 1 _< j _< M. The value for Z(1, 1) is then computed
as a special computation outside any loop. Subsequently, the values for
the lines i = 1'and j = 1 are traversed, and the distances associated with
the vertices on these lines are computed using the previously computed
values and Lemmas 0d and 0e. Finally, the weights corresponding to strict
"interior" values (i.e.. whenever z, .2 > 1) of the variables are computed.

The algorithm to compute Z(-,-) is given below.

ALGORITHM General izedDistance

I n p u t : The strings X = x l . . . X N and Y = Yl..-YM, and the set
of elementary edit distances defined using the five elementary
functions ds(.,-), di(-), d~(.), dsq(., .), and d¢x(., ").

O u t p u t : The distance D(X, Y) associated with transforming X to Y us-
ing the five edit operations of substitution, insertion, deletion,
squashing, and expansion.

Method:
Z(O, O) ~-- 0
F o r i ~ - I t o N D o

Z(i,O) ~-- Z (i - 1 , 0) + d~(xi)
For j+ - -1 t o M D o

z (o , j) z (o , j - 1) +
Z(1, 1) +- Min[Z(0, 1) + de(x1), Z(1,0) + di(yl),

Z(0, 0) 4- ds(Xl, ,~11)]
F o r i *--- 2 to N Do

Z(i, 1) ~- Min[Z(i - 1, 1) + d¢(xi), Z(i , O) + d~(yl),
Z(i - 1,0) +d~(x~,yl) ,

Z(i - 2, O) + dsq(Xi-lXi, Yl)]
F o r j ~ - - 2 t o M D o

Z(1 , j) ~-- Min[Z(0, j) + d ~(x l) ,Z (1 , j - 1) + di(yj),
Z(O,j - 1) +d~(x l , y j) ,

STRING ALIGNMENT WITH SUBSTITUTION OPERATIONS 101

z(0 , j - 2) + d (Xl,
For i ~-- 2 to N Do

F o r j ~-- 2 to M Do
Z (i , j) ~-- Min[Z(i - 1,j) + d~(xi), Z (i , j - 1) + di(yj) ,

Z (i - 1 , j - 1) + ds(x~,y j) ,
Z (i - 2, j - 1) + d~q(x i_ lx i , y j) ,
Z (i - 1 , j - 2) + d~x(Xi , y j - l y j)]

D (X , Y) ,-- Z (N , M)
E N D ALGORITHM Genera l i zeDis tance

The computational complexity of algorithms involving the string com-
parison is conveniently given by the number of symbol comparisons required
by the algorithm [1, 20]. In this case, the number of symbol comparisons
(or more relevantly, the number of invocations of the functions de('), di(.),
ds(', ")dsq(', '), dex(', ")). required by ALGORITHM GeneralizedDistance is
clearly quadratic. Note that in the interior of the main loop, we will need
at most five additions and the computation of the minimum of a fixed (at
most five) quantities.

The lower bound result claimed in [291 naturally implies that our algo-
rithm is optimal for the infinite-alphabet case. This is because, first of all,
we have not placed any restrictions on the edit costs. Also, the lower bound
of [29] applies to the more restricted problem of finding a minimum cost
alignment. Finally, when squashing and expansions have infinite costs, our
underlying problem contains the traditional string alignment problem as a
special case.

3.1. GRAPHICAL R E P R E S E N T A T I O N OF THE A L G O R I T H M

As mentioned earlier, in the computation of various string similarity
and dissimilarity measures, the underlying graph that has to be traversed
is commonly called a trellis (or grid graph). This trellis is two-dimensional
in the case of the GLD I2, 6, 13, 15, 18, 19], the length of the LCS [3-
6, 12, 18], and the length of the shortest common supersequence [12] of
two strings. Indeed, the same trellis can be traversed using various set
operators to yield the set of the LCS's and the set of the shortest common
supersequences [6]. The trellis becomes essentially three-dimensional when
one has to compute string probabilities [10], constrained edit distances [25],
and correct noisy subsequences [21, 22]. Although the trellis itself is two-
dimensional in the former examples, because the graphs are cycle-free they
can be represented and traversed by merely maintaining single-dimensional
structures [4]. Similarly, space optimizations are possible in the case of
computing string probabilities and constrained edit distances.

102 B. J. OOMMEN

(o,o)

(o,1) I

J

(1,0) (2,0) ¢3,0)

(i-1, j-2)

(i-2, j - l) (i-l, j - l) ~ (i, j - l)

Fig. 1. The Trellis tha t has to be traversed in order to compute D (X , Y) . Note tha t the
only edges terminat ing at (i , j) are those start ing at (i - 2 , j - 1), (i - 1 , j - 1), (i , j -
1), (i - 1 , j) and (i - 1 , j - 2).

Even though the set of edit operations has been expanded, the funda-
mental properties of the underlying graph remain the same. In this case,
the vertices of the graph are the pairs (i,j), where 0 < i < N, 0 < j <
M. The edges from a valid node (i,j) are directed arcs from (i,j) to
(i + 1,j) , (i , j + l) , (i+ 1 , j + 1), (i + 2 , j + l l , and (i+ 1 , j + 2) , wherever the
target nodes are feasible. The graph essentially has arcs whenever a single
edit operation can be applied. Indeed, the algorithm describes an efficient
quadratic time scheme by which the trellis can be traversed.

For the sake of clarity, a pictorial representation of the graph is given in
Figure 1.

3.2. COMPUTING THE BEST EDIT SEQUENCE

Just as in all the edit processes studied in the literature [3-6, 12, 14, 15,
18, 19], the traversal of the trellis not only yields the information about
the distance between the strings X and Y. By virtue of the way the trellis
has been traversed, the distances between the prefixes of the strings has
also been maintained in the process of computation, and thus, the array
Z contains information which can be used to compute the best edit align-

S T R I N G A L I G N M E N T W I T H S U B S T I T U T I O N OPERATIONS 103

ment which yields the optimal edit distance. This is done by backtracking
through the trellis from the array element (N , M) in the reverse direc-
t ion of the arrows so as to reach the origin, always remembering the path
tha t was used to reach the node which is currently being visited. Tiros
the actual sequence of edit operations can be printed out in the reverse
order. Without further comment~ we now present ALGORITHM Produce
EditOperat ions, which has as its input the array Z(. , .) . To simplify the
backtracking, we exclude the possibility of encountering negative values of'
i and j by rendering Z(-, .) infinite whenever any index is negative.

ALGORITHM P r o d u c e E d i t O p e r a t i o n s

Input:

O u t p u t :

M e t h o d :

The strings X --- x l . . . XN and Y = Yl • • • YM~ the set of ele-
mentary edit distances defined as in Algorithm Generalized
Distance, and the array Z.
The best edit alignment tha t can transform X to Y using the
edit operations of substitution, insertion, deletion, squashing,
and expansion.

Define Z (i , j) ~ oc whenever i < 0 or j < 0.
i ~ - - - N

j ~ M
W h i l e (i ~ 0 o r j ~ 0) D o

I f (Z (i , j) = Z (i - 1,j - 1) + d s (x ~ , y j)) T h e n
Print ("Substi tute" x~ "by" y j)
i ~ - - i - 1
j ~ - - - j - 1

Else
I f (Z (i , j) = Z (i , j - 1) ÷ d i (y j)) T h e n

Print("Insert" yj)
j ~---y - 1

Else
I f (Z (i , j) = Z (i - 1, j) + d¢(x~)) T h e n

Print(:'Delete" xi)
i ~ - - - i - 1

Else
I f (Z (i , j) = Z (i - 2 , j - 1)

+ dsq(X~- lx~ , y j)) T h e n
Print("Squash" x ~ _ l x i "into" Yi)
i , - - - i - 2

3 ' - - - j - 1
Else

104 B . J . OOMMEN

I f (Z (i , j) = Z(i - 1, j - 2)
+ d e x (x i , y j - l y j)) T h e n

Print ("Expand" xi "into" yj_ 1Yj)
i ~ - - i - 1
j ~ j - 2

E n d I f
E n d I f

E n d I f
E n d I f

E n d I f
E n d W h i l e

E N D ALGORITHM P r o d u c e E d i t O p e r a t i o n s

A recursive version of the above which yields the edit sequence in the
correct order can be easily written. A skeletal form of this procedure would
be as follows:

ALGORITHM R e c u r s i v e P r o d u c e E d i t O p e r a t i o n s (i , j)

Input:

O u t p u t :
M e t h o d :

The strings X = x l . . . xN and Y = Yl - . . YM, the set of ele-
mentary edit distances defined as in Algorithm Generalized
Distance, the array Z, and the indices i and j .
The best edit alignment tha t can transform Xi to Yj.

I f (Z (i , j) = Z (i - 1 , j - 1) + d s (x i , y j)) T h e n
RecursiveProduceEditOperat ions (i - 1, j - 1)
Print ("Substi tute" xi "by" yj)

E n d I f

E N D ALGORITHM R e c u r s i v e P r o d u c e E d i t O p e r a t i o n s

Throughout this paper, we have only considered the case when the types
of expansion and squashing errors involve transformations from a single
character in one string to two characters in the second. I t is easy to vi-
sualize the generalization of this when the number of characters involved
in the squash/expand operations is a constant K , where K > 2. The re-
sulting trellis then would have to be traversed in essentially the same way,
except tha t at every internal node, the minimization would involve the
computa t ion of 2K + 1 quantities. For example, if K is 3, the correspond-
ing minimization in the interior of the trellis would involve the following
expression:

STRING ALIGNMENT WITH SUBSTITUTION OPERATIONS 105

Z (i , j) ~- M i n [Z(i - 1 , j - 1) + ds(x~, yj) , Z (i , j - 1) + di(y j) ,

Z (i - 1,j) + d~(xi),

Z (i - 2 , j - 1) + dsq(Xi - lx i , y j) , Z (i - 1, j - 2)

+ dex(zi , Y j - l Y j) ,

Z (i - 3 , j - 1) + d s q (X i - 2 X i - l x i , y j) , Z (i - 1, j - 3)

+ dex(xi , Y j -2Y j - lY j)] .

The algorithm would still be quadratic in tile lengths of the strings as long
as K is independent of M and N, which is not an unreasonable assumption,
especially as the types of errors tha t are caused in a channel are typically
not functions of the strings transmitted themselves.

The GLD, defined in terms of the standard edit operations, has been
used to perform the automatic correction of noisy strings [2, 9, 16, 18],
substrings [8], and subsequences [21, 22]. We believe that the distance
defined using the expanded set operations can be used to perform analo-
gous correction when the errors include the "bouncing" and "coalescing"
of characters andphonemes . These concepts can also be applied to the
comparison of molecular sequences when a single amino acid can be de-
composed as a sequence of two (or more) compounds, each of which is
represented by a single symbol.

4. CONCLUSIONS

Let X and Y be any two strings of finite length. The problem of trans-
forming X to Y using the edit operations of substitution, deletion, and
insertion has been extensively studied in the literature [1, 2, 6-11, 13, 15,
16, 18-21]. In this paper, we have considered the problem of editing X
to Y when the set of edit operations is extended to include the squashing
and expansion operations. In the squashing operation two (or more) con-
tiguous characters of X can be transformed into a single character of Y,
and in the expansion operation a single character in X may be expanded
into two or more contiguous characters of Y. The case when the number
of operations involved in the squash/expansion is two has been thoroughly
analyzed, and the case when this number is larger than two has been al-
luded to. A quadratic time solution to the problem has been presented.
This solution is optimal for the infinite-alphabet case.

I would like to thank John Andrusek and Wil l iam Lee for their help in
preparing the manuscmpt . I am especially grateful to an anonymous referee

106 B.J . OOMMEN

who provided me with various comments regarding complexity issues and the
comparison of these results with existing results.

REFERENCES

1. A . V . Aho, D. S. Hirschberg, and J. D. Ullman, Bounds on the complexity of the
longest common subsequence problem, J. Assoc. Comput. Mach. 23:1-12 (1976).

2. P . A . V . Hall and G. R. Dowling, Approximate string matching, Comput. Surveys
12:381-402 (1980).

3. D.S . Hirschberg, Algorithms for longest common subsequence problem, J. Assoc.
Comput. Mach. 24:664-675 (1977).

4. D.S . Hirschberg, A linear space algorithm for computing maximal common subse-
quences, Commun. Assoc. Comput. Mach. 18:341-343 (1975).

5. J . W . Hunt and T. G. Szymanski, A fast algorithm for computing longest common
subsequences, Commun. Assoc. Comput. Mach. 20:350-353 (1977).

6. R.L. Kashyap and B. J. Oommen, A common basis for similarity and dissimilarity
measures involving two strings, Internat. J. Comput. Math.13:17-40 (1983).

7. R.L. Kashyap and B. J. Oommen, Similarity measures for sets of strings, Internat.
J. Comput. Math. 13:95-104 (1983).

8. R .L . Kashyap and B. J. Oommen, The noisy substr ing matching problem, IEEE
Trans. Software Engng. SE-9:365-370 (1983).

9. R. L. Kashyap and B. J. Oommen, An effective algorithm for string correction
using generalized edit distances--I . Description of the algorithm and its optimality,
Inform, Sci. 23(2):123-142 (1981).

10. R .L . Kashyap and B. J. Oommen, String correction using probabilistic methods,
Pattern Recog. Lett. 147-154 (1984).

11. A. Levenshtein, Binary codes capable of correcting deletions, insertions and rever-
sals, Sov. Phys. Dokl. 10:707-710 (1966).

12. D. Maier, The complexity of some problems on subsequences and supersequences,
J. Assoc. Comput. Mach. 25:322-336 (1978).

13. W . J . Masek and M. S. Paterson, A faster algorithm computing string edit dis-
tances, J. Comput. System Sci. 20:18-31 (1980).

14. S . B . Needleman and C. D. Wunsch, A general method applicable to the search
for similarities in the amino acid sequence of two proteins, J. Mol. Biol. 443-453
(1970).

15. T. Okuda, E. Tanaka, and T. Kasai, A method of correction of garbled words based
on the Levenshtein metric, IEEE Trans. Comput. C-25:172-177 (1976).

16. J . L . Peterson, Computer programs for detecting and correcting spelling errors,
Commun. Assoc. Comput. Mach. 23:676-687 (1980).

17. D. Sankoff, Matching sequences under delet ion/insert ion constraints, Proc. Nat.
Acad. Sci. U.S.A. 69:4-6 (1972).

18. D. Sankoff and J. B. Kruskal, Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparison, Addison-Wesley, MA, 1983.

19. R .A. Wagner and M. J. Fischer, The string to string correction problem, J. Assoc.
Comput. Mach. 21:168-173 (1974).

20. C .K . Wong and A. K. Chandra, Bounds for the string editing problem, J. Assoc.
Comput. Mach. 23:13-16 (1976).

21. B . J . Oommen, Recognition of noisy subsequences using constrained edit distances,
IEEE Trans. Pattern Anal. Mach. Intell., PAMI-9:676-685 (1987).

S T R I N G A L I G N M E N T W I T H S U B S T I T U T I O N OPERATIONS !07

22. B. J. Oommen and E. T. Floyd, An improved algorithm for the recognition of
noisy subsequences, Proceedings of the 1991 I A S T E D International Symposium on
Artificial Intelligence Applications and Neural Networks, Zurich, 1991, pp. 145-
147.

23. J. Golic and M. Mihaljevic, A noisy clock-controlled shift register cryptanaiysis
concept based on sequence comparison approach, Proceedings of E U R O C R Y P T
90, Aarhus, Denmark, 1990, pp. 487 491.

24. R. Lowrance and R. A. Wagner, An extension of the string to string correction
problem, J. Assoc. Comput. Mach. 22:177-183 (1975).

25. B . J . Oommen, Constrained string editing, Inform. Sci. 40:267 284 (1987).
26. K. Abe and N. Sugita, Distances between strings of symbols Review and remarks,

Proceedings of the Sixth International Conference on Pattern Recognition, (1982),
pp. 172 174.

27. E. Ukkonen, Algorithms for approximate string matching, Inf. Contr. 64:100 118
(1985).

28. R .A . Wagner, On the complexity of the extended string-to-string correction prob-
lem, Proceedings of the Seventh Symposium on the Theory of Computing, 1975,
pp. 218-223.

29. X. Huang, A lower bound for the edit distance problem under an arbitrary cost
function, Inf. Proc. Lett. 27:319-321 (1988).

Received 2 January 1993; revised 25 February 1994

