Distinguished Speaker Seminar 27 October 2015 Concordia Institute for Information Systems Engineering, Montreal

Password Expiration Policies: Analyzing the Security Benefits

Paul C. Van Oorschot

School of Computer Science Carleton University, Ottawa, Canada These slides complement the paper:

Quantifying the security advantage of password expiration policies

Sonia Chiasson, P.C. van Oorschot

[DOI: 10.1007/s10623-015-0071-9]

Designs, Codes & Cryptography, 77(2):401-408, 2015 Special issue in memory of Scott A. Vanstone

- Password aging policies
- Benefits:
 - Qualitative
 - Quantitative benefit from password change?

Q: You change your password continuously, as quickly as system interfaces allow.

Does this prevent successful guessing attacks?

Starting Model /1

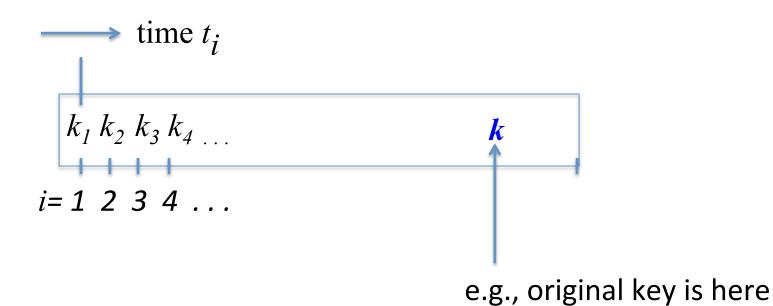
- crypto key search, randomly chosen key
- assume exhaustive attack on account
 - online guessing (for simplicity)
 - deterministic finite search, R elements (certain success if no change)
 - attacker knows policy period length, not time of password changes
 - on reaching end of search space, restart (possibly different order)

$$k_1 k_2 k_3 k_4 \dots$$

$$R = 2^{r}$$

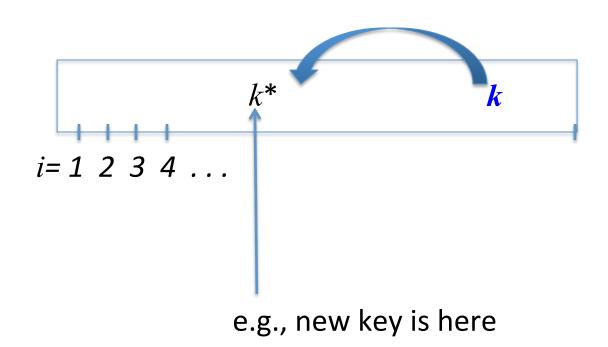
Starting Model /2

- user's key is $k \in \{k_1, k_2, \dots, k_R\}$
- attacker guesses key k_i at time t_i



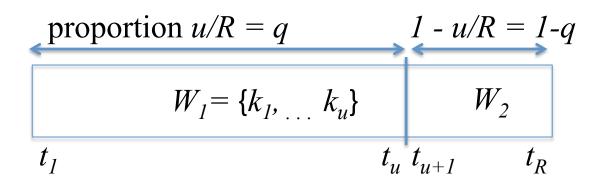
Starting Model /3

- k changed to k^* at $t_{u+1} \in \{t_2, ..., t_R\}$
- Q: what security advantage results
 e.g., delta in prob(successful guess over R guesses)?



Base Analysis $(T \le P)$ /1

- success means finding either k or k^* while it is active
- assume one change in a fixed policy period of length P
- allow time T (exhaustion time) = time to make R guesses



Case	Events	Result	Probability
1	$k \in W_1, k^* \in W_2$	success	$q_1 = (q)(1-q)$
2	$k \in W_1, k^* \not\in W_2$	success	$q_2 = (q)(q)$
3	$k \not\in W_1, k^* \in W_2$	success	$q_3 = (1-q)(1-q)$
4	$k \not\in W_1, k^* \not\in W_2$	failure	$q_4 = (1 - q)(q)$

Base Analysis $(T \le P)$ /2

• prob(attack success) is $p_S = q_1 + q_2 + q_3 = 1 - q + q^2$

$$p_f = q - q^2$$

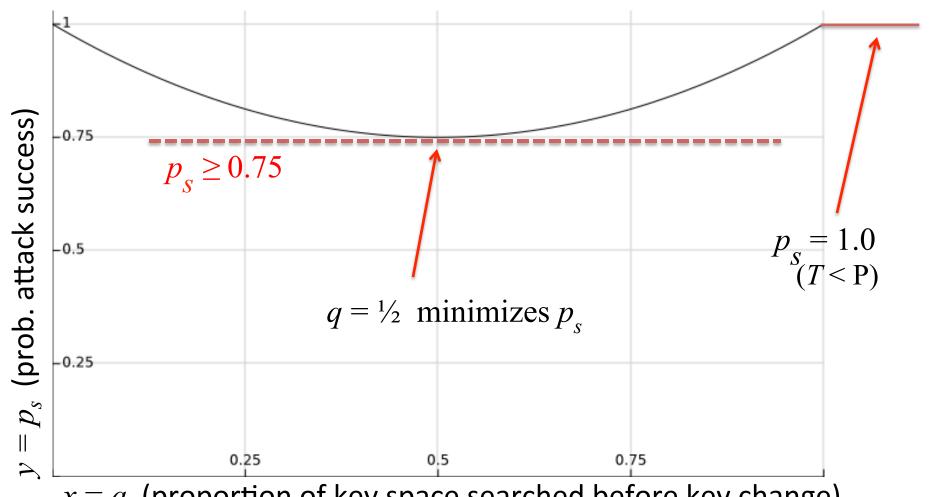
• min/max at $q = \frac{1}{2}$

$$p_f(q = \frac{1}{2}) = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

 $p_s(q = \frac{1}{2}) = \frac{3}{4}$

Result	Probability		
success	$q_1 = (q)(1-q)$		
success	$q_2=(q)(q)$		
success	$q_3 = (1-q)(1-q)$		
failure	$q_4 = (1-q)(q)$		

Probability of attacker success $(T \le P)$; single search T)



x = q (proportion of key space searched before key change)

Assume: user changes key once in this period T (at point x)

Case $T \le P$ [cont'd]

• $p_s \ge 0.75$ for single exhaustive search T

And if search fails, then what?

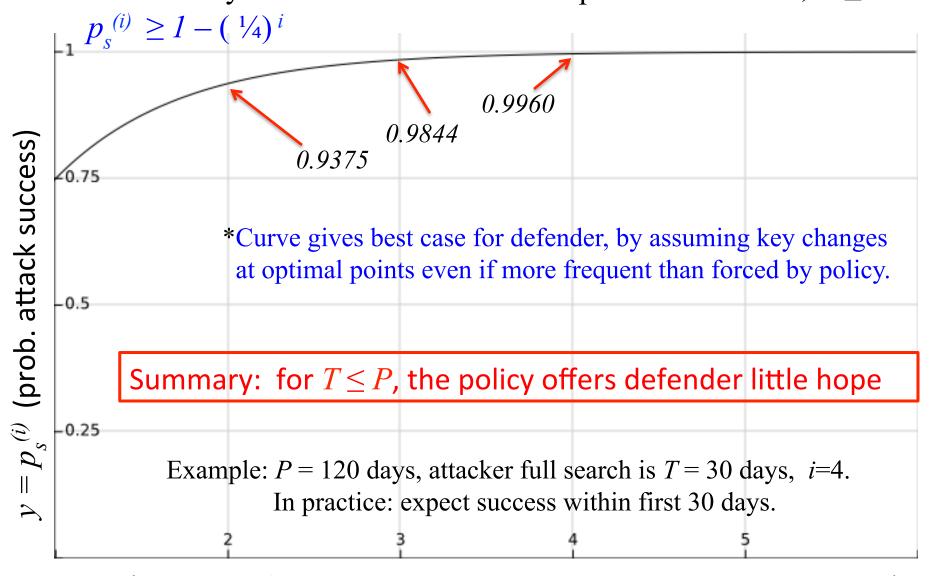
... attacker repeats search (possibly distinct search order)

prob(success over i search periods T, i.e., time $i \cdot T$) is

$$p_s^{(i)} = 1 - \text{prob.}(\text{failure on all } i \text{ searches})$$

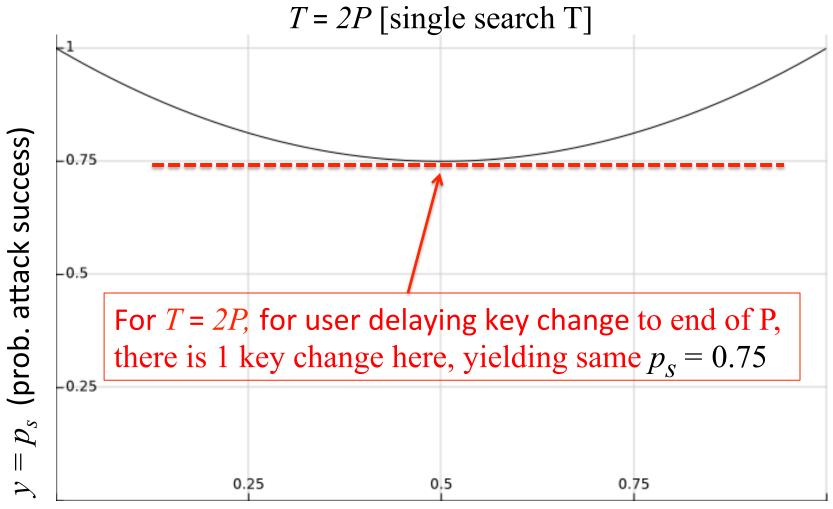
 $\geq 1 - (\frac{1}{4})^i$

Probability of attack success over i repeated searches T, $T \le P^*$



x = i (number of repeated exhaustive searches each over time T)

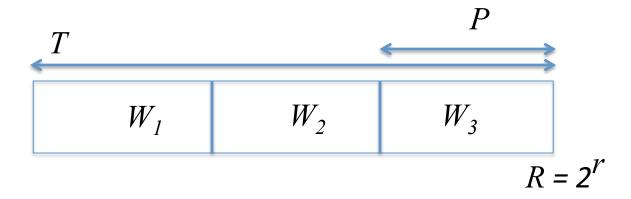
Base analysis also informs re: expected behaviour for

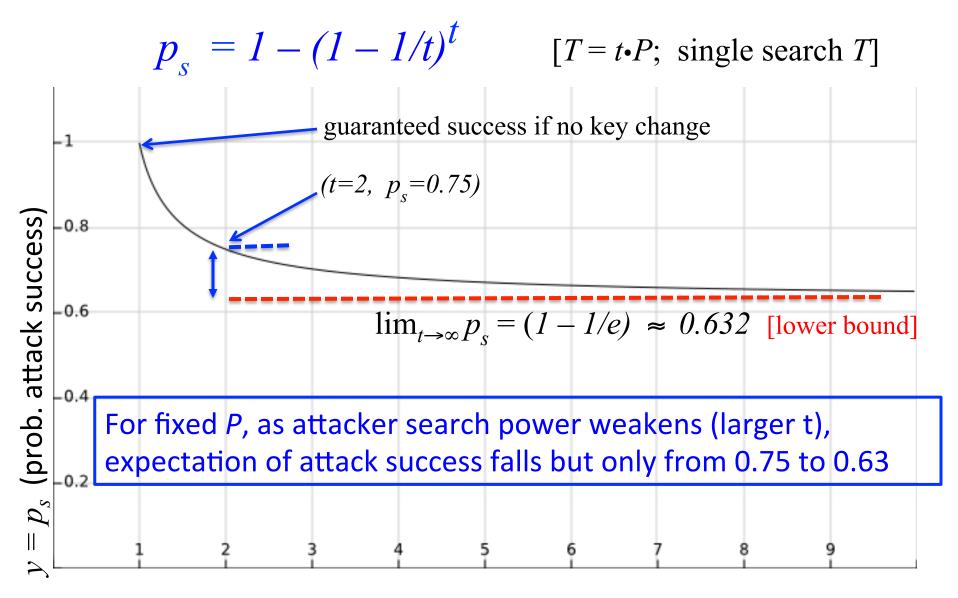


x = q (proportion of key space searched before key change)

General case
$$T = t \cdot P$$
 $[t \ge 2]$

- each segment W_i houses 1/t of the R keys
 - consider t = 3 for concreteness, to help in reasoning
- success = guessing at least 1 of the $k^{(i)}$ while active in W_i ... so (per period T) attack fails iff for all $1 \le i \le t$: $k^{(i)} \notin W_i$
- thus $p_f = (1 1/t)^t$ and $p_s = 1 (1 1/t)^t$





x = t ($T = t \cdot P$ is exhaustive search time; P = expiration period)

So for case $T = t \cdot P$ (single exhaustive search period T)

$$p_{s} = 1 - (1 - 1/t)^{t}$$

Next, consider i > 1 search periods T, i.e., attack time iT = itP

Corresponding result is $p_s^{(t,i)} = 1 - (1 - 1/t)^{ti}$

$$p_{s}^{(t,i)} = 1 - (1 - 1/t)^{ti}$$

 $[T = t \cdot P, i \text{ repeated searches, total time } iT = itP]$

$$y = 1 - \left(1 - \frac{1}{1}\right)^{1x} \quad t = 1$$

$$v = 1 - \left(1 - \frac{1}{2}\right)^{2x} \quad t = 2$$

$$v = 1 - \left(1 - \frac{1}{8}\right)^{8x} \quad t = 8$$

$$v = 1 - \left(1 - \frac{1}{32}\right)^{32x} \quad t = 32$$

$$y = 1 - \left(1 - \frac{1}{2}\right)^{2x} t = 2$$

$$y = 1 - \left(1 - \frac{1}{8}\right)^{8x} t = 8$$

$$y = 1 - \left(1 - \frac{1}{32}\right)^{32x} t = 32$$

$$y = 1 - \left(1 - \frac{1}{128}\right)^{128x} t = 128$$

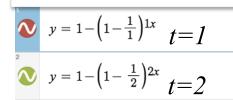
0.75 0.75

[§]more key changes per fixed exhaustive search, 65 0.65 or longer exhaustive search time per fixed policy P

$$x = i = \text{serial searches of time } T \text{ each}$$

$$p_{s}^{(t,i)} = 1 - (1 - 1/t)^{ti}$$

 $[T = t \cdot P, i \text{ repeated searches, total time } iT = itP]$



$$y = 1 - \left(1 - \frac{1}{2}\right)^{2x} t = 2$$

$$y = 1 - \left(1 - \frac{1}{8}\right)^{8x} t = 8$$

$$y = 1 - \left(1 - \frac{1}{32}\right)^{32x} t = 32$$

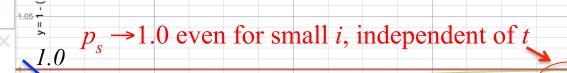
$$y = 1 - \left(1 - \frac{1}{128}\right)^{128x} t = 128$$

attacker does very

attacker does very

nis worst case

0.75 O.75



 $p_s \ge 0.95$ for $i \ge 3$ for all t

larger t helps defender [§], but only to 0.850.85 this effective bound

[§]more key changes per fixed exhaustive search, 65 O.65 or longer exhaustive search time per fixed policy P

$$x = i = \text{serial searches of time } T \text{ each}$$

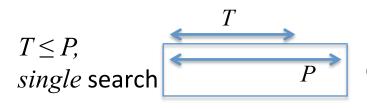
Remark: T >> P

- case: key changes very often before full exhaustive search
- more important than number of changes is time for full search
- prob(attack success) high even on key change after every guess
 - recall $\lim_{t\to\infty} p_s$

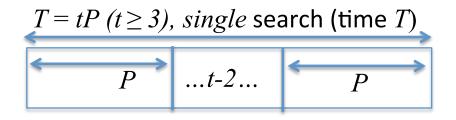
Remark: Offline attacks

- original goal of password expiration policy:
 limit risk (1 year) of guessing attack compromise to . . . 1 in 10⁶
- unattainable today (offline, no iterated hashing):
 modern processing resources easily allow 7-10 billion guesses/s
- ex: 8-char totally random password, from 93-symbol alphabet,
 - $-93^8 = 2^{52.3}$ elements
 - searchable in 9.2 days (with quite modest resources)
 - 1 in 1 million chance: requires password change every 800ms
- conclude: essentially no protection against offline guessing

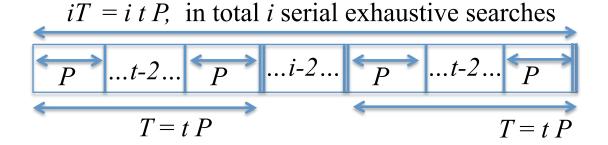
Partial Summary



Single key change at end of T: $p_s = 1.0$ Optimal defense (change at T/2): $p_s \ge 0.75$ and $p_s \rightarrow 1.0$ rapidly on repeated searches



Lower bound on p_s drops, but only to: $p_s \ge 0.632$



 $p_s \rightarrow 1.0$ even for small *i*, independent of *t*

Sure, but how about user passwords (vs. equi-probable crypto keys)?

Relating to User-Chosen Passwords & Aging

For user-chosen passwords: analysis not as clean

- (a) password length variation
- (b) skewed distributions

But (a) is easy to model approximately.

And for (b), insight from large empirical datasets (next slide)

Real attackers . . .

- optimize by guessing in (estimated) probability order
- quit early (abandon long tail of key space)
- offline attack: "almost" full searches within reach as before
- same p_s over <u>full</u> T as for equi-probable keys, but shorter expected time to success due to skew: greatly helps online attackers

Password Aging: Empirical Studies and Skew

Bonneau (Oakland 2012; natural dataset of 70m)

- online guessing trying most-popular passwords on each of large # of accounts (e.g., 10/account), yields $\approx 1\%$ of passwords
- optimal attacker, massive search: gets 50% after 1m guesses/acct

Weir (CCS 2010; analysis, including dataset of 32m)

• most popular 50,000 items from training sub-list of 5m: covers over 25% other sub-lists (for length-7 or more)

Thus for user-chosen passwords, results are even worse for defender than results from idealized crypto model.

Does password expiration stop guessing attacks?

- No. If passwords are guessable*, then they are guessable
 - playing "hide-and-seek"

If attack vector is NOT guessing, then expiration can temporarily terminate ongoing access. But . . .

- doesn't prevent continued access by consequent backdoors
- doesn't undo damage upon original access (barn door)
- doesn't stop attack vectors which may re-execute:
 persistent client-malware, persistent network interception

^{*[}enough guesses can be tested to pass relevant threshold of success probability]

So in the end: what help do aging policies provide?

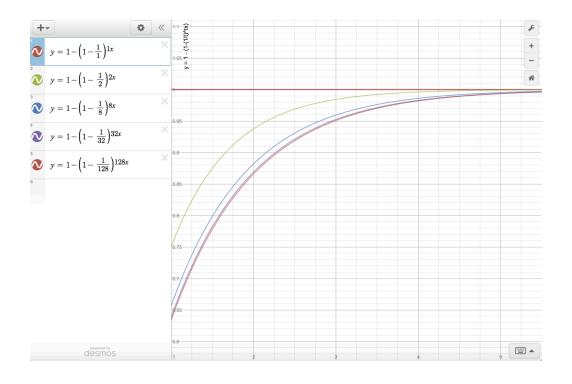
- 1. may temporarily disrupt ongoing/post-compromise access:
 - for case of "delegated" access or "group-shared" password
 - for attacker capturing passwords to sell, if password changed before account access by purchaser [but see Zhang]
- 2. forces offline attacker [relatively rare] to acquire new hash file

But little help vs. guessing attack ... and yet more cons in all cases:

- heavy usability impact
- Zhang (CCS 2010): knowing current, allows heuristic guessing of next-password: got 17% in, on average, < 5 online guesses

Benefits at best partial & minor ... and little/no concrete evidence. Q: What alternatives could deliver similar gains at far lower cost?

Thank you.



Q: If house insurers suggest we change all our physical door locks every 90 days, just in case someone has a copy of a key: would we do it?

[No; absent strong evidence, the costs far outweigh expected benefits]