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Abstract

Due to recent increase of computer power and decrease of camera cost, it became very common to see a camera on top of a computer

monitor. This paper presents the vision-based technology which allows one in such a setup to significantly enhance the perceptual power of

the computer. The described techniques for tracking a face using a convex-shape nose feature as well as for face-tracking with two off-the-

shelf cameras allow one to track faces robustly and precisely in both 2D and 3D with low resolution cameras. Supplemented by the

mechanism for detecting multiple eye blinks, this technology provides a complete solution for building intelligent hands-free input devices.

The theory behind the technology is presented. The results from running several perceptual user interfaces built with this technology are

shown.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the problem of designing vision-based

perceptual user interfaces, which are the systems that use

video-cameras to perceive the visual cues of the user, such

as the motion of the face, to control a program (see Fig. 1).

The main applications of these systems are seen in

human–computer interaction, teleconferencing, entertain-

ment and industry for disabled. In particular, face-tracking-

based program control can be used as a hands-free

alternative to tangible pointing devices such as mouse,

joystick, track pad, etc. It can be used, for example, to switch

a focus of attention in windows environment. It can also be

used to control commercial computer games, immersive 3D

worlds and avatar-like computer-generated communication

programs.

Perceptual user interfaces provide a way for multiple-

user interaction—several users can be tracked at the same

time with several cameras. They also can be applied to

video-conferencing, where it can be used to correct the gaze

direction, and also in video-coding, content-based image

retrieval and security industry.

To be operational, perceptual user interfaces require

face-tracking to be fast, affordable and, most importantly,

precise and robust. In particular, the precision should be

sufficient to control a cursor, while the robustness should be

high enough to allow a user the convenience and the

flexibility of head motion.

A few hardware companies have developed hands-free

mouse replacements. Their systems, however, either use

dedicated software or structured environment (e.g. markings

on the user’s face) to simplify the tracking process. At the

same time, recent advances in hardware, invention of fast

USB and USB2 interfaces, falling camera prices, and

increase of computer power brought a lot of attention to the

real-time face-tracking problem from the computer vision

community. The obtained vision-based solutions though

still do not exhibit the desirable precision and/or robustness.

Let us review these solutions.

The approaches to vision-based face-tracking are gener-

ally divided into two classes: image-based (global) and

feature-based (local) approaches [1– 3]. Image-based

approaches use global facial cues such as skin colour,

head geometry and motion. They are robust to head rotation

and scale and do not require high quality images.
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These approaches, however, lack precision and therefore

cannot be used to control the cursor precisely.

In order to achieve precise and smooth face-tracking, feature-

based approaches are used. These approaches are based on

tracking individual facial features and theoretically should be

able to track faces with pixel-size precision. In practice, however,

they are not, because commonly used edge-based features such as

corners of brows, mouth, etc. are not rotation and/or scale

invariant and are therefore easily lost in unconstrained head

motion. These approaches usually also require high-resolution

cameras so that edges can be well detected.

Recently a concept of a curvature-based convex-shape

nose feature has been introduced [4], which is shown to be

rotation and scale invariant. In the present paper, we make

use of this feature to build a perceptual vision system which is

able to track faces both robustly and precisely.

We also show how tracking the rotation and scale

invariant nose feature allows one to track other facial

features in 3D using two uncalibrated cameras.

While stereo-tracking of faces using two cameras is

performed by several other authors [5–8], our approach

differs from that of the others in two important aspects. First,

we do not use dedicated stereo setups, but rather use two

liberally positioned cameras. Using recent advances in the

projective vision theory, we compute the relationship

between the cameras on-the-fly; this relationship,

represented by the fundamental matrix, is naturally obtained

while observing a face with both cameras. Second, while

being able to track a face in 3D for up to 408 of head rotation

around all three axes of rotation, our approach is shown to be

very suitable for low-resolution and low-quality cameras,

such as common USB webcams.

The organization of the paper is the following. After

reemphasizing the importance of the nose for vision-based

face-tracking and defining the convex-shape nose feature in

Section 2, we show how to compute the fundamental matrix

for two cameras so that the face can be tracked in 3D. Section

4 describes the applications of the proposed technology,

which became known as the Nouse (Nose as Mouse)

perceptual vision technology [9–12]. To complete the

technology with a face-operated version of mouse click,

we introduce the Doubleblink event, which, as shown, can be

detected even when a face moves. Conclusions end the paper.

2. Importance of nose for face-tracking

Due to human physiology, our nose, as the most

protruding and also the furthest from the axes of head

rotation part of our face, has the largest degree of motion

freedom, as compared to other parts of the face. As such,

when in need to point at something hands-free, we would

probably use nose as a replacement for a finger; eye pupils

are less suitable for the task, since, because of the large

amount of involuntary saccadic motion they exhibit [13],

they are much more difficult to control. Let us show now

that nose is also a feature which is extremely useful for

vision-based face-tracking.

Within the framework of template matching, which

remains to be one of the fastest and most commonly used

techniques in feature tracking [14–20] in order to build

robust and precise face-tracking-based interfaces, we

introduce the following propositions.

Proposition 1. One feature only should be used for the final

decision on the head position in video.

This eliminates the jitter problem which arises when

tracking several features due to the fact that facial features

move non-rigidly. This also provides a user with an intuitive

way of controlling with the head by simply visualizing the

feature as a chalk or a tip of a joystick.

Proposition 2. The tracked feature should always be clearly

visible for all face positions and expressions, including the

cases with the users who wear eyeglasses, mustaches or

beards.

It follows from Propositions 1 and 2 that the problem of

robust tracking is the problem of finding such a facial

feature which would stay invariant during the motion of the

user’s face.

In image processing, a feature is often thought of as a

point on the object surface which has large change of

intensity gradient in the image [21]. This explains why the

most commonly used in face-tracking facial features are

corners and edges of mouth, brows, nostrils and eye pupils.

These edge-based facial features are difficult to track,

however, if the face rotates or changes the facial expression.

In order to select a facial feature suitable for precise and

smooth tracking, the concept of a convex-shape feature has

been introduced in Ref. [4] and the rotation invariant nose

feature has been defined as the point on the tip of the nose

closest to the camera. More generally, the nose feature may

lie slightly off from the point closest to the camera, in which

case it is the closest to another fixed object in space.

It can be shown using the shape-from-shading theory

[22] that under approximately the same lighting condition

the intensity pattern around the thus defined nose feature is

not affected by the orientation of the face and the distance

from the face to the camera, provided that face motion is

much less than the distance to the camera and the light

source. Based on this, we make the nose template vector out

Fig. 1. Vision-based perceptual user interface: the system diagram.
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of the gray-scale intensities centered around the extremum

of the nose surface. The template vector size is chosen so

that it covers the spherical surface around the tip of the nose.

Table 1 shows the size of the nose convex-shape area for

different face sizes, as compiled from our experiments.

The defined nose feature is always visible in camera and

can therefore be always located. This is a very important

property of the nose, which as mentioned earlier, does not

hold for other facial features. It gives a user the desired

flexibility and convenience of head motions.

It should be noted that the convex-shape nose feature is

not associated with a physical point on a nose. Instead, it is

associated with the extremum of the nose curvature, which

moves on the nose surface. In the camera centered coordinate

system with Oz axis perpendicular to the image plane going

from the camera, the nose feature corresponds to the

extremum of the nose surface z ¼ zðx; yÞ: This is seen from

Fig. 2, which shows the range of motion within which the

convex-shape nose feature is tracked, and also from the

video-sequences, snapshots of which are shown in Figs. 3

and 4. In the first sequence, a person performs the ‘no’

(left–right) motion, followed by the ‘yes’ (up–down)

motion, and then followed by the circular motion, holding

his shoulders still at all times; the position of the tracked

convex-shape nose feature is overlaid on the top of the image.

In the second sequence, which takes less than 3 s to

perform, a user draws a musical ‘G’ clef sign holding his

shoulders still. In both cases, a user rotates his head at

normal fast speed as far he can, provided that he can still see

the screen. More results showing the precision and

robustness of nose tracking are shown in Section 4 (Fig. 13).

The experiments conducted with different people, light-

ing conditions and different USB cameras show that the

nose tip is tracked for up to about 408 of rotation of head in

all three directions. This range of allowable motion

practically covers all possible head motion a user may

exhibit while looking at the screen. Scale-wise, for a camera

resolution of 160 £ 120, the nose is robustly tracked when

a user sits within 30–60 cm distance from the camera. This

is the most common case in computer-user setups, which

shows that low-resolution cameras can be used for the task.

By observing the figures, one can notice another

important property of the convex-shape nose feature,

Table 1

Applicability of different face sizes for face processing tasks

Face size 80 £ 80 40 £ 40 20 £ 20 10 £ 10 Colour Motion Intensity

i.o.d. 40 20 10 5

Eye size 20 10 5 2

Nose size 10 5 – –

FS X X X m þ [34,35] þ[36] þ

FD X X m – þ [35,37] þ þ [1,2,38,39]

FT X X m – þ [40] þ þ [3]

FL X m – – þ[41] þ [4]

FER X X m – þ þ þ [20,42]

FC X X m – þ43

FM/I X X – – þ [44]

FS, FD, FT, FL, FER, FM/I refer to face segmentation, detection, tracking, localization, expression recognition and memorization/identification.

The distinction between FD and FT is that FT uses the past information about the face location, whereas FD does not, and between FT and FL that FT detects an

approximate face location, while FL provides the exact position of a face or facial feature(s). The face size, defined as twice the intra-ocular distance (i.o.d)

squared, is given in pixels. ‘X’ indicates that for a given face size the task can be executed; ‘m’ signifies that the size is marginally acceptable for the task.

The representative work done in the area is given in brackets.

Fig. 2. The figure shows the range of motion within which the convex-shape

nose feature is tracked.
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which is the smoothness of its motion. This smoothness is

due to the fact that the function, which maps the position of

the pixel in the image to the feature vector, is continuous in

the area around the extremum of the nose surface. By other

words, the closer in the image pixel u is to the nose feature

pixel f ; the smaller is the distance between vectors ~Vu and
~Vf ; where ~Vð·Þ denotes the vector obtained by centering a

peephole mask on pixel ð·Þ:

The continuity property is very important not only for

smooth tracking but also for precise tracking, as it allows

one to use the weighted average of pixels around the pixel of

the best match instead of the position of the pixel itself.

In particular, the following convolution filter can be applied

to refine the position of the feature

û ¼
X
k[V

vk
f uk

; ð1Þ

where V designates the area around the pixel of the best

match u; and weights vk
f are set proportional to the

normalized correlation between vector ~Vk
u and the template

vector ~Vf : Due to the continuity property of the mapping

function in the vicinity of the nose feature, these weights can

be considered monotonically decreasing with the distance to

the nose feature, and thus the applied convolution filter is

guaranteed to refine the position of the feature.

Using the continuity property and the averaging

convolution filter is analogous to the approach taken in

Ref. [19] where the adaptive logic network (ALN) [23] is

used to detect eye pupils in the photographs. In that work,

however, the continuity is achieved by designing the output

scheme which allows the continuity of the feature mapping

and it is the ALN that does the filtering.

Finally, worth mentioning is that applying the weighted

average not only makes tracking more reliable due to using

a collective decision instead of the decision based on a

single pixel, but it also allows one to compute the position of

the nose feature with one extra digit behind the decimal.

This becomes very useful for mapping the position of

the feature in a low resolution image to the position of the

cursor or other virtual object in high-resolution screen.

3. Stereo-tracking

Below we describe a stereo-tracking system which

makes use of the convex-shape nose feature, in order to

allow 3D face-tracking with the aid of two ordinary USB

web-cameras. The cameras do not need to be aligned;

they are simply mounted on top of the computer monitor so

that the user’s face is seen by both of them (see Fig. 5).

The system operates in three stages as follows. First, the

user has to perform the self-calibration procedure to acquire

the relationship between the cameras. For this purpose

the user captures his head at the same time with both

cameras at the distance to be used in tracking (Fig. 6).

Fig. 4. Drawing the G-clef sign with head motion. Shoulders are held still.

Fig. 5. Overview of the calibration procedure for the face-tracking-based

user interfaces.

Fig. 3. Tracking ‘Yes’, ‘No’ and circular motion. Shoulders are held still.
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Then the correctness of the calibration information is

verified during the feature learning stage (Fig. 7). Finally,

the computed calibration information is used for tracking

the features (Fig. 15).

3.1. Stereo self-calibration

When a 3D point in space is observed by two cameras, it

is projected to the image plane of each camera [24].

This generates two vectors x and x0 starting from the origin

of each camera. These vectors are related to each other

through the equation

xTt £ Rx0 ¼ 0; ð2Þ

where t is the translation vector between the camera

positions, R is the rotation matrix. In computer vision, this

equation is known as the epipolar constraint and is usually

written as xTEx0 ¼ 0; where E ; t £ R is the essential

matrix.

If cameras are not calibrated, which is the case with

hand-made stereo setups made of USB cameras, then the

epipolar constraint is written using a concept of the

fundamental matrix F as follows

~uTF ~u0 ¼ 0; ð3Þ

where ~u ¼ ½u; v; 1�T and ~u0 ¼ ½u0; v0; 1�T define the raw pixel

coordinates of the vectors x and x0:

Given a point u ¼ ðx; yÞ in one image, the fundamental

matrix allows one to compute a line in the other image on

which the matching point must lie. This line is called the

epipolar line and is computed as

lu ¼ Fu: ð4Þ

It is this piece of extra information that makes tracking with

two cameras much more robust than tracking with one

camera. In order to filter out bad matches, the epipolar

error, defined as the sum of squares of distances of points to

their epipolar lines, can be used [24]. Using Eq. (4),

the relationship between epipolar error r and fundamental

matrix F can be derived as

r;distanceðu;lu0 Þ2þdistanceðu0
;luÞ

2

¼ðu0TFuÞ2
1

ðFuÞ21þðFuÞ22
þ

1

ðFTu0Þ21þðFTu0Þ22

 !
ð5Þ

ð·Þi designates the ith coordinate of vector ð·Þ; and

the following proposition can be used to make tracking

more robust.

Proposition 3. Provided that fundamental matrix F of the

stereo is known, the best pair of matches u and u0

corresponding to a 3D feature is the one that minimizes

the epipolar error defined by Eq. (5).

Using this constraint allows us to relax the matching

constraint, which is used to enforce the visual similarity

between the observed and the template feature vectors.

The matching constraint is the main reason why feature-

based tracking with one camera is not robust, and relaxing

this constraint makes tracking much more robust.

As seen from Proposition 3, it is the quality of the stereo

setup calibration that is important for the success of stereo-

tracking, and it is the computation of the fundamental

matrix that makes the calibration process.

3.2. Computing the fundamental matrix

The calibration of the hand-made stereo consists of two

parts: computing the fundamental matrix and inspecting the

quality of the computed fundamental matrix. Fig. 5 shows

the entire procedure.

Computing of the fundamental matrix is done using

the public domain projective vision toolkit (PVT) [25,26]

and is based on finding the correspondences in two

images captured with both cameras observing the same

static scene. Because off-the-shelf USB cameras are

usually of low quality and resolution, extra care is taken

to deal with the bad matches by applying a set of filters

and using robust statistics. The description of each step

follows.

Finding interest points. After two images of the same

scene are taken, the first step is to find a set of corners or

interest points in each image. These are the points where

there is a significant change in intensity gradient in both the

x and y direction. A local interest point operator [27] is used

and a fixed number of corners is returned. The final results

are not particularly sensitive to the number of

corners. Typically there are in the order of 200 corners

found in each image.

Fig. 7. Examining the quality of stereo calibration. The features to be

tracked must lie on the epipolar lines.

Fig. 6. Images captured by two cameras to be used in self-calibration. They

should have enough visual features.
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Matching corners and symmetry filter. The next step is to

match corners between the images. A local window around

each corner is correlated against all other corner windows in

the adjacent image that are within a certain pixel distance

[28]. This distance represents an upper bound on the

maximum disparity and is set to 1/3 of the image size.

All corner pairs that pass a minimum correlation threshold

are then filtered using a symmetry test, which requires the

correlation be maximum in both directions. This filters out

half of the matches and forces the remaining matches to be

one-to-one.

Disparity gradient filter. The next step is to perform local

filtering of these matches. We use a relaxation-like process

based on the concept of disparity gradient [29]

which measures the compatibility of two correspondences

between an image pair. It is defined as the ratio

dgr ¼ lda 2 dbl=ldaþb=2l; ð6Þ

where da and db are the disparity vectors of two corners,

daþb=2 is the vector that joins midpoints of these disparity

vectors, and l·l designates the absolute value of a vector.

The smaller the disparity gradient, the more the two

correspondences in agreement with each other. This filter

is very efficient. At a very low computational cost, it

removes a significant number of incorrect matches.

Using random sampling. The final step is to use the

filtered matches to compute the fundamental matrix.

This process must be robust, since it still cannot be assumed

that all filtered correspondences are correct. Robustness is

achieved by using a random sampling algorithm. This is a

‘generate and test’ process in which a minimal set of

correspondences, the smallest number necessary to define a

unique fundamental matrix (seven points), are randomly

chosen [30,31]. The number of random samples is

dynamically adjusted to a given confidence level.

A fundamental matrix is then computed from this best

minimal set using Eq. (3) by the SVD algorithm [32]. The set

of all corners that satisfy this fundamental matrix, in terms

of Eq. (5), is called the support set. The fundamental matrix

with the largest support set is used in stereo-tracking. Before

it can be used, however, it needs to be evaluated, because

robust and precise tracking is possible only under the

assumptions that the computed fundamental matrix

correctly represents the current stereo-setup.

Evaluating the quality of calibration. The evaluation is

done in two ways: analytically—by examining the size of

the support set, and visually—by visual examination of the

epipolar lines.

It has been empirically obtained that for the fundamental

matrix to be correct it should have at least 35 matches in the

support set. If their number is less, it means that either

(i) there were not enough visual features present in the

images, or (ii) cameras are located too far from each other.

In this case, cameras have to be repositioned or some extra

objects, in addition to the head, should be added in

the camera field of view and the calibration procedure

should be repeated.

3.3. Visual examination and feature learning

At this stage, the user is required to manually choose the

features to be tracked. At least three features have to be

selected to allow 3D tracking. One of these features must be

the nose feature as defined in Section 2. Other features may

include conventional edge-based features such as inner

corners of the brows and corners of the mouth.

These features are not invariant to the 3D motion of the

head. Therefore, in order to make the tracking of these

features robust, the rigidity constraint, which relates their

positions to the nose position, is imposed. This constraint is

computed while selecting the features.

By clicking with a mouse on a feature in one image,

the user has to verify that the epipolar line generated in the

other image according to Eq. (4) passes correctly through

each feature. Fig. 8 shows the epipolar line (on the right

side) corresponding to the tip of the nose (on the left side).

As can be seen, it passes correctly through the nose, thus

verifying the correctness of the fundamental matrix and

presenting a useful constraint for locating the nose in the

tracking stage.

It is the major advantage of stereo-tracking that it

provides an additional epipolar constraint which ensures

that the observed features belong to a rigid body.

If generated epipolar lines do not pass through the

selected features within a given precision, then the

fundamental matrix has to be recomputed. Once it is

Fig. 8. Overview of the tracking procedure for the face-tracking-based user

interfaces.
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computed with the sufficient precision (e.g. less than 5

pixels, as in our experiments), the template vectors of both

the selected features and their best matches in the other

image lying on the epipolar lines are stored. At the same

time the rigidity constraint is computed.

3.4. Tracking procedure

The hierarchy of all face processing tasks performed by

the perceptual vision system is presented in Section 4.

Below we describe the last of these tasks—face-tracking, as

it is performed in the case of tracking with two cameras.

It consists of the following four steps (see also Fig. 8).

Step 1. For each tracked facial feature, the area for the

local search is obtained using the rigidity constraint and

the knowledge of the nose tip position. When the feature is

the nose itself, the local search area is set around the

previous position of the feature. If the previous position of

the nose is not known, then the search area is set to the area

where the face was detected.

Step 2. A set of N best candidate matches {uf} for each

feature is generated in both images using the matching

constraint by scanning the local search area with template

vector ~Vf learnt in the training. In order to be valid, all

candidate matches are required to have the correlation with

the template feature larger than a certain threshold. In our

experiments, the allowable minimum correlation is set to

0.9. Normalized correlation is used.

Step 3. Out of N2 possible match pairs of each feature

between two images, the best M pairs are selected using the

cross-correlation between the images. In our experiments, N

is set to 10 and M is set to 5. Increasing N or M increases the

processing time, but makes tracking more robust.

Step 4. Finally, Proposition 3 is used and the match pair

that minimizes the epipolar error r defined by Eq. (5), is

returned by the stereo tracking system. If the returned match

has the epipolar error less than a certain threshold, than the

feature is considered successfully tracked. Otherwise, the

feature is considered mistracked. The value of the maximum

allowable epipolar error rmax depends on the quality of

stereo self-calibration and should be determined during the

learning stage by observing the epipolar lines at different

parts of the image. In the experiments presented in this

paper it is set equal to 5 pixels.

The position of the nose feature is then refined as

described in Section 2 and its position ðx; yÞ is returned. The z

coordinate of the face can be calculated, if required, using

the essential matrix E as in Ref. [24]. The distance between

the cameras can be either measured by hand or set equal to

one. In the latter case, the reconstruction will be known up

to a scale factor, which is sufficient for many applications.

Other features provide the information about a (roll), b

(tilt), g (pan) rotation of the face. It should be noted,

however, that with low resolution cameras, such as USB

webcams, the pan and tilt rotation of the head ðb; gÞ cannot

be retrieved well. This is because of the high error in depth

calculation due to the image quantization and warping

errors, which can be as high as 10% of the measured depth

distance [33]. Nevertheless, retrieving other four degrees of

freedom of the face are quite sufficient for designing many

face-tracking-based hand-free user interfaces.

4. Nouse perceptual vision systems

Nouse, which stands for Nose as Mouse, is the name of

the perceptual vision technology which uses the ideas

described above to enable vision-based hands-free inter-

action with computer. The architecture of a perceptual user

interface system built with the Nouse technology is shown

in Fig. 9.

The system takes a video sequence as an input, and splits

it into the channels corresponding to the motion, colour and

intensity components of video. As discussed in Ref. [44],

this is how video information is processed by biological

vision systems, and this is also, in fact, how face processing

tasks are commonly approached by computer scientists

(from Table 1), which shows the representative work done

in the area, we see that most solutions described in the

literature are single-channel solutions.

The first tasks to perform by the system are face

segmentation and detection. They provide the initial

estimate of where a face, if any, is located in video.

Originally, these tasks have been assigned to the colour and

motion channels. The colour channel uses the combination

of the perceptually uniform colour space (UPS) with the

non-linearly transformed YCrCb colour space [34,35] to

compute the binarized skin image, while the motion

channel uses the non-linear change detection [36] to obtainFig. 9. Hierarchy of tasks in the Nouse perceptual user interface system.
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the binary change image. Analyzing the first and second

moments of these binary images yields the initial estimate

for size and location of skin coloured and moving regions in

video. Presently, we also use the intensity channel, which

can locate front-faced horizontally aligned faces using the

recently proposed public domain face classifier trained on

binary Haar-like binary wavelets [43].

After a face has been detected by either of the channels,

the tracking of the nose feature proceeds as described in the

previous sections.

The video is processed at the 160 £ 120 resolution.

This resolution allows one to perform video processing in

real-time and, as mentioned above, is quite sufficient for

many face processing tasks. In particular, from Table 1 we

see that for most common setups when a camera is mounted

in front of the user’s face on top of the computer monitor,

which result in the face occupying more than one quarter of

the image, one can perform such tasks as nose tracking and

eye localization from blinking.

4.1. Blink detection for ‘clicking’ and initialization

For face-operated perceptual user interfaces to be fully

hands-free operational, besides tracking the face position,

they should be able to detect a facial expression event,

which a user would use in order to send a binary ‘on/off’

command, analogous to the mouse ‘click’ event (see Figs. 1

and 11).

In the Nouse technology, such a clicking ability is

performed by detecting double (or multiple) eye blinks of

the user. It is the motion channel which performs this task.

It is known that detection of eye blinks from eye lid

motion is difficult when the head is not still, because there

are also many pixels which move around the head boundary,

mouth, brows and other parts of the face. This problem can

be significantly alleviated, however, if instead of the

commonly used first-order change, computed by using two

frames from the video sequence, the second order change

(i.e. the change of the change) proposed in Ref. [41],

computed from three consecutive video frames is used.

This allows one to discriminate the local (most recent)

change in image, such as blink of the eyes, from the

global (long lasting) change, such as the motion of head

(see Fig. 10).

As opposed to a single blink, which happens involuntary,

a doubleblink or several blinks performed within short lapse

of time, is a deliberate action that can be easily performed

by most people. Another big advantage of using this facial

visual cue, which we termed the Doubleblink event, is that it

provides an additional spatio-temporal constraint for blink

verification. This constraint becomes very valuable for the

situations, when false positives are undesirable.

Besides providing a mechanism for switching the Nouse

on and off, detection of blinks also allows one to initialize

the nose template. One way of doing it is to ask a user to

position his nose in the middle of the image and then to

Doubleblink. The other is to ask a user to blink several times

Fig. 10. Detection of eye blinks using the first order (bottom left image) and the second order change (bottom right image) detection. The pixels change due to

head motion are shown at the bottom center images.

Fig. 11. Vision-based perceptual user interface at work: a laptop with a

webcam mounted on its top allows a user to use Nouse and Doubleblink to

select hands-free a ‘Yes’ button in a pop-up ‘Continue? k Yes l No l Cancel k
window.
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and then to detect the nose automatically in the area under

the eyes from the set of prestored templates.

If a user feels at any time that the tracking quality has

deteriorated, he can invoke the initialization routine by

performing several blinks. Our experiments show,

however, that under approximately the same lighting

condition, users rarely need to reinitialize the Nouse. Even

more, in most cases, the same nose template can be used for

different users.

Let us also mention that the ability to retrieve the precise

positions of the eyes from blinking allows our systems to

retrieve the entire face. Using the associative memory

principles, the retrieved faces can be memorized and

recognized when needed to enhance the perceptual ability

of the vision system [44].

Finally, eye detection allows one to make colour-based

face detection more robust, by recomputing the skin colour

model in the area below the eyes each time the person

doubleblinks.

4.2. Demo programs

In order to show the potential of the Nouse perceptual

vision technology, we have applied them to a few

applications. While the paper presents the snapshots of

our experiments, full mpeg videos are available at our

website [12]. The website also provides the binary code of

our programs, so that they can be evaluated by the public. In

order to run the programs, a user will only need to have one

or two USB webcams connected to a computer. In our

experiments, we used Intel USB web-cameras. Other USB

webcams, such as Logitech, Creative and 3Com, were also

tried. Accessing and synchronizing the images is done using

the DirectX interface. Image preprocessing is done using the

Intel Open Source CV library [45]. On a Pentium IV 2 GHz

processor, all processing takes less than 50 ms per frame.

Navigation in Windows. The Nouse technology makes it

possible to use the nose to control the Windows cursor

(see Fig. 11). One of two control modes can be used for this

purpose. Joystick mode operates in a fashion similar to an

analog joystick: offsetting the nose from the center of

the screen causes the mouse cursor to move in a similar

direction. The speed of the cursor is determined based on the

offset amount. Mouse mode attempts to mimic an actual

mouse more closely: offsetting the nose from the center

position causes the cursor to move in a similar direction, but

the movement of the nose back to the center position has no

effect. This allows the user to simulate the common

continuous dragging process that computer users frequently

perform, when, for example, run out of drag space on their

mouse pad.

It has been found that for screen resolution of 640 £ 480,

Nouse provides sufficient robustness and precision for users

to be able to select an item in Windows menu hands-free

using the nose. For larger resolution, however, because the

size of the computer screen (in pixels) is much larger than

the size of the image in which the nose moves, it takes

considerable amount of time and energy for the user to get to

the desired item.

NousePaint. This program is written to allow users to

paint hands-free using their nose, thinking of it as a pen or a

chalk. Having been tried by many users, it demonstrated that

robustness and precision of Nouse allows one to write quite

long phrases and to draw hands-free as fast as it is

convenient. For example, it took 25 s to write a phrase of

Fig. 12. Switching the drawing on and off can be done by

either Doubleblink or key stokes.

Aim-n-shoot BubbleFrenzy game. This game tradition-

ally involves simple left/right mouse movements or key

presses in order to aim a bubble turret in the desired

direction. Once properly targeted, the user then presses the

space bar to launch a coloured bubble in the turret direction.

We used Nouse to replace mouse, allowing a player to point

the direction of shooting with the nose. The precision of

Nouse is such that very slight rotations of head left and right

are sufficient to cover the entire 1808 range of the turret aim.

Fig. 13 shows a user playing BubbleFrenzy with Nouse,

using one of the two webcams attached to the computer.

The users of the game were given a choice of switching

back and forth between the Nouse and the standard mouse

modes. This helped them to evaluate the new hand-free

interface technology. Among more than 50 people who tried

the game, it has been agreed that playing the game hands-

free with Nouse is not only more fun, but is also less tiring

than playing the game with mouse. Some users experienced

Fig. 12. A new year greeting written hands-free using NousePaint.
Fig. 13. Setup for stereotracking. A user plays an aim-n-shoot game aiming

with his nose.
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severe wrist fatigue when they played the game holding a

mouse in their hands for longer than 15 min. This does not

happen with Nouse. Using the nose to aim the turret was

found very natural, while the precision of aiming with the

nose was as good as with a standard mouse.

NousePong. This game has been written to demonstrate

another advantage of vision-based interfaces, which is

multiple-user interaction. Two web-cameras are mounted to

face the heads of the players as shown in Fig. 14. Because of

the robustness of the convex-shape nose feature to rotation,

the cameras do not have to be aligned with the horizon or

each other. The game consists in bouncing the ball back and

forth over a virtual table using the head. Each camera tracks

the motion of a player’s head in order to convert it to the

motion of the paddle. This game showed that with the aid of

the Nouse technology computer games may become much

more physical.

4.3. 3D hands-free interfaces

The tracked facial features provide information about the

position and the orientation of the head with respect to the

cameras. This information can be used to control a 2D

object on the screen, as presented above, or it can be used to

control a 3D object. The results below demonstrate the

applicability of the stereotracking technique proposed in

Section 3 for designing 3D hands-free user interfaces.

Fig. 15 shows a virtual man which is controlled by the

motion of the user’s head. The scale of the man is

proportional to the distance between the features and the

camera and the roll rotation of the man coincides with the roll

rotation of the head. Yellow boxes around the features show

the facial features used for tracking, which are the nose and

the inner corners of the brows. These features are found to be

most optimal for recovering the orientation of the head.

The importance of having the convex-shape nose feature

among the features becomes very apparent, when by

switching the rigidity constraint on and off we observe

that in many cases, e.g. such as shown in the figure, brow

features are lost.

In a similar fashion, by switching on and off the

epipolar constraint, we were also able to observe that

using two cameras instead of one does make tracking

more robust; with the epipolar constraint switched on, the

detected features always lie on a face.

We have experimented with the different baselines

between the cameras, and the distance of about 10–20 cm

appears to be the most optimal. Larger baselines result in too

few matches needed to compute the fundamental matrix,

while smaller baselines cause large epipolar errors.

4.4. Mistracking problem

One has to realize that, unlike hand-operated inter-

faces, hands-free interfaces do not have a feedback

connection. By holding a mouse, a user not only controls

the program, but he also keeps the knowledge of where

the mouse is. No matter how robust the perceptual user

interface is, it can loose the user; it might be even more

appropriate to say that a user looses the interface.

This problem, which can happen to Nouse too, can be

resolved, however, by providing users with the missing

feedback, as shown in Figs. 1 and 8. A user can get this

type of feedback from the image captured by the video-

camera. By visually verifying that he is still observed by

the camera and that the face is still being tracked

properly, a user can ensure that he has a good ‘grasp’ of

Nouse. This is done in NousePaint nose-drawing program

and also in NousePong game, where the images captured

with both cameras are shown on the screen at all times.

Another way of having the desired feedback is to know

where the camera is, and as soon as a user feels that he has

lost control with Nouse, he puts his face in front of the

camera and sends a signal to Nouse, e.g. by Doubleblink or

by using a keyboard, to reset the search of the face.

Fig. 15. Stereotracking with two web-cameras: the orientation and scale of

the virtual man is controlled by the position of the observed face.

Fig. 14. Two users are playing a pong game using their heads to bounce

a ball.
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5. Conclusions

Because of the low prices and the ease of installation,

USB cameras have become very popular nowadays.

This paper presented a few computer vision techniques

which allow one to use such cameras for designing

perceptual user interfaces.

We show that a human face possesses a very

unique feature—the nose; because of its prominence and

convex-shape, the nose feature can be seen at all times

during the interaction with the computer screen, regardless

of the orientation of the head and the camera. This makes it

possible to track faces both robustly and precisely even with

low quality cameras such as USB webcams. This also

allows us to extend robust face-tracking from 2D to 3D.

We have proposed a stereotracking technique, which makes

use of convex-shape nose feature and the epipolar constraint

to build 3D face-tracking-based user interfaces which do not

require expensive dedicated stereo setups.

Combined with other perceptual mechanisms, such as

blink detection, our face-tracking technology allows one

to build complete intelligent hands-free alternatives, or

extensions, to conventional tangible input devises such

mouse or joystick.

Finally, as noted in Ref. [44], the systems presented in

the paper can be combined with face recognition techniques,

in order to improve the performance of the latter.
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