
Overview of Assembly Language

Chapter 3

S. Dandamudi

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 2

Outline

• Assembly language
statements

• Data allocation

• Where are the operands?
∗ Addressing modes

» Register

» Immediate

» Direct

» Indirect

• Data transfer instructions
∗ mov, xchg , and xlat

∗ PTR directive

• Overview of assembly
language instructions
∗ Arithmetic
∗ Conditional
∗ Logical
∗ Shift
∗ Rotate

• Defining constants
∗ EQU and = directives

• Illustrative examples

• Performance: When to use
the xlat instruction

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 3

Assembly Language Statements

• Three different classes
∗ Instructions

» Tell CPU what to do

» Executable instructions with an op-code

∗ Directives (or pseudo-ops)
» Provide information to assembler on various aspects of the

assembly process

» Non-executable

– Do not generate machine language instructions

∗ Macros
» A shorthand notation for a group of statements

» A sophisticated text substitution mechanism with parameters

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 4

Assembly Language Statements (cont’d)

• Assembly language statement format:
[label] mnemonic [operands] [;comment]

∗ Typically one statement per line

∗ Fields in [] are optional
∗ label serves two distinct purposes:

» To label an instruction

– Can transfer program execution to the labeled instruction

» To label an identifier or constant

∗ mnemonic identifies the operation (e.g. add , or)

∗ operands specify the data required by the operation
» Executable instructions can have zero to three operands

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 5

Assembly Language Statements (cont’d)

∗ comments
» Begin with a semicolon (;) and extend to the end of the line

Examples
repeat: inc result ; increment result

CR EQU 0DH ; carriage return character

• White space can be used to improve readability
repeat:

inc result ; increment result

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 6

Data Allocation

• Variable declaration in a high-level language such
as C

char response
int value
float total

double average_value

specifies
» Amount storage required (1 byte, 2 bytes, …)
» Label to identify the storage allocated (response, value, …)
» Interpretation of the bits stored (signed, floating point, …)

– Bit pattern 1000 1101 1011 1001 is interpreted as

� −29,255 as a signed number
� 36,281 as an unsigned number

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 7

Data Allocation (cont’d)

• In assembly language, we use the define directive
∗ Define directive can be used

» To reserve storage space

» To label the storage space

» To initialize

» But no interpretation is attached to the bits stored

– Interpretation is up to the program code

∗ Define directive goes into the .DATA part of the
assembly language program

• Define directive format
[var-name] D? init-value [,init-value],...

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 8

Data Allocation (cont’d)

• Five define directives
DB Define Byte ;allocates 1 byte

DW Define Word ;allocates 2 bytes

DD Define Doubleword ;allocates 4 bytes

DQ Define Quadword ;allocates 8 bytes

DT Define Ten bytes ;allocates 10 bytes

Examples
sorted DB ’y’

response DB ? ;no initialization

value DW 25159

float1 DQ 1.234

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 9

Data Allocation (cont’d)

• Multiple definitions can be abbreviated

Example
 message DB ’B’
 DB ’y’
 DB ’e’
 DB 0DH
 DB 0AH

can be written as
message DB ’B’,’y’,’e’,0DH,0AH

• More compactly as
message DB ’Bye’,0DH,0AH

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 10

Data Allocation (cont’d)

• Multiple definitions can be cumbersome to
initialize data structures such as arrays

Example
To declare and initialize an integer array of 8 elements
 marks DW 0,0,0,0,0,0,0,0

• What if we want to declare and initialize to zero
an array of 200 elements?
∗ There is a better way of doing this than repeating zero

200 times in the above statement
» Assembler provides a directive to do this (DUP directive)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 11

Data Allocation (cont’d)

• Multiple initializations
∗ The DUP assembler directive allows multiple

initializations to the same value

∗ Previous marks array can be compactly declared as
marks DW 8 DUP (0)

Examples
table1 DW 10 DUP (?) ;10 words, uninitialized

message DB 3 DUP (’Bye!’);12 bytes, initialized

 ; as Bye!Bye!Bye!

Name1 DB 30 DUP (’?’) ;30 bytes, each

 ; initialized to ?

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 12

Data Allocation (cont’d)

• The DUP directive may also be nested

Example
stars DB 4 DUP(3 DUP (’*’),2 DUP (’?’),5 DUP (’!’))

Reserves 40-bytes space and initializes it as
??!!!!!??!!!!!***??!!!!!***??!!!!!

Example
matrix DW 10 DUP (5 DUP (0))

defines a 10X5 matrix and initializes its elements to zero

This declaration can also be done by
 matrix DW 50 DUP (0)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 13

Data Allocation (cont’d)

Symbol Table
∗ Assembler builds a symbol table so we can refer to the

allocated storage space by the associated label

Example
.DATA name offset
value DW 0 value 0

sum DD 0 sum 2

marks DW 10 DUP (?) marks 6

message DB ‘The grade is:’,0 message 26

char1 DB ? char1 40

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 14

Data Allocation (cont’d)

Correspondence to C Data Types

Directive C data type
 DB char

 DW int, unsigned

 DD float, long

 DQ double

 DT internal intermediate
 float value

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 15

Data Allocation (cont’d)

LABEL Directive
∗ LABEL directive provides another way to name a

memory location

∗ Format:
name LABEL type

type can be

BYTE 1 byte

WORD 2 bytes

DWORD 4 bytes

QWORD 8 bytes

TWORD 10 bytes

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 16

Data Allocation (cont’d)

LABEL Directive
Example

.DATA
count LABEL WORD
Lo-count DB 0
Hi_count DB 0

.CODE
...
mov Lo_count,AL
mov Hi_count,CL

∗ count refers to the 16-bit value

∗ Lo_count refers to the low byte

∗ Hi_count refers to the high byte

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 17

Where Are the Operands?

• Operands required by an operation can be
specified in a variety of ways

• A few basic ways are:
∗ operand in a register

– register addressing mode

∗ operand in the instruction itself
– immediate addressing mode

∗ operand in memory
– variety of addressing modes

�direct and indirect addressing modes

∗ operand at an I/O port

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 18

Where Are the Operands? (cont’d)

Register addressing mode
∗ Most efficient way of specifying an operand

» operand is in an internal register

Examples
mov EAX,EBX

mov BX,CX

∗ The mov instruction

mov destination,source

copies data from source to destination

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 19

Where Are the Operands? (cont’d)

Immediate addressing mode
∗ Data is part of the instruction

» operand is located in the code segment along with the
instruction

» Efficient as no separate operand fetch is needed

» Typically used to specify a constant

Example
mov AL,75

∗ This instruction uses register addressing mode for
specifying the destination and immediate addressing
mode to specify the source

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 20

Where Are the Operands? (cont’d)

Direct addressing mode
∗ Data is in the data segment

» Need a logical address to access data

– Two components: segment:offset

» Various addressing modes to specify the offset component

– offset part is referred to as the effective address

∗ The offset is specified directly as part of the instruction

∗ We write assembly language programs using memory
labels (e.g., declared using DB, DW, LABEL,...)

» Assembler computes the offset value for the label

– Uses symbol table to compute the offset of a label

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 21

Where Are the Operands? (cont’d)

Direct addressing mode

Examples
mov AL,response

» Assembler replaces response by its effective address (i.e., its
offset value from the symbol table)

mov table1,56
» table1 is declared as

table1 DW 20 DUP (0)

» Since the assembler replaces table1 by its effective address,
this instruction refers to the first element of table1

– In C, it is equivalent to
table1[0] = 56

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 22

Where Are the Operands? (cont’d)

Direct addressing mode
• Problem with direct addressing

∗ Useful only to specify simple variables

∗ Causes serious problems in addressing data types such
as arrays

» As an example, consider adding elements of an array

– Direct addressing does not facilitate using a loop structure
to iterate through the array

– We have to write an instruction to add each element of the
array

• Indirect addressing mode remedies this problem

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 23

Where Are the Operands? (cont’d)

Indirect addressing mode
• The offset is specified indirectly via a register

∗ Sometimes called register indirect addressing mode
∗ For 16-bit addressing, the offset value can be in one of

the three registers: BX, SI, or DI
∗ For 32-bit addressing, all 32-bit registers can be used

Example
mov AX,[BX]

∗ Square brackets [] are used to indicate that BX is
holding an offset value

» BX contains a pointer to the operand, not the operand itself

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 24

Where Are the Operands? (cont’d)

• Using indirect addressing mode, we can process
arrays using loops

Example: Summing array elements
∗ Load the starting address (i.e., offset) of the array into

BX

∗ Loop for each element in the array
» Get the value using the offset in BX

– Use indirect addressing

» Add the value to the running total

» Update the offset in BX to point to the next element of the
array

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 25

Where Are the Operands? (cont’d)

Loading offset value into a register
• Suppose we want to load BX with the offset value

of table1

• We cannot write
mov BX,table1

• Two ways of loading offset value
» Using OFFSET assembler directive

– Executed only at the assembly time
» Using lea instruction

– This is a processor instruction

– Executed at run time

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 26

Where Are the Operands? (cont’d)

Loading offset value into a register
• Using OFFSET assembler directive

∗ The previous example can be written as
mov BX,OFFSET table1

• Using lea (load effective address) instruction
∗ The format of lea instruction is

lea register,source

∗ The previous example can be written as
lea BX,table1

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 27

Where Are the Operands? (cont’d)

Loading offset value into a register
Which one to use -- OFFSET or lea ?

∗ Use OFFSET if possible
» OFFSET incurs only one-time overhead (at assembly time)
» lea incurs run time overhead (every time you run the program)

∗ May have to use lea in some instances
» When the needed data is available at run time only

– An index passed as a parameter to a procedure
» We can write

lea BX,table1[SI]

to load BX with the address of an element of table1 whose
index is in SI register

» We cannot use the OFFSET directive in this case

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 28

Data Transfer Instructions

• We will look at three instructions
∗ mov (move)

» Actually copy

∗ xchg (exchange)
» Exchanges two operands

∗ xlat (translate)
» Translates byte values using a translation table

• Other data transfer instructions such as
∗ movsx (move sign extended)

∗ movzx (move zero extended)

are discussed in Chapter 6

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 29

Data Transfer Instructions (cont’d)

The mov instruction
∗ The format is

mov destination,source

» Copies the value from source to destination

» source is not altered as a result of copying

» Both operands should be of same size

» source and destination cannot both be in memory

– Most Pentium instructions do not allow both operands to
be located in memory

– Pentium provides special instructions to facilitate
memory-to-memory block copying of data

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 30

Data Transfer Instructions (cont’d)

The mov instruction
∗ Five types of operand combinations are allowed:

Instruction type Example

mov register,register mov DX,CX

mov register,immediate mov BL,100

mov register,memory mov BX,count

mov memory,register mov count,SI

mov memory,immediate mov count,23

∗ The operand combinations are valid for all instructions
that require two operands

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 31

Data Transfer Instructions (cont’d)

Ambiguous moves: PTR directive
• For the following data definitions

.DATA

table1 DW 20 DUP (0)

status DB 7 DUP (1)

the last two mov instructions are ambiguous
mov BX,OFFSET table1

mov SI,OFFSET status

mov [BX],100

mov [SI],100

∗ Not clear whether the assembler should use byte or
word equivalent of 100

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 32

Data Transfer Instructions (cont’d)

Ambiguous moves: PTR directive
• The PTR assembler directive can be used to

clarify
• The last two mov instructions can be written as

mov WORD PTR [BX],100

mov BYTE PTR [SI],100

∗ WORD and BYTE are called type specifiers

• We can also use the following type specifiers:
DWORD for doubleword values

QWORD for quadword values

TWORD for ten byte values

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 33

Data Transfer Instructions (cont’d)

The xchg instruction
• The syntax is

xchg operand1,operand2

Exchanges the values of operand1 and operand2

Examples
xchg EAX,EDX

xchg response,CL

xchg total,DX

• Without the xchg instruction, we need a
temporary register to exchange values using only
the mov instruction

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 34

Data Transfer Instructions (cont’d)

The xchg instruction
• The xchg instruction is useful for conversion of

16-bit data between little endian and big endian
forms
∗ Example:

mov AL,AH

converts the data in AX into the other endian form

• Pentium provides bswap instruction to do similar
conversion on 32-bit data

bswap 32-bit register

∗ bswap works only on data located in a 32-bit register

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 35

Data Transfer Instructions (cont’d)

The xlat instruction
• The xlat instruction translates bytes
• The format is

xlatb

• To use xlat instruction
» BX should be loaded with the starting address of the

translation table
» AL must contain an index in to the table

– Index value starts at zero
» The instruction reads the byte at this index in the translation

table and stores this value in AL
– The index value in AL is lost

» Translation table can have at most 256 entries (due to AL)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 36

Data Transfer Instructions (cont’d)

The xlat instruction
Example: Encrypting digits

 Input digits: 0 1 2 3 4 5 6 7 8 9
Encrypted digits: 4 6 9 5 0 3 1 8 7 2

.DATA
xlat_table DB ’4695031872’
...

.CODE

mov BX,OFFSET xlat_table
GetCh AL
sub AL,’0’ ; converts input character to index
xlatb ; AL = encrypted digit character
PutCh AL
...

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 37

Overview of Assembly Instructions

• Pentium provides several types of instructions

• Brief overview of some basic instructions:
∗ Arithmetic instructions

∗ Jump instructions

∗ Loop instruction

∗ Logical instructions

∗ Shift instructions

∗ Rotate instructions

• These sample instructions allows you to write
reasonable assembly language programs

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 38

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
INC and DEC instructions

∗ Format:
inc destination dec destination

∗ Semantics:
destination := destination +/- 1

» destination can be 8-, 16-, or 32-bit operand, in memory
or register

�No immediate operand

• Examples
inc BX ; BX := BX+1

dec value ; value := value-1

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 39

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
ADD instruction

∗ Format:
add destination,source

∗ Semantics:
destination := (destination)+(source)

• Examples
add EBX,EAX

add value,35

∗ inc EAX is better than add EAX,1
– inc takes less space

– Both execute at about the same speed

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 40

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
SUB instruction

∗ Format:
sub destination,source

∗ Semantics:
destination := (destination)-(source)

• Examples
sub EBX,EAX

sub value,35

∗ dec EAX is better than sub EAX,1
– dec takes less space

– Both execute at about the same speed

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 41

Overview of Assembly Instructions (cont’d)

Arithmetic Instructions
CMP instruction

∗ Format:
cmp destination,source

∗ Semantics:
(destination)-(source)

∗ destination and source are not altered
∗ Useful to test relationship (>, =) between two operands
∗ Used in conjunction with conditional jump instructions

for decision making purposes
• Examples

cmp EBX,EAX cmp count,100

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 42

Overview of Assembly Instructions (cont’d)

Jump Instructions
Unconditional Jump

∗ Format:
jmp label

∗ Semantics:
» Execution is transferred to the instruction identified by label

• Examples: Infinite loop
 mov EAX,1

inc_again:

 inc EAX

 jmp inc_again
 mov EBX,EAX ; never executes this

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 43

Overview of Assembly Instructions (cont’d)

Jump Instructions
Conditional Jump

∗ Format:
j<cond> label

∗ Semantics:
» Execution is transferred to the instruction identified by label

only if <cond> is met

• Examples: Testing for carriage return
 GetCh AL
 cmp AL,0DH ; 0DH = ASCII carriage return
 je CR_received
 inc CL
 ...
CR_received:

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 44

Overview of Assembly Instructions (cont’d)

Jump Instructions
Conditional Jump

∗ Some conditional jump instructions
– Treats operands of the CMP instruction as signed numbers

je jump if equal

jg jump if greater

jl jump if less

jge jump if greater or equal

jle jump if less or equal

jne jump if not equal

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 45

Overview of Assembly Instructions (cont’d)

Jump Instructions
Conditional Jump

∗ Conditional jump instructions can also test values of the
individual flags

jz jump if zero (i.e., if ZF = 1)
jnz jump if not zero (i.e., if ZF = 0)
jc jump if carry (i.e., if CF = 1)
jnc jump if not carry (i.e., if CF = 0)

∗ jz is synonymous for je
∗ jnz is synonymous for jne

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 46

Overview of Assembly Instructions (cont’d)

Loop Instruction
LOOP Instruction

∗ Format:
loop target

∗ Semantics:
» Decrements CX and jumps to target if CX ≠ 0

– CX should be loaded with a loop count value

• Example: Executes loop body 50 times
 mov CX,50

repeat:

 <loop body>

 loop repeat
 ...

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 47

Overview of Assembly Instructions (cont’d)

Loop Instruction
• The previous example is equivalent to

 mov CX,50

repeat:

 <loop body>

 dec CX

 jnz repeat
 ...

∗ Surprisingly,
 dec CX

 jnz repeat

executes faster than
 loop repeat

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 48

Overview of Assembly Instructions (cont’d)

Logical Instructions
∗ Format:

and destination,source

or destination,source

not destination

∗ Semantics:
» Performs the standard bitwise logical operations

– result goes to destination

∗ TEST is a non-destructive AND instruction
test destination,source

∗ Performs logical AND but the result is not stored in
destination (like the CMP instruction)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 49

Overview of Assembly Instructions (cont’d)

Logical Instructions
Example: Testing the value in AL for odd/even number

 test AL,01H ; test the least significant bit

 jz even_number

odd_number:

 <process odd number>

 jmp skip

even_number:

 <process even number>

skip:

 . . .

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 50

Overview of Assembly Instructions (cont’d)

Shift Instructions
∗ Format:

Shift left
shl destination,count

shl destination,CL

Shift right
shr destination,count

shr destination,CL

∗ Semantics:
» Performs left/right shift of destination by the value in

count or CL register

– CL register contents are not altered

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 51

Overview of Assembly Instructions (cont’d)

Shift Instructions
• Bit shifted out goes into the carry flag

» Zero bit is shifted in at the other end

CF

7 6 5 4 3 2 1 0

0SHR

Bit Position:

SHL

7Bit Position: 6 5 4 3 2 1 0

0CF

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 52

Overview of Assembly Instructions (cont’d)

Shift Instructions
∗ count is an immediate value

shl AX,5

∗ Specification of count greater than 31 is not allowed
» If a greater value is specified, only the least significant 5 bits

are used

∗ CL version is useful if shift count is known at run time
» E.g. when the shift count value is passed as a parameter in a

procedure call
» Only the CL register can be used

�Shift count value should be loaded into CL
mov CL,5
shl AX,CL

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 53

Overview of Assembly Instructions (cont’d)

Rotate Instructions
∗ Two types of ROTATE instructions
∗ Rotate without carry

» rol (ROtate Left)
» ror (ROtate Right)

∗ Rotate with carry
» rcl (Rotate through Carry Left)
» rcr (Rotate through Carry Right)

∗ Format of ROTATE instructions is similar to the
SHIFT instructions

» Supports two versions
– Immediate count value
– Count value in CL register

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 54

Overview of Assembly Instructions (cont’d)

Rotate Instructions
∗ Bit shifted out goes into the carry flag as in SHIFT

instructions

7Bit Position: 6 5 4 3 2 1 0

CFROL

CF

7 6 5 4 3 2 1 0Bit Position:

ROR

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 55

Overview of Assembly Instructions (cont’d)

Rotate Instructions
∗ Bit shifted out goes into the carry flag as in SHIFT

instructions

7Bit Position: 6 5 4 3 2 1 0

CFRCL

CF

7 6 5 4 3 2 1 0Bit Position:

RCR

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 56

Defining Constants

• Assembler provides two directives:
» EQU directive

– No reassignment
– String constants can be defined

» = directive
– Can be reassigned
– No string constants

• Defining constants has two advantages:
∗ Improves program readability
∗ Helps in software maintenance

» Multiple occurrences can be changed from a single place

• Convention
» We use all upper-case letters for names of constants

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 57

Defining Constants

The EQU directive
• Syntax:

name EQU expression

∗ Assigns the result of expression to name

∗ The expression is evaluated at assembly time
�Similar to #define in C

Examples
NUM_OF_ROWS EQU 50

NUM_OF_COLS EQU 10

ARRAY_SIZE EQU NUM_OF_ROWS * NUM_OF_COLS

∗ Can also be used to define string constants
JUMP EQU jmp

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 58

Defining Constants

The = directive
• Syntax:

name = expression

∗ Similar to EQU directive
∗ Two key differences:

» Redefinition is allowed
count = 0
. . .
count = 99

is valid

» Cannot be used to define string constants or to redefine
keywords or instruction mnemonics

Example: JUMP = jmp is not allowed

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 59

Illustrative Examples

• Five examples are presented:
∗ Conversion of ASCII to binary representation

(BINCHAR.ASM)

∗ Conversion of ASCII to hexadecimal by character
manipulation (HEX1CHAR.ASM)

∗ Conversion of ASCII to hexadecimal using the XLAT
instruction (HEX2CHAR.ASM)

∗ Conversion of lowercase letters to uppercase by
character manipulation (TOUPPER.ASM)

∗ Sum of individual digits of a number
(ADDIGITS.ASM)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 60

Performance: When to Use XLAT

• Lowercase to uppercase conversion
– XLAT is bad for this application

Number of calls (in thousands)

C
on

ve
rs

io
n

tim
e

(s
ec

on
ds

)

0

1

2

3

4

0 20 40 60 80 100 120 140 160 180 200

without xlat
with xlat

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 61

Performance: When to Use XLAT (cont’d)

• Hex conversion
– XLAT is better for this application

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160 180 200

Number of calls (in thousands)

C
on

ve
rs

io
n

tim
e

(s
ec

on
ds

)

without xlat

with xlat

