
Arithmetic Flags and Instructions

Chapter 6

S. Dandamudi

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 2

Outline

• Status flags
∗ Zero flag

∗ Carry flag

∗ Overflow flag

∗ Sign flag

∗ Auxiliary flag

∗ Parity flag

• Arithmetic instructions
∗ Addition instructions

∗ Subtraction instructions

∗ Multiplication instructions

∗ Division instructions

• Application examples
∗ PutInt8

∗ GetInt8

• Multiword arithmetic
∗ Addition

∗ Subtraction

∗ Multiplication

∗ Division

• Performance: Multiword
multiplication

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 3

Status Flags

• Six status flags monitor the outcome of arithmetic, logical,
and related operations

F F
D

11
1 02

1
4

1
5

1
6

1
3

1
9

O

1 1
7

2
0

2
1

2
2

3
1

IO
PL

1

T
R
F

V
M

A
F

8

D F
N

P

V
I
F

T
F
S

F
V Z A

C
I II

F

Flags Register

100

0123456789

0 0

FLAGS

EFLAGS

Instruction Pointer

EIP IP

0 0 0 0 0 0 0 00

Status Flags

CF = Carry Flag

PF = Parity Flag

ZF = Zero Flag

SF = Sign Flag

OF = Overflow Flag

AF = Auxiliary Carry Flag

System Flags

NT = Nested Task

RF = Resume Flag

VM = Virtual 8086 Mode

AC = Alignment Check

VIP = Virtual Interrupt Pending

ID = ID Flag

Control Flags

DF = Direction Flag TF = Trap Flag

IF = Interrupt Flag

VIF = Virtual Interrupt Flag

15 01631

IOPL = I/O Privilege Level

C
F

P
F

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 4

Status Flags (cont’d)

• Status flags are updated to indicate certain
properties of the result
∗ Example: If the result is zero, zero flag is set

• Once a flag is set, it remains in that state until
another instruction that affects the flags is
executed

• Not all instructions affect all status flags
∗ add and sub affect all six flags

∗ inc and dec affect all but the carry flag

∗ mov, push , and pop do not affect any flags

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 5

Status Flags (cont’d)

• Example
; initially, assume ZF = 0

mov AL,55H ; ZF is still zero

sub AL,55H ; result is 0
 ; ZF is set (ZF = 1)

push BX ; ZF remains 1

mov BX,AX ; ZF remains 1

pop DX ; ZF remains 1

mov CX,0 ; ZF remains 1

inc CX ; result is 1
 ; ZF is cleared (ZF = 0)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 6

Status Flags (cont’d)

• Zero Flag
∗ Indicates zero result

– If the result is zero, ZF = 1

– Otherwise, ZF = 0

∗ Zero can result in several ways (e.g. overflow)
 mov AL,0FH mov AX,0FFFFH mov AX,1

 add AL,0F1H inc AX dec AX

» All three examples result in zero result and set ZF

∗ Related instructions
jz jump if zero (jump if ZF = 1)

jnz jump if not zero (jump if ZF = 0)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 7

Status Flags (cont’d)

• Uses of zero flag
∗ Two main uses of zero flag

» Testing equality
– Often used with cmp instruction

cmp char,’$’ ; ZF = 1 if char is $

cmp AX,BX

» Counting to a preset value

– Initialize a register with the count value
– Decrement it using dec instruction

– Use jz/jnz to transfer control

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 8

Status Flags (cont’d)

• Consider the following
code

 sum := 0

 for (I = 1 to M)

 for (j = 1 to N)

 sum := sum + 1

 end for

 end for

• Assembly code

 sub AX,AX ; AX := 0

 mov DX,M

outer_loop:

 mov CX,N

inner_loop:

 inc AX

 loop inner_loop

 dec DX

 jnz outer_loop

exit_loops:

 mov sum,AX

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 9

Status Flags (cont’d)

• Two observations
∗ loop instruction is equivalent to

dec CX

jnz inner_loop

» This two instruction sequence is more efficient than the loop
instruction (takes less time to execute)

» loop instruction does not affect any flags!

∗ This two instruction sequence is better than initializing
CX to zero and executing

inc CX

cmp CX,N

jle inner_loop

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 10

Status Flags (cont’d)

• Carry Flag
∗ Records the fact that the result of an arithmetic

operation on unsigned numbers is out of range

∗ The carry flag is set in the following examples
mov AL,0FH mov AX,12AEH

add AL,0F1H sub AX,12AFH

∗ Range of 8-, 16-, and 32-bit unsigned numbers

size range

8 bits 0 to 255 (28 − 1)

16 bits 0 to 65,535 (216 − 1)

32 bits 0 to 4,294,967,295 (232−1)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 11

Status Flags (cont’d)

∗ Carry flag is not set by inc and dec instructions
» The carry flag is not set in the following examples
 mov AL,0FFH mov AX,0

 inc AL dec AX

∗ Related instructions
 jc jump if carry (jump if CF = 1)

jnc jump if no carry (jump if CF = 0)

∗ Carry flag can be manipulated directly using
 stc set carry flag (set CF to 1)

 clc clear carry flag (clears CF to 0)

 cmc complement carry flag (inverts CF value)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 12

Status Flags (cont’d)

• Uses of carry flag
∗ To propagate carry/borrow in multiword

addition/subtraction
 1 ← carry from lower 32 bits
x = 3710 26A8 1257 9AE7H

y = 489B A321 FE60 4213H

 7FAB C9CA 10B7 DCFAH

∗ To detect overflow/underflow condition
» In the last example, carry out of leftmost bit indicates overflow

∗ To test a bit using the shift/rotate instructions
» Bit shifted/rotated out is captured in the carry flag
» We can use jc/jnc to test whether this bit is 1 or 0

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 13

Status Flags (cont’d)

• Overflow flag
∗ Indicates out-of-range result on signed numbers

– Signed number counterpart of the carry flag

∗ The following code sets the overflow flag but not the
carry flag

mov AL,72H ; 72H = 114D

add AL,0EH ; 0EH = 14D

∗ Range of 8-, 16-, and 32-bit signed numbers

size range

8 bits − 128 to +127 27 to (27 − 1)

16 bits − 32,768 to +32,767 215 to (215 − 1)

32 bits −2,147,483,648 to +2,147,483,647 231 to (231 − 1)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 14

Status Flags (cont’d)

Unsigned interpretation

mov AL,72H

add AL,0EH
jc overflow

no_overflow:

(no overflow code here)

overflow:

(overflow code here)

Signed interpretation

mov AL,72H

add AL,0EH
jo overflow

no_overflow:

(no overflow code here)

overflow:

(overflow code here)

• Signed or unsigned: How does the system know?
∗ The processor does not know the interpretation

∗ It sets carry and overflow under each interpretation

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 15

Status Flags (cont’d)

∗ Related instructions
 jo jump if overflow (jump if OF = 1)

jno jump if no overflow (jump if OF = 0)

∗ There is a special software interrupt instruction
 into interrupt on overflow

 Details on this instruction in Chapter 12

• Uses of overflow flag
∗ Main use

» To detect out-of-range result on signed numbers

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 16

Status Flags (cont’d)

• Sign flag
∗ Indicates the sign of the result

– Useful only when dealing with signed numbers
– Simply a copy of the most significant bit of the result

∗ Examples
mov AL,15 mov AL,15

add AL,97 sub AL,97

clears the sign flag as sets the sign flag as
the result is 112 the result is −82
(or 0111000 in binary) (or 10101110 in binary)

∗ Related instructions
js jump if sign (jump if SF = 1)
jns jump if no sign (jump if SF = 0)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 17

Status Flags (cont’d)

• Consider the count down loop:

for (i = M downto 0)

<loop body>

end for

• If we don’t use the jns , we
need cmp as shown below:

cmp CX,0

jl for_loop

The count down loop can be
implemented as

 mov CX,M

for_loop:

 <loop body>

 dec CX

 jns for_loop

• Usage of sign flag
∗ To test the sign of the result

∗ Also useful to efficiently implement countdown loops

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 18

Status Flags (cont’d)

• Auxiliary flag
∗ Indicates whether an operation produced a carry or

borrow in the low-order 4 bits (nibble) of 8-, 16-, or 32-
bit operands (i.e. operand size doesn’t matter)

∗ Example
 1 ← carry from lower 4 bits
mov AL,43 43D = 0010 1011B

add AL,94 94D = 0101 1110B

 137D = 1000 1001B

» As there is a carry from the lower nibble, auxiliary flag is set

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 19

Status Flags (cont’d)

∗ Related instructions
» No conditional jump instructions with this flag

» Arithmetic operations on BCD numbers use this flag
aaa ASCII adjust for addition
aas ASCII adjust for subtraction
aam ASCII adjust for multiplication
aad ASCII adjust for division
daa Decimal adjust for addition
das Decimal adjust for subtraction

– Chapter 11 has more details on these instructions

∗ Usage
» Main use is in performing arithmetic operations on BCD

numbers

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 20

Status Flags (cont’d)

• Parity flag
∗ Indicates even parity of the low 8 bits of the result

– PF is set if the lower 8 bits contain even number 1 bits
– For 16- and 32-bit values, only the least significant 8 bits

are considered for computing parity value

∗ Example
mov AL,53 53D = 0011 0101B

add AL,89 89D = 0101 1001B

 142D = 1000 1110B

» As the result has even number of 1 bits, parity flag is set

∗ Related instructions
jp jump on even parity (jump if PF = 1)
jnp jump on odd parity (jump if PF = 0)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 21

Status Flags (cont’d)

∗ Usage of parity flag
» Useful in writing data encoding programs

» Example: Encodes the byte in AL (MSB is the parity bit)

parity_encode PROC

 shl AL
 jp parity_zero

 stc

 jmp move_parity_bit

 parity_zero:

 clc
 move_parity_bit:

 rcr AL

parity_encode ENDP

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 22

Arithmetic Instructions

• Pentium provides several arithmetic instructions
that operate on 8-, 16- and 32-bit operands

» Addition: add , adc , inc

» Subtraction: sub , sbb , dec , neg , cmp

» Multiplication: mul , imul

» Division: div , idiv

» Related instructions: cbw, cwd, cdq , cwde, movsx , movzx

∗ There are few other instructions such as aaa , aas , etc.
that operate on decimal numbers

» See Chapter 11 for details

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 23

Arithmetic Instructions (cont’d)

• Addition instructions
∗ Basic format

add destination,source

» Performs simple integer addition
destination := destination + source

∗ Five operand combinations are possible
add register, register

add register,immediate

add memory,immediate

add register,memory

add memory,register

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 24

Arithmetic Instructions (cont’d)

∗ Basic format
adc destination,source

» Performs integer addition with carry
destination := destination + source + CF

∗ Useful in performing addition of long word arithmetic

∗ The three carry flag manipulating instructions are
useful

 stc set carry flag (set CF to 1)

 clc clear carry flag (clears CF to 0)

 cmc complement carry flag (inverts CF value)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 25

Arithmetic Instructions (cont’d)

∗ The final instruction inc requires a single operand
inc destination

» Performs increment operation
destination := destination + 1

» The operand is treated as an unsigned number

∗ Does not affect the carry flag
» Other five status flags are updated

∗ In general
inc BX

is better than
add BX,1

» Both take same time but inc version takes less space

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 26

Arithmetic Instructions (cont’d)

• Subtraction instructions
sub destination,source

» Performs simple integer subtraction
destination := destination − source

sbb destination,source

» Performs integer subtraction with borrow
destination := destination - source - CF

dec destination
» Performs decrement operation

destination := destination − 1

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 27

Arithmetic Instructions (cont’d)

• Subtraction instructions (cont’d)
neg destination

» Performs sign reversal
destination := 0 − destination

» Useful in signed number manipulation

cmp destination,source
» Performs subtraction without updating destination

destination - source

» Updates all six status flags to record the attributes of the result
» The cmp instruction is typically followed by a conditional

jump instruction

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 28

Arithmetic Instructions (cont’d)

• Multiplication
∗ More complicated than add /sub

» Produces double-length results

– E.g. Multiplying two 8 bit numbers produces a result that
requires 16 bits

» Cannot use a single multiply instruction for signed and
unsigned numbers

– add and sub instructions work both on signed and
unsigned numbers

– For multiplication, we need separate instructions
mul for unsigned numbers

imul for signed numbers

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 29

Arithmetic Instructions (cont’d)

• Unsigned multiplication
mul source
» Depending on the source operand size, the location of the

other source operand and destination are selected

8-bit
source

AL AH AL

High-order 8 bits Low-order 8 bits

source
16-bit

AX DX AX

High-order 16 bits Low-order 16 bits

EAX
source
32-bit

EDX EAX

High-order 32 bits Low-order 32 bits

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 30

Arithmetic Instructions (cont’d)

∗ Example
mov AL,10

mov DL,25

mul DL

produces 250D in AX register (result fits in AL)

• The imul instruction can use the same syntax
» Also supports other formats

∗ Example
mov DL,0FFH ; DL := -1

mov AL,0BEH ; AL := -66
mul DL

produces 66D in AX register (again, result fits in AL)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 31

Arithmetic Instructions (cont’d)

• Division instruction
∗ Even more complicated than multiplication

» Produces two results
– Quotient
– Remainder

» In multiplication, using a double-length register, there will not
be any overflow

– In division, divide overflow is possible

�Pentium provides a special software interrupt when a
divide overflow occurs

∗ Two instructions as in multiplication
div source for unsigned numbers

idiv source for signed numbers

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 32

Arithmetic Instructions (cont’d)

16-bit dividend

and

AX

Divisor

source

Quotient Remainder

8-bit

AL AH

AX

AX

Quotient

DX

Remainder

source
16-bit

Divisor

and

DX

32-bit dividend

and

EDX

Divisor

source

Quotient RemainderEAX

EAX EDX

32-bit

64-bit dividend

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 33

Arithmetic Instructions (cont’d)

• Example
mov AX,00FBH ; AX := 251D

mov CL,0CH ; CL := 12D

div CL

produces 20D in AL and 11D as remainder in AH

• Example
sub DX,DX ; clear DX

mov AX,141BH ; AX := 5147D

mov CX,012CH ; CX := 300D

div CX

produces 17D in AX and 47D as remainder in DX

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 34

Arithmetic Instructions (cont’d)

• Signed division requires some help
» We extended an unsigned 16 bit number to 32 bits by placing

zeros in the upper 16 bits

» This will not work for signed numbers

– To extend signed numbers, you have to copy the sign bit
into those upper bit positions

∗ Pentium provides three instructions in aiding sign
extension

» All three take no operands
cbw converts byte to word (extends AL into AH)

cwd converts word to doubleword (extends AX into DX)

cdq converts doubleword to quadword
 (extends EAX into EDX)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 35

Arithmetic Instructions (cont’d)

∗ Some additional related instructions
» Sign extension

cwde converts word to doubleword
 (extends AX into EAX)

» Two move instructions
movsx dest,src (move sign-extended src to dest)

movzx dest,src (move zero-extended src to dest)

» For both move instructions, dest has to be a register

» The src operand can be in a register or memory

– If src is 8-bits, dest has to be either a 16 bit or 32 bit
register

– If src is 16-bits, dest has to be a 32 bit register

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 36

Arithmetic Instructions (cont’d)

• Example
mov AL,0A1H ; AL := -95D

cbw ; AH = FFH

mov CL,0CH ; CL := 12D

idiv CL

produces −7D in AL and −11D as remainder in AH

• Example
mov AX,0EBE5 ; AX := -5147D

cwd ; DX := FFFFH

mov CX,012CH ; CX := 300D

idiv CX

produces −17D in AX and −47D as remainder in DX

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 37

Application Examples

• PutInt8 procedure
∗ To display a number, repeatedly divide it by 10 and

display the remainders obtained
quotient remainder

108/10 10 8

10/10 1 0

1/10 0 1

∗ To display digits, they must be converted to their
character form

» This means simply adding the ASCII code for zero (see line
24)

line 24: add AH,’0’

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 38

Application Examples (cont’d)

• GetInt8 procedure
∗ To read a number, read each digit character

» Convert to its numeric equivalent

» Multiply the running total by 10 and add this digit

Input digit Numeric
value (N)

Number := Number*10 + N

Initial value -- 0
‘1’ 1 0 * 10 + 1 = 1
‘5’ 5 1 * 10 + 5 = 15
‘8’ 8 15 * 10 + 8 = 158

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 39

Multiword Arithmetic

• Arithmetic operations (add , sub , mul , and div)
work on 8-, 16-, or 32-bit operands

• Arithmetic on larger operands require multiword
arithmetic software routines

• Addition/subtraction
∗ These two operations are straightforward to extend to

larger operand sizes
∗ Need to use adc /sbb versions to include the carry

generated by the previous group of bits

∗ Example addition on the next slide

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 40

Multiword Arithmetic (cont’d)

;--

;Adds two 64-bit numbers in EBX:EAX and EDX:ECX.

;The result is returned in EBX:EAX.

;Overflow/underflow conditions are indicated

;by setting the carry flag.

;Other registers are not disturbed.

;--

 add64 PROC

 add EAX,ECX

 adc EBX,EDX

 ret

 add64 ENDP

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 41

Multiword Arithmetic (cont’d)

• Multiplication
∗ We consider two algorithms

» Longhand multiplication

– Uses the method that we are familiar with

– Needs addition operations only

– Examines each bit in the multiplier and adds the
multiplicand if the multiplier bit is 1

�Appropriate shifting is required
» Using the mul instruction

– Chops the operand into 32-bit chunks and applies mul
instruction

– Similar to the addition example seen before

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 42

Multiword Arithmetic (cont’d)

∗ Longhand multiplication
�Final 128-bit result in P:A

P := 0; count := 64

A := multiplier; B := multiplicand
while (count > 0)

 if (LSB of A = 1)

 then P := P+B

 CF := carry generated by P+B
 else CF := 0

 end if

 shift right CF:P:A by one bit position

 count := count-1

end while

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 43

Multiword Arithmetic (cont’d)

temp := A0 × B0

result := temp

temp := A1 × B0

temp := left shift temp

 by 32 bits

result := result + temp

temp := A0 × B1

temp := left shift temp

 by 32 bits

result := result + temp

temp := A1 × B1

temp := left shift temp

 by 32 bits

result := result + temp

∗ Using the mul instruction
» A 64-bit number is treated as two 32-bit numbers

– A is considered as consisting of A1A0 (similarly B)

– Left shift operation replaces zeros on the right

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 44

Multiword Arithmetic (cont’d)

• Division
∗ To implement n-bit division (A by B), we need an

additional n+1 bit register P

∗ Core part of the algorithm
» Test the sign of P

» if P is negative

– left shift P:A by one bit position

– P := P+B

» else

– left shift P:A by one bit position

– P := P−B

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 45

Multiword Arithmetic (cont’d)

Division Algorithm

P := 0; count := 64
A := dividend

B := divisor

while (count > 0)

 if (P is negative)

 then shift left P:A
 by 1 bit position
 P := P+B

 else shift left P:A
 by 1 bit position
 P := P-B

 end if

A = quotient, P = remainder

 if (P is negative)

 then set low-order
 bit of A to 0

 else set low-order
 bit of A to 1

 end if

 count := count-1

end while

if (P is negative)

 P := P+B

end if

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 46

Performance: Multiword Multiplication

• Longhand version versus mul version
∗ To multiply 264−1 × 264−1

Number of calls (in thousands)

Ex
ec

ut
io

n
tim

e (
se

co
nd

s)

0

5

10

15

20

0 100 200 300 400 500 600 700

mul instruction

algorith
m

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 47

Performance: Multiword Multiply (cont’d)

• Using add versus mul instruction
∗ Certain special cases of multiplication can be done by a

series additions (e.g. power of 2 by shift operations)

∗ Example: Multiplication by 10
∗ Instead of using mul instruction, we can multiply by 10

using add instructions as follows (performs AL × 10):
sub AH,AH ; AH := 0

mov BX,AX ; BX := x

add AX,AX ; AX := 2x

add AX,AX ; AX := 4x

add AX,BX ; AX := 5x

add AX,AX ; AX := 10x

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Arithmetic: Page 48

Performance: Multiword Multiply (cont’d)

• Multiplication of 232−1 by 10

Number of calls (in thousands)

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0.0

0.4

0.8

1.2

1.6

2.0

0 100 200 300 400 500 600 700

mul instru
ction

add instruction

