
Selection and Iteration

Chapter 7

S. Dandamudi



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 2

Outline

• Unconditional jump

• Compare instruction

• Conditional jumps
∗ Single flags

∗ Unsigned comparisons

∗ Signed comparisons

• Loop instructions

• Implementing high-level
language decision structures
∗ Selection structures

∗ Iteration structures

• Illustrative examples

• Indirect jumps
∗ Multiway conditional

statements

• Logical expression
evaluation
∗ Full evaluation

∗ Partial evaluation

• Performance: Logical
expression evaluation
∗ Partial vs. full evaluation



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 3

Unconditional Jump

• Unconditional jump transfers control to the
instruction at the target address

• Format
jmp    target

• Specification of target
∗ Direct

» Target address is specified as a part of the instruction

∗ Indirect
» Target address is specified indirectly either through memory or

a general-purpose register



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 4

Unconditional Jump (cont’d)

Example
• Two jump instructions

∗ Forward jump
jmp    CX_init_done

∗ Backward jump
jmp    repeat1

• Programmer specifies
target by a label

• Assembler computes the
offset using the symbol
table

        . . .

      mov    CX,10

      jmp    CX_init_done

init_CX_20:

      mov    CX,20

CX_init_done:

      mov    AX,CX

repeat1:

      dec    CX

          . . .

      jmp    repeat1

          . . .



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 5

Unconditional Jump (cont’d)

• Address specified in the jump instruction is not the
absolute address
∗ Uses relative address

» Specifies relative byte displacement between the target
instruction and the instruction following the jump instruction

» Displacement is w.r.t the instruction following jmp

– Reason: IP is already pointing to this instruction

∗ Execution of jmp  involves adding the displacement
value to current IP

∗ Displacement is a signed 16-bit number
» Negative value for backward jumps

» Positive value for forward jumps



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 6

Target Location

• Inter-segment jump
∗ Target is in another segment

CS := target-segment (2 bytes)
IP := target-offset (2 bytes)

» Called far jumps (needs five bytes to encode jmp )

• Intra-segment jumps
∗ Target is in the same segment

IP := IP + relative-displacement (1 or 2 bytes)

∗ Uses 1-byte displacement if target is within −128  to +127
» Called short jumps (needs two bytes to encode jmp )

∗ If target is outside this range, uses 2-byte displacement
» Called near jumps (needs three bytes to encode jmp )



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 7

Target Location (cont’d)

• In most cases, the assembler can figure out the
type of jump

• For backward jumps, assembler can decide
whether to use the short jump form or not

• For forward jumps, it needs a hint from the
programmer
∗ Use SHORT prefix to the target label

∗ If such a hint is not given
» Assembler reserves three bytes for jmp  instruction

» If short jump can be used, leaves one byte of rogue data
– See the next example for details



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 8

Example

        .  .  .

8 0005   EB 0C          jmp    SHORT CX_init_done

0013 - 0007 = 0C

9 0007   B9 000A       mov    CX,10

10 000A  EB 07  90      jmp    CX_init_done

rogue byte 0013 - 000D = 07

11                 init_CX_20:

12 000D  B9 0014       mov    CX,20

13 0010  E9 00D0        jmp    near_jump

    00E3 - 0013 = D0

14                 CX_init_done:

15 0013  8B C1         mov    AX,CX



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 9

Example (cont’d)

16                 repeat1:

17 0015  49            dec    CX

18 0016  EB FD          jmp    repeat1

0015 - 0018 = -3 = FDH

.  .  .

84 00DB  EB 03          jmp    SHORT short_jump

00E0 - 00DD = 3

85 00DD  B9 FF00       mov    CX, 0FF00H

86                  short_jump:

87 00E0  BA 0020       mov    DX, 20H

88                  near_jump:

89 00E3  E9 FF27        jmp    init_CX_20

000D - 00E6 = -217 = FF27H



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 10

Compare Instruction

• Compare instruction can be used to test the
conditions

• Format
cmp    destination, source

• Updates the arithmetic flags by performing
destination - source

• The flags can be tested by a subsequent
conditional jump instruction



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 11

Conditional Jumps

• Three types of conditional jumps
∗ Jumps based on the value of a single flag

» Arithmetic flags such as zero, carry can be tested using these
instructions

∗ Jumps based on unsigned comparisons
» The operands of cmp instruction are treated as unsigned

numbers

∗ Jumps based on signed comparisons
» The operands of cmp instruction are treated as signed

numbers



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 12

Jumps Based on Single Flags

Testing for zero
jz jump if zero   jumps if ZF = 1

je jump if equal   jumps if ZF = 1

jnz jump if not zero  jumps if ZF = 0

jne jump if not equal  jumps if ZF = 0

jcxz jump if CX = 0  jumps if CX = 0

  (Flags are not tested)



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 13

Jumps Based on Single Flags (cont’d)

Testing for carry
jc jump if carry   jumps if CF = 1

jnc jump if no carry  jumps if CF = 0

Testing for overflow
jo jump if overflow   jumps if OF = 1

jno jump if no overflow   jumps if OF = 0

Testing for sign
js jump if negative   jumps if SF = 1

jns jump if not negative   jumps if SF = 0



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 14

Jumps Based on Single Flags (cont’d)

Testing for parity
jp jump if parity   jumps if PF = 1

jpe jump if parity  jumps if PF = 1
is even

jnp jump if not parity   jumps if PF = 0

jpo jump if parity  jumps if PF = 0
is odd



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 15

Jumps Based on Unsigned Comparisons

Mnemonic Meaning Condition
je jump if equal ZF = 1

jz jump if zero ZF = 1

jne jump if not equal ZF = 0

jnz jump if not zero ZF = 0

ja jump if above CF = ZF = 0

jnbe jump if not below CF = ZF = 0
or equal



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 16

Jumps Based on Unsigned Comparisons

Mnemonic Meaning Condition
jae jump if above CF = 0

or equal
jnb jump if not below CF = 0

jb jump if below CF = 1
jnae jump if not above CF = 1

or equal

jbe jump if below CF=1 or ZF=1
or equal

jna jump if not above CF=1 or ZF=1



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 17

Jumps Based on Signed Comparisons

Mnemonic Meaning Condition
je jump if equal ZF = 1

jz jump if zero ZF = 1

jne jump if not equal ZF = 0

jnz jump if not zero ZF = 0

jg jump if greater ZF=0 & SF=OF

jnle jump if not less ZF=0 & SF=OF
or equal



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 18

Jumps Based on Signed Comparisons (cont’d)

Mnemonic Meaning Condition
jge jump if greater   SF = OF

or equal
jnl jump if not less   SF = OF

jl jump if less   SF ≠ OF
jnge jump if not greater   SF ≠ OF

or equal

jle jump if less ZF=1 or SF ≠ OF
or equal

jng jump if not greater ZF=1 or SF ≠ OF



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 19

A Note on Conditional Jumps

target:

. . .

cmp    AX,BX

je    target

mov    CX,10

. . .

traget  is out of range for a
short jump

• Use this code to get around

target:

. . .

cmp    AX,BX

jne    skip1

jmp    target

skip1:

mov    CX,10

. . .

• All conditional jumps are encoded using 2 bytes
∗ Treated as short jumps

• What if the target is outside this range?



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 20

Loop Instructions

• Loop instructions use CX/ECX to maintain the
count value

• target  should be within the range of a short
jump as in conditional jump instructions

• Three loop instructions

loop    target

Action: CX := CX-1

 Jump to target if CX ≠ 0



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 21

Loop Instructions (cont’d)

• The following two loop instructions also test the
zero flag status

loope/loopz    target

Action: CX := CX-1

 Jump to target if (CX ≠ 0 and ZF = 1)

loopne/loopnz    target

Action: CX := CX-1

 Jump to target if (CX ≠ 0 and ZF = 0)



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 22

Instruction Execution Times

• Functionally, loop  instruction can be replaced by
dec    CX
jnz    target

• loop  instruction is slower than dec/jnz  version
• loop  requires 5/6 clocks whereas dec/jnz  takes

only 2 clocks

• jcxz  also takes 5/6 clocks

• Equivalent code (shown below) takes only 2 clocks
cmp    CX,0

jz     target



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 23

Implementing HLL Decision Structures

• High-level language decision structures can be
implemented in a straightforward way

• See Section 7.5 (page 272) for examples that
implement
∗ if-then-else

∗ if-then-else with a relational operator

∗ if-then-else with logical operators AND and OR

∗ while loop

∗ repeat-until loop

∗ for loop



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 24

Illustrative Examples

• Two example programs
∗ Linear search

» LIN_SRCH.ASM

» Searches an array of non-negative numbers for a given input
number

∗ Selection sort
» SEL_SORT.ASM

» Uses selection sort algorithm to sort an integer array in
ascending order



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 25

Indirect Jumps

• Jump target address is not specified directly as a
part of the jump instruction

• With indirect jump, we can specify target via a
general-purpose register or memory
∗ Example: Assuming CX has the offset value

jmp     CX

∗ Note: The offset value in indirect jump is the absolute
value (not relative value as in direct jumps)

• Program example
∗ IJUMP.ASM

» Uses a jump table to direct the jump



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 26

Indirect Jumps (cont’d)

• Another example
∗ Implementing multiway

jumps
» We use switch

statement of C

∗ We can use a table with
appropriate target pointers
for the indirect jump

∗ Segment override is needed
» jump_table  is in the

code segment (not in the
data segment)

switch (ch)

{
    case '0':
             count[0]++;

             break;

    case '1':

             count[1]++;

             break;

    case '2':

             count[2]++;

             break;

    case '3':

             count[3]++;

             break;

    default:

             count[4]++;

}



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 27

Indirect Jumps (cont’d)
  _main    PROC    NEAR
        .  .  .
   mov    AL,ch
   cbw
   sub    AX,48 ;48 =‘0’
   mov    BX,AX
   cmp    BX,3
   ja     default
   shl    BX,1 ;BX:= BX*2
   jmp    WORD PTR

CS:jump_table[BX]
case_0:
   inc    WORD PTR [BP-10]
   jmp    SHORT end_switch
case_1:

   inc    WORD PTR [BP-8]

   jmp    SHORT end_switch

case_2:
   inc    WORD PTR [BP-6]
   jmp    SHORT end_switch
case_3:
   inc    WORD PTR [BP-4]
   jmp    SHORT end_switch

default:
   inc    WORD PTR [BP-2]
end_switch:
         .  .  .
_main    ENDP

jump_table  LABEL  WORD

      DW     case_0

      DW     case_1

      DW     case_2

      DW     case_3
         .  .  .



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 28

Evaluation of Logical Expressions

• Two basic ways
∗ Full evaluation

» Entire expression is evaluated before assigning a value

» PASCAL uses full evaluation

∗ Partial evaluation
» Assigns as soon as the final outcome is known without blindly

evaluating the entire logical expression

» Two rules help:
– cond1 AND cond2

�If cond1  is false, no need to evaluate cond2

– cond1 OR cond2

�If cond1  is true, no need to evaluate cond2



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 29

Evaluation of Logical Expressions (cont’d)

• Partial evaluation
∗ Used by C

• Useful in certain cases to avoid run-time errors

• Example
if ((X > 0) AND (Y/X > 100))

∗ If x is 0, full evaluation results in divide error
∗ Partial evaluation will not evaluate (Y/X > 100)  if

X = 0

• Partial evaluation is used to test if a pointer value
is NULL before accessing the data it points to



1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Selection: Page 30

Performance: Full vs. Partial Evaluation

0

2

4

6

8

10 20 30 40 50 60 70 80 90 100

Number of calls (in thousands)

E
xe

cu
tio

n 
tim

e 
(s

ec
on

ds
)

partial evaluation

full evaluation

AL version


