Selection and lteration

Chapter 7
S. Dandamudi

Outline

* Unconditional jump lllustrative examples

 Compare instruction e Indirect jJumps

« Conditional jumps [J Multiway conditional
[Single flags statements
O Unsigned comparisons * Logical expression
[J Signed comparisons evaluation

[1 Full evaluation
[1 Partial evaluation

Performance: Logical
expression evaluation
[1 Partial vs. full evaluation

e Loop instructions
* Implementing high-level
language decision structures’

[1 Selection structures
[1 Iteration structures

1998 [0 S. Dandamudi Selection: Page 2
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Unconditional Jump

« Unconditional jump transfers control to the
Instruction at the target address

e Format
jmp target

o Specification of target

[1 Direct
» Target address is specified as a part of the instruction

(] Indirect

» Target address is specified indirectly either thromgimoryor
a general-purposeqgister

1998 [0 S. Dandamudi Selection: Page 3
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Unconditional Jump (cont’d)

Example
e Two jump !nstructlons mov CX.10
1 Forward jump jmp CX_init_done
jmp CX_init_done init CX 20
[1 Backward jump mov CX,20
jmp repeatl CX_init_done:
 Programmer specifies mov AX,CX
target by a label repeatl:
dec CX
 Assembler computes the
offset using the symbol imp repeatl
table
1998 [0 S. Dandamudi Selection: Page 4

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Unconditional Jump (cont’d)

e Address specified in the jJump instruction is not the
absolute address

[1 Uses relative address

» Specifies relative byte displacement between the target
iInstruction and the instruction following the jump instruction

» Displacement is w.r.t the instruction followipgp
— ReasoniP is already pointing to this instruction
[1 Execution ofmp involves adding the displacement
value to current IP

[1 Displacement is a signed 16-bit number
» Negative value for backward jumps
» Positive value for forward jumps

1998 [0 S. Dandamudi Selection: Page 5
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Target Location

e |nter-segment jump
[Target is in another segment
CS :=target-segment (2 bytes)
IP := target-offset (2 bytes)
» Calledfar jumps(needs five bytes to encopiep)

* Intra-segment jumps

[1 Target is in the same segment
IP ;= IP + relative-displacement (1 or 2 bytes)

[1 Uses 1-byte displacement if target is withlit28 to +127
» Calledshort jumpgqneeds two bytes to encojiep)

[1If target is outside this range, uses 2-byte displacement
» Callednear jumpgneeds three bytes to encquigp)

1998 [0 S. Dandamudi Selection: Page 6
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Target Location (cont’d)

* |n most cases, the assembler can figure out the
type of jump

e For backward jumps, assembler can decide
whether to use the short jump form or not

* For forward jumps, it needs a hint from the
programmer

[1 Use SHORT prefix to the target label
[1If such a hint is not given
» Assembler reserves three bytesjfiop instruction

» If short jump can be used, leaves one byte of rogue data
— See the next example for details

1998 [0 S. Dandamudi Selection: Page 7
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Example

8 0005 EBOC _ jmp SHORT CX_init_done

0013 - 0007 = 0C
9 0007 B9 000A mov CX,10

10 000A EBO7__90 _ jmp CX_ init_done

rogue byte 0013 - 000D = 07
11 init_ CX_20:
12 000D B9 0014 mov CX,20
13 0010 E9Q 00DQ jmp near_jump
OOE3 - 0013 =D0
14 CX_init_done:

150013 8B C1 mov AX,CX

1998 [0 S. Dandamudi Selection: Page 8
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Example (cont’d)

16 repeatl:
17 0015 49 dec CX
18 0016 EB FD___ jmp repeatl
0015 - 0018 = -3 = FDH
84 00DB EB 03__ jmp SHORT short_jump

OOEO - 00DD = 3
85 00DD B9 FFOO0 mov CX, OFFOOH

86 short_jump:
87 O0OEO BA 0020 mov DX, 20H
88 near_jump:
89 00E3 E9 FF27 jmp init. CX 20
000D - O0E6 =-217 = FF27H
1998 [0 S. Dandamudi Selection: Page 9

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Compare Instruction

 Compare instruction can be used to test the
conditions

e Format
cmp destination, source

« Updates the arithmetic flags by performing
destination - source

 The flags can be tested by a subsequent
conditional jump Iinstruction

1998 [0 S. Dandamudi Selection: Page 10
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Conditional Jumps

* Three types of conditional jumps

[1 Jumps based on the value of a single flag

» Arithmetic flags such as zero, carry can be tested using these
Instructions

[1 Jumps based on unsigned comparisons

» The operands @mp instruction are treated as unsigned
numbers

[1 Jumps based on signed comparisons

» The operands @mp instruction are treated as signed
numbers

1998 [0 S. Dandamudi Selection: Page 11
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Jumps Based on Single Flags

Testing for zero

|Z jump If zero jumpsif ZF =1
je jump if equal jumps ifZF =1
jnz jump If not zero jumps if ZF =0
jne jump If not equal jumps if ZF =0
JCXZ jump IfCX =0 jumps If CX =0

(Flags are not tested)

1998 [0 S. Dandamudi Selection: Page 12
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Jumps Based on Single Flags (cont’'d)

Testing for carry
JC jump If carry jumpsifCF =1
jnc jump if no carry jumps if CF =0

Testing for overflow
JO jump if overflow jumps if OF =1
jno jump if no overflow jumpsifOF =0

Testing for sign

IS jump If negative jumps if SF =1
ns jump If not negative jumpsif SF=0
1998 [0 S. Dandamudi Selection: Page 13

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Jumps Based on Single Flags (cont’'d)

Testing for parity

P jump If parity jumps if PF=1
jpe jump if parity jumps if PF = 1
IS even
jnp jump if not parity jumps if PF=0
Jpo jump if parity jumps if PF=0
IS odd
1998 [0 S. Dandamudi Selection: Page 14

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Jumps Based on Unsigned Comparisons

Mnemonic
e
|Z

jne
Nz
ja
jnbe

Meaning Condition
jump If equal ZF =1
jump If zero ZF=1

jump if notequal ZF =0
jump ifnotzero ZF=0

jump If above CF=ZF=0

jump if not below CF=ZF =0
or equal

1998

[0 S. Dandamudi Selection: Page 15

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Jumps Based on Unsigned Comparisons

Mnemonic Meaning Condition

jae jump Iif above CF=0
or equal

jnb jump Iif not below CF =0

b jump Iif below CF=1

jnae jump if not above CF =1
or equa

Jbe jump Iif below CF=1or ZF=1
or equa

jna jump if not above CF=1 or ZF=1

1998 [0 S. Dandamudi Selection: Page 16
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Jumps Based on Signed Comparisons

Mnemonic Meaning Condition

e jump If equal ZF =1

Vi jump If zero ZF=1

jne jump if notequal ZF =0

jnz jump ifnotzero ZF=0

[jump If greater ZF=0 & SF=0OF
jnle jump if notless ZF=0 & SF=0F

or equal

1998 [0 S. Dandamudi Selection: Page 17
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Jumps Based on Signhed Comparisons (cont’d)

Mnemonic Meaning Condition
jge jump Iif greater SF = OF
or equal
nl jump If not less SF = OF
1 jump if less SF OF
jnge jump If not greater SEOF
or equal
Jle jump If less ZF=1 or SE OF
or equal
jng jump If not greater ZF=1 or S&FOF
1998 [0 S. Dandamudi Selection: Page 18

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

A Note on Conditional Jumps

 All conditional jumps are encoded using 2 bytes
[1 Treated as short jumps

 What if the target is outside this range?

target: * Use this code to get around
Ca target:
cmp AX,BX Ca
je target cmp AX,BX
mov CX,10 jne skipl
jmp target
skip1.:
traget is out of range for a mov CX,10
short jump
1998 [0 S. Dandamudi Selection: Page 19

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Loop Instructions

* Loop instructions use CX/ECX to maintain the

count value
target should be within the range of a short

jump as in conditional jump instructions
Three loop instructions

loop target
Action: CX := CX-1
Jump to target iIf Cx¥ 0

1998 [0 S. Dandamudi Selection: Page 20

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Loop Instructions (cont’d)

* The following two loop instructions also test the
zero flag status

loope/loopz target
Action: CX := CX-1
Jump to target if (C¥ 0 and ZF =1)

loopne/loopnz target
Action: CX = CX-1
Jump to target if (CX¥ 0 and ZF = 0)

1998 [0 S. Dandamudi Selection: Page 21
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Instruction Execution Times

 Functionally,loop instruction can be replaced by
dec CX
jnz target

loop instruction is slower thadec/jnz version

* loop requires 5/6 clocks wheredec/jnz takes
only 2 clocks

* jcxz also takes 5/6 clocks

Equivalent code (shown below) takes only 2 clocks
cmp CX,0
jz target

1998 [0 S. Dandamudi Selection: Page 22
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Implementing HLL Decision Structures

* High-level language decision structures can be
Implemented in a straightforward way

e See Section 7.5 (page 272) for examples that
Implement
1 if-then-else
[if-then-else with a relational operator
[1 if-then-else with logical operators AND and OR
(1 while loop
[1 repeat-until loop
[1 for loop

1998 [0 S. Dandamudi Selection: Page 23
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

lllustrative Examples

 Two example programs

[] Linear search
» LIN_SRCH.ASM

» Searches an array of non-negative numbers for a given input
number

[] Selection sort
» SEL._SORT.ASM

» Uses selection sort algorithm to sort an integer array in
ascending order

1998 [0 S. Dandamudi Selection: Page 24
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Indirect Jumps

o Jump target address is not specified directly as a
part of the jump Instruction

 With indirect jump, we can specify target via a
general-purpose register or memory
[1 Example: Assuming CX has the offset value
jmp CX

[1 Note: The offset value in indirect jump Is the absolute
value (not relative value as in direct jumps)

 Program example

0 IJUMP.ASM
» Uses a jump table to direct the jump

1998 [0 S. Dandamudi Selection: Page 25
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Indirect Jumps (cont’d)

« Another example switch (ch)
[Implementing multiway { case '0":
jumps count[0]++;
» We useswitch break;
statement of C case ‘1" |
[0 We can use a table with E(r)s:gl]ﬂ’
appropriate target pointers case ‘2"
for the indirect jump count[2]++;
] Segment override is needed break;
case '3".

» jump_table isin the

_ count[3]++;
code segment (not in the break:
data segment) default
count[4]++;
}
1998 [0 S. Dandamudi Selection: Page 26

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Indirect Jumps (cont’d)

_main PROC NEAR case 2:
v inc WORD PTR [BP-6]
:;nbc\),:,/ ALch jmp SHORT end_switch
48 =)’ case_3:
frl::v AB>§<’4A8X’48_O inc WORD PTR [BP-4]
cmp Bx’g jmp SHORT end_switch
ja default default:
Jshl BX,1 ;BX:= BX*2 inc WORD PTR [BP-2]
jmp WORD PTR end_switch:
CS:jump_table[BX] _main ENDP
case_O: :
inc WORD PTR [BP-10] jump_table LABEL WORD
jmp SHORT end_switch DW case_0
case 1. DW case 1
inc WORD PTR [BP-8] DW case_2
jmp SHORT end_switch DW case_3
1998 O S. Dandamudi Selection: Page 27

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Evaluation of Logical Expressions

e Two basic ways

[1 Full evaluation
» Entire expression is evaluated before assigning a value
» PASCAL uses full evaluation

[1 Partial evaluation

» Assigns as soon as the final outcome is known without blindly
evaluating the entire logical expression

» Two rules help:
— condl1l AND cond?2

»-If condl is false, no need to evaluatend?
— condl1 OR cond?2
~-If condl is true, no need to evaluatend?

1998 [0 S. Dandamudi Selection: Page 28
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Evaluation of Logical Expressions (cont’d)

e Partial evaluation
[1Used by C

e Useful In certain cases to avoid run-time errors

 Example
if (X > 0) AND (Y/X > 100))
[11f x Is O, full evaluation results in divide error
[1 Partial evaluation will not evalua{¥/X > 100) If
X=0
e Partial evaluation is used to test if a pointer value
IS NULL before accessing the data it points to

1998 [0 S. Dandamudi Selection: Page 29
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Performance: Full vs. Partial Evaluation

Execution time (seconds)

O I I I I
10 20 30 40 50 60 70 80 90 100

Number of calls (in thousands)

1998 [0 S. Dandamudi Selection: Page 30
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

