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Logical Instructions

« Logical instructions operate on bit-by-bit basis

* Five logical instructions:
0AND
0 OR
[ XOR
ONOT
OTEST

« All logical instructions affect the status flags
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Logical Instructions (cont’'d)

 Since logical instructions operate on a bit-by-bit
basis, no carry or overflow is generated

e Logical instructions
[1 Clear carry flag (CF) and overflow flag (OF)
[ AF is undefined

e Remaining three flags record useful information
[1Zero flag

[1Sign flag
[1 Parity flag
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Logical Instructions (cont’'d)

AND Instruction

e Format
and destination,source

 Usage

[1 To support compound logical expressions and bitwise
AND operation of HLLs

[1 To clear one or more bits of a byte, word, or

doubleword
[1 To isolate one or more bits of a byte, word, or
doubleword
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Logical Instructions (cont’'d)

OR Instruction

e Format
or destination,source

 Usage
[1 To support compound logical expressions and bitwise
OR operation of HLLs
[1 To set one or more bits of a byte, word, or doubleword

[1 To paste one or more bits of a byte, word, or
doubleword
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Logical Instructions (cont’'d)

XOR Instruction

e Format
xor destination,source

 Usage
[1 To support compound logical expressions of HLLsS

[1 To toggle one or more bits of a byte, word, or
doubleword

[1 To initialize registers to zero
» Example:xor AX,AX
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Logical Instructions (cont’'d)

NOT instruction

e Format
not destination

 Usage
[1 To support logical expressions of HLLS

[1 To complement bits

» Example: 2's complement of an 8-bit number
not AL
inc AL
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Logical Instructions (cont’'d)

TEST Instruction

e Format
test destination,source

[1 TEST is a non-destructive AND operation
» Result is not written idestination
» Similar in spirit tocmp instruction

 Usage

[1 To test bits

» Example:
test AL,1

jz even_number ; else odd number
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Shift Instructions

e Two types of shift instructions
[1 Logical shift instructions
» shl (SHift Left)
» shr (SHift Right)

» Another interpretation:

— Logical shift instructions work on unsigned binary
numbers

[1 Arithmetic shift instructions
» sal (Shift Arithmetic Left)
» sar (Shift Arithmetic Right)

» Another interpretation:

— Arithmetic shift instructions work on signed binary
numbers
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Shift Instructions (cont’d)

« Effect on flags
[1 Auxiliary flag (AF): undefined

[1Zero flag (ZF) and parity flag (PF) are updated to
reflect the result

[1 Carry flag

» Contains the last bit shifted out

[1 Overflow flag
» For multibit shifts
— Undefined
» For single bit shifts

— OF is set if the sign bit has changed as a result of the shift
— Cleared otherwise
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Logical Shift Instructions

e General format
shl destination,count
shr destination,count

destination can be an 8-, 16-, or 32-bit operand
located either in a register or memory

SHL CF [= = = = = < < < < 0
Bit Position: 7 6 5 4 3 2 1 0
SHR 0 > > > > > > > > > CF
Bit Position: 7 6 5 4 3 2 1 0
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Logical Shift Instructions (cont’d)

e Two versions
shl/shr destination,count

shl/shr destination,CL

[1 First format directly specifies the count value
» Count value should be between 0 and 31
» If a greater value is specified, Pentium takes only the least
significant 5 bits as the count value
[1 Second format specifies count indirectly through CL
» CL contents are not changed

» Useful if count value is known only at the run time as opposed
at assembly time

— Ex: Count is received as an argument in a procedure call
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Logical Shift Instructions (cont’d)

 Usage
[1 Bit manipulation

; AL contains the byte to be encrypted
mov  AH,AL

shl AL,4 ; move lower nibble to upper
shr AH,4 ; move upper nibble to lower
or ALAH ; paste them together

; AL has the encrypted byte

[1 Multiplication and division

» Useful to multiply (left shift) or divide (right shift) by a power
of 2
» More efficient than using multiply/divide instructions
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Arithmetic Shift Instructions

 Two versions as In logical shift
sal/sar destination,count

sal/sar destination,CL

SAL CF = = = = = = = = = 0
Bit Position: 7 6 5 4 3 2 1 0
SAR > > > > > > > > > CF
Bit Position: 7 6 5 4 3 2 1 0
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Double Shift Instructions

 Double shift instructions work on either 32- or 64-
bit operands
e Format

[1 Takes three operands

shld dest,src,count ; left shift
shrd dest,src,count ; right shift

[1dest can be in memory or register
[1src must be a register

[1count can be an immediate value or in CL as in other
shift instructions
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Double Shift Instructions (cont’d)

e src Is not modified by doubleshift instruction
 Onlydest Is modified

« Shifted out bit goes into the carry flag

15/31 0 15/31 0
shld CF dest (register or memory) SIC (register)
15/31 0 1531 0
drd SIC (register) dest (register or memory) CF
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Rotate Instructions

* A problem with the shift instructions
[1 Shifted out bits are lost
[1 Rotate instructions feed them back

« Two types of rotate instructions
[1 Rotate without carry
» Carry flag is not involved in the rotate process

[1 Rotate through carry
» Rotation involves the carry flag
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Rotate Without Carry

e General format

rol destination,count
ror destination,count

count can be an immediate value or in CL (as in shift)

=
ROL CF < < < < -1 = < <
Bit Position: 7 6 5 4 3 2 1 0
-<
ROR > > > > > > > > CF
Bit Position: 6 5 4 3 2 1 0
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Rotate Through Carry

e General format

rcl destination,count
rcr destination,count
count can be an immediate value or in CL (as in shift)

=
RCL CF < < < - = < < <
Bit Position: 7 6 5 4 3 2 1 0
-<
RCR > > > > > > > > CF
Bit Position: 6 5 4 3 2 1 0
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Rotate Through Carry (cont’d)

* Only two instructions that take CF into account
» This feature is useful in multiword shifts

« Example: Shifting 64-bit number in EDX:EAX

[1 Rotate version
mov CX,4 ;4 bit shift
shift_left:
shl EAX,1 ; moves leftmost bit of EAX to CF
rcl EDX,1 ; CF goes to rightmost bit of EDX
loop shift_left

[1 Double shift version:

shid EDX,EAX,4 ; EAX is unaffected by shlid
shl EAX,4
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Logical Expressions in HLLsS

 Representation of Boolean data
[1 Only a single bit is needed to represent Boolean data

[1 Usually a single byte is used
» For example, in C
— All zero bits representalse
— A non-zero value representse

e Logical expressions
[1 Logical instructions AND, OR, etc. are used

« Bit manipulation
[1 Logical, shift, and rotate instructions are used
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Bit Instructions

e Bit Test and Modify Instructions
[1 Four bit test instructions
[1 Each takes the position of the bit to be tested

Instruction Effect on the selected bit
bt (Bit Test) No effect

bts (Bit Test and Set) selected bit1

btr (Bit Test and Reset) selected bitO

btc selected bit- NOT(selected bit)
(Bit Test and Complement

g
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Bit Instructions (cont’d)

e All four instructions have the same format
e We usebt to illustrate the format

bt operand,bit pos

[1 operand is word or doubleword
» Can be in memory or a register

[1bit pos Indicates the position of the bit to be tested
» Can be an immediate value or in a 16- or 32-bit register

 |nstructions in this group affect only the carry flag
» Other five flags are undefined following a bit test instruction
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Bit Scan Instructions

 These Instructions scan the operand for a 1 bit and
return the bit position in a register

e Two Instructions
bsf dest reg,operand ;bit scan forward
bsr dest reg,operand ;bit scan reverse

» operand can be a word or doubleword in a register or
memory

» dest_reg receives the bit position
— Must be a 16- or 32-bit register

[1Only ZF is updated (other five flags undefined)

— ZF = 1 if all bits of operand are 0
— ZF = 0 otherwise (position of first 1 bit test_reg )
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lllustrative Examples

« Example 1

[ Multiplication using shift and add operations
» Multiplies two unsigned 8-bit numbers
— Uses a loop that iterates 8 times

 Example 2

[1 Same as Example 1 (efficient version)
» We loop only for the number of 1 bits
— Uses bit test instructions

 Example 3
[1 Conversion of octal to binary
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Performance: Shift vs. Multiplication
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Performance: Shift vs. Multiplication (cont’'d)
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