
Logical and Bit Operations

Chapter 8

S. Dandamudi

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 2

Outline

• Logical instructions
∗ AND

∗ OR

∗ XOR

∗ NOT

∗ TEST

• Shift instructions
∗ Logical shift instructions

∗ Arithmetic shift instructions

• Rotate instructions
∗ Rotate without carry

∗ Rotate through carry

• Logical expressions in
high-level languages
∗ Representation of

Boolean data

∗ Logical expressions

• Bit instructions
∗ Bit test and modify

instructions

∗ Bit scan instructions

• Illustrative examples

• Performance: Shift
versus multiplication

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 3

Logical Instructions

• Logical instructions operate on bit-by-bit basis

• Five logical instructions:
∗ AND

∗ OR

∗ XOR

∗ NOT

∗ TEST

• All logical instructions affect the status flags

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 4

Logical Instructions (cont’d)

• Since logical instructions operate on a bit-by-bit
basis, no carry or overflow is generated

• Logical instructions
∗ Clear carry flag (CF) and overflow flag (OF)

∗ AF is undefined

• Remaining three flags record useful information
∗ Zero flag

∗ Sign flag

∗ Parity flag

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 5

Logical Instructions (cont’d)

AND instruction
• Format

and destination,source

• Usage
∗ To support compound logical expressions and bitwise

AND operation of HLLs

∗ To clear one or more bits of a byte, word, or
doubleword

∗ To isolate one or more bits of a byte, word, or
doubleword

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 6

Logical Instructions (cont’d)

OR instruction
• Format

or destination,source

• Usage
∗ To support compound logical expressions and bitwise

OR operation of HLLs

∗ To set one or more bits of a byte, word, or doubleword

∗ To paste one or more bits of a byte, word, or
doubleword

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 7

Logical Instructions (cont’d)

XOR instruction
• Format

xor destination,source

• Usage
∗ To support compound logical expressions of HLLs

∗ To toggle one or more bits of a byte, word, or
doubleword

∗ To initialize registers to zero
» Example: xor AX,AX

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 8

Logical Instructions (cont’d)

NOT instruction
• Format

not destination

• Usage
∗ To support logical expressions of HLLs

∗ To complement bits
» Example: 2’s complement of an 8-bit number

not AL

inc AL

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 9

Logical Instructions (cont’d)

TEST instruction
• Format

test destination,source

∗ TEST is a non-destructive AND operation
» Result is not written in destination

» Similar in spirit to cmp instruction

• Usage
∗ To test bits

» Example:
test AL,1

jz even_number ; else odd number

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 10

Shift Instructions

• Two types of shift instructions
∗ Logical shift instructions

» shl (SHift Left)

» shr (SHift Right)

» Another interpretation:
– Logical shift instructions work on unsigned binary

numbers

∗ Arithmetic shift instructions
» sal (Shift Arithmetic Left)

» sar (Shift Arithmetic Right)

» Another interpretation:
– Arithmetic shift instructions work on signed binary

numbers

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 11

Shift Instructions (cont’d)

• Effect on flags
∗ Auxiliary flag (AF): undefined

∗ Zero flag (ZF) and parity flag (PF) are updated to
reflect the result

∗ Carry flag
» Contains the last bit shifted out

∗ Overflow flag
» For multibit shifts

– Undefined

» For single bit shifts

– OF is set if the sign bit has changed as a result of the shift
– Cleared otherwise

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 12

Logical Shift Instructions

• General format
shl destination,count
shr destination,count

destination can be an 8-, 16-, or 32-bit operand
located either in a register or memory

CF

7 6 5 4 3 2 1 0

0SHR

Bit Position:

SHL

7Bit Position: 6 5 4 3 2 1 0

0CF

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 13

Logical Shift Instructions (cont’d)

• Two versions
shl/shr destination,count

shl/shr destination,CL

∗ First format directly specifies the count value
» Count value should be between 0 and 31

» If a greater value is specified, Pentium takes only the least
significant 5 bits as the count value

∗ Second format specifies count indirectly through CL
» CL contents are not changed

» Useful if count value is known only at the run time as opposed
at assembly time

– Ex: Count is received as an argument in a procedure call

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 14

Logical Shift Instructions (cont’d)

• Usage
∗ Bit manipulation

; AL contains the byte to be encrypted

mov AH,AL

shl AL,4 ; move lower nibble to upper

shr AH,4 ; move upper nibble to lower

or AL,AH ; paste them together

; AL has the encrypted byte

∗ Multiplication and division
» Useful to multiply (left shift) or divide (right shift) by a power

of 2

» More efficient than using multiply/divide instructions

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 15

Arithmetic Shift Instructions

• Two versions as in logical shift
sal/sar destination,count

sal/sar destination,CL

7Bit Position: 6 5 4 3 2 1 0

0CFSAL

CF

7 6 5 4 3 2 1 0Bit Position:

SAR

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 16

Double Shift Instructions

• Double shift instructions work on either 32- or 64-
bit operands

• Format
∗ Takes three operands

shld dest,src,count ; left shift

shrd dest,src,count ; right shift

∗ dest can be in memory or register
∗ src must be a register
∗ count can be an immediate value or in CL as in other

shift instructions

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 17

Double Shift Instructions (cont’d)

• src is not modified by doubleshift instruction

• Only dest is modified

• Shifted out bit goes into the carry flag

CF dest (register or memory)

src (register)

src (register)

dest (register or memory) CF

15/3115/31

15/31 15/31

0

0 0

0

shrd

shld

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 18

Rotate Instructions

• A problem with the shift instructions
∗ Shifted out bits are lost

∗ Rotate instructions feed them back

• Two types of rotate instructions
∗ Rotate without carry

» Carry flag is not involved in the rotate process

∗ Rotate through carry
» Rotation involves the carry flag

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 19

Rotate Without Carry

• General format
rol destination,count
ror destination,count

count can be an immediate value or in CL (as in shift)

7Bit Position: 6 5 4 3 2 1 0

CFROL

CF

7 6 5 4 3 2 1 0Bit Position:

ROR

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 20

Rotate Through Carry

• General format
rcl destination,count
rcr destination,count

count can be an immediate value or in CL (as in shift)

7Bit Position: 6 5 4 3 2 1 0

CFRCL

CF

7 6 5 4 3 2 1 0Bit Position:

RCR

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 21

Rotate Through Carry (cont’d)

• Only two instructions that take CF into account
» This feature is useful in multiword shifts

• Example: Shifting 64-bit number in EDX:EAX
∗ Rotate version

 mov CX,4 ; 4 bit shift

shift_left:

 shl EAX,1 ; moves leftmost bit of EAX to CF

 rcl EDX,1 ; CF goes to rightmost bit of EDX

 loop shift_left

∗ Double shift version:
 shld EDX,EAX,4 ; EAX is unaffected by shld

 shl EAX,4

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 22

Logical Expressions in HLLs

• Representation of Boolean data
∗ Only a single bit is needed to represent Boolean data

∗ Usually a single byte is used
» For example, in C

– All zero bits represents false

– A non-zero value represents true

• Logical expressions
∗ Logical instructions AND, OR, etc. are used

• Bit manipulation
∗ Logical, shift, and rotate instructions are used

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 23

Bit Instructions

• Bit Test and Modify Instructions
∗ Four bit test instructions

∗ Each takes the position of the bit to be tested

Instruction Effect on the selected bit

bt (Bit Test) No effect

bts (Bit Test and Set) selected bit ← 1

btr (Bit Test and Reset) selected bit ← 0

btc selected bit ← NOT(selected bit)
(Bit Test and Complement)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 24

Bit Instructions (cont’d)

• All four instructions have the same format

• We use bt to illustrate the format

bt operand,bit_pos
∗ operand is word or doubleword

» Can be in memory or a register

∗ bit_pos indicates the position of the bit to be tested
» Can be an immediate value or in a 16- or 32-bit register

• Instructions in this group affect only the carry flag
» Other five flags are undefined following a bit test instruction

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 25

Bit Scan Instructions

• These instructions scan the operand for a 1 bit and
return the bit position in a register

• Two instructions
bsf dest_reg,operand ;bit scan forward

bsr dest_reg,operand ;bit scan reverse

» operand can be a word or doubleword in a register or
memory

» dest_reg receives the bit position

– Must be a 16- or 32-bit register

∗ Only ZF is updated (other five flags undefined)
– ZF = 1 if all bits of operand are 0

– ZF = 0 otherwise (position of first 1 bit in dest_reg)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 26

Illustrative Examples

• Example 1
∗ Multiplication using shift and add operations

» Multiplies two unsigned 8-bit numbers

– Uses a loop that iterates 8 times

• Example 2
∗ Same as Example 1 (efficient version)

» We loop only for the number of 1 bits

– Uses bit test instructions

• Example 3
∗ Conversion of octal to binary

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 27

Performance: Shift vs. Multiplication

0

3

6

9

12

15

1 2 3 4 5 6 7

single shift

general shift

multiply

Number of calls (in millions)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

1998
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Logical operations: Page 28

Performance: Shift vs. Multiplication (cont’d)

0

3

6

9

12

1 2 3 4 5 6 7

Number of calls (in millions)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

shift

multiply

