Logical and Bit Operations

Chapter 8
S. Dandamudi

Outline

e Logical instructions Logical expressions in

0 AND high-level languages
[OR [1 Representation of
1 XOR Boolean data
1 NOT [1 Logical expressions
0 TEST e Bit instructions
e Shift instructions 1 Bit test and modify
Instructions

[Logical shift instructions
[Arithmetic shift instructions
« Rotate instructions lllustrative examples

[Rotate without carry Performancg: -Shi.ft
[J Rotate through carry versus multiplication

[1 Bit scan instructions

1998 [0 S. Dandamudi Logical operations: Page 2
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Instructions

« Logical instructions operate on bit-by-bit basis

* Five logical instructions:
0AND
0 OR
[XOR
ONOT
OTEST

« All logical instructions affect the status flags

1998 [0 S. Dandamudi Logical operations: Page 3
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Instructions (cont’'d)

 Since logical instructions operate on a bit-by-bit
basis, no carry or overflow is generated

e Logical instructions
[1 Clear carry flag (CF) and overflow flag (OF)
[AF is undefined

e Remaining three flags record useful information
[1Zero flag

[1Sign flag
[1 Parity flag

1998 [0 S. Dandamudi Logical operations: Page 4
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Instructions (cont’'d)

AND Instruction

e Format
and destination,source

 Usage

[1 To support compound logical expressions and bitwise
AND operation of HLLs

[1 To clear one or more bits of a byte, word, or

doubleword
[1 To isolate one or more bits of a byte, word, or
doubleword
1998 [0 S. Dandamudi Logical operations: Page 5

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Instructions (cont’'d)

OR Instruction

e Format
or destination,source

 Usage
[1 To support compound logical expressions and bitwise
OR operation of HLLs
[1 To set one or more bits of a byte, word, or doubleword

[1 To paste one or more bits of a byte, word, or
doubleword

1998 [0 S. Dandamudi Logical operations: Page 6
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Instructions (cont’'d)

XOR Instruction

e Format
xor destination,source

 Usage
[1 To support compound logical expressions of HLLsS

[1 To toggle one or more bits of a byte, word, or
doubleword

[1 To initialize registers to zero
» Example:xor AX,AX

1998 [0 S. Dandamudi Logical operations: Page 7
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Instructions (cont’'d)

NOT instruction

e Format
not destination

 Usage
[1 To support logical expressions of HLLS

[1 To complement bits

» Example: 2's complement of an 8-bit number
not AL
inc AL

1998 [0 S. Dandamudi Logical operations: Page 8
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Instructions (cont’'d)

TEST Instruction

e Format
test destination,source

[1 TEST is a non-destructive AND operation
» Result is not written idestination
» Similar in spirit tocmp instruction

 Usage

[1 To test bits

» Example:
test AL,1

jz even_number ; else odd number

1998 [0 S. Dandamudi Logical operations: Page 9
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Shift Instructions

e Two types of shift instructions
[1 Logical shift instructions
» shl (SHift Left)
» shr (SHift Right)

» Another interpretation:

— Logical shift instructions work on unsigned binary
numbers

[1 Arithmetic shift instructions
» sal (Shift Arithmetic Left)
» sar (Shift Arithmetic Right)

» Another interpretation:

— Arithmetic shift instructions work on signed binary
numbers

1998 [0 S. Dandamudi Logical operations: Page 10
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Shift Instructions (cont’d)

« Effect on flags
[1 Auxiliary flag (AF): undefined

[1Zero flag (ZF) and parity flag (PF) are updated to
reflect the result

[1 Carry flag

» Contains the last bit shifted out

[1 Overflow flag
» For multibit shifts
— Undefined
» For single bit shifts

— OF is set if the sign bit has changed as a result of the shift
— Cleared otherwise

1998 [0 S. Dandamudi Logical operations: Page 11
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Shift Instructions

e General format
shl destination,count
shr destination,count

destination can be an 8-, 16-, or 32-bit operand
located either in a register or memory

SHL CF [= = = = = < < < < 0
Bit Position: 7 6 5 4 3 2 1 0
SHR 0 > > > > > > > > > CF
Bit Position: 7 6 5 4 3 2 1 0
1998 [0 S. Dandamudi Logical operations: Page 12

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Shift Instructions (cont’d)

e Two versions
shl/shr destination,count

shl/shr destination,CL

[1 First format directly specifies the count value
» Count value should be between 0 and 31
» If a greater value is specified, Pentium takes only the least
significant 5 bits as the count value
[1 Second format specifies count indirectly through CL
» CL contents are not changed

» Useful if count value is known only at the run time as opposed
at assembly time

— Ex: Count is received as an argument in a procedure call

1998 [0 S. Dandamudi Logical operations: Page 13
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Shift Instructions (cont’d)

 Usage
[1 Bit manipulation

; AL contains the byte to be encrypted
mov AH,AL

shl AL,4 ; move lower nibble to upper
shr AH,4 ; move upper nibble to lower
or ALAH ; paste them together

; AL has the encrypted byte

[1 Multiplication and division

» Useful to multiply (left shift) or divide (right shift) by a power
of 2
» More efficient than using multiply/divide instructions

1998 [0 S. Dandamudi Logical operations: Page 14
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Arithmetic Shift Instructions

 Two versions as In logical shift
sal/sar destination,count

sal/sar destination,CL

SAL CF = = = = = = = = = 0
Bit Position: 7 6 5 4 3 2 1 0
SAR > > > > > > > > > CF
Bit Position: 7 6 5 4 3 2 1 0
1998 [0 S. Dandamudi Logical operations: Page 15

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Double Shift Instructions

 Double shift instructions work on either 32- or 64-
bit operands
e Format

[1 Takes three operands

shld dest,src,count ; left shift
shrd dest,src,count ; right shift

[1dest can be in memory or register
[1src must be a register

[1count can be an immediate value or in CL as in other
shift instructions

1998 [0 S. Dandamudi Logical operations: Page 16
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Double Shift Instructions (cont’d)

e src Is not modified by doubleshift instruction
 Onlydest Is modified

« Shifted out bit goes into the carry flag

15/31 0 15/31 0
shld CF dest (register or memory) SIC (register)
15/31 0 1531 0
drd SIC (register) dest (register or memory) CF
1998 [0 S. Dandamudi Logical operations: Page 17

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Rotate Instructions

* A problem with the shift instructions
[1 Shifted out bits are lost
[1 Rotate instructions feed them back

« Two types of rotate instructions
[1 Rotate without carry
» Carry flag is not involved in the rotate process

[1 Rotate through carry
» Rotation involves the carry flag

1998 [0 S. Dandamudi Logical operations: Page 18
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Rotate Without Carry

e General format

rol destination,count
ror destination,count

count can be an immediate value or in CL (as in shift)

=
ROL CF < < < < -1 = < <
Bit Position: 7 6 5 4 3 2 1 0
-<
ROR > > > > > > > > CF
Bit Position: 6 5 4 3 2 1 0
1998 [0 S. Dandamudi Logical operations: Page 19

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Rotate Through Carry

e General format

rcl destination,count
rcr destination,count
count can be an immediate value or in CL (as in shift)

=
RCL CF < < < - = < < <
Bit Position: 7 6 5 4 3 2 1 0
-<
RCR > > > > > > > > CF
Bit Position: 6 5 4 3 2 1 0
1998 [0 S. Dandamudi Logical operations: Page 20

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Rotate Through Carry (cont’d)

* Only two instructions that take CF into account
» This feature is useful in multiword shifts

« Example: Shifting 64-bit number in EDX:EAX

[1 Rotate version
mov CX,4 ;4 bit shift
shift_left:
shl EAX,1 ; moves leftmost bit of EAX to CF
rcl EDX,1 ; CF goes to rightmost bit of EDX
loop shift_left

[1 Double shift version:

shid EDX,EAX,4 ; EAX is unaffected by shlid
shl EAX,4

1998 [0 S. Dandamudi Logical operations: Page 21
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Logical Expressions in HLLsS

 Representation of Boolean data
[1 Only a single bit is needed to represent Boolean data

[1 Usually a single byte is used
» For example, in C
— All zero bits representalse
— A non-zero value representse

e Logical expressions
[1 Logical instructions AND, OR, etc. are used

« Bit manipulation
[1 Logical, shift, and rotate instructions are used

1998 [0 S. Dandamudi Logical operations: Page 22
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Bit Instructions

e Bit Test and Modify Instructions
[1 Four bit test instructions
[1 Each takes the position of the bit to be tested

Instruction Effect on the selected bit
bt (Bit Test) No effect

bts (Bit Test and Set) selected bit1

btr (Bit Test and Reset) selected bitO

btc selected bit- NOT(selected bit)
(Bit Test and Complement

g

1998 [0 S. Dandamudi Logical operations: Page 23
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Bit Instructions (cont’d)

e All four instructions have the same format
e We usebt to illustrate the format

bt operand,bit pos

[1 operand is word or doubleword
» Can be in memory or a register

[1bit pos Indicates the position of the bit to be tested
» Can be an immediate value or in a 16- or 32-bit register

 |nstructions in this group affect only the carry flag
» Other five flags are undefined following a bit test instruction

1998 [0 S. Dandamudi Logical operations: Page 24
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Bit Scan Instructions

 These Instructions scan the operand for a 1 bit and
return the bit position in a register

e Two Instructions
bsf dest reg,operand ;bit scan forward
bsr dest reg,operand ;bit scan reverse

» operand can be a word or doubleword in a register or
memory

» dest_reg receives the bit position
— Must be a 16- or 32-bit register

[1Only ZF is updated (other five flags undefined)

— ZF = 1 if all bits of operand are 0
— ZF = 0 otherwise (position of first 1 bit test_reg)

1998 [0 S. Dandamudi Logical operations: Page 25
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

lllustrative Examples

« Example 1

[Multiplication using shift and add operations
» Multiplies two unsigned 8-bit numbers
— Uses a loop that iterates 8 times

 Example 2

[1 Same as Example 1 (efficient version)
» We loop only for the number of 1 bits
— Uses bit test instructions

 Example 3
[1 Conversion of octal to binary

1998 [0 S. Dandamudi Logical operations: Page 26
To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Performance: Shift vs. Multiplication

15
> 12 -
°
c
o)
8 o-
)
£
S 61
5
o)
84l]
_ =
single shift
O 1 I I 1 I I
1 2 3 4) 6 7
Number of calls (in millions)
1998 [0 S. Dandamudi Logical operations: Page 27

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

Performance: Shift vs. Multiplication (cont’'d)

12
w
°
c
:
@
E
=
2
5
o
n
0 | I | I |
1 2 3 4) 6 7
Number of calls (in millions)
1998 [0 S. Dandamudi Logical operations: Page 28

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

