Architecture for an Artificial Immune System

Steven A. Hofmeyr' and S. Forrest!?

!Department of Computer Science, UNM, Albuquerque, NM 87131
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

Abstract

An artificial immune system (ARTIS) is described which incorporates many properties
of natural immune systems, including diversity, distributed computation, error toler-
ance, dynamic learning and adaptation and self-monitoring. ARTIS is a general frame-
work for a distributed adaptive system and could, in principle, be applied to many do-
mains. In this paper, ARTIS is applied to computer security, in the form of a network
intrusion detection system called LISYS. LISYS is described and shown to be effective
at detecting intrusions, while maintaining low false positive rates. Finally, similarities
and differences between ARTIS and Holland’s classifier systems are discussed.

1 INTRODUCTION

The biological immune system (IS) is highly complicated and appears to be precisely tuned
to the problem of detecting and eliminating infections. We believe that the IS provides
a compelling example of a massively-parallel adaptive information-processing system, one
which we can study for the purpose of designing better artificial systems. The IS is
compelling because it exhibits many properties that we would like to incorporate into
artificial systems: It is diverse, distributed, error tolerant, dynamic, self-monitoring (or
self-aware) and adaptable. These properties give the IS certain key characteristics that
most artificial systems today lack: robustness, adaptivity and autonomy.

Robustness is a consequence of the fact that the IS is diverse, distributed, dynamic and
error tolerant. Diversity improves robustness on both a population and individual level,
for example, different people are vulnerable to different infections. The IS is distributed
in a robust fashion: Its many components interact locally to provide global protection,
so there is no central control and hence no single point of failure. The IS is dynamic in
that individual components are continually created, destroyed, and circulated throughout
the body, which increases the temporal and spatial diversity of the IS. Finally, the IS is
robust to errors (error tolerant) because the effect of any single IS action is small, so a
few mistakes in classification and response are not catastrophic.

The IS is adaptable in that it can learn to recognize and respond to new infections
and retain a memory of those infections to facilitate future responses. This adaptivity
is made possible by the dynamic functioning of the IS, which enables the IS to discard
components which are useless or dangerous and to improve on existing components.

The IS is autonomous in that there is no outside control required, and the IS is an

integrated part of the body, and hence the same mechanisms that monitor and protect the
rest of the body also monitor and protect the IS. Furthermore, the distributed, decentral-
ized nature of the IS contributes to its autonomous nature: Not only is there no outside
control, but there is no way of imposing outside control or even inside, centralized control.

These properties of robustness, adaptability, turnover of components, and autonomy
are closely related to the design principles of complex adaptive systems articulated by
Holland in, for example, [22, 23]. Furthermore, the immune system appears to reflect
many aspects of a less well-articulated design aesthetic illustrated by Holland’s genetic
algorithms, classifier systems, and Echo. Common features in those systems include:
fine-grained representations and actions, emergence of coordinated behavior, competition
among components, random variation, evolution, and close coupling with a perpetually
novel environment.

Representations and actions in the immune system are fine-grained (short protein
fragments, called peptides, are the basic unit of representation). Coherent coordinated
behavior arises (or emerges) from the interactions of literally trillions of cells and molecules.
Each individual action of the immune system (forming a chemical bond, secreting molecules
from a cell, killing a single cell, etc.) is also fine-grained. Another feature of the Holland
design aesthetic is the notion of competition for survival among the basic units of an
adaptive system. This is seen in the immune system when individual immune cells compete
with one another to bind foreign antigen. Immune receptors are created randomly through
genetic recombinations and mutations. Mutations take place when gene fragments are
joined into a single gene (junctional diversity) and during affinity maturation (somatic
hypermutation). Evolutionary processes play a central role in the Holland aesthetic. The
immune system illustrates the use of evolution as an engine of innovation in its affinity
maturation of B-cells in response to foreign antigen, which quite closely resembles a genetic
algorithm without crossover. Finally, the notion of an adaptive system being closely
coupled with its environment, responding to perpetually novel stimuli in a dynamic and
flexible way, is a basic tenet of Holland’s view of adaptive systems. This view is perhaps
better illustrated by classifier systems and Echo than by conventional genetic algorithms.

We describe a system called (ARTIS') which incorporates these properties. To pre-
serve generality, ARTIS is described independently of any particular problem domain.
However, to ground these concepts, we situate ARTIS in a networked environment as
a computer security system called LISYS?. We follow Brooks [3] and others [17, 5] in
believing that it is fruitless to design intelligent systems in complete isolation from the
environments in which they exist. The hope is that situating an intelligent artifact will
simplify it, because it can use its environment to reduce computations, and it will be less
likely to include unnecessary features or mechanisms.

Computer security is an important and natural application domain for adaptive sys-
tems. Computer systems are dynamic, with continually changing patterns of behavior;
programs are added and removed, new users are introduced, configurations change. These
and other changes allow intruders to find novel means to gain improper access to com-
puters. Traditional computer security mechanisms are largely static and so cannot easily
cope with dynamic environments. We believe that an adaptive system is needed to track
both changes in the environment and the way in which intruders exploit systems. A com-
puter security system should protect a machine or set of machines from intruders and

L ARTificial Immune System.
2This stands for “Lightweight Intrusion detection SYStem. The word LISYS is a corruption of “lysis”,
which is the process whereby the immune system destroys bacteria by rupturing the bacterial membrane.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

foreign code, which is similar in functionality to the immune system protecting the body
from invasion by inimical microbes. Because of these similarities, we have designed and
implemented LISYS, an intrusion detection system that monitors network traffic. LISYS
demonstrates the utility of ARTIS when applied to a specific problem domain.

In earlier papers we presented our results in the context of computer security [11,
9, 8, 13, 12, 19], deemphasizing more general considerations. The goal of this paper is
to rectify that, making the biological connections more concrete and emphasizing the
adaptive systems framework in which our implementation resides. In the next section (2)
we briefly introduce the immune system, and in the following section (3) we describe the
organization of ARTIS, further explaining immunological concepts where necessary. The
results of testing the system out in a real environment are described in section 4. The
following section (5) discusses the relation of ARTIS to classifier systems [24], and the
section after that (6) briefly describes other domains to which ARTIS might be applied.
Finally, the paper is concluded with general comments concerning computer security and
adaptive systems.

2 THE IMMUNE SYSTEM

The IS consists of a multitude of cells and molecules which interact in a variety of ways
to detect and eliminate infectious agents (pathogens). These interactions are localized
because they depend upon chemical bonding—surfaces of immune system cells are covered
with receptors, some of which chemically bind to pathogens, and some of which bind to
other immune system cells or molecules to enable the complex system of signalling that
mediates the immune response. Most IS cells circulate around the body via the blood and
lymph systems, forming a dynamic system of distributed detection and response, where
there is no centralized control, and little, if any, hierarchical organization. Detection and
elimination of pathogens is a consequence of trillions of cells interacting through simple,
localized rules. A consequence of this is that the IS is very robust to failure of individual
components and attacks on the IS itself.

The problem of detecting pathogens is often described as that of distinguishing “self”
from “nonself” (which are elements of the body, and pathogens, respectively). However,
many pathogens are not harmful, and an immune response to eliminate them may damage
the body. In these cases it would be healthier not to respond, so it would be more
accurate to say that the problem faced by the IS is that of distinguishing between harmful
nonself and everything else [28, 29]. We adopt the viewpoint that “nonself” is synonymous
with any pathogen that is harmful to the body, and “self” is synonymous with harmless
substances, including all normally functioning cells of the body.

Once pathogens have been detected, the IS must eliminate them in some manner.
Different pathogens have to be eliminated in different ways, and we call the cells of the
IS that accomplish this effectors. The elimination problem facing the immune system is
that of choosing the right effectors for the particular kind of pathogen to be eliminated.
We shall touch only briefly on the problem of elimination, or response, in section 3.9; the
main focus of this paper is on the detection problem.

3 ARCHITECTURE OF AN ARTIFICIAL IMMUNE SYSTEM

In this section we describe the architecture of our artificial immune system (ARTIS). AR-
TIS is closely modeled on the biological immune system, and so in the course of describing
ARTIS, we shall describe the equivalent biological mechanisms that inspired the model. Of

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

necessity, the immunological details will be sparse and fragmentary; for a detailed overview
of immunology that is still accessible to non-immunologists, consult [20]3.

3.1 DEFINING THE PROBLEM

All discrimination between self and nonself in the IS is based upon chemical bonds that
form between protein chains. To preserve generality, we model protein chains as binary
strings of fixed length £. The IS must distinguish self from nonself based on proteins; AR-
TIS addresses a similar problem, which we define as follows. The set of all strings of length
£ forms a universe, U, which is partitioned into two disjoint subsets, which we call self, S,
and nonself, N (i.e. U =SUN, SNN ={). ARTIS faces a discrimination or classification
task: Given an arbitrary string from U, classify it as either normal (corresponding to self)
or anomalous (corresponding to nonself)*.

ARTIS can make two kinds of discrimination errors: A false positive occurs when a
self string is classified as anomalous, and a false negative occurs when a nonself string is
classified as normal. The IS also makes similar errors: A false negative occurs when the
IS fails to detect and fight off pathogens, and a false positive error occurs when the IS
attacks the body (known as an autoimmune response). In the body, both kinds of errors
are harmful, so the IS has apparently evolved to minimize those errors; similarly, the goal
of ARTIS is to minimize both kinds of errors. See figure 1.

universe

detection system nonself

i,
%
™ H
& 2,
& T,
%

K
2y A S
e

self B

L " \Qse negatives

false positives

&
&
o

U0

S,
$ "%

s
$
% =
G, 3
o
s,

',

Figure 1: A two-dimensional representation of a universe of strings. Each string can belong
to one of two sets: self or nonself. In this diagram, each point in the plane represents a
string; if the point lies within the shaded area it is self, otherwise it is nonself. The
immunological detection system attempts to encode the boundary between the two sets
by classifying strings as either normal (corresponding to self) or anomalous (corresponding
to nonself).

When real-world problems are mapped to this abstraction, self and nonself may not
be disjoint, because some strings may characterize both self and nonself. In this case, the
categorization of strings as either one or the other category will lead to unavoidable errors.
We do not consider that case here. However, it illustrates the importance of choosing the
right characteristic for the application domain: It is essential to choose the equivalent of
proteins that can be used to reliably discriminate between self and nonself.

3For truly comprehensive references, the interested reader should consult [35, 25, 33].

4This definition can be generalized to include classification in multiple categories, not only the two
categories of self and nonself.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

3.2 DETECTORS

Natural immune systems consist of many different kinds of cells and molecules which have
been identified and studied experimentally. In our system, we will simplify by introducing
one basic type of detector which is modeled on the class of immune cells called lympho-
cytes®. This detector combines properties of B-cells, T-cells, and antibodies. ARTIS is
similar to the IS in that it consists of a multitude of mobile detectors, circulating around a
distributed environment. We model the distributed environment with a graph G = (V, E);
each vertex v € V contains a local set of detectors (called a detection node) and detectors
migrate from one vertex to the next via the edges. The graph model also provides a no-
tion of locality: Detectors can only interact with other detectors at the same vertex. This
notion of locality is useful, as we shall see in section 3.5.

Lymphocytes have hundreds of thousands of identical receptors on their surface (and
hence are termed monoclonal). These receptors bind to regions (epitopes) on pathogens.
Binding depends on chemical structure and charge, so receptors are likely to bind to a
few similar kinds of epitopes. The greater the likelihood of a bond occurring, the higher
the affinity between the receptor and epitope. In ARTIS, both epitopes and receptors are
modeled as binary strings of fixed length ¢, and chemical binding between them is modeled
as approximate string matching. In effect, each detector is associated with a binary string,
which represents its receptors.

Obvious approximate matching rules include Hamming distance and edit distance,
but we have adopted a more immunologically plausible rule, called r-contiguous bits [34]:
Two strings match if they have r contiguous bits in common (see figure 2). The value
r is a threshold and determines the specificity of the detector, which is an indication of
the size of the subset of strings that a single detector can match. For example, if r = £,
the matching is completely specific, that is, the detector will match only a single string
(itself), but if r = 0, the matching is completely general, that is, the detector will match
every single string of length £.

r=4
0110100101 01050110100
1110111101 111%9__1”;1101
Match No match

Figure 2: Matching under the contiguous bits match rule. In this example, the detector
matches for r = 3, but not for r» = 4.

A consequence of a partial matching rule with a threshold, such as r-contiguous bits,
is that there is a trade-off between the number of detectors used, and their specificity—as
the specificity of the detectors increases, so the number of detectors required to achieve a
certain level of detection also increases. The optimal r is one which minimizes the number
of detectors needed, but still gives good discrimination.

A lymphocyte becomes activated when its receptors bind to epitopes. Activation
changes the state of the lymphocyte and triggers a series of reactions that can lead to

5The lifecycle of a detector is shown in section 3.7, figure 4. It may help understanding to refer forwards
to this figure.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

elimination of the pathogens (this is discussed in section 3.9). A lymphocyte will only
be activated when the number of its receptors binding to epitopes exceeds a threshold®.
Chemical bonds between receptors and epitopes are not long-lasting, so to be activated,
a lymphocyte must bind sufficient receptors within a short period of time. We model
this with activation thresholds: A detector must match at least 7 strings within a given
time period to be activated. This is implemented by allowing the detector to accumulate
matches, but decaying the match count over time, i.e. there is a Yyq4tcn probability that
the match count will be reduced by one at any timestep. This models the probability of
a bond between a receptor and an epitope decaying. Once a detector has been activated,
its match count is reset to zero.

3.3 TRAINING THE DETECTION SYSTEM

Lymphocytes are called negative detectors because they are trained to bind to nonself;
i.e. when a lymphocyte is activated, the IS responds as if nonself were detected. This
simple form of learning is known as tolerization, because the lymphocytes are trained to
be tolerant of self.

Lymphocytes are created with randomly generated receptors, and so could bind to
either self or nonself. One class of lymphocytes, T-cells, is tolerized in a single location,
the thymus, which is an organ just behind the breastbone. Immature T-cells develop in
the thymus, and if they are activated during development, they die through programmed
cell death (apoptosis). Most self proteins are expressed in the thymus, so T-cells that
survive to maturation and leave the thymus will be tolerant of all those self proteins. This
process is called negative selection, because the T-cells that are not activated are the ones
selected to survive.

Lymphocytes are trained to perform anomaly detection. The IS uses a training set of
self (proteins present in the thymus) to produce detectors that can distinguish between self
and nonself. This clearly will not work if nonself is frequently expressed in the thymus,
because then the IS will also be tolerant to that nonself. The underlying assumption
is that self occurs frequently compared to nonself. This assumption is the basis of most
anomaly detection systems, which define normal as the most frequently occurring patterns
or behaviors.

ARTIS uses the negative selection algorithm, which is based on negative selection in
the IS (see figure 3) [13]. The primary difference is that we do not accumulate the self set
in a single location, but rather use a form of asynchronous and distributed tolerization”.
Each detector is created with a randomly-generated bit string (analogous to a receptor),
and remains immature for a time period 7', called the tolerization period. During this time
period, the detector is exposed to the environment (self and possibly nonself strings), and
if it matches any bit string it is eliminated. If it does not match during the tolerization
period, it becomes a mature detector (analogous to a naive B-cell). Mature detectors need
to exceed the match threshold in order to become activated, and when activated they are
not eliminated®, but signal that an anomaly has been detected. Clearly, the assumption
here is that if a circulating immature detector matches some self string, it will, with high
probability, encounter that self string during its tolerization period, whereas immature
detectors that match nonself strings will with low probability encounter those nonself
strings during their tolerization period.

8In the case of T-cells, it suffices for several hundred receptors to bind.

"Hence, we use a distributed form of the negative selection algorithm.
8They could still be eliminated through lack of costimulation; see section 3.6.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

negative

detector ™ . .

Randomly generate

detector string

If detector matches self, ACCEPT REGENERATE
regenerate
otherwise accept

Figure 3: The negative selection algorithm. Candidate negative detectors (represented
by dark circles) are generated randomly, and if they match any string in the self set (i.e.
if any of the points covered by the detector are in the self set), they are eliminated and
regenerated. This process is repeated until we have a set of valid negative detectors that
do not match any self strings.

3.4 MEMORY

The IS has an adaptive response that enables it to learn protein structures that charac-
terize pathogens it encounters, and “remember” those structures so that future responses
to the same pathogens will be very rapid and efficient. We call this memory-based detec-
tion, because the IS “remembers” the structures of known pathogens to facilitate future
responses. A memory-based detection system is trained on a subset of nonself to detect
particular elements of that subset. When the IS encounters pathogens of a type it has
not encountered before, it mounts a primary response, which may take several weeks to
eliminate the infection; during the primary response the IS is learning to recognize pre-
viously unseen foreign patterns. When the IS subsequently encounters the same type of
pathogens, it mounts a secondary response which is usually so efficient that there are no
clinical indications of a re-infection. The secondary response illustrates the efficacy of
memory-based detection.

Memory-based detection in the IS has another important property: It is associative
[38]. Memory detection allows the IS to detect new pathogens that are structurally related
to ones previously encountered. This concept underlies immunization, where inoculation
with a harmless form of pathogen, A (such as an attenuated virus) induces a primary
response that generates a population of memory cells which are cross-reactive with a
harmful kind of pathogen, B. This population of memory cells will ensure that the IS
mounts a secondary response to any infections of B.

Primary responses are slow because there may be very few lymphocytes that bind to
a new type of pathogen, so the immune response will not be very efficient. To increase
efficiency, activated lymphocytes clone themselves, so that there is an exponentially grow-

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

ing population of lymphocytes which can detect the pathogens. The higher the affinity
between a lymphocyte’s receptors and the pathogen epitopes, the more likely it is that the
lymphocyte will be activated. Hence, the lymphocytes that are replicating are those with
the highest affinity for the pathogens present. During this time the pathogens are also
replicating, so there is a race between pathogen replication and lymphocyte replication.
The IS improves its chances in this race through a class of lymphocytes called B-cells,
which are subject to high mutation rates (known as somatic hypermutation) when cloning
(we currently do not model this aspect). Hypermutation combined with clonal expansion
is an adaptive process known as affinity maturation. Once the infection is eliminated, the
IS retains a population of memory cells: long-lived lymphocytes which have a high affinity
for the pathogen. This population of memory cells is of sufficient size and specificity to
enable the very rapid secondary response when a re-infection occurs.

ARTIS uses a similar form of memory-based detection. When multiple detectors at
a node are activated by the same nonself string, s, they enter a competition to become
memory detectors. Those detectors that have the closest match (under r-contiguous bits)
with s will be selected to become memory detectors®. These memory detectors make copies
of themselves, which then spread out to neighboring nodes. Consequently, a representation
of the string s is distributed throughout the graph; future occurrences of s will be detected
very rapidly in any node because detectors that match s exist at every node. In addition,
memory detectors have lowered activation thresholds (for example, 7 = 1), so that they
will be activated far more rapidly in future to re-occurrences of previously encountered
nonself strings, i.e. they are much more sensitive to those strings. This mimics the rapid
second response seen in the IS.

3.5 SENSITIVITY

A detection event in the IS often results in the production of chemicals (cytokines)
which signal other nearby IS cells. To model this, we use the notion of locality inher-
ent in the graph defining the environment for ARTIS. Each detection node D; (where
i =1,2,...,|V]) has a local sensitivity level, w;, which models the concentration of cy-
tokines present in a physically local region in the body. The activation threshold of
detectors at D; is defined as 7 — wj, i.e. the higher the local sensitivity, the lower the local
activation threshold. Whenever the match count for a mature detector at node i goes
from 0 to 1, the sensitivity level at D; is increased by 1. The sensitivity level also has
a temporal horizon: over time it decays at a rate given by a decay parameter ~,,, which
indicates the probability of w; being reduced by 1. This mechanism ensures that disparate
nonself strings will still be detected, providing they occur in a short period of time.

3.6 COSTIMULATION

Unfortunately, tolerization in the IS is not as straightforward as described in section 3.3.
Some self proteins are never expressed in the thymus, and so lymphocytes that are toler-
ized centrally in the thymus may bind to these proteins and precipitate an autoimmune
reaction. This does not happen in practice because T-cells require costimulation to be
activated: In addition to binding to proteins (called signal one), a T-cell must be costimu-
lated by a second signal. This second signal is usually a chemical signal which occurs when

9Because matching is approximate, and the activation threshold, 7, can be greater than one, it is
possible that the final string s, that activates a detector differs somewhat from the strings s1,...,sr—1
that were previously matched and hence contributed to activation. We deal with this problem in the

simplest possible way, by assuming that the final string s, is suitably representative of all the strings that
contributed towards activation.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

the body is damaged in some way. The second signal can come either from cells of the IS
or other cells of the body. When a T-cell receives signal one in the absence of signal two,
it dies. Hence, autoreactive T-cells (those that bind to self) will be eliminated in healthy
tissues. However, if the tissues are damaged, autoreactive T-cells could survive. But they
would only survive while the damage persisted; as soon as they left the area of damage,
they would receive signal one in the absence of signal two and die. Moreover, they would
have a high likelihood of dying before they ever reached the area of tissue damage, because
of the healthy tissue passed through on the way.

Likewise, we cannot assume that in ARTIS a detector will encounter every string
s € S during its tolerization period, so it is possible that detectors will mature that match
some strings in S. We implement a crude form of costimulation. Ideally, the second signal
should be provided by other components of the system, but our first approximation is to
use a human operator to provide the second signal. When a detector d is activated by a
string s, it sends a signal to a human operator, who is given a time period T (called the
costimulation delay) in which to decide if s is really nonself. If the operator decides that s
is indeed nonself, a second signal is returned to d. If the operator decides that s is actually
self, no signal is sent to d and d dies off and is replaced by a new, immature detector.
Consequently, a human operator need make no response in the case of false positives; the
system will automatically correct itself to prevent similar false positives in future.

3.7 THE LIFECYCLE OF A DETECTOR

If detectors lived indefinitely and only died off when they failed to receive costimulation,
most detectors would only be immature once. Any nonself strings that occurred during
the period of immaturity of these detectors would not be detected in future because all
detectors would be tolerant of them and would remain tolerant. In the IS this is not a
problem because lymphocytes are typically short-lived (a few days) and so new, immature
lymphocytes are always present, i.e. the population of lymphocytes is dynamic. We
introduce a similar measure: Each detector has a probability pgeqn of dying once it has
matured. When it dies, it is replaced by a new randomly-generated, immature detector.
Ultimately, every detector dies sooner or later, unless it is a memory detector. Figure 4
presents the lifecycle of a detector. Now a nonself string will only be undetected if it is
continually present to tolerize the continual turnover of new detectors, i.e. the only false
negatives will occur when nonself is frequent, which violates a fundamental assumption
underlying our model.

An exception to the finite lifespan is memory detectors. In the IS, memory cells are
long-lived so that the patterns that they encode are not lost over time. For example,
exposure to measles early in life confers life-long protection against the disease. Similarly,
memory detectors in ARTIS are long-lived: They can die only as a consequence of a lack
of costimulation. A problem with this mechanism is that eventually all detectors could
become memory detectors, with a loss of the advantages conferred by dynamic detector
populations. To combat this problem, we limit the number of memory detectors to some
fraction my of the total detectors. If a new detector wins a competition and becomes a
memory detector, and the fraction of memory detectors has reached the limit, then the
least-recently-used (LRU) memory detector is demoted to an ordinary mature detector
(consequently it once more has a finite lifespan). We demote the LRU detector because
the LRU detector is the one that has not been activated for the longest time period of any
memory detector, and hence we assume that it is the least useful memory detector.

An additional benefit of a dynamic detector population is that the system can adapt

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

randomly created

01101011010110...110101

no match during
tolerizatjon period

mature & naive
\éhg/jtion

-

exceed.ac
threskold

don’'t exceged activation activated
threshold

during lifetime .
costimulation

match anything
during tolerization

match

Figure 4: The lifecycle of a detector. A detector consists of a randomly created bit
string that is immature for the tolerization period T'. If it matches anything once during
that period it dies and is replaced by a new randomly generated detector. If it survives
tolerization, it becomes a mature, naive detector that lives for an expected 1/pgeqsn time-
steps. If the detector accumulates enough matches to exceed the activation threshold 7, it
is activated. If the activated detector does not receive costimulation, it dies. If it receives
costimulation, it enters a competition to become a memory detector. Once a memory
detector, it lives indefinitely, and only requires a single match for activation.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

to changing self sets. As the self set changes, it will tolerize new immature detectors, and
mature detectors that were causing false positives will either die from lack of costimulation
or from age. Eventually all detectors will be tolerant of self, providing self does not change
too quickly. If self changes rapidly compared to the life span of a detector, there will be a
sizeable portion of detectors that are immature, because mature detectors will continually
die due to lack of costimulation.

3.8 REPRESENTATIONS

Molecules of the major histocompatibility complexr (MHC) play an important role in the
IS, because they transport peptides (fragments of protein chains) from the interior regions
of a cell and present these peptides on the cell’s surface. This mechanism enables roving
IS cells to detect infections inside cells without penetrating the cell membrane. There are
many variations of MHC, each of which binds a slightly different class of peptides. Each
individual in a population is genetically capable of making a small set of these MHC types
(about ten), but the set of MHC types varies in different individuals. Consequently, indi-
viduals in a population are capable of recognizing different profiles of peptides, providing
an important form of population-level diversity'®.

We speculate that MHC plays a crucial role in protecting a population of individuals
from holes in the detection coverage of nonself. A hole is a nonself string for which no
valid detectors can be generated [8]: A nonself string a € N is a hole if and only if,
Yu € U, such that v and a match, then u matches some self string, s € S. See figure 5.
Holes can exist for any approximate match rule with a constant probability of matching
(such as the r-contiguous bits) [8], and it is reasonable to assume that they will exist in
the biological realm of receptor binding, because binding between receptors in the IS and
peptides is approximate. Moreover, pathogens will always be evolving so that they are
more difficult to detect (they evolve towards becoming holes in the detection coverage).
Those pathogens that are harder to detect will be the ones that survive better and hence
are naturally selected.

holes

- holes

Figure 5: The existence of holes. There are strings in the nonself set that cannot be
covered by valid negative detectors of a given specificity (match length r). The size of
the dark circles representing detectors is an indication of the generality of those detectors.
The detectors depicted in the example here are too general to match certain nonself strings
without also matching self.

In the IS, each type of MHC can be regarded as a different way of representing a
10For example, there are some viruses, such as the Epstein-Barr virus, that have evolved dominant

peptides which cannot be bound by particular MHC types, leaving individuals who have those MHC
types vulnerable to the disease [25].

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

protein (depending on which peptides it presents); in effect, the IS uses multiple represen-
tations, or views, of proteins. Multiple representations can reduce the overall number of
holes, because different representations will induce different holes. In ARTIS, each detec-
tion node uses a different representation: It filters incoming strings through a randomly-
generated permutation mask!'!. For example, given the strings s; = 01101011,s, =
00010011, and a permutation, A, defined by the randomly-generated permutation mask
1-6-2-5-8-3-7-4, these strings become A(s;) = 00111110, and A(s2) = 00001011. Using the
contiguous bits rule with » = 3, s; matches s»2, because the last 3 positions are the same,
but under the new representation, A(s;) does not match A(s2). Having a different repre-
sentation for each detection node is equivalent to changing the “shape” of the detectors,
while keeping the “shape” of the self set constant (see figure 6). Consequently, where one
node fails to detect a nonself string, another node could succeed.

\\‘

& O ‘\‘ /////

local detector set 1 local detector set 2 local detector set 3

Iy

detection across all nodes

Figure 6: Representation changes are equivalent to “shape” changes for detectors. The
problem of holes can be ameliorated by using different a representation for each detection
node. There are different holes for different representations. or equivalently different
shaped detectors can cover different parts of the nonself space, for a global reduction in
holes.

3.9 RESPONSE

The immune system has a variety of effector functions because different pathogens must
be eliminated in different ways. For example, intra-cellular pathogens such as viruses are
eliminated by killer T-cells, whereas extracellular bacteria are eliminated by macrophages,
complement, and so forth. After pathogens have been detected, the immune system must
select the appropriate effectors so that the pathogens are efficiently eliminated. Selection
of effectors is determined at least in part by chemical signals in the form of cytokines, but
it is not clear how selection actually works. Mathematical models indicate ways in which
selection could occur, if cytokines reflect the local state of the system (i.e. the damage
suffered from pathogens, the damage suffered from the immune system, etc.) [37].

11We have also used other methods of changing the representation. This is the simplest. See [20] for
details.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

We focus on a particular form of effector selection, instantiated by a class of lympho-
cytes called B-cells. When B-cells are activated, they can differentiate to become plasma
cells that secrete a soluble form of their receptors, called antibodies. Antibodies have a
y-shaped structure, with three different regions, corresponding to the two arms and the
tail of the y. The arms of the y are termed the wvariable regions, and the tail of the y is
the constant region. The variable regions are randomly generated (as described in section
3.3) so that they bind to specific pathogen epitopes. The constant region, on the other
hand, is not randomly generated (hence the name), but comes in a few structural varieties,
called isotypes'?. The constant region is the part of the antibody to which other immune
system cells (such as macrophages) bind. Depending on the isotype of the constant re-
gion, different responses will be triggered upon binding, so it is this part of the antibody
that determines effector function. A single B-cell can clone multiple B-cells, each with a
different isotype, even while the receptor variable regions remain the same. This is known
as isotype switching, and enables the immune system to choose between various effector
functions via chemical binding.

To date we have focused on detection, and have not investigated the IS response in
detail. Although the appropriate type of response will depend on the application domain
(some application domains will require no forms of automated response), we can in abstract
model effector selection, assuming that several different kinds of response are required,
each associated with a different kind of effector 3. Each detector can be augmented
with the equivalent of a fixed region, which is a bit string that encodes effector choice.
When detectors are copied after activation, they undergo a process similar to isotype
switching, in which the fixed region bit string is set according to the type of response
deemed appropriate. Migrating detectors will then not only carry information concerning
the patterns of anomalies, but also specific information concerning how those anomalies
should be eliminated. We expect that this will maintain a similar level of robustness and
flexibility as we have achieved for the detection component of our system.

3.10 SUMMARY

Table 1 summarizes the differences and similarities between the IS and ARTIS. In ARTIS,
we do not use central tolerization and so have no equivalent of the thymus (the elements
labelled “NONE”). However, ARTIS could easily be implemented with negative detection
occurring in a single location. We have avoided this because it reduces the robustness of
the system, introducing a single point of failure.

4 APPLICATION DOMAIN: NETWORK SECURITY

In this section we take the abstract framework for ARTIS and demonstrate its utility
by applying it to a particular domain, that of network intrusion detection (NID). We
have previously applied the analogy to several aspects of computer security, including
computer virus detection [13], host-based intrusion detection [11], and using diversity to
make computers robust to wide-spread attacks [14]. In this paper we concentrate on a
system (LISYS) that is designed to protect a local area network (LAN) from network-
based attacks.

NID systems are designed to detect network attacks by analyzing and monitoring

12There are many different isotypes, for example, IgA, IgG, IgM.
13We discuss some possibilities for a specific application in section 4.4.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

Immune System ARTIS
peptide/protein /epitope binary string
receptor binary string
monoclonal lymphocyte detector

(B-cell, T-cell)
antibody variable region detector string
antibody fixed region bit string encoding response
memory cell memory detector
pathogen nonself binary string
binding approximate string matching
locality vertices in a graph
circulation mobile detectors
central tolerization NONE
thymus NONE
MHC representation parameters
cytokines sensitivity level
peripheral tolerization distributed negative selection
signal one matches exceeds activation threshold
signal two (costimulation) | human operator
lymphocyte cloning detector replication
pathogen detection detection event
pathogen elimination response
affinity maturation memory detector competition

Table 1: Comparison between the IS and ARTIS. “NONE” indicates that there is no
analogous mechanism.

network traffic!%. Some good overviews of NID systems are given in [31]. Most NIDs
perform signature-based detection which is similar, but more limited than memory-based
detection. Unlike the IS, these NIDs have no facilities for automatic signature extraction;
a human operator has to extract the signatures of attacks. Attack signatures are encoded
in expert systems [18, 36, 40, 16], or state transition diagrams [43], or graphs [42]. Few
NIDs perform anomaly detection; those that do [15, 36, 2] use some form of statistical
analysis.

NIDs are usually distributed in the sense that they have multiple monitors across a
network. Data from the monitors is collated in one of two ways: either centrally [18, 40,
43, 32] or hierarchically [36, 6, 42]. Although these multi-monitor systems are distributed
in the sense that the monitors they employ are distributed throughout the network, they
are not localized in the sense that the IS is localized: They have single failure points which
are vulnerable to attack. Moreover, all the monitors are identical, and so a vulnerability
in one monitor will be replicated across all of them; i.e. these NIDs are not diverse in the
sense that the IS is. These disadvantages are overcome in LISYS.

4.1 MAPPING ARTIS TO NETWORK SECURITY

The first and in a sense most important step, when applying ARTIS to a domain, is to
choose the equivalent of proteins. For example, in computer security, there are many dif-
ferent levels at which we can monitor performance and behavior; characteristics at each
of these levels represent potential proteins. We have chosen to monitor network traffic,
and so our protein is a “datapath triple”, which consists of a source internet protocol (ip)
address, a destination ip address, and a TCP service (or port) by which two computers
communicate. Essentially, a protein is a connection between two computers. Currently,

l48ystems that monitor network traffic are commonly labeled “network-based” [31].

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

we monitor only the start of TCP connections, i.e. we monitor TCP SYN packets. We
have chosen this level (network connections) because the environment is naturally dis-
tributed (there are many computers communicating), and because other researchers have
successfully implemented anomaly detection by monitoring network connections [15].

In our representation, the connection information is compressed to a single 49-bit
string which unambiguously defines the connection. Self is then the set of “normally
occurring” connections observed over time on the LAN. Thus, self is defined in terms
of frequencies: We assume implicitly that any connection that occurs frequently over a
long period of time is part of the self set. A connection can occur between two internal
computers on the LAN, or between an internal computer on the LAN and an external
computer outside the LAN. Each connection is represented by a 49-bit string (whether
internal or external). Similarly, nonself is also a set of connections (using the same 49-bit
representation), the difference being that nonself consists of those connections, potentially
an enormous number, that are not normally observed on the LAN.

In ARTIS, we modeled the environment with a graph, where each vertex defined a
locality corresponding to a detection node. For the NID application, each vertex corre-
sponds to a computer within the LAN (an internal computer), and the network represents
a fully connected graph (see figure 7), because we have assumed the network is broadcast.
Broadcast LANs have the convenient property that every location (computer) sees every
packet passing through the LAN.

In summary, LISYS is an implementation of ARTIS, as described in section 3. The
binary strings are mapped from datapath triples and the environment is a network of
computers, where each internal computer corresponds to a vertex in the graph, running a
detection node. We have not yet incorporated mobile detectors, replication or response.
We discuss these extensions in section 4.4.

4.2 EXPERIMENTS

LISYS was implemented and tested out using real data collected on a subnet of 50 com-
puters at the Computer Science Department of the University of New Mexico. Two data
traces were collected: self, S;, consisting of normal traffic, and nonself, N;, consisting of
traffic generated during intrusive activity.

The self trace, S; was collected over 50 days, during which a total of 2.3 million
TCP connections were logged, each of which is a datapath triple. These 2.3 million
datapaths were filtered down to 1.5 million datapaths. The filtering removed several
classes of noisy traffic sources, such as web servers and ftp servers, because these are
continually communicating with new hosts, and so have no stable definition of normal in
terms of datapaths. Although we filtered out web and ftp server traffic, we did not filter
out connections to web and ftp server ports on internal computers that should not have
been running such servers. Moreover, for web servers and ftp servers, we only filtered out
the traffic destined for the web and ftp server ports, but still continued to monitor other
ports on the server computers. After this, a self set S, consisting of 3900 unique strings,
was extracted from S;.

The nonself trace, N; was comprised of seven different intrusive incidents, that were
faithful logs of real incidents that occurred on the network being studied. Most of these
attacks consisted of probing of one sort or another, particularly of services with recently
reported vulnerabilities. At least one incident involved compromise of an internal com-
puter. The traffic tested for each incident consisted of all datapaths from the first nonself

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

external computer

. IP: 20.20.20.5
port: 25

datapath triple
(20.20.20.5, 31.14.21.37, smtp) = 1110111...11

IP: 31.14.21.37 Detection Node

port: 1700
sensitivity || detector
* internal computer level >t
. fntema pute . j— Detector Lifecycle
] represent- j— (distributed tolerization
broadcast LAN : ation — & death)

a parameters

0001010010011100011101110...01110
Detector
S S

tate activation flag | last activation | # matche
I

{immature, naive, memory}

Figure 7: Architecture of LISYS. Each internal computer runs a detection node, which
consists of a set of detectors, a local sensitivity level and a representation function with
randomly generated parameters (for example, the permutation mask). Each detector
contains a binary string, and is either immature, naive (and mature), or a memory detector.
In addition, each detector keeps track of whether it is awaiting costimulation (using the
activation flag) and how many matches it has accumulated.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

Test Set | Number | Fraction | Fraction
strings nonself unique nonself
AP 8600 0.540 0.340
PS 2966 0.435 0.196
LP1 1174 0.617 0.118
LP2 114 1.000 0.842
LP3 1317 0.102 0.002
SP1 36 1.000 0.833
SP2 285 0.165 0.130

Table 2: Features of nonself sets. Number strings is the total number in the trace, from
first nonself string to last, including all self strings that occurred during that time. Fraction
nonself is the fraction of the trace that consisted entirely of nonself strings, and Fraction
unique nonself is the fraction of the total trace represented by unique nonself strings,
which is the size of the nonself test set for the incident. AP = address probing, PS =
large scale port scanning, LP = limited probing (scanning of a few ports), SP = single
port probing.

datapath (the start of the incident), to the last nonself datapath. Thus, each incident
reproduced the timing of the attack, as well as including all normal traffic that was in-
terspersed throughout the attack. Table 2 gives a breakdown of the number of strings in
each incident, including what fraction of the strings were nonself.

Although we have implemented and tested an on-line prototype, all results reported
here are for off-line simulations of 50 detection nodes, corresponding to the 50 computers.
Simulation increases the flexibility in the way the experiments can be set up and run; in
particular, there is no limit on the number of time-steps for which the simulation can be
run. This enables periods of months to be simulated in the space of hours, which was
necessary to carry out extensive testing of various parameter settings. Another advan-
tage of simulation is that it is easy to replicate results. We report elapsed time for the
experiments in days. For all simulated data, one day is assumed to be equivalent to 25000
time-steps, that is, 25000 TCP SYN packets, because this is the average number of SYN
packets observed in a day on the UNM subnet over a period of two months.

We assumed that the trace of self strings could be modeled by a strongly-stationary,
discrete-time, random-process, described by the sample distribution extracted from S;. In
other words, at each timestep 4, a string s; was randomly drawn from S, weighted by its
frequency of occurrence in the original trace, S;. Figure 8 compares the distribution of a
trace of simulated self strings with the distribution of S;, over the same length of time.
The curves are identical except at low probabilities (0.00001), which indicates that our
simulated data has almost the same probability distribution as the original, real data. We
have to generate self this way because our trace of self, S;, covers only 50 days, and we
may need to run experiments for more than 50 simulated days.

Many different simulations were performed to understand the effects of the various
mechanisms and parameter settings [20]. In this paper we summarize results for one
particular set of parameter values (see table 3)'5. For these parameter settings, we ran 30
individual simulations and averaged results over these. All detectors began each simulation
as immature, and the system was run for 30 simulated days of normal (self) traffic. After
these 30 days, LISYS was challenged with the intrusive incidents. LISYS was presented

15For these experiments we implemented multiple representations using a “byte-and-hash” algorithm.
See [20] for details.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

1.000000

Real

0100000y Tl Simulated

0.010000

0.001000

Probability

0.000100
0.000010 T

0.000001

0.000000 — — — ——
1 10 100 1000

String Index

Figure 8: The probability distributions for real and simulated self. Note that both axes
are logarithmic.

Parameter | Description Value

[string length 49 bits

r match length 12 bits

T activation threshold 10 matches
1/Ymatch match decay period 1 day

1/%w sensitivity decay period 0.1 days

T tolerization period 4 days

Ts costimulation delay 1 day
1/pdeatn life expectancy 14 day

ng number detectors per node | 100 detectors

Table 3: The parameters for the simulation. Although the simulation uses 25000 time-
steps per simulated day, parameter values are reported in terms of days for clarity. The
decay periods are the expected time to decay by one. All 50 detection nodes have the
same number of detectors, ng.

with the incidents one after the other, each one separated by a buffer zone of a simulated
day’s self traffic.

The results of the simulations are reported in table 4. The false positive rate for
each run of the simulation was averaged over the last 20 days, to ensure that transients
have died out. Transients exist because all detectors are initially immature. These false
positive rates are very encouraging; in the intrusion detection community, less than 10 false
positives per day is regarded as very low [27]. Moreover, because of the implementation
of costimulation, a false positive requires no action on the part of a system administrator.
The low false positive rates were achieved without compromising the ability to detect
intrusions: LISYS correctly detected all seven incidents. Note that because each intrusive

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

Aspect Result

Fraction immature | 0.23%+0.01
False positive rate | 1.7640.20
Incidents detected | 7 out of 7

Table 4: Summary of performance results. “Fraction immature” refers to the fraction of
all detectors that are immature, averaged over the last 20 days of the simulation; “false
positive rate” refers to the number of false positives incurred per day over the last 20
days; and “incidents detected” refers to the number of intrusive incidents detected. In the
“result” column, the first number is the mean over 30 runs; the second figure (following
the =+ sign) is a 90% confidence interval in the mean.

incident consisted of multiple nonself strings (see table 2, it sufficed to detect only a few
nonself strings during an intrusive incident. However, the more nonself strings detected
per incident, the easier it is to separate false positives from true positives. In the results
reported here, at least 44% of the nonself strings present in each incident were detected.

4.3 ARE ALL THESE MECHANISMS REALLY NECESSARY?

We have included several complicated mechanisms in LISYS, because they have been
inspired by the immune analogy and because we believe them to be necessary. But are
these mechanisms really necessary? In this section, we discuss the effects of some of the
mechanisms, and show that they are indeed useful (and sometimes essential). These points
summarize experimental results reported elsewhere [20].

o Activation thresholds reduce false positives. In our simulations, false positives were
reduced by a factor of close to 7, for values of 7 from 1 to 10 (7 is the activation
threshold — see section 3.2). Moreover, activation thresholds did not have a signifi-
cant negative impact on detection of intrusive incidents, because the nonself strings
comprising the incidents occurred in a short period of time.

o Sensitivity levels increase the ability to detect diverse nonself strings, provided that
they are temporally clumped. We simulated a distributed coordinated network attack
(DCA), launched from many different locations so that each nonself string in the
incident is very different from the others. DCAs can be particularly difficult to detect
because the attack is launched simultaneously from many different locations, each of
which carries out a limited portion of the attack, so that suspicion will not fall on
a single location. Diagnosis of such attacks usually requires collation of information
from many different locations. The sensitivity mechanism improves the detection of
nonself strings in the simulated DCA by up to an order of magnitude.

o Tolerization is essential for reducing false positives. False positives increase exponen-
tially with decreasing tolerization periods, changing from 1.7 per day for T'= 4 to 15
per day for T = 0.5. There is a trade-off that determines the best length for the toler-
ization period. The longer the tolerization period the lower the probability of a false
positive, but longer tolerization periods result in detectors remaining immature for
longer, and hence not contributing to the detection of anomalies. Longer tolerization
periods also increase the risk of the system being tolerized to infrequently occurring
nonself.

e (Costimulation eliminates mature, autoreactive detectors and consequently reduces

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

false positives. Costimulation was found to reduce false positive rates by a factor of
3.

o Multiple representations improve detection rates when the relevant nonself strings are
similar to self strings. In the NID application, using multiple representations improves
detection by up to a factor of 3 when attempting to detect nonself strings similar to
self.

o Anomaly detection is essential for detecting nonself strings that have not been en-
countered previously. In the simulations, we successfully detected 7 incidents that
LISYS had never before encountered in the simulation.

e Memory detectors improve detection of previously encountered nonself. We used
a set of 1000 nonself strings to test signature-based detection. The set of nonself
strings was randomly-generated so that each string represented a new connection
between two internal computers. We did this because such connections are closer to
the normal profile of connections and thus we expect them to be harder to detect.
When the (steady-state) system was initially challenged with the nonself strings, it
detected 25% of them, in what can be regarded as a primary response. We allowed
the system to retain up to 10% of its detectors as memory detectors (which had
activation thresholds reduced from 7 = 10 to 7 = 1), and challenged it again 20 days
later with the same set of nonself strings. This time it detected 75% of the strings, in
a secondary response, clearly illustrating the utility of memory detectors 6.

o Finite lifetimes ensure that gaps in detection coverage are not static and predictable,
and improve the secondary response (without finite lifetimes, the secondary response
is no better than the primary response). Clearly, if detectors lived indefinitely and
detection coverage was incomplete, any adversary that discovered the gaps in the cov-
erage could repeatedly exploit them without fear of detection. Moreover, having finite
lifetimes allows the system to more easily adapt to changing self sets, even without
costimulation, because autoreactive detectors will eventually die off and be replaced
by new immature detectors which will be tolerized to the new self set. However,
there is a trade-off in selecting the lifespan: As the lifespan decreases, so the toleriza-
tion period must decrease, otherwise there will be an increasing number of immature
detectors, but a decreasing tolerization period will increase false positives.

4.4 EXTENSIONS

There are several components of ARTIS that we have not included in LISYS. Our detectors
are not mobile and they do not replicate when activated. As discussed in section 3.4, in
ARTIS, memory detectors copy themselves and spread out to neighboring detection nodes.
What is required in LISYS are mechanisms whereby copies of memory detectors migrate
to other computers in the LAN. This would improve the robustness of signature-based
detection in the distributed system, because all computers would have a similar set of
memory detectors, so loss or compromise of a few computers would have no effect on
efficacy of the secondary response. Mobility and replication should be tested on a live
network.

Currently, LISYS is not completely autonomous, although its learning mechanisms
are largely unsupervised. An important area of future work would be to make LISYS

16Note that a true secondary response would not only detect anomalies more quickly, but devote more
resources to response, which we have not yet modeled.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

autonomous by removing the human operator. This would require implementing an au-
tomated response system with possible selection of response mechanisms analogous to
effector selection in the IS. The basis of the response system could be the modification of
access to network services, so that hosts causing anomalous packets would be denied access
to the relevant services. The response system could be viewed as having flexible, dynam-
ically adaptive firewalls on every computer on the LAN. Automated response is a tricky
issue, however, because an incorrect response can interfere with the legal functioning of
the system and cause denial of service. Incorrect responses are analogous to autoimmune
responses, and we hope that a form of costimulation can be implemented that will mini-
mize these harmful responses. To do this requires some indicator of damage in the network
environment; one idea that we are investigating is using a host-based intrusion detection
system to provide damage indications [41]. We can also monitor system performance to
characterize damage in terms of degraded performance during denial of service attacks.

4.5 PROPERTIES OF LISYS

As a consequence of the immune analogy, there are many important properties that LISYS
exhibits. Most of these are not exhibited by current NID systems; although many systems
exhibit some of these properties, none exhibit all of them.

e LISYS is robust in that it continues to function in the face of compromise or malfunc-
tion of some computers. This is desirable because it makes the system more reliable
and makes it harder for an adversary to subvert. LISYS achieves this because it is
distributed and no communication is required between detection nodes. Loss of a few
detection nodes will only result in a gradual degradation in performance.

o We can tune the trade-offs between resources used and effectiveness of the system, and
between false positives and false negatives. This is desirable because different domains
will have different requirements, and even within a single domain, requirements may
change over time. LISYS achieves this by varying the number of detectors: The
more detectors, the better the detection rate, but the more computational resources
required. The trade-off between false negative and false positive errors can be tuned
by adjusting the activation threshold.

e LISYS is scalable in that adding more nodes will not increase the computational
requirements of any existing node. This is desirable because the system should be
scalable to very large networks. LISYS achieves scalability because there is no com-
munication between nodes and detection nodes operate independently.

e LISYS performs anomaly detection. This is desirable because new attacks are always
occurring and most NID systems will not be able to detect them. LISYS implements
anomaly detection through the use of negative detectors and the negative selection
algorithm.

e LISYS performs signature-based detection, automatically extracting signatures from
nonself data. This is desirable because it can speed up detection and increase dis-
criminatory accuracy. Moreover, it is desirable to automatically extract signatures
because that reduces dependence on a human operator and speeds up the process of
distributing information concerning attack signatures. The retention of memory de-
tectors and the competition to become memory detectors implements signature-based
detection in LISYS.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

e LISYS is accurate: It achieves low false positive rates (two per day) with clear de-
tection of intrusive activity (7 out of 7 incidents clearly detected). This is desirable
because we want to minimize harm to the system, both in terms of damage an at-
tacker could do, and in terms of damage an incorrect response (either automated or
from a human operator) could do.

e LISYS is adaptable: It can initially train itself without human supervision, and it can
later adapt to changes in normal behavior without human input. This is desirable
to ensure autonomy of the system, because networks being monitored will always be
changing. In LISYS, tolerization and finite detector lifetimes allow the system to
adapt.

e The low resource requirements of LISYS make it lightweight. This is desirable because
NID systems with expensive resource requirements will probably not get used. The
results we achieved with LISYS required only 100 detectors per node, which is 100
49-bit binary strings per computer, with negligible running costs.

4.6 LIMITATIONS

Several limitations are related to the fact that LISYS currently monitors TCP datapaths
on a broadcast network. Intrusions can involve network traffic at different protocol layers,
for example UDP; these would not be detected by LISYS. LANs are moving away from
broadcast networks to switched Ethernet, so that each computer sees only the packets that
are destined for it. LISYS would lose many of the advantages of distributed monitoring in
a switched network. Possible ways of overcoming this limitation include using programmed
switches or active networks [39] to broadcast SYN packets. Characterizing self in terms of
datapaths will not work for services which are expected to connect to any possible other
computer at any time, such as WWW or FTP servers. Hence any attack that exploits
vulnerabilities in these services will go undetected. Monitoring a different characteristic
(e.g., packet frequencies) could address this problem.

Activation thresholds are useful for reducing false positives, but they also introduce
paths of attacks. If activation thresholds greater than one are used to reduce false pos-
itives, then an attacker can evade detection in two ways. Firstly, by making anomalous
connections occur infrequently enough so that they will never accumulate to the point
where they could trigger a detector, and secondly, by ensuring that during any given at-
tack the number of connections made is fewer than that required to activate a detector. As
the frequency of connections used decreases, so the skill and patience of the attacker must
increase. This limitation does not apply if an organization has the resources to cope with
the higher false positive rates that are a consequence of minimal activation thresholds.

We have assumed that the problem domain can be divided into two sets of events: a
set of legitimate and acceptable (according to some policy) events, and a set of illegitimate
events. In reality, there can be events which are legitimate at some times and illegitimate at
other times. Such ambiguous events violate the assumption and cannot always be correctly
classified by LISYS. Another underlying assumption is that policy (under which the self
and nonself sets are defined) can be implicitly inferred by observing the behavior of the
system, and assuming that either self occurs more frequently than nonself, or that there is
some period of time during which the self set can be collected separately from nonself. This
is not only a limitation of this research, but a limitation for anomaly detection systems
in general'”: Some assumptions must be made about the relative frequency of occurrence

7Including the IS.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

Classifier Systems ARTIS

classifier condition detector

classifier action detector response

1,0, # matching r-contiguous bits

classifier strength immature, mature, activated, and memory states
message list bit strings representing patterns of interest
bidding for messages competition to become memory detectors
more specific match wins more specific match wins

support activation threshold

message intensity sensitivity level

internal messages migrating detectors

bucket brigade memory-based detection

genetic algorithm and triggering | negative selection

NONE multiple representations

Table 5: Tentative comparison of ARTIS with classifier systems.

and/or distributions of the self and nonself sets.

5 RELATION TO CLASSIFIER SYSTEMS

ARTIS resembles the architecture of a classifier system [24]. As we mentioned earlier,
immunologists often describe the problem solved by the immune system as that of dis-
criminating “self” from harmful “other” (or “nonself”) and eliminating other. In the
language of classifier systems, the immune system must process external and internal mes-
sages, first classifying them as self or nonself, and in the case of dangerous messages taking
appropriate action.

The parallel between immunology and classifier systems was noted as early as 1986 in
[10]. In this work, a classifier system was used to model the immune system, by drawing
an analogy between individual classifier rules and antibody types. Classifier strength
represented the concentration of the antibody type, and interactions between classifier
rules modeled Jerne’s idiotypic network hypothesis [26]. Although the comparison was
interesting, it had relatively little impact on classifier system research, and the two fields
have continued to develop largely independently. Since that time, theoretical immunology
has advanced significantly, and emphasis has switched from idiotypic network theory to
other aspects of immunology.

Table 5 shows how the components of ARTIS correspond to the components of a
learning classifier system, although we draw the analogy somewhat differently from [10].
The mapping between classifier systems and ARTIS is not 1-1, although the architectural
similarities are striking. Because almost all of the implementation details (e.g., the details
of matching rules) are different, while the overall architecture is largely preserved, ARTIS
provides an interesting comparison with traditional classifier systems. In this section, we
point out both the similarities and differences between these two systems.

Each detector d corresponds to the condition part of a classifier, where the match rule
is r-contiguous bits instead of the traditional 1,0, # alphabet used in classifier systems.
The parameter r is a measure of the specificity of the detectors, much like the number of
don’t cares in a classifier condition is a measure of its generality. In the current imple-
mentation of ARTIS, there is nothing corresponding to the action part of a classifier rule.
However, if we concatenate some bits to each detector to specify a response (analogous to
different antibody isotypes discussed in section 3.9), then each detector “cell” (detector

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

plus response bits) would correspond quite directly to the condition/action rule format of
classifier systems.

Less directly analogous are activation thresholds, which roughly correspond to Hol-
land’s proposal for support, and sensitivity levels which serve a similar role to message
intensity. In both cases, the ARTIS mechanism is quite different from that used in clas-
sifier systems, but the reason for the mechanism is similar—in the one case to aggregate
information from multiple sources and in the second case to vary the sensitivity of the
system dynamically. Both activation thresholds and sensitivity levels decay over time,
similarly to the role of tax in classifier systems.

In place of the message list we have a continuous flux of binary strings which represent
the current state of the environment (for example, in LISYS these binary strings repre-
sented datapath triples). Internal messages in classifier systems are perhaps analogous to
migrating detectors that move from one node to the next, although the analogy is not
perfect.

There is no direct analog of the IS negative-selection algorithm in classifier systems,
except for the learning rules (such as genetic algorithm and trigger conditions) under which
new classifiers are generated. Bidding for messages in classifier systems is analogous to
immune cells competing to bind to foreign pathogens. Likewise, we introduced pressure
for specificity in ARTIS—which is reminiscent of classifier systems—by allowing the more
specific match to win the competition to become a memory detector.

The role of the bucket brigade (credit assignment) and the genetic algorithm is played
by our competition for memory system of learning, although ours is simpler in the sense
that we assign credit directly from the environment to the detectors, and do not pass
strength among immune cells. A more direct analog of the bucket brigade would occur if
we tried to build up idiotypic networks of immune cells in which immune cells stimulate
and repress other immune cells, as Jerne proposed [26]. Although this is appealing from an
adaptive design perspective, there is little if any experimental evidence that such networks
exist in natural immune systems.

ARTIS is essentially a stimulus/response system, where the stimuli are binary strings,
classification of inputs does not involve a large amount of internal processing, and the
response is an appropriate action (for example, in LISYS the response is an email message
to a human operator). The natural IS is considerably more complicated, with highly
complex internal regulatory mechanisms and several different kinds of potential responses.
The regulatory mechanisms appear to be implemented through signaling molecules such
as cytokines (discussed earlier); these cytokines can be viewed as analogous to internal
messages in classifier systems. We could increase the role of internal feedbacks and self-
regulation in ARTIS by extending the cytokine system (of which the sensitivity level is a
primitive form).

In classifier systems, each classifier’s strength is represented by a real number. A
classifier’s strength determines the probability of it being deleted or replicated through the
genetic algorithm. In ARTIS, each detector is in one of several discrete states: immature,
mature, activated, or memory. Which state it is in determines the likelihood of it being
deleted, replicated, or mutated.

Multiple representations have no direct analog in classical classifier systems. However,
they do provide a natural partitioning of the set of detectors. One weakness of the original
classifier system proposals is that the architecture is completely flat. By “flat” we mean
that all classifier rules are at the same level and there are no mechanisms for aggregating

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

rules into “subassemblies” that form coherent units and have well-defined interfaces with
the rest of the system. Tagging is sometimes proposed as a mechanism for automatically
partitioning the rule sets into related groups of rules, but it has not been convincingly
shown to work for this purpose. We speculate that different detector sets might discover
different kinds of regularities (due to the combination of multiple representations with
the locality of the r-contiguous bits matching rule). In this way, multiple representations
could prove to be an initial step towards the kind of adaptive partitioning that has eluded
classifier systems.

6 OTHER APPLICATIONS

Earlier we claimed that ARTIS is a general architecture for problem solving. To this end,
we described ARTIS abstractly, and then applied it a particular domain, that of network
intrusion detection. In this section, we briefly review some other applications for which
ARTIS could be suitable, to demonstrate the generality of the approach. We also describe
(in section 6.5) features of a problem domain that would make it suitable for ARTIS.

The single most important consideration when applying ARTIS to a domain is to
choose a suitable peptide, or characteristic, to monitor. Such a peptide must result in a
normal profile that separates normal from abnormal or anomalous behaviors satisfactorily,
i.e. with minimal errors, both false positive and false negative.

6.1 MOBILE AGENT SECURITY

A mobile agent is a piece of software or code that copies itself to networked computers, and
then runs on those computers. The code can also be modified, or evolve, as a consequence
of interactions with other agents and software on computers. Already there are several
examples of commercial mobile agent frameworks; see [4] for examples of mobile agent uses.
Mobile agents offer increased flexibility for computing tasks. However, flexibility comes at
the price of increased vulnerability, both to malicious users exploiting the system, and to
poorly programmed or accidentally corrupted agents that could spread and cause damage
like a cancer.

Conventional models of computer security are not suitable for a mobile agent frame-
work; application of such models could limit the flexibility to such a degree that the
mobile-agent frameworks become mere curiosities. An example of this is the “sand-box”
concept for Java applets. Java applets are mobile agents that run within a sand-box on
a computer, where the sand-box is an interpreter that prevents the applets from harming
the host computer. However, there are two problems with using a sand-box: Firstly, the
applets are limited in what they can do because they are constrained to the sand-box, and
secondly, if what users care about is interactions between applets within the sand-box,
then this form of security is useless. Essentially the sand-box is the same concept as the
old fortress model of security, and although it is useful to a limited extent, it is generally
too static to allow the kind of flexibility that makes mobile agents so promising.

We suggest that mobile agent security could be implemented using a form of ARTIS.
The peptide could be a collection of MD5 hashes of agent code: We subdivide the agent
code into several pieces and compute a hash for each piece. Then, small changes in the
agent code will result in small changes in the overall peptide (i.e only one of the hashes
will change). The anomaly detection problem is then one of identifying unacceptable
agent behavior and associating it with particular hashes so that an agent and its (possibly
mutated) offspring can be eliminated. The detectors could be implemented by agents

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

themselves, which has the advantage that the detectors can monitor each other. The
second signal could be provided by a human being, but it may also be possible to use some
form of a damage signal. For example, agents that are terminated incorrectly by malicious
agents could be an indicator of damage. Successful detection of a malicious agent would
lead to elimination of that agent, and the detector agent would proliferate (copy itself)
and spread across the network to eliminate all copies of that malicious agent.

6.2 CONSISTENCY OF DISTRIBUTED INFORMATION

There is a class of applications that require information to be distributed across many
locations. This information is replicated for reasons of robustness, or speed of access.
The information across these locations must be consistent, and there can be no central
point of failure, or no bottleneck in communications. One example of such an application
is the Domain Name Service (DNS) [30, 1]. The information used by DNS is domain
name to IP address mappings, and for reasons of efficient access, these mappings are
replicated throughout the Internet in local name server caches. This information needs to
be consistent, to ensure accurate resolution of (domain name, IP address) pairs. Other
examples are distributed fault tolerance, where the goal is to detect inconsistent server
ordering; distributed authentication, where each location capable of authenticating must
contain some information to implement that authentication (for example a database of
users and their passwords); and key distribution, where cryptographic keys are copied
across many locations to allow for encrypted communication.

We can apply ARTIS to this problem in the following way. A peptide would be a
piece of information, perhaps compressed in some way. So, for example, with the DNS
application, a peptide will be a compressed representation of a (domain name, IP address)
pair. The anomaly detection problem facing ARTIS is to identify and eliminate incorrect
pairs, which could be the consequence of accidental or deliberate corruption. Each detec-
tor could be encapsulated as a mobile agent, so that these agents could migrate through
the network, checking for incorrect mappings. The detectors could also check each other,
ensuring that corrupted detectors were controlled and kept in check. The response of
ARTIS upon finding a corrupted mapping would be to eliminate that mapping and dis-
tribute copies of the relevant detector throughout the network to eliminate any spread of
the corrupted information. The solution provided by ARTIS is asynchronous, and would
only work for applications (such as DNS) where occasional inaccuracies are tolerated.

6.3 EPIDEMIOLOGICAL MONITORING

It is often difficult to detect the spread of new diseases. Doctors and medical practitioners
faced with new symptoms will have difficulty associating them with a newly emerging
disease and may not have the time or resources to investigate all possibilities. Furthermore,
it is hard to correlate similar disease symptoms across widely diverse geographic areas, and
so medical practitioners may not be aware that the novel symptoms they are observing
are also being observed in several other places throughout the world. We propose that
ARTIS could provide some assistance in early detection and correlation of diseases.

In this application, a peptide would be some representation of patient symptoms, and
the anomaly detection problem would be to detect sets of unusual symptoms that were
indicative of outbreaks of epidemics or new diseases. The detectors could be mobile agents
moving over the Internet, from one local medical database to the next. Each local medical
practitioner would retain an accessible database of their current patients’ symptoms, and
these would be checked using the roaming detectors. The second signal could be confirma-

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

tion from a medical practitioner that the symptoms were indeed unusual. The response
would be, as usual, to replicate the detectors and distribute them far and wide, and in
addition to send an alarm and to inform the Centers for Disease Control, or some other
similar body. The spread of detectors would enable local medical practitioners to more
reliably identify a new disease, because detectors would be available that expressly iden-
tified a set of symptoms with the new disease. Furthermore, tracking clones of detectors
and where they get activated would allow us to determine how and where a disease was
spreading.

6.4 FINANCIAL TRANSACTIONS

Banks and other financial institutions depend upon a flow of money across many dis-
tributed locations. It is critical for them to detect fraud to protect their interests. If there
is some sort of consistency of normal money flow, then we propose that ARTIS could be
used to monitor financial transactions for the detection of unusual transactions indicative
of fraud.

A peptide would be an encoding of a financial transaction. For example, we could
encode in the peptide the source and destination of the money flow, and the amount
involved. The anomaly detection problem would be that of detecting unusual transactions
that are indicative of fraud. Detectors could once again be mobile agents that migrate
across networks linking banks, financial institutions, etc. Upon detection of anomalous
transactions, officials would be informed, who could then provide the second signal.

6.5 WHAT MAKES A DOMAIN SUITABLE FOR ARTIS?

The previous examples all have common themes. Here, we enumerate the features that we
believe will characterize the suitability of ARTIS to any particular problem domain. As
the number of these features exhibited by a problem domain increases, so we would expect
the suitability of ARTIS to increase. However, ARTIS could still be used in domains that
exhibit a few or none of these features, but in those cases there are likely to be other
systems that will be more suitable. ARTIS is suited to applications that:

e Require pattern classification and response;
e Require a distributed architectural solution;

e Require a distributed architecture scalable to environments with arbitrary numbers
of nodes;

e Have a high communication cost between nodes;

e Address problems for which there is some commonality of patterns across the nodes,
i.e. multiple nodes see the same or similar patterns within some limited time period;

e Require the detection of novel anomalous patterns;
e Are dynamic in that normal behaviors change slowly over time;
e Require a robust solution with no centralized control;

e Have storage capacities on any single node that are small compared to the amount of
information required to represent all possible normal patterns;

e Require a trade-off between resource consumption and accuracy of performance.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

7 CONCLUSIONS

We have applied ARTIS to a specific aspect of intrusion detection, that of monitoring TCP
packets in a network. However, we envision ARTIS being used as a broad framework for
intrusion detection in general. Because ARTIS is described in the abstract, independent
of particular applications, its architecture could be used as an intrusion detection system
that monitors and responds to many characteristics other than network connections, for
example, system calls executed by processes, profiles of user behavior, the contents of net-
work packets, etc. The issue of effector selection becomes critical within a broad intrusion
detection framework, because different violations will require different responses, for ex-
ample, violations detected by monitoring system calls would require halting or suspending
processes, whereas violations detected by monitoring user behavior may require terminat-
ing a user’s session. Effector selection also includes determining responses to corrupted
detectors, because ARTIS is self-monitoring (detectors are represented by bit strings and
so can be monitored in the same manner as any other strings).

The IS is much more than a simple anomaly detection and response system. It can
be viewed as a general pattern-learning system that is highly distributed and scalable.
Not only does it learn to classify patterns as self or nonself, but because it must respond
differently to different pathogens, it further learns to classify nonself into a variety of
classes. Likewise, ARTIS is also a general pattern-learning system that can be used to
learn to discriminate between a wide variety of specific patterns, and respond differently
to different patterns. We can make this aspect more explicit in ARTIS by allowing the
universe to be partitioned into multiple sets, U = Ny U No U N3 ---U Ng, and training
different detectors so that they only recognize a single subset as nonself. For example,
assuming we have samples of all Ny, N, ..., Nj subsets, we can generate a detector ds
that recognizes only elements of N, using the negative selection algorithm, with the self
set defined as Ny U N3 - -- U N, 18,

Holland has defined the notion of a complex adaptive system (CAS), and argued that
the IS is indeed such a system [23]:

The human immune system is a community made of large numbers of highly
mobile units called antibodies that continually repel or destroy an ever-changing
cast of invaders called antigens. The invaders—primarily biochemicals, bacte-
ria, and viruses—come in endless varieties, as different from one another as
snowflakes. Because of this variety, and because new invaders are always ap-
pearing, the immune system cannot simply list all possible invaders. it must
change or adapt (latin, “to fit”) its antibodies to new invaders as they appear,
never settling to a fixed configuration. Despite its protean nature, the immune
system maintains an impressive coherence. Indeed, your immune system is co-
herent enough to provide a satisfactory scientific definition of your identity. It is
so good at distinguishing you from the rest of the world that it will reject cells
from any other human. As a result, a skin graft even from a sibling requires
extraordinary measures. [p. 2]

There are several other artificial systems commonly regarded as CAS, including neu-

ral networks, genetic and evolutionary algorithms [21], classifier systems [24], and Echo
18 An approach similar to this has been successfully used in [7]. The main difference with this alternative
approach is that dz would be initially positively selected for N using a genetic algorithm (the closeness of

matches between dz and elements of N2 would determine the fitness of d2), and then negatively selected
to ensure that it does not match any other subsets.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

[23]. We believe that ARTIS is an interesting addition to the repertoire of artificial CAS.
We have already described the parallels between classifier systems and ARTIS in sec-
tion 5; there are also similarities in the learning mechanisms of ARTIS and genetic or
evolutionary algorithms. The memory competition between activated detectors supplies
selective pressure, with fitness being measured in terms of how well an activated detector
matches nonself, and variation is provided over time because detectors have finite lifetimes.
Variation could be enhanced by incorporating somatic hypermutation, a feature of the IS
whereby activated B-cells undergo high mutation rates during cloning.

Acknowledgments The authors gratefully acknowledge the support of the Intel Cor-

poration, the Defense Advanced Research Projects Agency (grant N00014-96-1-0680), the
National Science Foundation (grants IRI-9711199 and CDA-9503064), and the Office of
Naval Research (grant N00014-99-1-0417).

References

[1] P. Albitz and C. Liu. DNS and BIND. O’Reilly and Associates, Sebastopol, CA,
1992.

[2] ASIM. Information security - computer attacks at deparment of defense pose increas-
ing risks. GAO Executive Report - B266140, May 1996.

[3] R. A. Brooks and A. M. Flynn. Fast, cheap and out of control: A robot invasion of
the solar system. Journal of the British Interplanetary Society, 42:478-485, 1989.

[4] CACM. Special edition on agents, 1999.

[5] H. J. Chiel and R. D. Beer. The brain has a body: Adaptive behavior emerges from
interactions of nervous system, body and environment. Trends in Neurosciences,
20:553-557, 1997.

[6] Mark Crosbie and Gene Spafford. Defending a computer system using autonomous
agents. Technical report, Department of Computer Sciences, Purdue University,
March 1994.

[7] D. Dasgupta, Y. Cao, and C. Yang. An immunogenetic approach to spectra recog-
nition. In Genetic and Evolutionary Computation Conference (GECCO), pages 149—
155, 1999.

[8] P. D’haeseleer. An immunological approach to change detection: Theoretical re-
sults. In Proceedings of the 9th IEEE Computer Security Foundations Workshop, Los
Alamitos, CA, 1996. IEEE Computer Society Press.

[9] P. D’haeseleer, S. Forrest, and P. Helman. An immunological approach to change
detection: Algorithms, analysis and implications. In Proceedings of the 1996 IEEE
Symposium on Research in Security and Privacy, Los Alamitos, CA, 1996. IEEE
Computer Society Press.

[10] J. D. Farmer, N. H. Packard, and A. S. Perelson. The immune system, adaptation
and machine learning. Physica D, 22:187-204, 1986.

[11] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer immunology. Communications
of the ACM, 40(10):88-96, 1997.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

S. Forrest, S. A. Hofmeyr, and A. Somayaji. A sense of self for unix processes. In
Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy, Los
Alamitos, CA, 1996. IEEE Computer Society Press.

S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself discrimination in
a computer. In Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, Los Alamos, CA, 1994. IEEE Computer Society Press.

S. Forrest, A. Somayaji, and D. Ackley. Building diverse computer systems. In
Proceedings of the 6th Workshop on Hot Topics in Operating System, Los Alamitos,
CA, 1997. IEEE Computer Society Press.

L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber.
A network security monitor. In Proceedings of the IEEE Symposium on Security and
Privacy. IEEE Press, 1990.

T. Heberlein. NID overview. http://ciiac.llnl.gov/cstc/nid/niddes.html, October
1998.

H. Hendriks-Jansen. Catching Ourselves in the Act. MIT Press, Cambridge, MA,
1996.

J. Hochberg, K. Jackson, C. Stallings, J. F. McClary, D. DuBois, and J. Ford. NADIR:
An automated system for detecting network intrusion and misuse. Computeres and
Security, 12(3):235-248, 1993.

S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 1998.

Steven A. Hofmeyr. A Immunological Model of Distributed Detection and its Applica-
tion to Computer Security. PhD thesis, Department of Computer Sciences, University
of New Mexico, April 1999.

J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, 1975.

J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, 1992. Second edition (First edition, 1975).

J. H. Holland. Hidden Order. Addison Wesley, 1995.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. Thagard. Induction: Processes
of Inference, Learning, and Discovery. MIT Press, 1986.

C. A. Janeway and P. Travers. Immunobiology: The Immune System in Health and
Disease, 3rd Edition. Current Biology Ltd., London, 1996.

N. K. Jerne. Towards a network theory of the immune system. Annals of Immunology,
125:373-389, 1974.

R. Lippman. Lincoln Laboratory intrusion detection evaluation.
http://www.ll.mit.edu/IST /ideval /index.html, October 1999.

P. Matzinger. Tolerance, danger and the extended family. Annual Review in Im-
munology, 12:991-1045, 1994.

P. Matzinger. An innate sense of danger. Seminars in Immunology, 10:399-415, 1998.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

P. Mockapetris. RFC1034/1035, 1987.

B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection. IEEFE
Network, pages 26—41, May/June 1994.

NetRanger. Netranger web site. http://www.wheelgroup.com/netrangr/Inetrang.html,
October 1999.

W. E. Paul. Fundamental Immunology, 2¢cnd Edition. Raven Press Ltd., 1989.

J. K. Percus, O. E. Percus, and A. S. Perelson. Predicting the size of the antibody-
combining region from consideration of efficient self/nonself discrimination. In Pro-
cedings of the National Academy of Science 90, pages 1691-1695, 1993.

J. Piel. Life, death and the immune system, special issue. Scientific American,
269(3):20-102, 1993.

P. Porras and P. G. Neumann. EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In Proceedings National Information Systems Security
Conference, 1997.

L. A. Segel. The immune system as a prototype of autonomous decentralized systems.
In Proceedings of the IEEE Conference on Systems, Man and Cybernetics, 1997.

D. Smith, S. Forrest, and A. S. Perelson. Immunological memory is associative. In
Workshop Notes, Workshop 4: Immunity Based Systems, Intnl. Conf. on Multiagent
Systems, pages 62-70, 1998.

J. J. Smith, K. L. Calvert, S. L. Murphy, H. K. Orman, and L. L. Peterson. Activating
networks: A progress report. IEEE Computer, 32(4):32-41, 1999.

S.R. Snapp, J. Brentano, G.V. dias, T.L. Goan, L.T. Heberlein, C. Ho, K.N. Levitt,
B. Mukherjee, S.E. Smaha, T. Grance, D.M. Teal, and D. Mansur. DIDS (distributed
intrusion detection system) — motivation, architecture, and an early prototype. In
Proceedings of the 14th National Computer Security Conference, pages 167-176, Oc-
tober 1991.

A. Somayaji. Personal communication, 1999.

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrilDS - a graph based intrusion de-
tection system for large networks. In Proceedings 19th National Information Systems
Security Conference, 1996.

G. Vigna and R. Kemmerer. NetSTAT: A network-based intrusion detection approach.
In Proceedings of the 14th Annual Computer Security Applications Conference, 1998.

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(1):45-68

