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ABSTRACT 
The increasing monoculture in operating systems and key 
applications and the enormous expense of N-version 
programming for custom applications mean that lack of diversity 
is a fundamental barrier to achieving survivability even for high 
value systems that can afford hot spares. This monoculture makes 
flash worms possible. Our analysis of vulnerabilities and exploits 
identifies key assumptions required to develop successful attacks. 
We review the literature on synthetic diversity techniques, 
focusing primarily on those that can be implemented at the 
executable code level, since this is where we believe there is the 
most potential to reduce the common mode failure problem in 
COTS applications. Finally we propose a functional architecture 
for synthetic diversity at the executable code level that reduces the 
common mode failure problem in COTS applications by several 
orders of magnitude. 

Categories and Subject Descriptors 
D.1.0 Software: Programming Techniques, General 

General Terms 
Performance, Design, Security,  

Keywords 
Diversity, Vulnerability, N-version programming 

1.  INTRODUCTION 
There is a great desire for affordable, robust systems that respond 
automatically to accidental and deliberate faults.  The current state 
of the art employs fault-tolerance technologies for accidental 
faults and errors and intrusion-tolerance technologies for 
malicious, intentional faults caused by an intelligent adversary.  
Combining fault- and intrusion-tolerance technologies can 
produce very robust and survivable systems. 

However, such systems have an Achilles heel. Their robust 
performance depends upon the continued existence of spare 
resources for failover. Spare resources can be depleted by a 
determined adversary simply by continued attacks until the 
system can no longer maintain critical functionality. The dearth of 
alternative COTS operating systems, applications and hardware 
platforms and the expense and questionable effects of N-version 
programming [2], [3][2], [10], [24], [25], [31] for custom 

applications mean that lack of diversity is a fundamental barrier to 
achieving true robustness, even for high value systems that can 
afford hot spares. 

The paper is motivated by our belief that fine-grained synthetic 
diversity is possible and that such techniques can be used to break 
the implied software vulnerability specification that an attacker 
depends on for successful exploits without breaking the required 
functionality of the component. We focus on generating diversity 
at the executable code level, which is where we believe the 
greatest leverage exists to defeat attacks on COTS application. 
We draw on our previous experience in building intrusion tolerant 
systems [22]. When deployed widely, the mechanisms described 
in the paper, if successful and practicable, should introduce 
enough spatial and temporal diversity into the current world-wide 
computer monoculture to significantly reduce, if not eliminate, the 
ability of attackers to “take over the Internet in their spare time” 
[39]. Such mechanisms would also enable the generation of 
essentially unlimited spares for robust, intrusion tolerant systems. 

While local diversification can protect single hosts from many 
attacks, some attacks exploit weaknesses in the network protocols 
enable services across networked hosts. There are novel 
techniques for introducing heterogeneity into common network 
protocols in ways that will thwart an outside attacker but leave the 
normal network operations of the system unchanged. The basic 
ideas of these transformations are to add new states to the state 
machine specification of correct protocol behavior to modify 
either message content or sequencing or to facilitate monitoring. 
Unfortunately, the complexity of the topic precludes further 
discussion in this paper. Techniques for protocol diversity will be 
the subject of another paper. Diversity at the level of interpreting 
scripting languages can be effective in analogous ways [23]. 

It must be noted that diversity is not a panacea for all cyber-attack 
problems. It cannot mitigate many vulnerabilities such weak 
passwords, default accounts, cross site scripting, and denial of 
service.  

2.  BREAKING VULNERABILITY 
SPECIFICATIONS -- OUR APPROACH TO 
TRANSFORMS FOR DIVERSITY 
Binary code and network protocols share the characteristic that 
they are the integration points for most software.  The source code 
for these systems is compiled and then integrated at the binary 
level for a specific operating system (Windows/Solaris/ Linux) on 
particular hardware architecture (Intel/Sparc).  What binaries are 
to individual hosts, protocols (e.g., TCP/IP) are to integrating 
multiple hosts.  They provide common interfaces (abstract 
machines) that interpret code according to highly specific rules 
and conventions. 
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Our approach destroys both the ability of attackers to inject code 
that executes effectively and their ability to exploit existing code 
to do their bidding.  We do so by altering the interface and 
representation conventions in such a way that injected code no 
longer functions and existing code is no longer reachable.  For 
binary code, such conventions include managing the run-time 
environment, calling library routines, and addressing in-memory 
tables.  We randomize critical information that is normally 
assumed to be static and predictable by attacking code. 1 

Program transformation can be described in the framework of 
software verification.  In this framework, we view specifications 
as objects that capture assumptions about software.  Specifications 
are more abstract than the programs themselves, because many 
different programs may implement the same specification.  A 
tenet of software engineering is that anyone writing a program 
that uses another program only uses the assumptions that are 
allowed by the specification.  One who has obeyed this tenet 
enjoys the benefit that his program will work with any other 
program that implements the same specification.  Those who 
disobey are faced with programs that may break when other 
programs are substituted. 

The author of any attack, such as Code Red, must identify both 
the specific vulnerability details in a widely deployed application 
and how to exploit that vulnerability to start the attack.  Details 
are important because most attacks are executable code and every 
bit counts.  For example, the author might identify a flaw such as 
a buffer overrun that allows one to write data into the runtime 
stack or heap. He must then identify specific locations that are 
branching addresses and exploit them to point to his injected code.  
This injected code must find and execute system calls at the 
binary level to access system resources, talk over the network, 
propagate itself further, and do whatever other tasks the author 
intends.   
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Figure 1. Assumptions Made by Attackers 

These details can be viewed as a vulnerability specification from 
the perspective of the attacker. A program that supports the 
assumptions of the attacker supports the Vulnerability 

                                                                 
1 We believe that it is possible to implement a similar scheme for 
network protocols, e.g., changing the state space of the protocol 
and the encodings of messages by which the protocol interacts. 
This topic will be the subject of a separate paper. 

Specification or V-SPEC and is vulnerable to that attack.  This is 
illustrated in Figure 1 above.  

Programs not supporting the V-SPEC are invulnerable to that 
particular attack. Our approach transforms programs in ways that 
break the V-SPEC, without affecting legitimate assumptions 
about program behavior, which we refer to as the A-SPEC.  It is 
not necessary that we know the precise A-SPEC in order to make 
use of the concept.  We merely need confidence that, after 
applying transformations, the runtime executable still conforms to 
the A-SPEC.  For example, if random sized blocks of information 
are pushed onto the stack to make stack locations harder to 
predict, legitimate programs should not be affected.  Such 
assumptions underlie much of software obfuscation. In our 
terminology, ideal diversity inducing transformations will have 
the property that they are both V-SPEC variant and A-SPEC 
invariant. This concept is illustrated below in Figure 2. 
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Figure 2. Invalidating Attacker’s Assumptions 

We believe that transforms can be used to both make widespread 
exploitation of common mode vulnerabilities more difficult but 
also to make it more difficult for an attack to propagate attacks if 
an exploit succeeds. 

3.  RELATED WORK ON 
TRANSFORMATIONS 
There exists a rich body of research and practical experience on 
the topic of program transformations that we can leverage.  
Application of transformation techniques to make code more 
resistant to code injection attacks is a relatively recent area [19]. 
We begin with a review of the transforms used for obfuscation 
since they have been around the longest. 

3.1. Obfuscation to Preserve Secrets 
Code obfuscation refers to techniques that can be applied to 
software to make reverse engineering of code more expensive in 
terms of time and effort while preserving its functionality. It has 
traditionally been used as a method of protecting intellectual 
property embodied in software. Interest in the area soared as Java 
became popular because decompiling Java code was easy.  

Collberg, Thomborson, and Low at the University of Auckland 
published the first systematic study of Java code obfuscation, a 
taxonomy of obfuscation techniques [14].Its categories included 
layout transformations (e.g., scrambling identifiers, removing 
comments, changing formats), control flow transformations (e.g., 



statement grouping, ordering, computation, and opaque 
constructs), data transformations (storage, encoding, grouping, 
ordering) or preventative transformations (e.g., exploiting 
weaknesses of decompilers).  

They also produced algorithms for low-cost, stealthy, opaque 
constructs useful for obscuring program control flow [15] and 
developed techniques for obscuring data structures and 
abstractions like classes and built-in data types [16]. They 
measured effectiveness of obfuscation using various software 
engineering complexity metrics. Low implemented a complex 
obfuscating algorithm in his Masters thesis [30]. 

Wang [40] studied the malicious host problem, specifically how 
to protect trusted probe software (that contained no exploitable 
faults and whose design mandated frequent communication with a 
remote trusted host controller) so that it maintained algorithm 
privacy and execution integrity. Both denial of service attacks and 
random tampering with the executing probe were ignored. She 
argued that probe impersonation, intelligent tampering with the 
probe, and spoofing the inputs to the probe were the most 
significant threats.  

While input spoofing in general is an unsolvable problem, Wang 
stated [ibid, p. 8], “if spoofing input x requires solving the 
algorithm-secrecy or execution-integrity problem, then techniques 
to ensure the latter can be used to counteract input spoofing. 
However, there are applications where this is not possible.” Her 
premises hold for calculations that involve clock time on the 
potentially malicious host but not for calculations that involve 
values known only to the local host. As part of her proof of 
concept, she proves that, because of the pervasive aliasing, precise 
analysis of the transformed program (recovery of the CFG) is NP 
hard and provides some empirical verification of the results using 
both brute force search and alias approximation. Her performance 
analysis of the resulting transformed code found that replacing 
50% of the branches in typical program results in an increase in 
execution time of a factor of 4 and almost a doubling in its size.  

Diversity for intrusion tolerance is similar to some aspects of the 
malicious host problem that Wang studied; however, it differs in a 
number of fundamental ways. First, vulnerabilities in the 
protected program cannot be ignored or assumed away. For 
example, protecting carefully-crafted software probes that are 
constantly monitored by remote secure hosts is very different than 
building systems from COTS components that are smart enough 
to protect themselves and learn from their mistakes. Second, with 
COTS programs, access to program source code is not guaranteed 
so protection must be achieved at the binary executable level. 
Most importantly, our criteria for success are different. We are not 
trying to prevent reverse engineering. Our goal is to break an 
attacker’s code. Since our focus in on executable code, most of 
the Collberg and Wang techniques are not applicable. They are 
included because of the strength of her theoretical results. 

Wroblewski [41] generalized the Collberg et al. and Wang work 
by developing and implementing a purely sequential algorithm 
that provided controllable obscuration (via a rescaling factor that 
controls the growth in the size of the program) and that worked on 
binary code rather than source code. He proved that allowable 
transformations on executable code must meet one of the three 
conditions. They must be (1) reversible operations, (2) 
substitutions of equivalent instructions, or (3) any operations that 
change context not used by the original program (i.e., that portion 

of the computer’s state that is not changed by the original 
program).  He argued that only empirical research can answer the 
question of how well an algorithm protects a program from 
tampering and found, for example, that automatic creation of 
opaque constructs is weak because such programs generate 
similar patterns and are easily found and removed by humans 
even if they cannot be found and removed automatically. His 
actual empirical studies were very small scale.  

Linn and Debray [27] approached obfuscation by disrupting the 
two major static disassembly approaches for executable code 
analysis (linear sweep and recursive traversal). They do not deal 
with dynamic disassembly techniques. Their implementation, 
based on a binary rewriting system developed for Intel IA-86 
executables called PLTO, currently performs junk insertion and 
transformation of unconditional jumps and call instructions. Other 
transformations are being worked on. In testing, the best 
commercially available disassembly tool failed on 65% of the 
instructions and 85% of the functions. Their techniques resulted in 
about a 13% increase in execution time and 15-20% growth in 
size of the executable. 

Barak’s seminal proof [6], published shortly after Wang’s study, 
showed that it is impossible to completely obscure code and that 
no general obfuscator is possible. His results are very strong. 
Related to this, Badger et al. [4] began extending Wang’s work to 
protect groups of mobile agents against malicious hosts. They 
later abandoned the effort because they were unable to prove that 
any obfuscation method would resist reverse engineering efforts 
for any minimum time and subsequently refocused their study on 
better understanding obfuscation. Their resulting report [17]. is a 
tour de force on obfuscation theory and techniques and concluded 
that obfuscation should not be depended on for security, that 
Barak’s results are very strong (general obfuscation is impossible 
and only specific secrets can be protected), and that, in many use 
cases, better solutions than obfuscation are available if the 
formulation of the problem is restated somewhat. 

Obfuscation is a very important topic in the Digital Rights 
Management (DRM) since the class of problems that it must deal 
with involves protecting secrets from a malicious host, i.e., a host 
in which the adversary has complete control of execution and is 
able to run, stop, and restart the software at any point, reverse 
engineer components of the system, and see and manipulate all 
data. Chow, et al. [12] introduced the concept of white-box attack 
context to distinguish this problem from the traditional black-box 
threat context that is usually dealt with in cryptographic circles. 
They argued that, notwithstanding the Barak proof, their general 
approach “offers useful levels of security in the form of additional 
protection suitable in the commercial world, forcing an attacker to 
expend additional effort (compared to conventional black-box 
implementations)” [ibid, p. 2]. They implemented obscured DES 
and AES algorithms [12], [13]. Jacobs et al [21] demonstrated a 
differential fault injection attack on an obscured DES 
implementation. They argued that general problem of retrieving 
embedded data from a circuit is NP-hard so “no efficient general 
deobfuscator exists for this problem” [ibid, p. 10]. However, they 
admitted that this theoretical proof was not of much relevance 
since, even if the problem is hard in the worst case, it may be easy 
in most practical instances. Link and Neumann [26] improved on 
the Chow results above with an implementation which they 
claimed is secure against both the Jacobs et al. attack and the 
statistical bucketing attack technique that Chow describes [12], as 



well as a new adaptation of the statistical bucketing attack that 
they describe. 

For our purposes, the above obfuscation techniques are only 
useful if they are essential to prevent attackers from easily 
determining our transformations so they can modify their attack 
dynamically. We believe that randomizing the choice of and 
specific implementation of the transformation techniques 
described below will provide a better solution to the monoculture 
problem. Our proposed solution will deliver spatial and temporal 
diversity that should thwart such attacks, i.e., .the implementation 
of run-time randomization of memory layout for COTS 
applications means that few users of a given application at a given 
time will have the same memory layout (hence spatial diversity) 
and that any given user over time will have different memory 
layouts (hence temporal diversity). 

3.2. Mitigating Vulnerabilities in Source and 
Executable Code 
Practical and theoretic claims of effectiveness against de-
obfuscation attacks do not directly imply effectiveness against 
malicious code injection attack in our more general problem.  It 
does not matter whether the code is intelligible to a human reader 
as long as the attacker can discover an exploitable vulnerability 
experimentally. Our goal is to invalidate whatever assumptions 
must be made in order for an attacker’s malicious code to work. 
General approaches to mitigating problems in source code are 
listed below. 

Table 1. Mitigating Vulnerabilities in Source Code 
N-version 
programming 

Or different compilers and hardware 
platforms 

Diversity in 
functional behavior 
in components 

Different encryption algorithms 
Different scales for data (e.g., Celsius 
or Fahrenheit) 

Semantic- 
preserving source 
code transforms 

Place sensitive data (e.g., function and 
data pointers) below starting address of 
any buffer 
- Reorder local variable to place 

buffer after pointer 
- Copy pointers in function arguments 

to area preceding local variable 
buffers 

Variable ordering 
Equivalent instructions  

Variable 
compilation 

Variable internal names 
Variable padding and addresses 
Variable linking order 

Wang [40], [41], Etoh and Yoda [18] and other authors have 
suggested the approaches listed above to mitigate vulnerabilities 
in source code. Note that these approaches do not identify or 
remove vulnerabilities in the source code but only transform 
existing source code so that it is less vulnerable or more diverse.  

Forrest et al. [19] suggested the use of randomized transformation 
to introduce diversity into applications and prototyped the 
randomization of stack resident data addresses. They focused on 
buffer overflows (which are particularly widespread exploits, 
especially stack smashing attacks, and which predominately affect 
C and C++ programs) as an example. Their implementation 

modified the gcc compiler to insert random amounts of padding 
into each stack frame. Because buffer overflows are such a 
common problem, a variety of commercial solutions have been 
introduced such as StackGuard, Libverify, RAD, and PointGuard. 
Even the Microsoft C++ compiler has a setting that will prevent 
such overflows. The problem is getting developers to use them, 
particularly for COTS Windows applications where performance 
is a significant requirement.  

Recently, other researchers have attempted to develop 
randomization as a practical approach to defeat buffer overflow 
and related attacks. Chew and Song [11] randomized the base 
address of the stack, system call numbers, and library entry points, 
through a combination of the Linux program loader modifications, 
kernel system call table modifications, and binary rewriting. Xu et 
al. [45] modified the Linux kernel to randomize the base address 
of stack, heap, dynamically loaded libraries, and GOT. The PaX 
project [33] modified the Linux kernel to randomize the base 
address of each program region: heap, code, stack, and data. Their 
approach remains vulnerable to attacks that rely on relative 
addresses between variables or code and to attacks that can access 
the base addresses of different memory segments but there are 
techniques available to mitigate these weaknesses, for example 
[18].  

Forrest’s group showed that scrambling an executable as it is 
loaded with a pseudorandom number seeded with a random key 
and then unscrambling it through a modified code emulator 
(implemented for the Intel x86 platform) was very effective in 
stopping injected code attacks from the network [7]. They paid a 
surprising low 5% performance penalty during testing, on a 
Pentium 200 MHz with 128 MB of memory, but increased 
memory usage by about a factor of three. They conclude that such 
a penalty may be acceptable on modern servers for the increase in 
security. They also discuss the dangers of randomly generating a 
valid instruction while descrambling injected code with the dense 
instruction set of the x86 chip. Their small test on this topic did 
not indicate any significant problems but they caution about the 
size of the test. Kc [23] produced similar results using a common 
randomization technique for all processes on the system. 

Bhatkar et al [9] analyzed memory error exploits (e.g., buffer and 
integer overflows, return into libc) and characterized such attacks 
as either absolute address-dependent (such as overwriting code or 
data pointer) or relative address-dependent (such as overwriting 
non-pointer data). Their address obfuscation approach combated 
both types of memory error exploits by randomizing both the 
absolute locations of data and code and the relative distances 
between data locations. In their implementation, Bhatkar et al. 
randomized the base address of various memory regions (stack, 
heap, DLL, routines and static data) and permuted the order of 
variables and routines (e.g., local variables in stack frames, static 
variables, routines in shared libraries or in executables).Their 
implementation was limited to Linux but generally required no 
changes to the OS kernel or compilers and could be applied to 
individual applications rather than a whole system It transformed 
object files and executables at link-time and load-time; and had 
low run-time overhead (especially low for link-time 
transformation).  

The protection offered by their technique against classic attacks 
such as stack smashing, existing code (return-into-libc), format 
string (e.g., printf), data modification, heap overflow and double-
free, and integer overflow and the results was very encouraging. 



However, their protection against data modification attacks if the 
data resides in the same stack or heap as the overflow was limited 
to non-existent. They suggested using the techniques described by 
Etoh and Yoda (see above) to help with this problem. The 
introduction of additional randomization in address obfuscation 
(e.g., random-sized gaps within stack frames and blocks allocated 
by malloc, reordering of and random padding within code and 
static variables) can also address these weaknesses. They next 
investigated three specifically crafted attacks that can defeat 
address obfuscation if the victim program contains the right 
vulnerability, particularly a bug that allows an attacker to read 
memory contents. Such a bug allows the attacker to succeed 
deterministically.  

They point out [ibid], “the key difference between program 
obfuscation and address obfuscation is that program obfuscation 
is oriented towards preventing most static analyses of a program, 
while address obfuscation has a more limited goal of making it 
impossible to predict the relative or absolute addresses of program 
code and data. Other analyses, including reverse compilation, 
extraction of flow graphs, etc., are generally not affected by 
address obfuscation.” 

Bhatkar et al. collected performance impact data on a older 
Pentium III running the Linux operating system.  The tested 
transforms included relocating the stack, heap, and code regions 
as well as the introduction of random gaps between stack frames.  
Their results for two different combinations are summarized in the 
table below.  

Table 2. Performance Impacts of Selected Transforms 
Combination (1) Combination (2) Program 

% 
Overhead 

Standard 
Deviation  

(% of mean) 

% 
Overhead 

Standard 
Deviation 

(% of mean) 

tar -1 3.4 0 5.2 

wu-ftpd 0 1.4 2 2.1 

gv 0 6.1 2 2.1 

bison 1 2.0 8 2.3 

groff -1 1.1 13 0.7 

gzip -1 1.9 14 2.5 

gnuplot 0 0.9 21 1.0 

Combination 1 is static relocation performed at link-time.  
Combination 2 is dynamic relocation performed at load-time. 
They observed [ibid], “The overheads compared to conventional 
obfuscation transforms are quite modest.  Combination 2 has 
noticeably more overhead because it requires position-
independent code.  However, when code is already being 
distributed in DLL form, combination (2) provides broad 
protection against memory error exploits without any additional 
overhead.” 

Responses to various protection approaches to stack smashing 
attacks and other exploit types are never far behind. Ever since 
Aleph One [1], Mudge [32], and w00w00 [42] popularized buffer 
overflows, the race for cures and counter-measures to them has 
been on. For example, Silberman and Johnson compare the 

effectiveness and work-arounds for seven different buffer 
overflow prevention techniques and four others that are explicitly 
incorporated into those seven [37]. The trend continues as David 
Litchfield described how to overcome the buffer overflow 
prevention scheme in Microsoft’s Windows 2003 Server 
Operating System [28].  

In summary, different approaches to mitigating vulnerabilities at 
the executable code level include instruction set transformations 
or randomization, transformations of system resource names, 
system call names or DLL names as well as various address 
transformations. We expect to implement most of these 
techniques except for instruction set transformations which are 
effective but degrade performance more than other equally 
effective techniques. If chipsets natively designed for variable 
instruction sets (like TransMeta’ Crusoe chip) become popular, 
instruction set randomization may be much more practical. 

4.  TRANSFORMATIONS EFFECT ON 
VULNERABILITIES 
Proof-of-concept systems, our own research efforts, and the 
literature provide measures of the effectiveness of various 
transformations against particular kinds of attacks. We have 
attempted to summarize, in Table 1 on the next page, the gist of 
these effectiveness measures at the transformation types level 
relative to selected specific attack types from the vulnerability 
classes in Lough’s taxonomy [29]. It is difficult to be precise and 
comprehensive in such a table because of the enormous breadth of 
possible vulnerabilities and attacks. We have attempted to select 
an interesting subset of all the possible attack types within a given 
vulnerability characteristic. This is not to say that other attack 
types are not significant or that there are not variants of the 
attacks or variant of the transforms that might change the 
effectiveness of the approach. We offer the following 
observations on Table 1.  

1. Memory errors are among the most fragile vulnerabilities with 
respect to program transformation.  Many transformations applied 
with sufficient randomness to a population of hosts should 
diversify this class of vulnerability in a subject population. 

2. Different transformations have different costs.  N-version 
programming is expensive in terms of labor and can practically 
generate only a few versions of a program.  Many obfuscating 
transforms incur a time and space penalty by inserting irrelevant 
code and computing dynamically quantities that could be 
represented statically in order to resist code slicing and reverse 
engineering attacks. 

3. Different transformations are effective against different 
vulnerabilities.  While some vulnerabilities are fragile and break 
under many transformations, others are unaffected by any 
transformations. As expected, transformations were not especially 
effective against exposure, randomness or deallocation errors. 
They were totally ineffective against weak passwords and 
dumpster diving. 

4. Protocol transformations were effective against attacks that 
other transformations did not handle well.  In particular protocol 
transformations appear effective against protocol errors that 
transformations deemed effective against memory errors didn’t 
address. 



5. Some obfuscation techniques may actually increase 
effectiveness of memory error attacks through a proliferation of 
pointers and computed branch addresses.  This could produce a 

target rich environment for a memory error exploit that was 
generalized enough, especially if many computed addresses 
branch to positions close to one another. 

 

Table 3. Transformation Effectiveness vs. Vulnerability Classes 

Vulnerability 
Class Sample Vulnerabilities in Class N-

ve
rs

io
n 

Pr
og

ra
m

m
in

g

Be
ha

vi
or

 T
ra

ns
fo

rm
s (

So
ur

ce
 C

od
e)

In
te

rn
al

 D
at

a 
Fl

ow
 T

ra
ns

fo
rm

s (
So

ur
ce

 C
od

e)

In
te

rn
al

 C
on

tr
ol

 F
lo

w 
Tr

an
sfo

rm
s (

So
ur

ce
 C

od
e)

Pl
ac

e S
en

sit
iv

e D
at

a 
Be

lo
w 

Bu
ffe

rs
 (S

ou
rc

e C
od

e)

En
cr

yp
t E

xe
cu

ta
bl

e

O
bf

us
ca

te
 E

xe
cu

ta
bl

e C
od

e

Tr
an

sfo
rm

 R
ela

tiv
e A

dd
re

ss
es

 (E
xe

cu
ta

bl
e)

Tr
an

sfo
rm

 A
bs

ol
ut

e A
dd

re
ss

es
 (E

xe
cu

ta
bl

e)

Tr
an

sfo
rm

 S
ys

te
m

 R
es

ou
rc

es
 (E

xe
cu

ta
bl

e)

Tr
an

sfo
rm

 (V
irt

ua
l) 

H
os

t I
ns

tr
uc

tio
n 

Se
t

Tr
an

sfo
rm

 P
ro

to
co

ls 
St

at
e S

pa
ce

 (S
ou

rc
e)

Tr
an

sfo
rm

 E
xe

cu
ta

bl
e P

ro
to

co
ls 

via
 P

ro
xi

es

En
cr

yp
t N

et
wo

rk
/In

te
rf

ac
e P

ro
to

co
ls

Improper 
Validation

Memory error
Code injection attacks (stack, 
heap, and integer overflows) + + + + + • < [1] ++ ++ ++ ++ • • •
Existing code exploits (printf) + + + + • • < [1] ++ ++ ++ ++ • • •

Code injection attacks (SQL 
injection, cross site scripting) + + • • • • • • • • ++ • • •
Improper exception handling + • • • • • • • • • • + + •
Protocol errors (IP session 
hijacking, Unicode attacks, 
ARP cache poisoning) + • • • • • • • • • • + + +

+ • • • • • • • • • • • • •
Race condition + • • • • • • • • • • + + +
Address or data leakage + • • • • + + • • • • + + +
Social engineering • • • • • • • • • • • • • •
Weak passwords • • • • • • • • • • • • • •
Weakly encrypted passwords + • • • • • • • • • • • • •
Memory leakage + • • • • • • • • • • • • •
Dumpster diving • • • • • • • • • • • • • •
Resource exhaustion + • • • • • • • • • • + + •

Key: Effectiveness in preventing attack: ++ = highly effective, + = effective, ·  = negligable, < = potentially counterproductive
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5.  FUNCTIONAL ARCHITECTURE FOR 
DIVERSITY 
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Figure 3. Functional Architecture for Diversity 

A functional architecture for a system that would implement our 
diversity automation concept is shown in Figure 3 above.  

The analyzer is least intuitive of the components in the diagram. 
There are some transforms that it is easy to do on executable code 
with just the loader. Others take more or less analysis at the binary 
or disassembled level. Still others can only be accomplished if the 
source compiler or a human has provided hints or annotations 
about the executable. The binary code analyzer in the diagram is 
an offline process. The idea is that the analyzer preprocesses the 
original executables and generates annotations from the analytic 
results that are useful to the transformer module.  For example, it 
interprets linkage information in PE formatted executables and 
DLLs in order to locate entry points, unresolved absolute 
addresses, system call linkages, and help distinguish instructions 
from inline data values.  It disassembles the code into an internal 



representation and builds control flow graphs (CFG), and data 
flow graphs (DFG), symbol maps, representational invariants, and 
other analysis structures that constitute higher level abstractions of 
the code’s semantics. It then identifies and captures key 
information to enable the transformer to revamp both the relative 
and absolute memory layout of the executable without breaking its 
inherent functionality. A human or modified compiler could 
generate similar annotation files for an executable. 

The transformer modifies the original program based on policy 
guidance and a random key. It uses meta-information provided by 
the annotation file to perform “smart” transformations (in the 
sense that they use the higher level abstractions from the 
annotations).  For example, the transformer could shuffle the 
addresses of executable code by re-ordering basic blocks of code 
based on a map of the boundaries of those blocks provided by the 
CFG annotations.  Any implementation of the transformer itself 
should be semi-interpretive, i.e., it should include a set of built-in, 
hard-coded transformation primitives.  The primitives would be 
selected and combined randomly via an interpretive language that 
would generate a random memory layout of applications on each 
program load. 

The output of the transformer includes transformed code and any 
wrappers (i.e., mediated connectors that intercept and modify DLL 
calls [5]) that the transformed code may need to communicate 
with its outside environment.  Some simple operations such as 
offsetting the base of the run-time stack can be handled by 
prepending code to the executable to initialize stack pointers 
appropriately [9].  Fancier transformations such as changing the 
order of parameters to library routines may require a wrapper that 
supports a library routine with the changed parameter ordering. 

The loader takes the transformed code and any wrappers it needs 
and loads them into the execution space.  The loader component 
can be the standard loader so long as the transformed code and 
wrappers conform to the PE and DLL formats for executables and 
load libraries.  As the code runs in the execution space, we 
monitor behavior in order to provide feedback on how well 
particular transformations are working.  If a particular key results 
in an uncommon number of addressing exceptions or segment 
violations we can modify our key generation to avoid such 
transformations. 
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Figure 4. Diversity Architecture in Use 

The diagram in figure 4 illustrates how the functional modules 
described above would interact to allow normal execution and to 
thwart injected attacks. For simplicity, the annotations, 

transformer, and loader are shown in this diagram as one module, 
the Transformer-Loader. That module transforms the original 
stored program and generates an associated wrapper, if needed, to 
retranslate external calls.  The transformed program is effectively 
in another language that executes on the same hardware but whose 
assumptions about the resources and how to interact with their 
environment are distinctly changed.  Not only are they changed, 
but they are changed unpredictably based upon a random key 
specific to this instantiation of the program.  Users’ inputs arrive 
via the normal channels.  Accesses to other system resources from 
the transformed code are untranslated appropriately so they still 
work.  Injected code (e.g. crafted binary data which the attacker 
has managed to execute) will encounter a very unfamiliar 
environment.  Some attacks will fail because the assumed 
vulnerability is gone. Others will fail because the injected 
commands do not find the system resource names they need.  With 
high probability, attacking code will simply fail and crash the 
process or endless loop which increases the detection likelihood. 

One difficulty with binary level analysis is that some higher level 
abstractions, which are readily apparent in source code, can be 
difficult to reconstruct reliably at the binary level. This is 
essentially what obfuscation is all about. To mitigate such 
difficulties, some human analysis and annotation can be used to 
supplement automated analysis. The resulting annotation files 
enable the transformer to apply more sophisticated transformations 
than would otherwise be possible. 

We are also contemplating integrating other approaches that focus 
on source code transformation and simple load-time 
transformations (not involving binary level analysis). These two 
approaches are quite complementary. For example, protecting data 
from memory error attacks is very difficult and usually involves 
randomizing the order and relative distance between code or data 
objects. It is problematic to perform these kinds of relocations at 
runtime on many binaries because of the difficulty of 
distinguishing pointers from non-pointers and code from data or 
object sizes. It is very easy for compilers to generate annotations 
to binaries so that the relocations can be done safely and easily at 
runtime. This is a very useful and powerful combination of 
approaches. 

6.  EXAMPLE ATTACK AND POTENTIAL 
DEFENSES 
Most of the recent large-scale cyber-attacks have been worms that 
relied on buffer overflow vulnerabilities in widely deployed 
Windows applications. The current Windows monoculture gives 
even casual attackers, armed with buffer overflow attack code, the 
potential to break into essentially every vulnerable computer 
connected to the network. This enormous reach provided to the 
attacker can adversely affect the network itself, overloading links 
and cause routing table instabilities.  

The Code Red I worm has been studied extensively. It is a single 
http GET transaction that exploits a buffer overflow vulnerability 
in the Index Server resource and then executes its specific payload 
(it could, in fact, be any arbitrary code). The following selection of 
disassembled code was taken from an eEye Digital Security report 
on the Code Red Worm [34]. It illustrates some of the common 
techniques and assumptions used by many worm writers. The 
disassembled code is on the left of the listing below and the eEye 
Digital Security annotations to each line are on the right. The 
technique illustrated below is called RVA (Relative Virtual 



Address) lookup2. Note that Lines 09 through 13 below have no 
net effect and are only used for padding. 
01  loc_4B4: �         ; CODE XREF: DO_RVA+26D j 

02  mov  esi, esp 

03  mov  ecx, [ebp-198h]; set ecx with the data segment 
pointer 

04  push  ecx; push data segment (pointer of function to 
load) 

05  mov  edx, [ebp-1CCh]; get current RVA base offset 

06  push  edx; push module handle(base loaded address) 

07  call  dword ptr [ebp-190h]; call GetProcAddress 

08  cmp  esi, esp         ; Compare Two Operands 

09  nop         ; No Operation 

10  inc  ebx         ; Increment by 1 

11  dec  ebx         ; Decrement by 1 

12  inc  ebx         ; Increment by 1 

13  dec  ebx         ; Decrement by 1 

14  mov  ecx, [ebp-1B4h]      ; load ecx with ebp-1b4 

15  mov  [ebp+ecx*4-174h], eax ; load the address into 
the ebp stack where needed 

Once RVA techniques are used to get the address of 
GetProcAddress, GetProcAddress is used to get the address of 
LoadLibraryA (not illustrated above). Between these two 
functions, all other functions that the worm may need can be 
easily found. The worm uses these two functions to load 
kernel32.DLL, infocomm.DLL and WS2_32.DLL enabling it to 
access the file system, open network sockets and send and receive 
network packets. 

The worm is making many assumptions about how to interact with 
the Windows operating system and these assumptions are sensitive 
to particular types of code transformations.  Consider the 
following mechanical transformations: 

• Re-arrange the run-time stack 

• Permute the addresses in the jump table 

• Change the machine code (table transformation) 

• Change the interpretation of (encrypt) filenames 

• Change the order of parameters for system calls 

• Encrypt file name parameters to system calls 

• Rename ports for network connections 

• Put return pointers on a separate stack 

Any one of these transformations could break Code Red.  For 
example, if we changed the order of parameters to 
GetProcAddress, the order of the push operations at lines 4 and 6 
would be invalid.  That would have prevented Code Red from 

                                                                 
2 Basically this means that all functions, and specifically GetProcAddress, 
are found within IIS itself. For more details on RVA, check documentation 
on Portable Executable (PE), the executable file format for Microsoft 
platforms, or read through the assembly code of this worm in the 
reference. 

resolving the addresses it needs to call socket, connect, send, recv, 
TcpSockSend, etc. When the call at line 7 is performed, the call 
would fail with high probability because of an invalid opcode or 
addressing exception as it attempts to execute the relative virtual 
address table. 

7.  CONCLUSIONS AND NEXT STEPS 
Program diversity through program transformation harnesses 
powerful theoretical techniques to introduce much needed 
diversity into modern networks.  We believe the potential for 
practical application of these techniques is high. We have 
described computer vulnerabilities and how attackers exploit them 
successfully. Our concept for a diversity system focuses on 
breaking the vulnerability specifications that successful attacks 
depend on. We extensively reviewed the types of transformations 
that are available for source and executable code and analyzed 
what we know about their effectiveness and impacts. We 
concluded with a functional architectural design of a diversity 
system based on these concepts and have anticipated some of the 
implementation difficulties. We will report on the success of our 
approach in the future. 
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