
Review and Analysis of Synthetic Diversity for Breaking
Monocultures

James E. Just Mark Cornwell
Global InfoTek, Inc. Global InfoTek, Inc.

1920 Association Drive 1920 Association Drive
Reston, VA 20191 USA Reston, VA 20191 USA
1-703-652-1600, x315 1-703-652-1600, x234

jjust@globalinfotek.com mcornwell@globalinfotek.com
ABSTRACT
The increasing monoculture in operating systems and key
applications and the enormous expense of N-version
programming for custom applications mean that lack of diversity
is a fundamental barrier to achieving survivability even for high
value systems that can afford hot spares. This monoculture makes
flash worms possible. Our analysis of vulnerabilities and exploits
identifies key assumptions required to develop successful attacks.
We review the literature on synthetic diversity techniques,
focusing primarily on those that can be implemented at the
executable code level, since this is where we believe there is the
most potential to reduce the common mode failure problem in
COTS applications. Finally we propose a functional architecture
for synthetic diversity at the executable code level that reduces the
common mode failure problem in COTS applications by several
orders of magnitude.

Categories and Subject Descriptors
D.1.0 Software: Programming Techniques, General

General Terms
Performance, Design, Security,

Keywords
Diversity, Vulnerability, N-version programming

1. INTRODUCTION
There is a great desire for affordable, robust systems that respond
automatically to accidental and deliberate faults. The current state
of the art employs fault-tolerance technologies for accidental
faults and errors and intrusion-tolerance technologies for
malicious, intentional faults caused by an intelligent adversary.
Combining fault- and intrusion-tolerance technologies can
produce very robust and survivable systems.

However, such systems have an Achilles heel. Their robust
performance depends upon the continued existence of spare
resources for failover. Spare resources can be depleted by a
determined adversary simply by continued attacks until the
system can no longer maintain critical functionality. The dearth of
alternative COTS operating systems, applications and hardware
platforms and the expense and questionable effects of N-version
programming [2], [3][2], [10], [24], [25], [31] for custom

applications mean that lack of diversity is a fundamental barrier to
achieving true robustness, even for high value systems that can
afford hot spares.

The paper is motivated by our belief that fine-grained synthetic
diversity is possible and that such techniques can be used to break
the implied software vulnerability specification that an attacker
depends on for successful exploits without breaking the required
functionality of the component. We focus on generating diversity
at the executable code level, which is where we believe the
greatest leverage exists to defeat attacks on COTS application.
We draw on our previous experience in building intrusion tolerant
systems [22]. When deployed widely, the mechanisms described
in the paper, if successful and practicable, should introduce
enough spatial and temporal diversity into the current world-wide
computer monoculture to significantly reduce, if not eliminate, the
ability of attackers to “take over the Internet in their spare time”
[39]. Such mechanisms would also enable the generation of
essentially unlimited spares for robust, intrusion tolerant systems.

While local diversification can protect single hosts from many
attacks, some attacks exploit weaknesses in the network protocols
enable services across networked hosts. There are novel
techniques for introducing heterogeneity into common network
protocols in ways that will thwart an outside attacker but leave the
normal network operations of the system unchanged. The basic
ideas of these transformations are to add new states to the state
machine specification of correct protocol behavior to modify
either message content or sequencing or to facilitate monitoring.
Unfortunately, the complexity of the topic precludes further
discussion in this paper. Techniques for protocol diversity will be
the subject of another paper. Diversity at the level of interpreting
scripting languages can be effective in analogous ways [23].

It must be noted that diversity is not a panacea for all cyber-attack
problems. It cannot mitigate many vulnerabilities such weak
passwords, default accounts, cross site scripting, and denial of
service.

2. BREAKING VULNERABILITY
SPECIFICATIONS -- OUR APPROACH TO
TRANSFORMS FOR DIVERSITY
Binary code and network protocols share the characteristic that
they are the integration points for most software. The source code
for these systems is compiled and then integrated at the binary
level for a specific operating system (Windows/Solaris/ Linux) on
particular hardware architecture (Intel/Sparc). What binaries are
to individual hosts, protocols (e.g., TCP/IP) are to integrating
multiple hosts. They provide common interfaces (abstract
machines) that interpret code according to highly specific rules
and conventions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WORM’04, OCTOBER 29, 2004, WASHINGTON, DC, USA.

Our approach destroys both the ability of attackers to inject code
that executes effectively and their ability to exploit existing code
to do their bidding. We do so by altering the interface and
representation conventions in such a way that injected code no
longer functions and existing code is no longer reachable. For
binary code, such conventions include managing the run-time
environment, calling library routines, and addressing in-memory
tables. We randomize critical information that is normally
assumed to be static and predictable by attacking code. 1

Program transformation can be described in the framework of
software verification. In this framework, we view specifications
as objects that capture assumptions about software. Specifications
are more abstract than the programs themselves, because many
different programs may implement the same specification. A
tenet of software engineering is that anyone writing a program
that uses another program only uses the assumptions that are
allowed by the specification. One who has obeyed this tenet
enjoys the benefit that his program will work with any other
program that implements the same specification. Those who
disobey are faced with programs that may break when other
programs are substituted.

The author of any attack, such as Code Red, must identify both
the specific vulnerability details in a widely deployed application
and how to exploit that vulnerability to start the attack. Details
are important because most attacks are executable code and every
bit counts. For example, the author might identify a flaw such as
a buffer overrun that allows one to write data into the runtime
stack or heap. He must then identify specific locations that are
branching addresses and exploit them to point to his injected code.
This injected code must find and execute system calls at the
binary level to access system resources, talk over the network,
propagate itself further, and do whatever other tasks the author
intends.

Current
Attack

Problem

Software
Specification

Source
Code

Executable
Code

Machine-level
Code

Linker
Loader

Known
V-Spec

Attack

Machine Code
Specification

Vulnerability

Software
Specification

Source
Code

Executable
Code

Machine-level
Code

Linker
Loader

Known
V-Spec

Attack

Machine Code
Specification

Vulnerability

Figure 1. Assumptions Made by Attackers

These details can be viewed as a vulnerability specification from
the perspective of the attacker. A program that supports the
assumptions of the attacker supports the Vulnerability

1 We believe that it is possible to implement a similar scheme for
network protocols, e.g., changing the state space of the protocol
and the encodings of messages by which the protocol interacts.
This topic will be the subject of a separate paper.

Specification or V-SPEC and is vulnerable to that attack. This is
illustrated in Figure 1 above.

Programs not supporting the V-SPEC are invulnerable to that
particular attack. Our approach transforms programs in ways that
break the V-SPEC, without affecting legitimate assumptions
about program behavior, which we refer to as the A-SPEC. It is
not necessary that we know the precise A-SPEC in order to make
use of the concept. We merely need confidence that, after
applying transformations, the runtime executable still conforms to
the A-SPEC. For example, if random sized blocks of information
are pushed onto the stack to make stack locations harder to
predict, legitimate programs should not be affected. Such
assumptions underlie much of software obfuscation. In our
terminology, ideal diversity inducing transformations will have
the property that they are both V-SPEC variant and A-SPEC
invariant. This concept is illustrated below in Figure 2.

Machine-level
Code

Machine-level
Code

Machine-level
Code

Machine-level
Code

Machine-level
Code

Machine-level
CodeMachine-level

Code

Machine-level
CodeMachine-level

Code
Machine-level

CodeMachine-level
Code

Machine-level
Code

Machine-level
Code

Software
Specification

Source
Code

Executable
Code

Machine-level
Code

Transformer
Linker
Loader

Known
V-Spec

Attack X
V-Spec Unknown Until Load-Time

Doesn’t
Match

Breaking
the V-Spec

Vulnerability??

Machine Code
Specification

Transform
Specifications

Figure 2. Invalidating Attacker’s Assumptions

We believe that transforms can be used to both make widespread
exploitation of common mode vulnerabilities more difficult but
also to make it more difficult for an attack to propagate attacks if
an exploit succeeds.

3. RELATED WORK ON
TRANSFORMATIONS
There exists a rich body of research and practical experience on
the topic of program transformations that we can leverage.
Application of transformation techniques to make code more
resistant to code injection attacks is a relatively recent area [19].
We begin with a review of the transforms used for obfuscation
since they have been around the longest.

3.1. Obfuscation to Preserve Secrets
Code obfuscation refers to techniques that can be applied to
software to make reverse engineering of code more expensive in
terms of time and effort while preserving its functionality. It has
traditionally been used as a method of protecting intellectual
property embodied in software. Interest in the area soared as Java
became popular because decompiling Java code was easy.

Collberg, Thomborson, and Low at the University of Auckland
published the first systematic study of Java code obfuscation, a
taxonomy of obfuscation techniques [14].Its categories included
layout transformations (e.g., scrambling identifiers, removing
comments, changing formats), control flow transformations (e.g.,

statement grouping, ordering, computation, and opaque
constructs), data transformations (storage, encoding, grouping,
ordering) or preventative transformations (e.g., exploiting
weaknesses of decompilers).

They also produced algorithms for low-cost, stealthy, opaque
constructs useful for obscuring program control flow [15] and
developed techniques for obscuring data structures and
abstractions like classes and built-in data types [16]. They
measured effectiveness of obfuscation using various software
engineering complexity metrics. Low implemented a complex
obfuscating algorithm in his Masters thesis [30].

Wang [40] studied the malicious host problem, specifically how
to protect trusted probe software (that contained no exploitable
faults and whose design mandated frequent communication with a
remote trusted host controller) so that it maintained algorithm
privacy and execution integrity. Both denial of service attacks and
random tampering with the executing probe were ignored. She
argued that probe impersonation, intelligent tampering with the
probe, and spoofing the inputs to the probe were the most
significant threats.

While input spoofing in general is an unsolvable problem, Wang
stated [ibid, p. 8], “if spoofing input x requires solving the
algorithm-secrecy or execution-integrity problem, then techniques
to ensure the latter can be used to counteract input spoofing.
However, there are applications where this is not possible.” Her
premises hold for calculations that involve clock time on the
potentially malicious host but not for calculations that involve
values known only to the local host. As part of her proof of
concept, she proves that, because of the pervasive aliasing, precise
analysis of the transformed program (recovery of the CFG) is NP
hard and provides some empirical verification of the results using
both brute force search and alias approximation. Her performance
analysis of the resulting transformed code found that replacing
50% of the branches in typical program results in an increase in
execution time of a factor of 4 and almost a doubling in its size.

Diversity for intrusion tolerance is similar to some aspects of the
malicious host problem that Wang studied; however, it differs in a
number of fundamental ways. First, vulnerabilities in the
protected program cannot be ignored or assumed away. For
example, protecting carefully-crafted software probes that are
constantly monitored by remote secure hosts is very different than
building systems from COTS components that are smart enough
to protect themselves and learn from their mistakes. Second, with
COTS programs, access to program source code is not guaranteed
so protection must be achieved at the binary executable level.
Most importantly, our criteria for success are different. We are not
trying to prevent reverse engineering. Our goal is to break an
attacker’s code. Since our focus in on executable code, most of
the Collberg and Wang techniques are not applicable. They are
included because of the strength of her theoretical results.

Wroblewski [41] generalized the Collberg et al. and Wang work
by developing and implementing a purely sequential algorithm
that provided controllable obscuration (via a rescaling factor that
controls the growth in the size of the program) and that worked on
binary code rather than source code. He proved that allowable
transformations on executable code must meet one of the three
conditions. They must be (1) reversible operations, (2)
substitutions of equivalent instructions, or (3) any operations that
change context not used by the original program (i.e., that portion

of the computer’s state that is not changed by the original
program). He argued that only empirical research can answer the
question of how well an algorithm protects a program from
tampering and found, for example, that automatic creation of
opaque constructs is weak because such programs generate
similar patterns and are easily found and removed by humans
even if they cannot be found and removed automatically. His
actual empirical studies were very small scale.

Linn and Debray [27] approached obfuscation by disrupting the
two major static disassembly approaches for executable code
analysis (linear sweep and recursive traversal). They do not deal
with dynamic disassembly techniques. Their implementation,
based on a binary rewriting system developed for Intel IA-86
executables called PLTO, currently performs junk insertion and
transformation of unconditional jumps and call instructions. Other
transformations are being worked on. In testing, the best
commercially available disassembly tool failed on 65% of the
instructions and 85% of the functions. Their techniques resulted in
about a 13% increase in execution time and 15-20% growth in
size of the executable.

Barak’s seminal proof [6], published shortly after Wang’s study,
showed that it is impossible to completely obscure code and that
no general obfuscator is possible. His results are very strong.
Related to this, Badger et al. [4] began extending Wang’s work to
protect groups of mobile agents against malicious hosts. They
later abandoned the effort because they were unable to prove that
any obfuscation method would resist reverse engineering efforts
for any minimum time and subsequently refocused their study on
better understanding obfuscation. Their resulting report [17]. is a
tour de force on obfuscation theory and techniques and concluded
that obfuscation should not be depended on for security, that
Barak’s results are very strong (general obfuscation is impossible
and only specific secrets can be protected), and that, in many use
cases, better solutions than obfuscation are available if the
formulation of the problem is restated somewhat.

Obfuscation is a very important topic in the Digital Rights
Management (DRM) since the class of problems that it must deal
with involves protecting secrets from a malicious host, i.e., a host
in which the adversary has complete control of execution and is
able to run, stop, and restart the software at any point, reverse
engineer components of the system, and see and manipulate all
data. Chow, et al. [12] introduced the concept of white-box attack
context to distinguish this problem from the traditional black-box
threat context that is usually dealt with in cryptographic circles.
They argued that, notwithstanding the Barak proof, their general
approach “offers useful levels of security in the form of additional
protection suitable in the commercial world, forcing an attacker to
expend additional effort (compared to conventional black-box
implementations)” [ibid, p. 2]. They implemented obscured DES
and AES algorithms [12], [13]. Jacobs et al [21] demonstrated a
differential fault injection attack on an obscured DES
implementation. They argued that general problem of retrieving
embedded data from a circuit is NP-hard so “no efficient general
deobfuscator exists for this problem” [ibid, p. 10]. However, they
admitted that this theoretical proof was not of much relevance
since, even if the problem is hard in the worst case, it may be easy
in most practical instances. Link and Neumann [26] improved on
the Chow results above with an implementation which they
claimed is secure against both the Jacobs et al. attack and the
statistical bucketing attack technique that Chow describes [12], as

well as a new adaptation of the statistical bucketing attack that
they describe.

For our purposes, the above obfuscation techniques are only
useful if they are essential to prevent attackers from easily
determining our transformations so they can modify their attack
dynamically. We believe that randomizing the choice of and
specific implementation of the transformation techniques
described below will provide a better solution to the monoculture
problem. Our proposed solution will deliver spatial and temporal
diversity that should thwart such attacks, i.e., .the implementation
of run-time randomization of memory layout for COTS
applications means that few users of a given application at a given
time will have the same memory layout (hence spatial diversity)
and that any given user over time will have different memory
layouts (hence temporal diversity).

3.2. Mitigating Vulnerabilities in Source and
Executable Code
Practical and theoretic claims of effectiveness against de-
obfuscation attacks do not directly imply effectiveness against
malicious code injection attack in our more general problem. It
does not matter whether the code is intelligible to a human reader
as long as the attacker can discover an exploitable vulnerability
experimentally. Our goal is to invalidate whatever assumptions
must be made in order for an attacker’s malicious code to work.
General approaches to mitigating problems in source code are
listed below.

Table 1. Mitigating Vulnerabilities in Source Code
N-version
programming

Or different compilers and hardware
platforms

Diversity in
functional behavior
in components

Different encryption algorithms
Different scales for data (e.g., Celsius
or Fahrenheit)

Semantic-
preserving source
code transforms

Place sensitive data (e.g., function and
data pointers) below starting address of
any buffer
- Reorder local variable to place

buffer after pointer
- Copy pointers in function arguments

to area preceding local variable
buffers

Variable ordering
Equivalent instructions

Variable
compilation

Variable internal names
Variable padding and addresses
Variable linking order

Wang [40], [41], Etoh and Yoda [18] and other authors have
suggested the approaches listed above to mitigate vulnerabilities
in source code. Note that these approaches do not identify or
remove vulnerabilities in the source code but only transform
existing source code so that it is less vulnerable or more diverse.

Forrest et al. [19] suggested the use of randomized transformation
to introduce diversity into applications and prototyped the
randomization of stack resident data addresses. They focused on
buffer overflows (which are particularly widespread exploits,
especially stack smashing attacks, and which predominately affect
C and C++ programs) as an example. Their implementation

modified the gcc compiler to insert random amounts of padding
into each stack frame. Because buffer overflows are such a
common problem, a variety of commercial solutions have been
introduced such as StackGuard, Libverify, RAD, and PointGuard.
Even the Microsoft C++ compiler has a setting that will prevent
such overflows. The problem is getting developers to use them,
particularly for COTS Windows applications where performance
is a significant requirement.

Recently, other researchers have attempted to develop
randomization as a practical approach to defeat buffer overflow
and related attacks. Chew and Song [11] randomized the base
address of the stack, system call numbers, and library entry points,
through a combination of the Linux program loader modifications,
kernel system call table modifications, and binary rewriting. Xu et
al. [45] modified the Linux kernel to randomize the base address
of stack, heap, dynamically loaded libraries, and GOT. The PaX
project [33] modified the Linux kernel to randomize the base
address of each program region: heap, code, stack, and data. Their
approach remains vulnerable to attacks that rely on relative
addresses between variables or code and to attacks that can access
the base addresses of different memory segments but there are
techniques available to mitigate these weaknesses, for example
[18].

Forrest’s group showed that scrambling an executable as it is
loaded with a pseudorandom number seeded with a random key
and then unscrambling it through a modified code emulator
(implemented for the Intel x86 platform) was very effective in
stopping injected code attacks from the network [7]. They paid a
surprising low 5% performance penalty during testing, on a
Pentium 200 MHz with 128 MB of memory, but increased
memory usage by about a factor of three. They conclude that such
a penalty may be acceptable on modern servers for the increase in
security. They also discuss the dangers of randomly generating a
valid instruction while descrambling injected code with the dense
instruction set of the x86 chip. Their small test on this topic did
not indicate any significant problems but they caution about the
size of the test. Kc [23] produced similar results using a common
randomization technique for all processes on the system.

Bhatkar et al [9] analyzed memory error exploits (e.g., buffer and
integer overflows, return into libc) and characterized such attacks
as either absolute address-dependent (such as overwriting code or
data pointer) or relative address-dependent (such as overwriting
non-pointer data). Their address obfuscation approach combated
both types of memory error exploits by randomizing both the
absolute locations of data and code and the relative distances
between data locations. In their implementation, Bhatkar et al.
randomized the base address of various memory regions (stack,
heap, DLL, routines and static data) and permuted the order of
variables and routines (e.g., local variables in stack frames, static
variables, routines in shared libraries or in executables).Their
implementation was limited to Linux but generally required no
changes to the OS kernel or compilers and could be applied to
individual applications rather than a whole system It transformed
object files and executables at link-time and load-time; and had
low run-time overhead (especially low for link-time
transformation).

The protection offered by their technique against classic attacks
such as stack smashing, existing code (return-into-libc), format
string (e.g., printf), data modification, heap overflow and double-
free, and integer overflow and the results was very encouraging.

However, their protection against data modification attacks if the
data resides in the same stack or heap as the overflow was limited
to non-existent. They suggested using the techniques described by
Etoh and Yoda (see above) to help with this problem. The
introduction of additional randomization in address obfuscation
(e.g., random-sized gaps within stack frames and blocks allocated
by malloc, reordering of and random padding within code and
static variables) can also address these weaknesses. They next
investigated three specifically crafted attacks that can defeat
address obfuscation if the victim program contains the right
vulnerability, particularly a bug that allows an attacker to read
memory contents. Such a bug allows the attacker to succeed
deterministically.

They point out [ibid], “the key difference between program
obfuscation and address obfuscation is that program obfuscation
is oriented towards preventing most static analyses of a program,
while address obfuscation has a more limited goal of making it
impossible to predict the relative or absolute addresses of program
code and data. Other analyses, including reverse compilation,
extraction of flow graphs, etc., are generally not affected by
address obfuscation.”

Bhatkar et al. collected performance impact data on a older
Pentium III running the Linux operating system. The tested
transforms included relocating the stack, heap, and code regions
as well as the introduction of random gaps between stack frames.
Their results for two different combinations are summarized in the
table below.

Table 2. Performance Impacts of Selected Transforms
Combination (1) Combination (2) Program

%
Overhead

Standard
Deviation

(% of mean)

%
Overhead

Standard
Deviation

(% of mean)

tar -1 3.4 0 5.2

wu-ftpd 0 1.4 2 2.1

gv 0 6.1 2 2.1

bison 1 2.0 8 2.3

groff -1 1.1 13 0.7

gzip -1 1.9 14 2.5

gnuplot 0 0.9 21 1.0

Combination 1 is static relocation performed at link-time.
Combination 2 is dynamic relocation performed at load-time.
They observed [ibid], “The overheads compared to conventional
obfuscation transforms are quite modest. Combination 2 has
noticeably more overhead because it requires position-
independent code. However, when code is already being
distributed in DLL form, combination (2) provides broad
protection against memory error exploits without any additional
overhead.”

Responses to various protection approaches to stack smashing
attacks and other exploit types are never far behind. Ever since
Aleph One [1], Mudge [32], and w00w00 [42] popularized buffer
overflows, the race for cures and counter-measures to them has
been on. For example, Silberman and Johnson compare the

effectiveness and work-arounds for seven different buffer
overflow prevention techniques and four others that are explicitly
incorporated into those seven [37]. The trend continues as David
Litchfield described how to overcome the buffer overflow
prevention scheme in Microsoft’s Windows 2003 Server
Operating System [28].

In summary, different approaches to mitigating vulnerabilities at
the executable code level include instruction set transformations
or randomization, transformations of system resource names,
system call names or DLL names as well as various address
transformations. We expect to implement most of these
techniques except for instruction set transformations which are
effective but degrade performance more than other equally
effective techniques. If chipsets natively designed for variable
instruction sets (like TransMeta’ Crusoe chip) become popular,
instruction set randomization may be much more practical.

4. TRANSFORMATIONS EFFECT ON
VULNERABILITIES
Proof-of-concept systems, our own research efforts, and the
literature provide measures of the effectiveness of various
transformations against particular kinds of attacks. We have
attempted to summarize, in Table 1 on the next page, the gist of
these effectiveness measures at the transformation types level
relative to selected specific attack types from the vulnerability
classes in Lough’s taxonomy [29]. It is difficult to be precise and
comprehensive in such a table because of the enormous breadth of
possible vulnerabilities and attacks. We have attempted to select
an interesting subset of all the possible attack types within a given
vulnerability characteristic. This is not to say that other attack
types are not significant or that there are not variants of the
attacks or variant of the transforms that might change the
effectiveness of the approach. We offer the following
observations on Table 1.

1. Memory errors are among the most fragile vulnerabilities with
respect to program transformation. Many transformations applied
with sufficient randomness to a population of hosts should
diversify this class of vulnerability in a subject population.

2. Different transformations have different costs. N-version
programming is expensive in terms of labor and can practically
generate only a few versions of a program. Many obfuscating
transforms incur a time and space penalty by inserting irrelevant
code and computing dynamically quantities that could be
represented statically in order to resist code slicing and reverse
engineering attacks.

3. Different transformations are effective against different
vulnerabilities. While some vulnerabilities are fragile and break
under many transformations, others are unaffected by any
transformations. As expected, transformations were not especially
effective against exposure, randomness or deallocation errors.
They were totally ineffective against weak passwords and
dumpster diving.

4. Protocol transformations were effective against attacks that
other transformations did not handle well. In particular protocol
transformations appear effective against protocol errors that
transformations deemed effective against memory errors didn’t
address.

5. Some obfuscation techniques may actually increase
effectiveness of memory error attacks through a proliferation of
pointers and computed branch addresses. This could produce a

target rich environment for a memory error exploit that was
generalized enough, especially if many computed addresses
branch to positions close to one another.

Table 3. Transformation Effectiveness vs. Vulnerability Classes

Vulnerability
Class Sample Vulnerabilities in Class N-

ve
rs

io
n

Pr
og

ra
m

m
in

g

Be
ha

vi
or

 T
ra

ns
fo

rm
s (

So
ur

ce
 C

od
e)

In
te

rn
al

 D
at

a
Fl

ow
 T

ra
ns

fo
rm

s (
So

ur
ce

 C
od

e)

In
te

rn
al

 C
on

tr
ol

 F
lo

w
Tr

an
sfo

rm
s (

So
ur

ce
 C

od
e)

Pl
ac

e S
en

sit
iv

e D
at

a
Be

lo
w

Bu
ffe

rs
 (S

ou
rc

e C
od

e)

En
cr

yp
t E

xe
cu

ta
bl

e

O
bf

us
ca

te
 E

xe
cu

ta
bl

e C
od

e

Tr
an

sfo
rm

 R
ela

tiv
e A

dd
re

ss
es

 (E
xe

cu
ta

bl
e)

Tr
an

sfo
rm

 A
bs

ol
ut

e A
dd

re
ss

es
 (E

xe
cu

ta
bl

e)

Tr
an

sfo
rm

 S
ys

te
m

 R
es

ou
rc

es
 (E

xe
cu

ta
bl

e)

Tr
an

sfo
rm

 (V
irt

ua
l)

H
os

t I
ns

tr
uc

tio
n

Se
t

Tr
an

sfo
rm

 P
ro

to
co

ls
St

at
e S

pa
ce

 (S
ou

rc
e)

Tr
an

sfo
rm

 E
xe

cu
ta

bl
e P

ro
to

co
ls

via
 P

ro
xi

es

En
cr

yp
t N

et
wo

rk
/In

te
rf

ac
e P

ro
to

co
ls

Improper
Validation

Memory error
Code injection attacks (stack,
heap, and integer overflows) + + + + + • < [1] ++ ++ ++ ++ • • •
Existing code exploits (printf) + + + + • • < [1] ++ ++ ++ ++ • • •

Code injection attacks (SQL
injection, cross site scripting) + + • • • • • • • • ++ • • •
Improper exception handling + • • • • • • • • • • + + •
Protocol errors (IP session
hijacking, Unicode attacks,
ARP cache poisoning) + • • • • • • • • • • + + +

+ • • • • • • • • • • • • •
Race condition + • • • • • • • • • • + + +
Address or data leakage + • • • • + + • • • • + + +
Social engineering • • • • • • • • • • • • • •
Weak passwords • • • • • • • • • • • • • •
Weakly encrypted passwords + • • • • • • • • • • • • •
Memory leakage + • • • • • • • • • • • • •
Dumpster diving • • • • • • • • • • • • • •
Resource exhaustion + • • • • • • • • • • + + •

Key: Effectiveness in preventing attack: ++ = highly effective, + = effective, · = negligable, < = potentially counterproductive

Improper
Deallocation

System misconfiguration, e.g.,
default passwords and accounts

Improper
Validation

Improper
Exposure

Inadequate
Randomness

Memory error

Design errors

5. FUNCTIONAL ARCHITECTURE FOR
DIVERSITY

Transformer

Original
Program

Analyzer

Policy Key
Generator

Key Transformed
Code

Wrapper

Loader

Annotation

Input

Input

Monitor Execution
Space

Execution
Space

Transformer

Original
Program

Analyzer

Policy Key
Generator

Key Transformed
Code

Wrapper

Loader

Annotation

Input

Input

Monitor Execution
Space

Execution
Space

Figure 3. Functional Architecture for Diversity

A functional architecture for a system that would implement our
diversity automation concept is shown in Figure 3 above.

The analyzer is least intuitive of the components in the diagram.
There are some transforms that it is easy to do on executable code
with just the loader. Others take more or less analysis at the binary
or disassembled level. Still others can only be accomplished if the
source compiler or a human has provided hints or annotations
about the executable. The binary code analyzer in the diagram is
an offline process. The idea is that the analyzer preprocesses the
original executables and generates annotations from the analytic
results that are useful to the transformer module. For example, it
interprets linkage information in PE formatted executables and
DLLs in order to locate entry points, unresolved absolute
addresses, system call linkages, and help distinguish instructions
from inline data values. It disassembles the code into an internal

representation and builds control flow graphs (CFG), and data
flow graphs (DFG), symbol maps, representational invariants, and
other analysis structures that constitute higher level abstractions of
the code’s semantics. It then identifies and captures key
information to enable the transformer to revamp both the relative
and absolute memory layout of the executable without breaking its
inherent functionality. A human or modified compiler could
generate similar annotation files for an executable.

The transformer modifies the original program based on policy
guidance and a random key. It uses meta-information provided by
the annotation file to perform “smart” transformations (in the
sense that they use the higher level abstractions from the
annotations). For example, the transformer could shuffle the
addresses of executable code by re-ordering basic blocks of code
based on a map of the boundaries of those blocks provided by the
CFG annotations. Any implementation of the transformer itself
should be semi-interpretive, i.e., it should include a set of built-in,
hard-coded transformation primitives. The primitives would be
selected and combined randomly via an interpretive language that
would generate a random memory layout of applications on each
program load.

The output of the transformer includes transformed code and any
wrappers (i.e., mediated connectors that intercept and modify DLL
calls [5]) that the transformed code may need to communicate
with its outside environment. Some simple operations such as
offsetting the base of the run-time stack can be handled by
prepending code to the executable to initialize stack pointers
appropriately [9]. Fancier transformations such as changing the
order of parameters to library routines may require a wrapper that
supports a library routine with the changed parameter ordering.

The loader takes the transformed code and any wrappers it needs
and loads them into the execution space. The loader component
can be the standard loader so long as the transformed code and
wrappers conform to the PE and DLL formats for executables and
load libraries. As the code runs in the execution space, we
monitor behavior in order to provide feedback on how well
particular transformations are working. If a particular key results
in an uncommon number of addressing exceptions or segment
violations we can modify our key generation to avoid such
transformations.

Un-translation

Wrapper

Attacker

Other
System

Resources

Protocol
Stack

System
Monitor

Module Input

Transformer
Loader

Key
GeneratorKey

Original
Program

Policy

Modified
Loader

Transforms
Original

Program Code
and Generates

Wrapper to
translates

external calls

Some attacks fail
because assumed

vulnerability is gone

Other attacks fail
because injected
commands are

wrong

Response to normal inputs
are translated & untranslated

Protocol
Proxy

Un-translation

Wrapper

Un-translation

Wrapper

Attacker

Other
System

Resources

Other
System

Resources

Protocol
Stack

Protocol
Stack

System
Monitor

Module Input

Transformer
Loader

Key
GeneratorKey

Original
Program

Policy

Modified
Loader

Transforms
Original

Program Code
and Generates

Wrapper to
translates

external calls

Some attacks fail
because assumed

vulnerability is gone

Other attacks fail
because injected
commands are

wrong

Response to normal inputs
are translated & untranslated

Protocol
Proxy

Figure 4. Diversity Architecture in Use

The diagram in figure 4 illustrates how the functional modules
described above would interact to allow normal execution and to
thwart injected attacks. For simplicity, the annotations,

transformer, and loader are shown in this diagram as one module,
the Transformer-Loader. That module transforms the original
stored program and generates an associated wrapper, if needed, to
retranslate external calls. The transformed program is effectively
in another language that executes on the same hardware but whose
assumptions about the resources and how to interact with their
environment are distinctly changed. Not only are they changed,
but they are changed unpredictably based upon a random key
specific to this instantiation of the program. Users’ inputs arrive
via the normal channels. Accesses to other system resources from
the transformed code are untranslated appropriately so they still
work. Injected code (e.g. crafted binary data which the attacker
has managed to execute) will encounter a very unfamiliar
environment. Some attacks will fail because the assumed
vulnerability is gone. Others will fail because the injected
commands do not find the system resource names they need. With
high probability, attacking code will simply fail and crash the
process or endless loop which increases the detection likelihood.

One difficulty with binary level analysis is that some higher level
abstractions, which are readily apparent in source code, can be
difficult to reconstruct reliably at the binary level. This is
essentially what obfuscation is all about. To mitigate such
difficulties, some human analysis and annotation can be used to
supplement automated analysis. The resulting annotation files
enable the transformer to apply more sophisticated transformations
than would otherwise be possible.

We are also contemplating integrating other approaches that focus
on source code transformation and simple load-time
transformations (not involving binary level analysis). These two
approaches are quite complementary. For example, protecting data
from memory error attacks is very difficult and usually involves
randomizing the order and relative distance between code or data
objects. It is problematic to perform these kinds of relocations at
runtime on many binaries because of the difficulty of
distinguishing pointers from non-pointers and code from data or
object sizes. It is very easy for compilers to generate annotations
to binaries so that the relocations can be done safely and easily at
runtime. This is a very useful and powerful combination of
approaches.

6. EXAMPLE ATTACK AND POTENTIAL
DEFENSES
Most of the recent large-scale cyber-attacks have been worms that
relied on buffer overflow vulnerabilities in widely deployed
Windows applications. The current Windows monoculture gives
even casual attackers, armed with buffer overflow attack code, the
potential to break into essentially every vulnerable computer
connected to the network. This enormous reach provided to the
attacker can adversely affect the network itself, overloading links
and cause routing table instabilities.

The Code Red I worm has been studied extensively. It is a single
http GET transaction that exploits a buffer overflow vulnerability
in the Index Server resource and then executes its specific payload
(it could, in fact, be any arbitrary code). The following selection of
disassembled code was taken from an eEye Digital Security report
on the Code Red Worm [34]. It illustrates some of the common
techniques and assumptions used by many worm writers. The
disassembled code is on the left of the listing below and the eEye
Digital Security annotations to each line are on the right. The
technique illustrated below is called RVA (Relative Virtual

Address) lookup2. Note that Lines 09 through 13 below have no
net effect and are only used for padding.
01 loc_4B4: � ; CODE XREF: DO_RVA+26D j

02 mov esi, esp

03 mov ecx, [ebp-198h]; set ecx with the data segment
pointer

04 push ecx; push data segment (pointer of function to
load)

05 mov edx, [ebp-1CCh]; get current RVA base offset

06 push edx; push module handle(base loaded address)

07 call dword ptr [ebp-190h]; call GetProcAddress

08 cmp esi, esp ; Compare Two Operands

09 nop ; No Operation

10 inc ebx ; Increment by 1

11 dec ebx ; Decrement by 1

12 inc ebx ; Increment by 1

13 dec ebx ; Decrement by 1

14 mov ecx, [ebp-1B4h] ; load ecx with ebp-1b4

15 mov [ebp+ecx*4-174h], eax ; load the address into
the ebp stack where needed

Once RVA techniques are used to get the address of
GetProcAddress, GetProcAddress is used to get the address of
LoadLibraryA (not illustrated above). Between these two
functions, all other functions that the worm may need can be
easily found. The worm uses these two functions to load
kernel32.DLL, infocomm.DLL and WS2_32.DLL enabling it to
access the file system, open network sockets and send and receive
network packets.

The worm is making many assumptions about how to interact with
the Windows operating system and these assumptions are sensitive
to particular types of code transformations. Consider the
following mechanical transformations:

• Re-arrange the run-time stack

• Permute the addresses in the jump table

• Change the machine code (table transformation)

• Change the interpretation of (encrypt) filenames

• Change the order of parameters for system calls

• Encrypt file name parameters to system calls

• Rename ports for network connections

• Put return pointers on a separate stack

Any one of these transformations could break Code Red. For
example, if we changed the order of parameters to
GetProcAddress, the order of the push operations at lines 4 and 6
would be invalid. That would have prevented Code Red from

2 Basically this means that all functions, and specifically GetProcAddress,
are found within IIS itself. For more details on RVA, check documentation
on Portable Executable (PE), the executable file format for Microsoft
platforms, or read through the assembly code of this worm in the
reference.

resolving the addresses it needs to call socket, connect, send, recv,
TcpSockSend, etc. When the call at line 7 is performed, the call
would fail with high probability because of an invalid opcode or
addressing exception as it attempts to execute the relative virtual
address table.

7. CONCLUSIONS AND NEXT STEPS
Program diversity through program transformation harnesses
powerful theoretical techniques to introduce much needed
diversity into modern networks. We believe the potential for
practical application of these techniques is high. We have
described computer vulnerabilities and how attackers exploit them
successfully. Our concept for a diversity system focuses on
breaking the vulnerability specifications that successful attacks
depend on. We extensively reviewed the types of transformations
that are available for source and executable code and analyzed
what we know about their effectiveness and impacts. We
concluded with a functional architectural design of a diversity
system based on these concepts and have anticipated some of the
implementation difficulties. We will report on the success of our
approach in the future.

8. REFERENCES
[1] Aleph One, “Smashing The Stack For Fun And Profit”,

Phrack 49, Volume Seven, Issue Forty-Nine, File 14 of 16,
11/8/1995

[2] A.Avizienis, “Fault Tolerance and fault intolerance.
Complimentary approaches to reliable computing”, Proc.
1975 Int. Conf. Reliable Software, Los Angels, CA, Apr 21-
27, 1975, pp 458 - 464

[3] A.Avizienis, “N-Version Approach to fault tolerant
Software”, IEEE-Software eg., vol- SE11, No12, Dec 1985,
pp.1491 -1501

[4] Lee Badger, Larry D'Anna, Doug Kilpatrick, Brian Matt,
Andrew Reisse, Tom Van Vleck. “Self-Protecting Mobile
Agents Obfuscation Techniques Evaluation Report,”
Network Associates Laboratories, Report #01-036, Nov 30,
2001, updated March 22, 2002.

[5] R. Balzer, N. Goldman. Mediating Connectors. Proceedings
of the 19th IEEE International Conference on Distributed
Computing Systems, Austin, Texas, May 31-June 4, 1999,
IEEE Computer Society Press 73-77

[6] Boaz Barak, Oded Goldreich, Russell Impagaliazzo, Steven
Rudich, Amit Sahai, Salil Vadhan, and Ke Yang. “On the
(im)possibility of obfuscating programs.” In J. Kilian, editor,
Advances in Cryptology-CRYPTO ‘01, Lecture Notes in
Computer Science. Springer-Verlag.

[7] Elena Gabriela Barrantes, David H. Ackley, Stephanie
Forrest, Trek S. Palmer, Darko Stefanovic and Dino Dai
Zovi, “Randomized instruction set emulation to disrupt
binary code injection attacks,” 10th ACM Conference on
Computer and Communications Security, Washington DC,
October 27-31, 2003.

[8] V. Bharathi, “N-Version programming method of Software
Fault Tolerance: A Critical Review”, Indian Institute of
Technology, Kharagpur 721302, December 28-30, 2003

[9] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar,
“Address Obfuscation: An Efficient Approach to Combat a

Broad Range of Memory Error Exploits,” 12th USENIX
Security Symposium, August 2003.

[10] L. Chen and A. Avizienis, "N-version programming: A fault-
tolerance approach to reliability of software operation," IEEE
8th FTCS, pp. 3-9, 1978

[11] M. Chew, D. Song. “Mitigating Buffer Overflows by
Operating System Randomization,” Technical Report CMU-
CS-02-197.

[12] Stanley Chow, Philip A. Eisen, Harold Johnson, Paul C. van
Oorschot: A White-Box DES Implementation for DRM
Applications. Digital Rights Management Workshop 2002: 1-
15

[13] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot,
``White-Box Cryptography and an AES Implementation'',
Proceedings of the Ninth Workshop on Selected Areas in
Cryptography (SAC 2002)

[14] C. Collberg, C. Thomborson, and D. Low. “A Taxonomy of
Obfuscating Transformations”. Technical Report 148,
Department of Computer Science, University of Auckland,
July 1997.

[15] C. Collberg, C. Thomborson, and D. Low. “Manufacturing
Cheap, Resilient, and Stealthy Opaque Constructs”
Department of Computer Science, University of Auckland.
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL'98). January 1998

[16] C. Collberg, C. Thomborson, D. Low. “Breaking
Abstractions and Unstructuring Data Structures”,
Proceedings of the 1998 International Conference on
Computer Languages, pages 28-38. IEEE Computer Society
Press. May 1998.

[17] Larry D’Anna, Brian Matt, Andrew Reisse, Tom Van Vleck,
Steve Schwab, Patrick LeBlanc, “Self-Protecting Mobile
Agents Obfuscation Report - Final report,” Network
Associates Laboratories, Report #03-015, June 30, 2003

[18] Hiroaki Etoh and Kunikazu Yoda. Protecting from stack
smashing attacks. Published on World-WideWeb at URL
http://www.trl.ibm.com/projects/security/ssp/main.html, June
2000.

[19] Stephanie Forrest, Anil Somayaji, and David H. Ackley.
“Building diverse computer systems.” In 6th Workshop on
Hot Topics in Operating Systems, pages 67-72, Los
Alamitos, CA, 1997. IEEE Computer Society Press.

[20] Selvin George, David Evens, Steven Marchette. “A
Biological Programming Model for Self-Healing”, First
ACM Workshop on Survivable and Self-Regenerative
Systems (in association with 10th ACM Conference on
Computer and Communications Security) October 31, 2003,
George W. Johnson Center, George Mason University,
Fairfax, VA

[21] Matthias Jacob, Dan Boneh, and Edward Felten. Attacking an
obfuscated cipher by injecting faults , 2002 ACM Workshop
on Digital Rights Management. Washington, D.C., 2002

[22] James E. Just, et al., “Learning Unknown Attacks A Start,”
Recent Advances in Intrusion Detection, 5th International
Symposium, Zurich, Switzerland, October 16-18, 2002,

Proceedings, A. Wespi, G. Vigner, and L. Deri, (Eds.),
Springer, Lecture Notes in Computer Science.

[23] Gaurav S. Kc, Angelos D. Keromytis, Vassilis Prevelakis,
“Countering Code-Injection Attacks with Instruction-Set
Randomization,” 10th ACM Conference on Computer and
Communications Security, Washington DC, October 27-31,
2003.

[24] J.C. Knight and N.G. Leveson, “A Large Scale Experiment In
N-Version Programming”, Digest of Papers FTCS-15:
Fifteenth International Symposium on Fault-Tolerant
Computing, June 1985, Ann Arbor, MI. pp. 135-139.

[25] J.C. Knight and N.G. Leveson, “An Experimental Evaluation
of the Assumption of Independence in Multi-version
Programming”, IEEE Transactions on Software Engineering,
Vol. SE-12, No. 1 (January 1986), pp. 96-109.

[26] Hamilton E. Link and William D. Neumann, “Clarifying
Obfuscation: Improving the Security of White-Box
Encoding”, Sandia National Laboratories, Albuquerque, NM,
downloaded from eprint.iacr.org/2004/025.pdf

[27] Cullen Linn, Saumya Debray, “Obfuscation of Executable
Code to Improve Resistance to Static Disassembly,” ACM
Conference on Computer and Communications Security,
Washington DC, October 27-31, 2003.

[28] David Litchfield, “Defeating the Stack-Based Overflow
Prevention Mechanism of Microsoft Windows 2003 Server”,
NGS Research Whitepaper, August 9, 2003,
http://www.nextgenss.com/papers.htm

[29] D. L. Lough. A Taxonomy of Computer Attacks with
Applications to Wireless Networks. PhD Thesis, Virginia
Polytechnic and State University, Blackburg, VA.

[30] Douglas Low, Java Control Flow Obfuscation, MS Thesis,
Univ. Auckland, 3 June 1998

[31] M.R. Lyu, J.-H. Chen, and A. Avizienis, "Software diversity
metrics and measurements," In Proc. The Sixteen Annual Int.
Computer Software and Applications Conf. 1992, pp. 69-78.

[32] Mudge, “How To write buffer overflows”,
http://www.insecure.org/stf/mudge_buffer_overflow_tutorial.
html, 10/20/1995

[33] Pax. Published on World-Wide Web at URL
http://pageexec.virtualave.net, 2001.

[34] Ryan Permeh, Marc Maiffret, Code Red Disassembly
Analysis, eEye Digital Security,
http://www.eeye.com/html/advisories/codered.zip.

[35] B.Randell, “System structure for Software Fault Tolerance,”
IEEE- Software Eng.,vol. SE-1,pp.220-232, June 1975.

[36] Jeff Rowe, “Diversity Draft”, private communication, UC
Davis, 25 Nov. 2003

[37] Peter Silberman and Richard Johnson, A Comparison of
Buffer Overflow Prevention Implementations and
Weaknesses, I-Defense, 1875 Campus Commons Dr. Suite
210 Reston, VA 20191,
http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-
silberman/bh-us-04-silberman-paper.pdf

[38] Stuart Staniford, Nicholas Weaver, Vern Paxson. “Flash
Worms: Is there any Hope?” Silicon Defense, Retrieved 27
March 2003 <http://silicondefense

[39] Stuart Staniford, Vern Paxson, Nicholas Weaver. “How to
Own the Internet in Your Spare Time”, Proceedings of the
11th USENIX Security Symposium. August 2002, Retrieved
27 March 2003, <http://www-
dirt.cs.unc.edu/netlunch/fall02/SPW02-worms.htm>.

[40] Chenxi Wang, “A Security Architecture for Survivability
Mechanisms.” PhD thesis, University of Virginia, October
2000.

[41] Chenxi Wang, "Protection of software-based survivability
schemes", in the proceedings of 2001 Dependable Systems
and Networks. Gutenburg, Sweden. July 2001.

[42] w00w00, “Heap Overflow”,
http://www.w00w00.org/files/articles/heaptut.txt, 1/1999

[43] Gregory Wroblewski, “General Method of Program Code
Obfuscation,” PhD Dissertation, Wroclaw University of
Technology, Institute of Engineering Cybernetics, 2002.

[44] Gregory Wroblewski; “General Method of Program Code
Obfuscation,” 2002 International Conference on Software
Engineering Research and Practice (SERP’02), June 24 - 27,
2002, Monte Carlo Resort, Las Vegas, Nevada, USA

[45] Jun Xu, Z. Kalbarczyk and R. K. Iyer. “Transparent Runtime
Randomization for Security”. Proc. of 22nd Symposium on
Reliable and Distributed Systems (SRDS), Florence, Italy,
October 6-8, 2003

