
Secure Systems
Editor: S.W. Smith, sws@cs.dartmouth.edu

unscrupulous. They’re creating in-
dependent agents—mobile pro-
grams—that, once released, take on
lives of their own. Their attacks are
becoming more sophisticated every
day, and the situation will likely be-
come much worse unless we, as de-
fenders, take drastic steps.

We can’t hope to completely de-
feat all our attackers. For every indi-
vidual we arrest, every worm we
successfully eradicate, another virus
writer and his or her program will
propagate on the Internet. In an evo-
lutionary arms race, the best we can
hope for is to stay in the game no
matter how the adversaries change
and adapt. This game is ultimately
one of survival, and so far, our com-
puters aren’t very good at playing it
on their own.

To keep up with malware writers,
software producers in both the com-
mercial and open-source software
worlds have adopted various auto-
matic software update mechanisms.
Some of these mechanisms distrib-
ute updates after requesting a user’s
permission; others install updates au-
tomatically. Although such systems
provide some short-term relief, they
will likely soon become ineffective,
and further, they will also become
extremely dangerous once they are
inevitably co-opted by attackers. If
we want the Internet to remain a vi-

able way to communicate and col-
laborate, we must adopt another,
perhaps radically different, model for
securing our computers.

To better understand this conclu-
sion, we should first re-examine why
developers and users are embracing
automated update systems.

Faster,
easier updates
Automated update mechanisms are
designed to solve one simple prob-
lem: humans can’t be counted on to
download and install anything in a
timely fashion. Home users forget to
update their systems (if they know to
do it at all), and administrators
already have too much to do. Yet,
malicious code can spread across the
Internet in minutes. Thus, software
companies such as Microsoft, Sy-
mantec, and Red Hat have created
systems that remind users to initiate
automated update processes or that
bypass the user completely and install
necessary updates on their own.

To date, almost every virus or
worm epidemic has exploited a se-
curity vulnerability for which there
was an existing software patch or
virus signature. However, before
software developers can distribute a
fix, they must identify the problem,
craft a solution, and test that solution
to ensure no untoward side effects. If

McAfee makes a mistake with a virus
signature, it could disable or even
delete legitimate users’ applications
(legitimate applications have already
been disabled by virus scanners; see
http://news.com.com/2100-7350
-5361660.html). If Microsoft makes
a mistake, numerous machines
might no longer even boot. The
time between vulnerability disclo-
sure and exploit distribution is some-
times only a few days. If software de-
velopers haven’t been previously
notified, there’s little chance that
they can release a well-tested fix in
this time frame. Further, with fast-
propagating worms and viruses,
antivirus developers must play catch-
up: Malware can infect thousands of
machines before the causative agent
is even identified.

So, while automated update sys-
tems solve one problem (available
updates not being distributed), they
don’t address the more fundamental
problem—developing and testing
those updates. Although antivirus
developers have automated the sig-
nature creation and testing process
somewhat, they’re hampered in their
quest to detect zero-day worms by
concerns over false positives. Soft-
ware patches can potentially stop
novel viruses and worms. However,
patches must still be developed man-
ually, and because they’re complex
and intrusive, they’re likely to cause
problems. Corporate IT depart-
ments have traditionally required
extensive internal testing of any up-
dates before deployment precisely
because of these types of issues. Un-
fortunately, because of the frequency
and urgency of updates, corpora-
tions no longer have this luxury.

Although the current situation

ANIL SOMAYAJI

Carleton
University

J
ust about every computer user today is engaged in an

evolutionary arms race with virus writers, spam dis-

tributors, organized criminals, and other individuals

attempting to co-opt the Internet for their own pur-

poses. These adversaries are numerous, adaptable, persistent, and

How to Win
an Evolutionary Arms Race

70 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

Secure Systems

isn’t good, things could conceivably
become much worse. What if at-
tackers discovered new vulnerabili-
ties once a day? Once an hour? Once
a minute? Malware developers can
achieve such a rate of discovery by
working in parallel and automating
vulnerability discovery and exploita-
tion. Because developers must ex-
tensively test each update to ensure
that it doesn’t break existing func-
tionality, they can’t deploy fixes at
the same rapid rate. In the long run,
developers won’t be able keep up
with attackers as long as they’re re-
quired to respond to each vulnera-
bility as it’s discovered.

Several technologies exist, such
as nonexecutable stacks and anom-
aly-based intrusion prevention sys-
tems, that promise to prevent
exploits without signatures or soft-
ware patches. Many of these systems
have considerable merit. Experi-
ence teaches us, however, that
attackers can circumvent or even di-
rectly exploit such systems. Software
patches, of course, can be created to
fix specific limitations, but then
we’re back where we started.

We’re faced with adversaries that
can potentially deploy attacks faster
than we can deploy defenses, even if
we use automated update systems.
Advanced defense technologies can
help, but because they’re imperfect
and therefore vulnerable to exploita-
tion, they don’t change the overall
balance of power. Is there anything
we can do, then, to even the scales—
to play this evolutionary game so that
we have a chance to keep up?

How animals
play the game
Although our computer systems are
new at this game, living organisms
have been fighting such battles for
millions of years. In particular, large
animals such as humans face a threat
environment analogous to that our
computer systems face. Our ances-
tors survived in a world filled with
numerous pathogens such as bacte-
ria, viruses, and parasites—all with-

out help from modern medical sci-
ence. To be sure, the human body
has formidable perimeter defenses
such as skin, mucous membranes,
and stomach acid. These barriers are
complemented by a complex im-
mune system, part of which is adept
at handling most common threats
(the “innate” immune system), and
an adaptive system that can handle
most other invaders. Even with these
formidable defenses, though, people
still get sick, and many die of disease.
Furthermore, new threats constantly
arise that defeat old defenses: Bacte-
ria develop antibiotic resistance, and
viruses such as HIV emerge that our
immune systems can’t defeat.

Despite the magnitude of these
threats, our bodies go to extraordi-
nary lengths to preserve genome in-
tegrity. Germ-line cells—those that
eventually form eggs and sperm—
are segregated during early embry-
onic development. The DNA in
many of our immune-system cells
changes in response to various
pathogens we’re exposed to, but we
pass none of these changes to the
next generation. Such “code conser-
vatism” has probably arisen because
our genomes are rather fragile: Du-
plicated or deleted chromosomes
frequently cause severe birth defects,
and even a one-letter (single nu-
cleotide) mutation in a critical sec-
tion of an embryo’s DNA can cause a
miscarriage. Bacteria can tolerate
large-scale changes in their ge-
nomes—they can lose entire genetic
subsystems (plasmids) and acquire

new ones from other bacteria or the
external environment. The com-
plexity of most animal genomes
seems to preclude such flexibility.

All animals evolve over time.
Those better able to survive and re-
produce pass on their genes, and
those who can’t adapt are eliminated.
The opposition is also evolving,
though, and they do so much more
rapidly. Humans reproduce every 20
years, but bacteria can reproduce
every 20 minutes.

Given such numerous and
adaptable foes, it would seem that
all large animals, including humans,
should have become extinct long
ago. Fortunately, nature has devised
strategies that balance the scales by
ensuring that we don’t give
pathogens a “stationary target.” In
particular, we’ve survived using
three basic moves: sex, death, and
speciation. Confused? Well, con-
sider the following.

Sexual reproduction
Many researchers have observed that
diverse populations are more resistant
to infection than populations of simi-
lar individuals. Less well appreciated is
the fact that the primary mechanism
animals use to generate and preserve
such diversity is sexual reproduction.
Using a systematic mechanism for se-
lecting and combining “code” from
two parents to create offspring, ani-
mals can create novel variants without
resorting to random code changes.
Code segments, or DNA, that are
particularly fragile tend to be identical
in both parents, so the recombination
process won’t perturb these parts. On
the other hand, differences between
the parents are chosen randomly and

passed on to the child. Sex produces
such diversity that—except for iden-
tical siblings—no two individuals
born have ever had the same genome.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 71

We’re faced with adversaries that can
potentially deploy attacks faster than we
can deploy defenses, even if we use
automated update systems.

Secure Systems

Preprogrammed death
Although we might not like it, death
is a useful and probably necessary evo-
lutionary adaptation for complex ani-
mals. A natural ecosystem can only
accommodate a limited number of
individuals from a given species. If
these limits are simply determined by
external factors (for example, amount
of food, rate of predation and disease,
and so on), successful animals will
choose to reproduce very infre-
quently to reduce competition. The
genomic composition of such a pop-
ulation, though, tends toward a
“temporal monoculture”—a set of
genomes that, while diverse, changes
little over time. When a pathogen or
predator eventually develops an effec-
tive attack, it will have done so ob-
serving this static population; so, it’s
more likely that the attack (or set of
attacks) will kill most of the species.
Even worse, the survivors will be less
able to repopulate the ecosystem be-
cause they’ve evolved to reproduce at
a slow rate. Thus, to ensure that
species shuffle around their genes on a
regular basis, we all have a built-in
self-destruct mechanism that makes
room for new variants—our children.

Speciation
These powerful mechanisms aren’t al-
ways enough, however. Flaws present
in all members of a given species must
be preserved to ensure mating (“back-
ward”) compatibility, but pathogens
might eventually find and exploit
these flaws. For life to continue, there
must be a way to fix such basic weak-
nesses. Speciation is that mechanism.
The conventional wisdom in biology
is that the combination of mutation
and a reproductive barrier are enough
to create a new species (see http://
evolution.berkeley.edu/evosite/evo
101). Researchers such as Lynn Mar-
gulis now argue, though, that most
new species develop through the
merging of functional genetic
units—genomes.1 Her theory of
symbiogenesis is too complicated to
explain fully here, but from a pro-
gramming perspective it’s almost

painfully obvious: It’s simply much
more likely that new programs
with novel functionality will arise
from the merger of two separate,
working programs than from a se-
ries of random changes to a single
program.

Software
development’s
biological nature
Many parallels exist between biology
and current software practices. For
example, we can view merging,
splitting, and recombining code in
open-source projects such as the
Linux kernel as a kind of “sexual re-
combination.” Code forks that result
in similar yet incompatible software
systems (for example, the split be-
tween the various BSD descendents)
are a kind of speciation. And the ef-
forts commercial vendors make to
phase out old software versions are
(often unsuccessful) attempts at
“killing” certain software varieties.

Clearly, we’re seeing limited
forms of software sex, death, and spe-
ciation. However, to produce a suffi-
ciently diverse and dynamic software
ecosystem that’s resistant to malicious
software, we would have to accelerate
and streamline these processes. Such
radical changes would almost cer-
tainly bring some pain in the short
term. Even worse, we couldn’t guar-
antee that malware authors wouldn’t
adapt to these techniques as well—
after all, we wouldn’t be solving the
“secure composition” problem be-
cause under such a regime, each indi-
vidual program would have just as
many vulnerabilities as it would oth-
erwise, if not more.

Consider, though, that this ap-
proach’s fundamental premise is that
security through obscurity can be ef-
fective if a sufficient amount of ob-
scurity exists and if the nature of the
obscurity changes frequently. The
real question is, can we create mech-
anisms that transform vulnerabilities
so that an attacker would need spe-
cific knowledge—a key, in effect—
to craft a successful exploit? Work in

software diversity and obfuscation2,3

has been somewhat successful in
achieving this goal. This work, how-
ever, has been limited by the assump-
tion that transformations shouldn’t
change programmer-specified code
behavior. We should be able to draw
inspiration from genetic algorithms.
The challenge is to find automated
methods for exchanging code be-
tween applications that can also
simultaneously preserve the impor-
tant functionality of each.4

A lthough adapting the concepts of
sex, death, and speciation to com-

puting is risky, the simple truth is that
automated update systems and other
security technologies won’t be able to
protect computer systems from all ma-
licious software. Perhaps by changing
the game we can ensure that the Inter-
net remains a resource for everyone—
not just the bad guys.

References
1. L. Margulis and D. Sagan, Acquir-

ing Genomes: A Theory of the Origins
of Species, Perseus Books Group,
2002.

2. E.G. Barrantes et al., “Randomized
Instruction Set Emulation to Dis-
rupt Binary Code Injection At-
tacks,” Proc. 10th ACM Conf.
Computer and Communication Secu-
rity (CCS 03), ACM Press, 2003,
pp. 281–289.

3. S. Bhatkar et al., “Address Obfus-
cation: An Efficient Approach to
Combat a Broad Range of Mem-
ory Error Exploits,” Proc. 12th
Usenix Security Symposium, Usenix,
2003, pp. 105–120.

4. M. Mitchell, An Introduction to Genetic
Algorithms, Bradford Books, 1996.

Anil Somayaji is an assistant professor in
the School of Computer Science at Car-
leton University. His research interests
include computer security, operating sys-
tems, complex adaptive systems, and
artificial life. He received a PhD in com-
puter science from the University of New
Mexico. He is a member of the ACM,the
IEEE Computer Society, and Usenix. Con-
tact him at soma@scs.carleton.ca.

72 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

