
Lab #4 Solutions: COMP 3000A (Operating Systems)
November 26, 2007

Please answer all questions below, there are 60 marks total. Part A of this lab is intended to
be completed within the lab during Lab hours. Part B can be completed on your own time, either
in the lab or on your own computer.

You may find the Linux Cross Reference website, http://lxr.linux.no/source/, use-
ful when completing this assignment.

1 Part A

This section is designed to be completed in the lab. You get 10% of the total marks for attempting
to do part A during assigned lab hours. Please ensure that one of the Lab instructors takes your
attendance.

1. [6] Have the instructor mark down that you were present and attempted part A during lab
hours.

2. [3] In the Linux kernel, what file contains the code for the system call dispatcher that exe-
cutes on the machines in the lab? What language is it written in? Why?

linux-2.6.19.1/arch/i386/kernel/entry.S is the file. It is written in x86 assembly because
it must directly manipulate CPU registers (it must save the register state of the calling
process and setup the kernel’s execution environment).

3. [2] What is the highest numbered system call currently implemented? What is the name of
this system call?

319, epoll pwait

4. [2] Look in the file linux-2.6.19.1/fs/ext3/file.c. What function implements the read oper-
ation for ext3 filesystems? The write function? (Note that one is filesystem specific, while
the other is generic.)

do sync read and do sync write implement the synchronous versions of read and write.
(That’s all you had to say to get this question right; however, these functions are actually
thin wrappers around the asynchronous functions which are also specified in the same
structure: generic file aio read and ext3 file write.) Note that the hint for this question
is wrong!

5. [2] In what file are the directory inode operations of ext3 defined? In what structure?

fs/ext3/namei.c, in ext3 dir inode operations

6. [3] What function (from what file) calls do execve() on the kernels running in the lab? Why
can’t the system call dispatcher directly call do execve()?

sys execve() in arch/i386/kernel/process.c. The dispatcher cannot call this function di-
rectly because it needs to get arguments from the appropriate register, and this cannot
be done by an architecture-independent function - hence the arch-dependent wrapper.

7. [2] Briefly, what is the purpose of the bprm structure as used in the function do execve()?

It holds the arguments that are used when loading binaries (loaded by the execve system
call).

2 Part B

The kernel source on the lab computers contains a skeleton file which will be used in completing
this lab. This file is located at kernel/comp3000.c. Currently, the code in the file creates a
proc filesystem entry at /proc/comp3000 that outputs Hello World. In this lab, you will be
modifying the file comp3000 to do more.

While you do not need to turn in the entire comp3000.c source file, please do give enough
context so it is clear where you made your modifications.

1. [10] Modify kernel/comp3000.c to output the process number and name of the process
which has a PID closest to 1000 (without going over).

2. [20] Modify kernel/comp3000.c to output a complete list of process ID and command
lines. Your output should be similar to that seen when running the ps -e --format
"pid args".

3. [10] Modify kernel/comp3000.c so that you can write a number to the proc filesystem
and subsequent reads will return all processes with ID’s above the number written. Writing
an ID number of 0 should result in all processes being shown when reading from the proc
file.

Solutions start on next page.

2

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>

#include <linux/proc fs.h>

/* How did I know what files to include. . . I tried compiling and then
* fixed the ’undefined function’ errors by doing a search on the
* linux cross reference to determine what include file it was 10
* declared in. A fairly simple process. */
#include <linux/mm.h> /* For access process vm */
#include <asm/uaccess.h> /* For copy from user */

static struct proc dir entry * entry = NULL;
static struct proc dir entry * entry2 = NULL;

static int minpid;

/* Proc filesystem data structure. We use this and the associated 20
* proc out function so that we don’t have to keep track of every
* write explicitly in the proc read function. It lets the proc read
* function be simplified by a great deal. You could have done this
* without the helper function, but your proc read function would have
* been significantly longer. */

struct proc out data {
char * buffer;
off t offset;
int buffer len;
int outlen; 30

};

/* This function prints the string into a temporary buffer and then
* depending on the offset of the read and the size of the data buffer
* for the read can copy all or part of the resulting temporary string
* into the output buffer. It updates the structure accordingly for
* the next call to this function. */

static int proc out(struct proc out data * file, const char * format, . . .) {
char buffer[256];
int len, i; 40
va list ap;

va start(ap, format);
len = vsnprintf(buffer, sizeof(buffer), format, ap);
for(i = 0; i < len; i++) {

if(file−>offset > 0) { file−>offset−−; }
else if(file−>buffer len == 0) { return 0; }
else { file−>buffer[0] = buffer[i]; file−>buffer++; file−>outlen++; }

}
return len; 50

}

/* This function is copied straight from fs/proc/base.c */
static int proc pid cmdline(struct task struct *task, char * buffer) {

int res = 0;

3

unsigned int len;
struct mm struct *mm = get task mm(task);
if (!mm)

goto out;
if (!mm−>arg end) 60

goto out mm; /* Shh! No looking before we’re done */

len = mm−>arg end − mm−>arg start;

if (len > PAGE SIZE)
len = PAGE SIZE;

res = access process vm(task, mm−>arg start, buffer, len, 0);

// If the nul at the end of args has been overwritten, then 70
// assume application is using setproctitle(3).
if (res > 0 && buffer[res−1] != ’\0’ && len < PAGE SIZE) {

len = strnlen(buffer, res);
if (len < res) {

res = len;
} else {

len = mm−>env end − mm−>env start;
if (len > PAGE SIZE − res)

len = PAGE SIZE − res;
res += access process vm(task, mm−>env start, buffer+res, len, 0); 80
res = strnlen(buffer, res);

}
}

out mm:
mmput(mm);

out:
return res;

}

90
/*
* Used by proc to find the first pid that is greater then or equal to nr.
*
* If there is a pid at nr this function is exactly the same as find pid.
*
* Defined in 2.6.19, backported to 2.6.18 here.
*/

struct pid *find ge pid(int nr)
{

struct pid *pid; 100
do {

pid = find pid(nr);
if (pid)

break;
nr++;

} while (nr > 0 && nr < PID MAX DEFAULT);
return pid;

}

110
static int proc read(char *buffer, char **buffer loc, off t offset, int buffer len, int *eof, void *data) {

struct proc out data proc data = { .buffer = buffer,
4

.offset = offset,

.buffer len = buffer len,

.outlen = 0 };

int curpidid = minpid;
char * tmp buffer;

tmp buffer = kmalloc(PAGE SIZE + 1, GFP KERNEL); 120

proc out(&proc data, " PID COMMAND\n");

/* Ok, we have a PID, it’s stored in minpid. We need to find the
* next PID greater than or equal to the current PID */

/* How did we get this information?
- Recognize that the kill systemcall sends a signal to a PID.
- It has to get the structure for a given PID. . .
- The System call for kill calls sys kill 130
- Using the LXR, sys kill is defined in kernel/signal.c
- It just calls kill something info
- kill something info is defined in kernel/signal.c
- It calls kill proc info if PID is valid
- kill proc info is defined in kernel/signal.c
- It references a function called find pid. . .
- Slightly lower in the same file is a function called pid task

which returns a task struct!
- In seeing how to use it, we stumble across kernel/pid.c which

has a whole lot of usefull functions for dealing with PIDS! 140
*/

/* We need to hold the lock to the pid structures when we itterate
* through them so that a process exiting does not cause us to
* oops. */

rcu read lock();

struct pid * curPid;
do {

struct task struct * curTask; 150

curPid = find ge pid(curpidid);
if(!curPid)

break;
curTask = pid task(curPid, PIDTYPE PID);

/* Ok, we have the PID, but we still need the command line.
* It just so happens that the proc entry cmdline for each
* file gives us that, so let’s see how that function is
* implemented! So, we find the function proc pid cmdline in 160
* proc/base.c (by doing a grep for cmdline inside the fs/proc
* directory) and we copy the function out and paste it
* above. By reading the function, we know that the maximum
* length written to the buffer is going to be PAGE SIZE, so
* that’s how big we make the buffer which takes the data. */

int cmdlen = proc pid cmdline(curTask, tmp buffer);
tmp buffer[cmdlen] = ’\0’;
/* Replace NULL’s with spaces so we get the full command line. */
for(cmdlen−− ; cmdlen >= 0; cmdlen−−) {

5

if(tmp buffer[cmdlen] == ’\0’) tmp buffer[cmdlen] = ’ ’; 170
}

/* And we print out the data we found. */
proc out(&proc data, "%5d %s", curPid−>nr, tmp buffer);
proc out(&proc data, "\n");

/* And on to the next pid. . . */
curpidid = curPid−>nr + 1;

} while (1); 180

/* Unlock the lock so we don’t freze the kernel. */
rcu read unlock();

kfree(tmp buffer);

/* Well, that was not very painfull. . . */

if(proc data.outlen == 0)
*eof = 1; 190

return proc data.outlen;
}

/* Below is the solution to part 1. It is slightly different in that
* it has to go through the pids in a decreasing order in order to
* find the one closest to 1000. Comments are more sparse as it’s
* just a copy of the code above but tweaked to answer part 1. */

static int proc read1(char *buffer, char **buffer loc, off t offset, int buffer len, int *eof, void *data) {
struct proc out data proc data = { .buffer = buffer, 200

.offset = offset,

.buffer len = buffer len,

.outlen = 0 };
char * tmp buffer;
int i;

tmp buffer = kmalloc(PAGE SIZE + 1, GFP KERNEL);

rcu read lock();
210

/* Find the number of the pid. . . */
struct pid * curPid = NULL;
for(i = 1000; i >= 1 && !curPid; i−−)

curPid = find pid(i);
struct task struct * curTask;
curTask = pid task(curPid, PIDTYPE PID);

int cmdlen = proc pid cmdline(curTask, tmp buffer);
tmp buffer[cmdlen] = ’\0’;
/* Replace NULL’s with spaces so we get the full command line. */ 220
for(cmdlen−− ; cmdlen >= 0; cmdlen−−) {

if(tmp buffer[cmdlen] == ’\0’) tmp buffer[cmdlen] = ’ ’;
}

/* And we print out the data we found. */
proc out(&proc data, "%5d %s", curPid−>nr, tmp buffer);

6

proc out(&proc data, "\n");

/* Unlock the lock so we don’t freze the kernel. */
rcu read unlock(); 230

kfree(tmp buffer);

if(proc data.outlen == 0)
*eof = 1;

return proc data.outlen;
}

/* This function is responsable for obtaining the integer which 240
* represents the lowest numbered PID to display. The function
* prototype can be found by examining the type of function pointer in
* the proc dir entry structure. As for how to use the buffer, examine
* how one of the other kernel functions uses write proc t by using the
* Linux cross-reference. In this case, the
* drivers/acpi/toshiba acpi.c file was the first hit and so we just
* modify that code slightly. */

static int proc write(struct file *file, const char user *buffer,
unsigned long count, void * data) {

int result; 250
char * tmp buffer;

if(!buffer)
return −EINVAL;

if(!count)
return −EINVAL;

tmp buffer = kmalloc(count + 1, GFP KERNEL);
if (!tmp buffer)

return −ENOMEM; 260

if (copy from user(tmp buffer, buffer, count)) {
result = −EFAULT;

} else {
tmp buffer[count] = 0;
sscanf(tmp buffer, "%i", &minpid);
result = count;

}
kfree(tmp buffer);
return result; 270

}

/* I include both answers in the same file by creating two proc
* entries. You did not have to do this in your solution, it would
* have been sufficient to give two different source files. I include
* both in one file for simplicity (and it allows testing of all
* solutions at the same time. */

static int proc setup(void) {
/* This sets up a proc entry which answers part 1. */
if(!entry) { 280

entry = create proc entry("comp3000-1", S IFREG | S IRUGO, NULL);
if(!entry) {

return −ENOMEM;
7

}
entry−>read proc = proc read1;
entry−>write proc = NULL;
entry−>owner = THIS MODULE;
entry−>uid = 0;
entry−>gid = 0;
entry−>size = 0; 290

}
/* This sets up a proc entry which answers part 2 and 3. */
if(!entry2) {

entry2 = create proc entry("comp3000-23", S IFREG | S IRUGO, NULL);
if(!entry2) {

return −ENOMEM;
}
entry2−>read proc = proc read;
entry2−>write proc = proc write; /* Need to set up the write function */
entry2−>owner = THIS MODULE; 300
entry2−>uid = 0;
entry2−>gid = 0;
entry2−>size = 0;

}
return 0;

}

static void proc remove(void) {
if(entry != NULL) {

remove proc entry("comp3000-1", NULL); 310
entry = NULL;

}
if(entry2 != NULL) {

remove proc entry("comp3000-23", NULL);
entry = NULL;

}
return;

}

static int init comp3000 module init(void) { 320
minpid = 1000;

return proc setup();
}

static void exit comp3000 module exit(void) {
proc remove();

}

module init(comp3000 module init) 330
module exit(comp3000 module exit)
MODULE LICENSE("GPL");

8

