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Abstract— The complexity of current Internet applications
makes the understanding of network traffic a challenging task.
By providing larger-scale aggregates for analysis, unsupervised
clustering approaches can greatly aid in the identification of new
applications, attacks, and other changes in network usage pat-
terns. In this paper we introduce ADHIC, a new algorithm that
clusters similar network traffic together without prior knowledge
of protocol structures. Packet similarity is determined through
comparisons of substrings within packets at distinguishing offsets.
ADHIC is notable in that 1) it produces a hierarchical decomposi-
tion of network traffic in the form of a cluster-identifying decision
tree, 2) it needs only a small fraction of packets (about 3% in
our traces) to generate the tree, and 3) it clusters packets at wire
speeds. We find that ADHIC appropriately segregates well-known
protocols, clusters together traffic of the same protocol running
on multiple ports, and segregates traffic from applications, such
as p2p, that do not use standard ports. Potential applications
include network performance analysis, real-time alerts of flash
crowds or worm activity, and dynamic DoS-resistant bandwidth
management. NetADHICT, our implementation of ADHIC, is
available for download and is licensed under the GNU GPL
license.

I. INTRODUCTION

The behavior of modern computer networks is fundamen-
tally complex: many users, many uses, numerous protocols,
massive operating systems, complex applications, and a wide
variety of connected devices. As a result, understanding the
behavior of even the simplest local area network can be
challenging. Such analysis, however, for debugging, network
management, and security purposes is increasingly important.
Common analysis strategies have been to classify traffic using
predetermined classifiers, based on ports and IP addresses or
also using protocol dissectors [2]. While such approaches can
help one understand a given set of packets, they are much less
helpful when the problem is to understand the overall structure
of network traffic.

The goal and strategy of this work has been to devise a
technique to better understand network traffic through group-
ing them into semantically meaningful equivalence classes, or
clusters, using no prior knowledge of packet or protocol struc-
tures. When packets are compared using header information,
clustering can reveal many interesting patterns [5]; however,
many patterns of traffic, including peer-to-peer networks, self-
propagating malware (worms), and flash crowds are often more
properly distinguished by patterns in payloads, not headers.
Indeed, some protocols are now designed to make it difficult
to classify them through header information. An ideal packet

clustering technique, then, would be able to extract patterns
from anywhere in a packet.

We have developed an unsupervised clustering algorithm,
ADHIC (Approximate Divisive HIerarchical Clustering), that
creates semantically interesting clusters without manually la-
belled training data or complex statistical features. Instead,
it represents clusters using fixed-offset, fixed-length strings, a
pattern we refer to as (p, n)-grams [16]. Most (p, n)-grams
are rare and correspond to fragments of payload data. High
frequency (p, n)-grams, however, correspond to the structural
features of network packets. By choosing (p, n)-grams of ap-
propriate frequency, we can represent the structure of network
traffic without any other assumptions regarding the contents
of packet headers or payloads.

More specifically, ADHIC clusters packets using an itera-
tively derived (p, n)-gram decision tree, where each (p, n)-
gram is chosen on the basis of its frequency in observed
traffic. Because the presence of (p, n)-grams can be efficiently
measured, and because the frequencies of common (p, n)-gram
can be estimated using small samples, ADHIC can continually
monitor traffic and adjust its clustering performance online and
at high speed.

To evaluate ADHIC, we implemented a packet analysis tool
called NetADHICT [7] (pronounced “net addict”). In experi-
ments using data captured from our lab’s production network
(see section V), we have found that ADHIC can quickly
capture the overall structure of traffic in a way that reflects
the relative popularity of different uses of network bandwidth.
While much of the inferred structure corresponds to typical
divisions of network traffic (TCP vs. UDP, web vs. non-web
traffic), these divisions are arrived at using (p, n)-grams that
generally are only meaningful within a given environment.
Because classification is often accomplished without direct
reference to ports, the use of non-standard ports for protocols
has little effect on clustering performance. Applications that
do not have standard ports, such as the BitTorrent p2p file
sharing protocol [23], [19], can also be clustered appropriately
without requiring any protocol-specific information. Similarly,
encrypted traffic is also often clustered appropriately because
we are able to appropriately segregate all other traffic. These
results show that ADHIC holds promise as a powerful yet
lightweight method for discovering patterns in the structure of
network traffic.

The rest of this paper proceeds as follows. We review related
work in network traffic analysis in Section II and explain



the key design decisions underlying ADHIC in Section III.
Section IV describes ADHIC, while Section V reviews our im-
plementation, NetADHICT. Sections VI, VII, and VIII present
more detail on ADHIC’s performance through an explication
of a few decision trees, overall classification behaviour, and
performance in the face of p2p traffic. Section IX discusses
limitations and future work, and we conclude with Section X.

II. RELATED WORK

Many researchers have studied the problem of character-
izing the structure of network traffic. Some, for example,
have modeled the “burstiness” of packet inter-arrival times
on Ethernet networks [13] and wide area networks [18].
Others have examined the structure of destination addresses
in IP traffic [12]. Rather than manually choosing and fitting
models to observed traffic, some have chosen to apply machine
learning methods to automatically observe patterns in the
structure of network traffic. For example, automated network
traffic classification using machine learning strategies was first
proposed in the context of anomaly detection for security
purposes by Frank [6]. Many others have followed a similar
strategy, giving rise to the field of anomaly intrusion detection.
Much of the recent work in applying machine learning meth-
ods to network security, however, has focused on detecting the
characteristic patterns of worm propagation [21], [22], [11].

To classify traffic into predetermined classes, supervised
machine learning approaches such as Bayesian classification
[24] and expectation maximization [17] have been applied
to specific packet fields such as the 5-tuples, packet length,
and inter-arrival times. While many network protocols can be
identified by patterns in the size, directionality, and rate of
packet exchanges [10], others have argued that it is necessary
to look at some payload information in order to properly
classify network traffic [14].

Rather than distinguishing between “good” and “bad” traffic
or identifying members of predefined classes, our approach has
been to cluster packets in an unsupervised fashion. Unsuper-
vised clustering approaches have been applied to the problem
of application identification using the the size and direction of
the first few packets of a TCP connection [1]; it has also been
used to aggregate packets into different quality of services
classes [20]. While it might seem that unsupervised methods
would always be at a disadvantage, Erman et al. [4] showed
that this need not be the case in the domain of identifying
applications using header data.

Perhaps the approach closest to our own in spirit is that
of AutoFocus [5]. In this work hierarchical clusters were first
formed on the basis of individual IP header fields; unidimen-
sional clusters exceeding a fixed threshold were then aggre-
gated to form multidimensional clusters. Rather than build up
higher-level clusters using header information, ADHIC does
top-down clustering using features that can be from anywhere
in a packet.

One key motivation for identifying aggregates of network
traffic has been to manage packet volumes. In particular,
“Pushback”-type approaches have been developed to identify

and throttle high volume flows [15] in order to mitigate
denial-of-service attacks. Many problematic network condi-
tions, such as distributed denial-of-service attacks (DDoS) and
flash crowds, however, are properties of groups of flows, not
individual ones. To address this problem, in earlier work [16]
we proposed that network traffic could be managed using
aggregates defined by (p, n)-grams. We presented a linear
classifier that could balance traffic between multiple (arbitrary)
queues and mitigate the spread of a simulated high-speed
worm.

The key advance of this work is that we present and
evaluate an algorithm, ADHIC, that uses (p, n)-grams to
hierarchically cluster packets into semantically interesting (and
generally easily recognizable) classes, and does so in an
efficient manner in terms of both training time and online
classification performance. While ADHIC already forms the
basis of a promising network monitoring tool, NetADHICT
[7], in addition we expect that ADHIC’s clusters will be better
suited to the problem of bandwidth management than the
arbitrary collections of (p, n)-grams generated by the earlier
algorithm [16]. Applying ADHIC to the network denial-of-
service problem, however, is the subject of future work.

III. CAPTURING PACKET STRUCTURE

Our goal with this work has been to devise a technique for
clustering network packets into meaningful clusters without
using any domain-specific knowledge, and to do so efficiently
and online so that changes in network traffic may be tracked
as they occur. To achieve this goal, we chose to create a
divisive hierarchical clusterer. Divisive clusterers work in a
top-down fashion: they assume all data first belong to one
cluster, and then this cluster is iteratively divided into smaller
clusters to capture finer-grained details. Divisive clustering
was a good fit for our goals because we wanted to capture
large scale patterns rather than the fine-grained details of
network behavior. Further, we chose a hierarchical clustering
approach because Internet traffic has an encapsulated structure,
with HTTP encapsulated in a TCP session whose packets are
encapsulated in IP and, typically, ethernet packets. Such a
structure is best represented with a hierarchy rather than with
a simple collection of clusters.

Existing approaches to divisive hierarchical clustering, how-
ever, were not suitable to our task because they typically
employ an entropy minimization calculation which is O(n2)
in the number of clustered items [3], something that is too
expensive for a high-speed implementation. What we wanted
instead was a “sub-linear” algorithm: it should only need
to look at a small portion of a packet before deciding in
what cluster it belongs to. High-speed routers face a similar
problem: they must classify incoming packets quickly in order
to decide where to send them. In general, they cannot perform
calculations on the entire contents of a packet; instead, they
look at a subset of bytes in a packet header (the destination
IP address in particular) before making their choice. We
thus decided to base our divisive hierarchical clusterer on
a generalization of what high-speed routers are optimized to



Fig. 1. (p, n)-gram frequency distribution in network traffic: percentage of
packet matching of the most frequent (p,n)-grams taken from a sample 3-
hour maturation window and a subset sample 10-minute update period in the
January trace (See Section V).

observe: (p, n)-grams [16]. A (p, n)-gram is an n-byte string
offset p-bytes from the start of a packet. For example, in
an IP packet encapsulated inside of an ethernet packet, the
destination IP address is 4-byte string offset 30 bytes. A wide
variety of similarities in packet headers can be represented
using one or more (p, n)-grams; further, payload similarities
can also be represented so long as a given pattern is present at a
consistent offset. In addition, packets containing identical data
will share a variety of (p, n)-grams. Of course many patterns,
such as the presence of a string anywhere in a packet, cannot
be efficiently represented using (p, n)-grams. Our hypothesis,
though, was that there was sufficient richness in the (p, n)-
gram representation that we could still capture the high-level
structure of network traffic.

A key problem that we faced was how to choose the right
(p, n)-grams. If we need to perform complex packet analysis
to find them, the performance advantages of (p, n)-grams
would be lost. However, in our experiments we found that
there are a significant number of high and moderate frequency
(p, n)-grams (see Figure 1), the frequency of which appears
to follow a power-law analogous to Zipf’s law [25]. Further,
these (p, n)-grams are most often structural ones: they match
protocol or application-level headers (See Section VI). Thus,
so long as we use relatively high frequency (p, n)-grams, we
will be capturing packet structure—without any assumptions
regarding packet structure.

We chose two bytes (n = 2) for the length of (p, n)-grams.
Long (p, n)-grams provide a large amount of context, provid-
ing more semantically meaningful splits, but long (p, n)-grams
are not found frequently. Shorter (p, n)-grams are easier to
find in large quantities, but may not be as meaningful. We
considered (p, n)-gram lengths of 1, 2, and 4. Only n = 2
created a proper number of (p, n)-grams—at n = 1 there were
too many to consider efficiently while n = 4 provided too few.

for each node:
if(node.traffic < minimum)

parent.delete(node)
else if(node.is_leaf && node.traffic > maximum)
{

png = find_png(node, cache)
if(png) node.split(png)

}

Fig. 2. Pseudocode for the ADHIC adjustment algorithm. cache holds a
sample of recently observed packets.

IV. APPROXIMATE DIVISIVE HIERARCHICAL CLUSTERING

We call our clustering algorithm (Approximate Divisive
HIerarchical Clustering). ADHIC produces a binary decision
tree that is used to assign packets to specific clusters. Using
statistics gathered while classifying packets and small, periodic
samples of full packets, ADHIC incrementally adjusts the tree
to improve accuracy and track network behavior changes.

ADHIC’s trees consists of internal decision nodes and leaf
nodes which are the final clusters. Each internal node has
two subtree children. Traffic that matches a classification rule
within the node is directed to the left, or true subtree. The
rest of the traffic is directed to the right subtree. Because
rightmost subtrees have not matched any classification rules,
we sometimes refer to these as default clusters. The rightmost
cluster of the entire tree is the global default cluster. The
tree matches a set of boolean operations. Traffic within each
terminal cluster can be viewed as the result of a boolean
equation constructed by following the path from the root node
to the leaf. Left subtrees are combined with and, and right
subtrees with and not.

Each decision node within the tree is associated with a
(p, n)-gram. If a packet contains the same n bytes at byte
offset p as specified by the (p, n)-gram associated with the
node, it is said to match. A (p, n)-gram substring of length
two (n = 2), consisting of the bytes 0x00 and 0x08 at offset
43 is denoted (43, 0x00 0x08).

The tree is generated and adapts through two operators: split
and delete. It starts with one leaf cluster (thus one node),
and then splitting occurs when a leaf cluster matches more
than some threshold of traffic and that traffic is between a
set maximum and minimum difference in similarity (called
the similarity spread). Similarity in ADHIC is measured by
finding a (p, n)-gram such that it is found in roughly half of
the packets matched by the cluster. This (p, n)-gram becomes
associated with the internal node from which the new two
leaf clusters branch. Operation statistics are measured over
a period called the maturation window. Nodes which have
been modified within a maturation window of the current time
are locked and cannot be split or deleted.

Deletion occurs when a subtree has not matched a minimum
threshold of traffic during the most recent maturation window.
The subtree’s parent node is also deleted. The parent node’s
other tree, the one not deleted, becomes the direct child of
the parent node’s parent. See Figure 2 for a pseudocode
representation of the ADHIC adjusting algorithm.



File /home/ahijazi/jan-traffic/dump-2006-01-20.09:49.in

 Time 55

Queues 4

Last 10 Minutes 13543

Last 180 Minutes 174970

Total Packets 538635

N2

43, 0x00 0x00

13543 (100.00%)

174970 (100.00%)

N5

51, 0x00 0x00

5689 (42.01%)

70097 (40.06%)

N8

31, 0x75 0x15

7854 (57.99%)

96292 (55.03%)

N6

2981 (22.01%)

34158 (19.52%)

5

N7

2708 (20.00%)

35939 (20.54%)

5

N9

4903 (36.20%)

53957 (30.84%)

10

N10

2951 (21.79%)

42335 (24.20%)

20

Fig. 3. An example decision tree (actual trees are much larger). Internal
nodes are (p, n)-gram nodes. Each node in the tree has a node identifier
(e.g. N8), and statistics of packet count and percentage seen by the node per
update period in the upper line and per maturity window in the lower line (see
Section V for more information about these parameters). While internal nodes
contain also the (p, n)-gram value, leaves indicate the number of different
protocols at the bottom line where each protocol is represented by a slice
(with a size proportional to its volume) in the pie chart. The circle size of
the leaf node (cluster) represents the number of packets seen. Slices with
one color represent Ethernet protocols. Slices with two colors are IP protocol
types including TCP and UDP. Slices with three colors are specific TCP and
UDP protocols

For performance reasons, splitting and deletion only occur
periodically. The duration between truee updates is called the
update period. The similarity spread, maturation window,
update period, and the thresholds for splitting and merging
are all configurable parameters.

In addition, ADHIC does not calculate the frequency proba-
bilities of all packets. If we accept errors, we need only sample
a constant number of packets during each update period. For
a 5% error rate, using the rule of thumb that the number of
observations is 1

B2 , only 400 packets need to be recorded. This
is about 3% of all packets on our network.

Figure 3, a sample decision tree produced by our ADHIC
algorithm, shows traffic split into two clusters by the (p, n)-
gram (43, 0x00 0x00). These two clusters were split into four
terminal, or leaf clusters. A packet is classified by starting at
the root node, N2. If it contains (43, 0x00 0x00) as a substring,
the packet is compared with the left child. If it does not, it is
compared with the right. This is done recursively until a leaf
node is reached; these signify clusters. For example, cluster
N9 matches packets that do not contain (43, 0x00 0x00) and
do contain (31, 0x75 0x15).

It is important to note that the (p, n)-gram frequency distri-
bution shows similar behaviour when taken on two samples:
a 3-hour maturation window, and a subset 10-minute update
period (see Figure 1).

V. IMPLEMENTATION AND EXPERIMENTAL SETUP

NetADHICT [7] is our implementation of ADHIC. It is
licensed under the GNU GPL and available from the Carleton
Computer Security Laboratory (CCSL) website [8].

Protocol January 20-26, 2006 April 03-09, 2006
IPv4 11910975 (83.29%) 8684678 (87.00%)

TCP 7747114 (54.17%) 6107644 (61.18%)
IPP 568669 (3.98%) 486936 (4.88%)
SSH 497408 (3.48%) 245513 (2.46%)
... ... ...

UDP 3864788 (27.02%) 2288802 (22.93%)
CUPS 296348 (2.07%) 128278 (1.28%)
RTP 1587449 (11.10%) 248642 (2.49%)
... ... ...

ICMP 36000 (0.25%) 28430 (0.28%)
EIGRP 261672 (1.83%) 258756 (2.59%)
... ... ...

ARP 1990922 (13.92%) 877582 (8.79%)
ETHER (old) 399206 (2.79%) 420344 (4.21%)
... ... ...

TABLE I
AN EXCERPT OF CONTENT STATISTICS FOR TWO OF THE ANALYZED

NETWORK TRACES.

We tested ADHIC against four network traces from the
CCSL lab taken during: Aug 13-19, 2004, Dec 10-16, 2005,
Jan 20-26, 2006, and Apr 3-9, 2006. CCSL lab is a gradu-
ate student laboratory with over 15 machines, two network
printers and about a dozen regular users. The lab provides
web, webmail, IMAPS, DNS, SSH, SMTP, and CUPS services
to external hosts. Because ADHIC relies on viewing packets
in their entirety (non-anonymized full packets), the traces are
from our own laboratory, where we have proper permission
from the lab members. Furthermore, we have sufficient knowl-
edge of our lab to better understand our traces.

In all our experiments, ADHIC effectively segregates all
structured protocols. It begins, usually, by separating UDP
traffic from TCP. Subsequently, in lower nodes of the tree,
it sequesters specific protocols. It is important to note that
ADHIC clusters use features that are often semantically mean-
ingful and not protocol-specific. Therefore, it often segregates
packets not only by protocol, but also by other characteristics.
For example, TCP control packets with zero-length payload,
such as SYN or ACK are often clustered separately.

Much of the structure ADHIC typically finds would also be
found through traditional header analysis techniques. How-
ever, because ADHIC looks at traffic with no pre-existing
biases, it also clusters using unconventional measures. (p, n)-
grams corresponding to special-value padding, Ethernet frame
addresses, checksums, and payload contents are all found in
ADHIC decision trees.

Over the course of this research we inspected thousands of
complete, individual packets while investigating the behavior
of ADHIC and constructing an independent “reference classi-
fier” we used to evaluate the system. This reference classifier
is for the most part a traditional tuple-classifier, relying on IP
protocol, and port information. Table I provides an excerpt of
a sample list of the protocol traffic statistics for two of the
traces calculated using the reference classifier.

All the ADHIC experiments were run with fixed parameter
values (see Table II), determined by exploring several sets
of alternative values using the four traces. In our testing



Parameter Value Parameter Value
(p, n)-gram length 2
maturation window 3 hours update period 10 minutes
delete threshold 0% split threshold 2%
sampling rate 20% similarity spread 20%

TABLE II
ADHIC PARAMETERS USED IN OUR EXPERIMENTS

environment, ADHIC is not highly sensitive to most of these
parameter values, and tends to produce qualitatively similar
trees under many settings; thus, we have chosen these values
as a reasonable trade-off between accuracy and performance.
On an Apple Mac Pro with 1GB of memory and 2.66 GHz
“Woodcrest” cores, ADHIC is able to cluster packet data at
about 250Mbps. Its current speed is not sufficient to monitor
a high-speed link in real time; however it is more than
sufficient for a research prototype. The lightweight nature
of our algorithm should permit a high-speed implementation;
such work, however, is a topic for future research.

VI. ADHIC DECISION TREE

To illustrate the effectiveness of ADHIC, we next briefly
describe an example decision tree and the types of clusters
it produces. Figure 4 shows an annotated, symbolic version
of a decision tree produced after four days of execution. The
black circles in the graph which constitute the rightmost child
of subtrees are called default clusters. They are the product of
several non-matching rules. Thus, packets in default clusters
are “everything that is not something else”.

The first (starting from left to right) cluster (denoted by a
triangle) at N11 primarily divides ARP (Address Resolution
Protocol) from other traffic. The N14 subtree is a large mix of
protocols, where the clusters demonstrate the effectiveness of
the technique for non-TCP protocols, showing singular clusters
(singular clusters are those that the reference classifier reports
as exclusively clustering packets of only one protocol type)
for DTP (Dynamic Trunking Protocol), EIGRP (Enhanced
Interior Gateway Routing Protocol), IGMP (Internet Group
Management Protocol), and Ganglia (a cluster monitoring
application). All the other clusters are singular and contain
TCP control packets with zero-length payload pertaining to a
web server traffic running over dozens of non-standard ports.
Similarly, the subtree with root N17 shows that the algorithm
was successful in segregating much of the HTTP traffic and
separating CUPS (Common UNIX Printing System) packets
in 2 singular clusters.

While the cluster at N41 entirely segregates the Cisco HSRP
(Hot Standby Router Protocol) traffic, the N158 subtree shows
interesting clusters for POP (Post Office Protocol), IMAPS
(secure Internet Message Access Protocol), HTTP, and IPP
(Internet Printing Protocol). These protocols are what people
use the most when they first arrive in the morning: they check
email, websites, and print papers. All of the IPP data along
with their related zero-length-payload TCP control packets are
grouped together at the N566 subtree. On the other hand,

IMAPS packets along with their related TCP control packets
were automatically grouped together in two clusters, namely:
N546, and N569. Moreover, POP packets resided in one
singular cluster at N653.

The remaining right hand clusters contain six singular
clusters of HTTP, TCP control packets, STP (Spanning Tree
Protocol), IPP, and NBDGM (NetBIOS Datagram Service).
The remaining three clusters are a mix of non-IP and UDP
protocols such as ARP, and RIPv4 (Routing Information
Protocol).

The availability of header information substantially alters
ADHIC’s clustering behavior. However, payload information
is also an extremely useful source for ADHIC to choose (p, n)-
grams from. Because ADHIC is not biased in what part of the
packet it examines, both header and payload (p, n)-grams can
be and are chosen. For example, in Figure 4, EIGRP packets
were all perfectly grouped at N219 and N222. The non-IP-
header (p, n)-gram (64, 0x00 0x0f) (representing the “hold
time” parameter) perfectly segregates one EIGRP set at N219,
and the header (p, n)-gram (25, 0x29 0x86) (within the source
IP address) does likewise with the other set at N222.

It is important to realize that (p, n)-grams are sometimes
discovered deep within the payload. An example of this is
(174, 0x00 0x00) (which represents the “parameter count” field
within NBDGM packets). This (p, n)-gram uniquely identifies
and catches NBDGM packets at N528 just before they mix
with the global default cluster.

Multimedia traffic like MS-Streaming and encrypted TCP
traffic such as HTTPS, SSH, and IMAPS are either segregated
by header (p, n)-grams or are shunted away toward the default
subtree because they do not match (p, n)-grams near subtree
roots. In Figure 4, IMAPS packets were neatly separated from
others through header (p, n)-grams like: (22, 0x2c 0x06) in
N546 (“time-to-live” and “protocol ID”), and (54, 0x01 0x01)
in N569 (NOP, NOP in “options”).

It is interesting that ADHIC is able not only to segregate
encrypted packets from non-encrypted packets, but also to
differentiate between these protocols in context. For example,
in the August trace, the (54, 0x01 0x01) (p, n)-gram (“options”
field in SSH and “content type” and “version” fields in
IMAPS) was chosen to separate the SSH traffic from the
IMAPS one.

VII. ADHIC VS. THE REFERENCE CLASSIFIER

Figure 5 shows how the port-based reference classifier
evaluates ADHIC clustering performance on all four traces.
Our classifier classifies about 80 different protocols encom-
passing TCP, UDP, as well as other IP and Ethernet specific
protocols. The y-axis represents the percentage of packets that
were clustered in singular clusters at each 10-minute update
period. Sometimes, the reference classifier is less accurate than
ADHIC (consider for example traffic running on nonstandard
ports), yet ADHIC clusters 60% to 80% of traffic in singular
clusters.

Traffic in singular clusters is almost guaranteed to be related,
and thus we use this as a performance metric. However, this
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Fig. 4. Sample of an ADHIC annotated tree. This simplified decision tree was produced from a snapshot taken in January 24, 2006. The original tree contains
89 terminal clusters and 88 internal nodes. Here, ovals represent internal nodes, triangles represent subtrees, filled circles represent default clusters.

Fig. 5. The percentage of packets in singular clusters at each update period.

measure significantly understates the performance of ADHIC
because it omits the cases when related packets have different
port numbers. For example, consider the spike that occured in
the August trace at update period 550. This spike was produced
by a port scanning attack. Virtually all of the scanning packets
were placed in the global default cluster; however, because
they had widely varying port numbers, the scanning packets
dramatically reduced the singular cluster packet average.

VIII. CLUSTERING P2P TRAFFIC

In the past few years, p2p applications have started to
disguise their traffic to avoid traffic shaping mechanisms at
the Internet service provider (ISP) level. Karagiannis et al. [9]
showed that these applications may even deliberately use other
protocols’ port numbers to disguise their traffic. As a result,
port-based traffic shaping tools will fail to distinguish, for
example, between HTTP and p2p traffic that uses port 80. The
popularity of these high bandwidth applications may have a
great impact on the overall network performance if they cannot
be discriminated from others.

Our experiments with ADHIC against p2p traffic have

demonstrated promising results. These experiments used the
conventional BitTorrent [23] client software to download
relatively large files (over 500MB). Examples of these files
include: Linux binaries, free public compressed movies, and
live video streaming. While some p2p captured traffic featured
unique source port numbers, many others were running on
constantly changing port numbers. Traffic pertaining to these
experiments was then individually merged with some of the
four datasets tested earlier (see Section V). Interestingly, in
all the experiments, ADHIC was able to segregate p2p traffic
from all others, and cluster it in a small number of leaves.

In particular, we saw that one cluster managed to segregate
most of the UDP tracker related data packets through a non-
IP-header (p, n)-gram; all the other related TCP packets got
routed to the tree’s global default cluster and its adjacent
cluster, as they did not match any of the (p, n)-grams higher
in the tree. Due to the huge amount of p2p traffic, further
splitting of the default cluster occured later, but the BitTorrent
traffic was always segregated on its own or in the global default
cluster along with a few other unusual packets.

We also changed the port number of all BitTorrent packets to
80 and re-ran our experiment, and found that all packets were
clustered exactly as before. This supports the observation that
ADHIC rarely uses ports to cluster traffic. More significantly, it
shows ADHIC was able to segregate the bulk of the BitTorrent
traffic not by characterizing it directly, but by characterizing
other network traffic as having patterns that were absent in
the BitTorrent traffic. Thus, so long as most traffic can be
appropriately clustered, evasive protocols can be identified
simply by their lack of structural resemblance to other traffic.

IX. DISCUSSION

A primary goal in developing ADHIC was to develop an
algorithm for capturing the high-level semantic structure of
network traffic without using domain-specific information. Our
results suggest that the clusters discovered by ADHIC have a
close correlation with semantic classes of interest to network



administrators, researchers, and security officers. We find these
results both promising and remarkable: ADHIC is both very
simple yet very effective. They also suggest many important
avenues for future work.

For example, ADHIC inherentely requires structure within
packets to operate well. We have shown that ADHIC can often
segregate encrypted and obfuscated packets, but this is done by
recognizing other structured protocols and then assigning the
remaining traffic to default clusters. Will this behavior persist
in larger, more complex environments? We suspect it will, so
long as the distribution of (p, n)-grams continues to follow
a similar power law as traffic in our lab: in this case, there
will be plenty of high-frequency, structural (p, n)-grams for
ADHIC to extract. While likely, such characteristics need to
be verified through further experiments.

We would also like to develop a better measure of “seman-
tically meaningful” clusters. To this point, we have verified
the quality of ADHIC’s clusters through the use of our
reference classifier and standard network analysis tools such as
WireShark [2]. ADHIC, however, finds significant patterns that
these tools miss. We hope to develop additional measures, ones
potentially based upon entropy minimization or other standard
machine learning measures [3], that will “upper bound” the
structure extraction ability of ADHIC.

We also plan to improve the runtime performance of ADHIC
by testing various parameter settings and algorithmic variants.
Further, we can accelerate ADHIC by sampling fewer packets.
In the experiments reported here we sampled 20% of all
packets because we were interested in minimizing error and
maximizing repeatability. As we described in Section IV, on
our network only 3% of packets are needed to achieve an error
rate of less than 5% for (p, n)-gram frequencies.

Ultimately, ADHIC is an analyis technique that comple-
ments other analysis strategies. There are fundamental limita-
tions to any approach to understanding network behavior that
does not incorporate protocol-level knowledge. Knowledge-
based approaches, however, will always lag the latest ap-
plications or malicious software. A generic approach such
as ADHIC holds the promise of revealing new patterns of
behavior before they become significant problems, as well as
mitigating those problems when they do occur [16]. Thus, we
believe further work on lightweight approaches to extracting
patterns in network behavior is a rich area for future research.

X. CONCLUSION

ADHIC, a clustering algorithm based on divisive hierarchi-
cal clustering using (p, n)-grams, effectively and efficiently
clusters network traffic without specific knowledge of protocol
structures. ADHIC segregates most protocols into distinct
clusters, even with encrypted traffic or traffic that purposely
disguises itself, as with the BitTorrent p2p protocol. While fur-
ther testing is needed, we believe the approach demonstrated
by ADHIC is a promising one for analyzing and managing
network behavior.
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