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Abstract

Software program recombination is a standard part of a software development tool-

box. Software functionality and features in the form of source code are frequently

taken from one program and merged into the existing body of source code of another

program. This manually intensive recombination process is hampered by the fact

that source code is brittle and prone to errors during compilation. This research

presents a new, biologically inspired, approach to software program recombination by

automatically recombining the object files of two closely related C programs in order

to recombine their features and functionality. In much the same way biologist classify

closely related species using phylogenetic trees, a pair of programs can be classified

as closely related if they share a common development history or have evolved from

a common base program. A software program, ObjRecombGA, automates the ob-

ject file recombination process by using a genetic algorithm to search the space of

all possible object file sets between the two closely related C programs. The results

show that object file recombination of closely related programs is not only possible,

but that it can even be applied to large and complex software programs. This recom-

bination process can successfully discover new combinations of functionality derived

from both parent programs. Moreover, the use of object files makes this approach

applicable to existing software programs that generally cannot satisfy the program

design and source code constraints required by existing recombination approaches.
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Chapter 1

Introduction

Biology has taught us that organisms evolve and adapt over time to their surrounding

environments. This evolutionary process is accomplished through means such as be-

havioral modification, genetic mutation brought about by environmental conditions,

and genetic recombination with other organisms through reproductive means. Ge-

netic recombination, the exchange and passing of genetic information on to offspring,

is a critical process in the creation of a new species [29].

Computer scientists have developed several evolutionary and machine learning

techniques inspired by biological evolution. Early work in this field focused on ar-

tificial intelligence and evolving algorithms with the ability to predict environment

changes [25]. The introduction of Genetic Algorithms (GA)[38] brought forth the con-

cept of creating evolved solutions to various computational complex problems. Shortly

thereafter, Genetic Programming (GP) [46] further reduced biological-computational

evolutionary gaps by leveraging GAs to create computer programs through evolution

and program recombination. However, much of the existing research in GP focuses

on small well-structured computer programs of limited scope and complexity which

are tailored to very specific problems. Additionally, this work strictly focuses on the

creation and recombination of code for new software programs. Only recently has a

small handful of research in the area of computer security [91, 92] directly addressed

the problem of evolving the source code of an existing software program.

1.1 Software Recombination

The manual process of recombination and evolution of existing software programs is

not new. Frequently, source code from one program is recombined with the source

code of another program in the form of code reuse, code adaptation, or code rewrites.

Software developers perform these types recombinations when fixing software bugs

and porting functionality from one software program to another. This manual process

1
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of porting functionality, however, is prone to human error, may take a very long time

to complete, often requiring the developer to be intimately familiar with the source

code of both programs.

This research presents an approach for automating the recombination of func-

tionality from existing C programs using evolutionary computational methods. More

specifically, this approach makes use of biologically inspired techniques to automati-

cally recombine features and functionality of existing software programs using a ge-

netic algorithm (GA). The key insight here is that recombination is possible between

different existing software programs so long as they are closely related and can be

shown to derive from a common code base. Much as a dog and a camel cannot mate

successfully because they are different species, we cannot expect the recombination of

a web browser and a word processor to be successful because they are vastly different

software programs which likely have very little relation.

Unlike previous related work [5, 1, 91], the presented approach accomplishes pro-

gram recombination without modifying any existing program source code. Instead,

the sets of correctly compiled object files from each C program are recombined and the

interaction between these binary components is evolved and recombined. The use ob-

ject files, rather than source code, avoids nearly all of the complexities of source code

transformation and recombination faced in many previous techniques. Moreover, this

approach works on existing programs which often have no formalized specifications;

no implicit program design or framework; and no source code annotations that are

required by existing recombination approaches. Using object files for program recom-

bination will be shown to be not only feasible, but scalable to large and very complex

software programs. The end result of this process is the creation of many software

program variants which contain new combinations of functionality and characteristics

from both original program versions.

1.2 ObjRecomGA

To automate the proposed software recombination technique a software program,

titled ObjRecombGA, has been developed. ObjRecombGA performs this software

recombination by manipulating the objects files of two distinct versions (or forks) of

an existing C program. Through the analysis and modification of the object files from



3

the two program versions, ObjRecombGA is able to re-link a population of object

file sets to create new program variants, each with varying levels of functionality and

usability. At each generation of the GA, these program variants are executed against

a series of tests to evaluate their fitness in terms of stability and functionality. The

program variants which exhibit the highest levels of fitness against the test suite

are more likely to be selected for recombination into subsequent generations. Once

all generations have been completed, several program variants will be analyzed and

compared to the parent versions to determine how the recombination process may

have altered or combined the functionality of the original parent programs.

1.3 Contributions

The recombination technique presented here, and implemented by ObjRecombGA,

is the first known method for recombining functionality from existing software pro-

grams that are closely related. Moreover, this recombination technique is novel in

that it is accomplished without modification to either programs’ underlying source

code, thereby using the correctly compiled components and functionality of the soft-

ware programs as is. The process for the selection and recombination of software

programs was largely inspired by the selection and recombination processes seen in

living organisms. The results of this research show that this form of software pro-

gram recombination allows for the generation of many recombined unique program

variants. In addition, several of these variants are effectively new software programs

that incorporate functionality and features from both original parent programs.

ObjRecombGA was previously presented at The Genetic and Evolutionary Com-

putation Conference (GECCO) 2010 in a research paper title ”Object-Level Recom-

bination of Commodity Applications”.

1.4 Thesis Organization

Chapter 1 has provided an introduction to the research objectives of this thesis. In

Chapter 2, an overview of relevant background material and related work is presented.

Chapter 3 presents a more detailed view of the research objectives and how they

were inspired by several biological concepts. Chapter 4 describes the design and
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implementation details of the ObjRecombGA software program, including how the

research objectives were addressed. Chapter 5 offers the results obtained from running

the ObjRecombGA software against a set of existing software programs and provides

a brief discussion of these results. Major thesis contributions, and future research

ideas are provided in Chapter 6. Chapter 7 serves as a conclusion to this thesis.



Chapter 2

Background and Related Work

This chapter presents an overview of relevant background material and existing work

related to software recombination and evolution. The first two sections of this chapter

give an introduction to genetic algorithms and genetic programming; two evolutionary

computation techniques that are the backbone of much of the existing work being

presented. The next section examines previous research efforts that are specifically

related to the evolution and recombination of software programs.

2.1 Genetic Algorithms

The term Genetic Algorithms (GAs) is used to describe a biologically inspired algo-

rithm that attempts to mimic evolutionary processes, specifically natural selection

and genetic recombination, in order to evolve potential solutions to a given prob-

lem. The expectation is that with each iteration of the algorithm the solutions will

move closer and closer toward an optimal solution. While there is no single agreed

upon definition of a GA, there are a few defining elements which generally lead to an

algorithm being classified as a Genetic Algorithm [64, p. 8-12]:

• A population of potential solutions with a clearly defined encoding

• A method to measure the fitness or value of a solution

• A selection method to select solutions, typically based on their fitness measure,

to be evolved into the next generation

• A crossover function which exchanges portions of the selected solutions to pro-

duce offspring solutions

Where GA implementations tend to vary are in the method(s) used for selecting

solutions, their fitness calculation function, and how they decode a solution for eval-

uation by this fitness function. Regardless, a typical GA implementation performs

5
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the following actions [64, p. 8-12]:

1. Creates an initial population of potential solutions randomly

2. Calculates the fitness value of each solution in the population

3. Selects a pair of solutions in the population

4. Performs the crossover function on the selected pair to produce offspring solu-

tions for a new population

5. Advance to the next iteration by replacing the existing population with the new

population

6. Repeat the above steps until the desired number of iterations have been com-

pleted or some termination condition has been met

Many genetic algorithm implementations use binary encoding (bit strings) as their

solution encoding. This simplifies the implementation of the crossover and mutation

functions and makes them adaptable for many problem sets. However, there is a

specific type of GA which is able to evolve programs known as Genetic Programming.

2.2 Genetic Programming

Genetic Programming (GP) [46] is often defined as a specific encoding of a GA which

is adapted to generate, recombine, and evolve computer programs to solve a given

problem or objective function. Algorithmically, GP behaves like GA and follows the

same iterative evolution described above. As originally introduced [46], programs

generated by GP are composed from a set of functions (arithmetic operators, pro-

gramming operations, etc.) and a set of terminals (boolean values, integer values,

etc.). These programs are then evaluated against a specified fitness or objective func-

tion with the best programs being recombined to produce new programs for the next

generation. GP has been shown to solve many difficult problems in domains such as

image and signal processing[76], financial data modeling, and computer generated art

[76][52]. In some cases, GP has been able to generate new programs and recombine

them to produce programs which offer improvements over existing methods [76][52].
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Early work in GP focused on the creation and evolution of simple programs to

solve well defined problems (often mathematical equations or approximations) which

could be represented as mathematical expressions [46]. However, many modifications

and extensions have been made to GP which has enabled it to evolve and recombine

much more complex and sophisticated programs for a variety of problem sets.

2.2.1 Program Representation

Popular GP literature [46, 47, 48] prefer to represent GP programs as syntax trees

with internal nodes chosen from the set of functions and leaf nodes being chosen from

the set of terminals. As an example, Figure 2.1 shows a syntax tree representation

and recombination of two GP generated programs which approximate the equation

y = x3 using a function set (+,−, ∗) and terminal set (2, 3, x).

*
+ -

x 2x 2

-

* +

x *x 3

x x

*
-

x 2

+

x *
x x

Parent Program A Parent Program B

Recombined Child Program

Figure 2.1: A GP recombination of program A (y = 2x × (x − 2)) and program B
(y = 3x− x+ x2) which produces a child program (y = (x+ x2)× (x− 2))

This tree-based structure translates easily to symbolic expressions and enables GP

to generate and recombine programs in languages such as Lisp, whose source code is

represented as symbolic expressions. However, early forms of this representation did

not lend themselves to the evolution of programs using other languages. It was not

until the debut of Linear GP representations [13, 18] that the creation and evolution

of programs written in other languages, such as machine code languages [69] and

simple functions in C [43], become more common.
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2.3 Genetic Programming Extensions

Genetic Programming has become an indispensable technique in the evolutionary

computing community and has played a role in solving many difficult problems [76,

51, 46, 47, 48]. It is commonly accepted, however, that GP alone is not yet capable

of replacing software developers for creating or evolving existing software programs

[37]. Still, researchers have pushed the boundaries of GPs capabilities by bringing GP

program representations closer to that of conventional programs–ultimately leading

to the use of GP techniques on existing software programs. These works will be

discussed in the following sub-sections.

2.3.1 Automatically Defined Functions

The introduction of Automatically Defined Functions (ADFs)[47] in GP brought forth

the notion of well defined sub-trees within a GP program. These sub-trees effectively

became viewed as program sub-routines which performed some defined set of opera-

tions relevant to the problem. Collections of these sub-routines could be evolved in

parallel with the GP program and then incorporated into the GP program genera-

tion. Moreover, the sub-routines themselves could be used more than once within

the program(s), thereby allowing code reuse and modularity within and across GP

programs[47]. In a crude sense, ADFs represent GPs first forte into program code

reuse and code recombination.

2.3.2 Stack Based and Strongly Typed GP

The desire to enable GP to evolve programs of more complex structure and repre-

sentation led to creation of Stack Based GP and [75] Strongly Typed GP [65]. In

Stack Based GP all terminals and operation results are pushed and popped from a

virtual stack. This behavior more closely mimics that of conventional programs and

forces GP to not only evolve the program code, but the program state representation

as well. Strongly Typed GP introduced the concept of type checking to GP. This

allowed for the generation and evolution of programs that contained multiple data

types while still remaining syntactically correct.
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2.3.3 Grammar-Based GP

Grammar-Based Genetic Programming [59] makes use of grammar formalizations to

place restrictions on the interactions, expressions, and types within the code that is

generated by GP. This allows GP to more accurately and more correctly generate

programs using very complex representations. Recently [71] strongly typed GP has

been paired with Grammer-Based GP to create a framework for evolving syntactically

correct Java programs that evolve the state and behavior of the program.

2.3.4 Genetic Program Seeding

While classical GP uses a set of randomly generated programs as the initial popu-

lation, GP seeding makes use of a set of existing, working, programs as the initial

population[50]. This has the effect of focusing the GPs initial search area to that of

known working programs, where a randomly initialized GP may take several gener-

ations to discover such programs, if at all. One requirement of using seeding in GP

is that the fitness function needs to be multi-objective - trying to satisfy more than

one set of criteria[50]. This is obvious as the GP needs to evaluate the fitness of the

program itself while ensuring that the GP is still exploring the search space effectively

and evolving away from the initial seed[76]. One of the first research endeavors[50] to

highlight the value of seeding in GP used a set of existing ‘good’ functions in order

to find a set of more generalized functions over a given dataset. Specifically, the re-

search focused on the size of the function as a measure of its generalization - assuming

that smaller functions were more generalized. The work concluded that evolving non-

random populations is possible due to GPs built-in nature to generalize the programs

it evolves [50]. Subsequent research[58] used GP seeding in robotics navigation to

develop generalized navigation algorithms. Not only did the research use hand-coded

individuals as seeds, but it also used previously discovered GP programs as seeds as

well. This is particularly noteworthy as this represents early attempts at recombin-

ing more than one existing GP program using, rather than just evolving a single GP

program on its own. The results of the research found that seeding can weaken the

GPs ability to find better performing algorithms if the initial seeds are too fit[58].

Therefore, having an appropriate initial seed is crucial to the performance of the GP.
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2.3.5 Co-Evolution in Genetic Programming

Existing work [4] has attempted to address several fitness limitations of GP by co-

evolving programs and test cases based on formalized program specifications. This

was demonstrated to be successful for creating small programs with a manageable set

of specifications, however the success of this approach on “real-world software”[4] was

left as an open question. Moreover, the requirement of formalized specifications make

this approach unusable on existing software programs. More recently, GP seeding

has been combined with the concept of test case co-evolution to evolve semantically

equivalent functions given the source code of a single ‘good’ function as input[3].

In this research, the authors used the initial function as an oracle for evaluating

the semantics of the evolved functions with the goal of maximizing efficiency. The

co-evolution of the test cases ensured that evolved functions were also correct and

optimized over varying sets of input.

2.3.6 Evolving Existing Software Programs using Genetic Programming

Within the past year, research has emerged highlighting GPs potential for evolv-

ing existing software programs[1, 5]. Automated software testing and fault repair is

one such area where GP has been investigated for use on existing software[2]. This

research introduced JAFF1, a framework for automatically fixing faults in Java pro-

grams. JAFF uses GP to evolve programs against a fitness function which measures

the number of unit tests that they successfully complete, with at least one unit test

exposing a fault. The faulty program is parsed and represented as a syntax tree

which enables JAFF to more efficiently search for, and isolate, the faulty area of the

program. To evaluate a mutated program’s fitness, JAFF converts the syntax tree

back to Java source code, compiles it, and re-runs the unit tests. Though not actually

tested on existing software programs (primarily due to its lack of full support of the

Java language) the research did find some very interesting results. While JAFF was

shown to repair some test programs, the repair code often reduced the efficiency of

the code and provided no way to ensure that different inputs would not cause a fault

in the repair code[2]. Additionally JAFF is limited in the programs that it could

possibly evolve as the input programs unit cases were required to be runnable from

1JAFF: Java Automatic Fault Fixer [2]
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within the JAFF framework.

Subsequent research [91, 93] pushed GP as a an automated software repair mech-

anism one step further. This research used real off-the-shelf C programs and evolved

software security patches to fix publicly available vulnerabilities. Similar to JAFF,

this research represents the program’s source code as a syntax tree and evaluates fit-

ness by compiling and re-testing the evolved variants. The syntax tree was weighted

using execution path profiling [68] to enhanced the GPs ability to identify the vulner-

able code segments and evolve them. Code readability and consistency was enforced

and maintained as all code patches were derived from existing code in other parts of

the program. Once a successful code patch had been evolved, it was then minimized

for efficiency and code bloat. The research [91, 93] successfully demonstrated this

technique by evolving highly efficient patches for ten off-the-self C programs.

All of the cited research initiatives are similar and suffer from a few notable

limitations. In all cases, it is expected that the negative test case exposing the

vulnerable area of the program can be reliably reproduced. This is often not the

case on all software programs where the configuration, environment, and timing can

influence the manifestation of the defect. The correctness of the evolved software

patch could also be considered a limitation. This is because its correctness is heavily

reliant on the availability of appropriate and exhaustive unit tests for the software[93].

A more interesting limitation is due to the fact the evolved repair patch is composed

of code from within other segments of the program. This implies that no entirely new

code segments will be generated[91]. Depending on the program source code and the

defect subject to patching, it may not be possible to generate a correct patch.

2.4 Automated Software Engineering

Automated Software Engineering is a broadly growing field which focuses on the

automation of any area or activity of software engineering [31]. This includes areas

such as: requirements discovery and validation; software testing and verification;

software management and deployment; automated software reuse and adaptation;

and software evolution2. Of these areas, software reuse, software adaptation, and

software evolution provide a handful of noteworthy research initiatives.

2Evolution, refactoring, re-engineering are often used interchangeably
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2.4.1 Software Evolution via Software Engineering

Existing research on software evolution focuses on understanding how and why soft-

ware programs evolve over time as part of the software engineering process[53, 22].

This often involves the analysis of a program’s source code across several releases

[32, 66, 89, 79] or by simply studying its changing functionality[39]. From these re-

sults, models are generated to predict the effects of software evolution and how to

better design both current and future software programs[16, 60, 89, 79].

A small handful of research in this field has also considered automating the evolu-

tionary process of software programs [14, 41, 77]. Very little of this research, however,

has targeted existing software programs with the remaining research requiring certain

design criteria, formal specifications, or other a priori knowledge of the program being

evolved.

2.4.2 Software Recombination thorough Automated Software Reuse and

Adaptation

Software reuse and adaptation[35] refers to the reuse or adaptation of software com-

ponents of one software program and integrating them into another software pro-

gram. This integration or recombination process is often complicated by syntactic

or semantic incompatibilities between the interfaces used by the software program

components[35]. These incompatibilities are overcome by: modifying one of the pro-

grams to understand the components of the other; modifying the desired component

itself to make it compatible with the target program; or creating an adapter or wrap-

per for the component [35]. Each of these processes occur manually when developers

decide to reuse existing code or libraries and adapt them to their current work.

The automation of software reuse has been shown to be effective in the reuse of

source code[56, 57] as well as the reuse of program designs and models[82]. Identifying

potential reuse of source code has been shown to be possible [57, 67] by isolating

domain specific sub-routines into collections of libraries, and making them available

through well defined specifications. Moreover, automating code reuse by using formal

specifications and classifications has also been proven to be successful [73, 98, 40].

Many, if not all, of the automated reuse and adaptation mechanisms[57, 67, 34, 19,
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98, 49, 61, 73, 74, 40, 24, 33] in the field of automated software engineering require for-

mal specifications, design patterns, specialized frameworks, source code annotations,

specific programming languages, or specific program models to be effective. Because

of this, much of the research in this field is ill-suited for existing software programs.

Though research into automated reasoning and reverse engineering has attempted to

close the gap[30, 63], there still exists no automated system to select and reuse or

adapt components from existing software programs as-is.

2.5 Component Based Software Engineering

Research in component based software engineering[42] offers examples of binary soft-

ware component reuse[20, 44] in running systems. In these systems, components are

written based on predetermined formal specifications or interfaces that are compat-

ible with the core system itself. As faults are found or enhancements are made to

an existing component, the component can be updated at runtime. These types of

systems are interesting because they encourage code recombination at the binary

level rather than source code. These binary components, however, must conform to

the specifications of the system, and as such, existing software program components

would need to be re-factored or re-written before they could be used.

2.6 Artificial Life

Not to be confused with Artificial Intelligence (AI), Artificial Life (ALife) is the

study of life by attempting to replicate biological concepts such as evolution and

recombination within a computing environment. The introduction of biomorphs [23]

represents a subset of early work in this field. A biomorph is a recursively drawn figure

representing the phenotype of an underlying genotype. Biomorphs are particularly

interesting because they make use of human interaction during their evolutionary

process. As the biomorphs evolved, an actual person would evaluate each of the

drawn figures by selecting those with desirable characteristics. This evaluation would

be fed back into the evolution process to ensure that next generation of biomorphs

contained the desired characteristics. The use of human interaction as a feedback

mechanism has been subsequently used in several areas of evolutionary computing
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[86, 45]. It is particularly useful for recombination of user software programs as it can

be leveraged to mimic the prototyping and customer review loop found in software

development models [36]. More importantly, certain program components, such as

its user interface, are often difficult to evaluate computationally.

More recent work in the ALife field has been using biologically inspired evolution-

ary techniques to create self evolving and self replicating programs[80]. These digital

organisms compete against one another in a resource limited simulated environment[78,

81] - a sort of ‘survival of the computationally fittest’. Though interesting, this work is

primarily focused with understanding the nature of evolution and its mechanisms[95,

70, 96, 62]. It has not yet grown to include the evolution or recombination of programs

in an everyday computing environment, let alone existing software programs.

2.7 Summary

The evolution and recombination of software programs has been studied across a

handful of fields in computer science. Evolutionary computing holds much of the

early work in program evolution and is deeply rooted in GA and GP. However, the

program representations commonly used in GP lend themselves to ease of evolution

and are generally not well-suited for existing software programs. Though several

extensions to GP have tried to increase the complexity of the programs GP is capable

of evolving, there exists very few examples where GP has evolved complex software

programs based on existing code bases. Within the realm of computer security one

such example [93] exists where GP was used to evolve security patches for existing

software programs. These patches were created by evolving the source code of the

program until a known vulnerability was no longer present. This research, however,

did not explore the evolution of the program beyond fixing the vulnerability. GP

seeding offers another example [58] of evolving an existing program, however these

were not conventional software programs and were in fact GP programs tailored to a

specific problem.

With respect to program recombination, research in Automated Software Engi-

neering has explored many avenues [57, 67, 34, 19, 98, 49, 61, 73, 74, 40, 24, 33] . This

work has focused on reusing and adapting existing code into domain specific libraries

or program designs such that it can be recombined into new programs. Component
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Based Software Engineering research [20, 44] has gone one step further and reused

existing binary components across software programs rather than just source code.

Though automated, all of the techniques in these fields rely heavily on the design

and/or the implementation of the existing software that is being reused or adapted.

As a result, these approaches are not applicable to the vast majority of the existing

software programs in use today.

Sadly, software program recombination used in automated software engineering

has not yet crossed paths with genetic programming. There exists no literature which

uses genetic programming, or genetic algorithms, to recombine or reuse code or com-

ponents from more than one existing software program. Similarly, the use of binary

components rather than source code, as seen in component based software engineer-

ing, has never been attempted using GA or GP techniques.



Chapter 3

Program Recombination

Different processes and techniques in the areas of Genetic Programming and Software

Engineering that enable program recombination and evolution have been discussed.

However, these techniques have been shown to be too rigid to recombine existing

software programs - requiring a priori knowledge of the software or relying on specific

design constraints or program representations. This chapter proposes a biologically

inspired solution for recombining existing software programs based on re-linking the

object files of two closely related programs. Two programs are considered closely

related if they share a common development history – effectively classifying these

programs as the same, or at least similar, species. This technique for recombination

is advantageous because it requires no a priori knowledge of the existing software

programs and has no software design or program representation requirements. Further

more, the use of object files rather than source code means that no source code

validation or formal specifications are required. The first section of this chapter

contrasts recombination in genetic programming with that of genetic recombination.

The next section introduces the notion of identifying the species of a program by

leveraging biological classifications of species – an idea which is key to identifying

programs that are closely related according to their development history. This is

followed an explanation of object files and how they can be recombined to create a new

program. The problems surrounding this recombination process are then discussed

in detail.

3.1 Recombination in Genetic Programming

Genetic Programming (GP) borrows from two biological processes: the evolutionary

process of natural selection and the chromosomal crossover process seen in genetic

recombination. The emulation of these processes are what enable GP systems to

select and recombine the members of its population to evolve new programs. There

16
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is a fundamental difference, however, between evolution in biological systems and

program evolution in GP systems. A GP system assumes that all members of its

population are compatible and can be recombined with one another. GP systems

assure compatibility by constraining all programs to a common program encoding

and a common fitness measure. Moreover, because GP systems ensure a common

program encoding and common fitness measure, all generated programs are not only

compatible for recombination but they are also functionally compatible meaning they

share a common functional purpose. This is unlike biological systems where living or-

ganisms live amongst other, incompatible, living organisms in the same environment

and do not share a common fitness measure nor a common purpose. Instead, biolog-

ical systems rely on the living organisms themselves to select and mate (recombine)

with others that they are genetically compatible with[29]. This selection of potential

organisms to recombine with is known as reproductive isolation and is what defines a

species under the biological species concept[29]. Applying this species concept to GP

systems would imply that all GP systems are, based on their constraints, capable of

evolving only a single specific species of program. This becomes more evident if one

considers introducing a new and different program – a new species of program – into

a GP systems population. This new program is in no way guaranteed to be encoded

correctly or share a common fitness measure with other programs in the GP popula-

tion. As such, the GP system can no longer assume that all population members are

compatible, thereby causing the GP system to fail.

Though the introduction of a new and different program will undoubtedly cause

problems in a GP system, the same may not be true if this new program is similar

to the existing population of programs. If the new program were of a very similar

encoding, and shared a similar fitness measure, then it may be possible for the GP

system to continue to function correctly. In effect, if one were to define the species of

a program such that it becomes possible to identify very similar programs that are

of the same (or at least similar) species, it is then more reasonable to expect these

programs to recombine successfully within a GP system. The next section proposes

an approach to identifying groups of software programs that are different but closely

related, effectively classifying them as a similar species such that they can be selected

for recombination.
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3.2 Species of a Software Program

According to the biological concept of species, the species of a living organism can be

determined by its reproductive isolation. In other words, a species is defined as mem-

bers of populations that interbreed in nature or have the potential to interbreed[29].

When considering its applicability with respect to classifying the species of a software

program, this definition is not very useful. Reproductive isolation has no validity in

the context of software because the interbreeding of living organisms can be witnessed

in biology while the interbreeding of software programs cannot. Though it is possible

for any component of one program to be recombined with another program given

proper adaption and modification[19], it is not something inherent to the behavior

of software programs. Thankfully, the biological concept of a species is not the only

accepted definition of species. In fact, there are many species concepts all of which

define a species according to slightly different criteria such as shared traits, breeding

habits, and evolutionary lineages[15]. Because of this, multiple species concepts are

often used to identify new species[15].

The phylogenetic species concept is defined by an organism’s estimated phy-

logenetic (evolutionary) tree and how closely related it is to other, more similar,

species[29]. Figure 3.1 is a phylogenetic tree showing the relationship between several

closely related species of whale. To be considered distinct phylogenetic species two

population must have been evolutionarily independent long enough such that synapo-

morphies have emerged. A synapomorphy is any trait that is shared by two or more

members of the population that has been derived from their most recent ancestor,

whos own ancestors in turn do not share that trait[29]. In other words, once a new

trait becomes present in a population and survives for a generation then a new species

can be identified.

In terms of software, newly developed functionality and features are often associ-

ated with a specific version of the software program. A version of a software program

refers to a particular state in the development process of a given software program[11].

As features or enhancements are added and removed from a software program the

version of the program is generally updated to reflect the change[11]. Looking at the

evolution of a software program through various development cycles and versions an

evolutionary tree of the program emerges. Figure 3.2 is a revision control graph which
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Figure 3.1: A portion of a phylogenetic tree depicting the relationship between several
closely related species of whale[8]. Image licensed under the GNU Free Documentation
License[27].

illustrates this type of evolutionary tree seen during version releases and development

cycles. Further still, if a software program undergoes independent development by a

different development team at some point a distinct branch in the evolutionary tree

of the program is created. These distinct, independently developed and competing

branches are often referred to as program forks[94, 9]. A program fork occurs when

a copy of a program, at some version, undergoes separate and independent devel-

opment thereby creating a distinctly different competing program[94, 9]. Taking a

holistic view of all versions and independently developed forks of a software program

allows for the construction of a complete evolutionary tree of the program.

Release 1

Release 2

Version 1.0 Version 1.1 Version 1.2 Version 1.3 Version 1.4

Version 2.0 Version 2.1 Version 2.2 Version 2.3

branch merge

Figure 3.2: An example program revision control graph doubling as an evolutionary
tree.

One example of a software program which has undergone many version releases

and dozens of forks is the GNU/Linux Operating System. The evolutionary tree of

GNU/Linux from 1991 thru 2006 is depicted in Figure 3.3. This form of evolutionary

tree is presented much like that of the phylogenetic tree seen in figure 3.1 above.
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Figure 3.3: The GNU/Linux distribution timeline (v7.5) which depicts the evolution-
ary tree of the GNU/Linux from 1991 thru 2006 [10]. Image licensed under the GNU
Free Documentation License[27]

Pairing a software program’s complete evolutionary tree with the phylogenetic

species concept provides a mechanism for identifying programs that are closely related

and potentially similar or perhaps distinct species of programs. In this case, closely

related software programs are considered to be the various versions and forks of
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a particular software program over its lifetime. For example, three primary forks

of GNU/Linux exist: Debian, Slackware, and RedHat[84]. These lineages, though

all based on the underlying GNU/Linux code, are highly divergent on the software

package management solution that each provide[84]. Therefore, based on the package

management system, these three mainstream distributions of GNU/Linux can be

classified as different families of GNU/Linux. All further forks of Debian, Slackware,

or RedHat have maintained a similar package management system to their respective

parent[84] making them closely related but distinct species of their own.

The use of the phylogenetic species concept and a software programs development

history creates a program selection and mating criteria which more closely resembles

that of living organisms. Though this criteria does not establish reproductive isolation

or ensure recombination compatibility, it establishes which software programs are

closely related and thus more likely to be to successful at recombination.

3.3 Object File Recombination

Now that the selection criteria of two software programs for recombination has been

established, one remaining question for recombination is where the actual action of

recombination should occur. Previous software recombination works [34, 19, 98, 49,

61, 73, 74, 40, 24, 33], including manual processes used by developers, have primarily

focused on source code when reusing or recombining programs. An inherent problem

with recombination using source code is that source code undergoes rigorous lexical,

syntactic, and semantic analysis during compilation [97, 17] and even small, simple,

changes can break these processes [17, 97]. As such, even when recombining two

source files that are significantly similar, the recombination process would still need

to adapt and modify segments of the source code before compilation to avoid errors.

As a result the recombination process itself becomes a compiler of sorts with complex,

language-dependent, validation and error checking rules to ensure that the recombined

source code will still compile correctly.

In most compiled languages, such as C, source code is not the only potential

place where recombination could occur. The transformation of a software program

from its source code to an actual program executable is a multi-step process with

two important phases: compilation and linking [97, 17, 54]. During the compilation
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of a source file, after all the code analysis is completed, the compiler performs code

transformation to convert the source code into intermediate code 1 [97, 17]. This

intermediate code is then optimized and converted into machine code and placed

inside a file called an object file (commonly given a ‘.o’ file extension) [97, 17]. Once

all the object files have been generated, they are provided as input2 to a program called

a linker which links code and data within object files together to produce the program

executable [54]. Unlike source code, the validation performed on object files by the

linker is both minimal and trivial as the linker is primarily concerned with identifying

code and data references between object files [54]. The syntax and semantics of the

code or data in the object files is of almost no concern to the linker. Given that

the amount and complexity of analysis and validation performed on object files is

greatly reduced compared to source files, it should potentially be easier to recombine

programs at the object level rather than the source code level. It is worth noting that

none of the related work in Chapter 2 considers program recombination using object

files.

While object files may be easier than source code to recombine given their lack

of validation, object files are ultimately just a binary abstraction of the source code

they are generated from. More importantly, each object file is a self contained unit

of correctly compiled source code. As such, rather than recombining the source

code of two programs, using object files allows for the recombination and evolution

of the interfaces and interaction between the binary components of two programs.

Ultimately, this shifts the attention of program recombination away from finding

correctly compiling and behaving programs and instead focuses on how the interaction

between correctly behaving binary components of two programs can be recombined

to discover new combinations of functionality. The remainder of this section will take

a more detailed look at object files and how they can be recombined successfully.

3.3.1 Object File Overview

Understanding object file creation is necessary in order to explore recombining soft-

ware programs using object files. In modern C compilers, such as GCC, there is a

1Generally referred to as Assembly language
2A linker can also accept libraries as input, which are simply collections of object files
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one-to-one mapping of source files to object files. There are various object file formats

in use by modern operating systems today, however the two most widely-adopted are

the Executable and Linking Format (ELF) [83] and Common Object File Format

(COFF) [54] formats. The ELF format is commonly used in Linux and Unix op-

erating systems variants while the COFF format is used in the creation of Portable

Executables (PEs) for use in Microsoft operating systems. Regardless of their format,

object files typically contain five distinct pieces of information3: header information,

code and data elements, relocation information, a symbol table, and debugging in-

formation [54]. For the purpose of object file validation, the symbol table and its use

during linkage will be discussed in more detail below.

Symbol Table and Symbol Generation

The symbol table within an object file contains the set of symbols generated by the

compiler. These symbols act as a named label for the code and data elements within

the object file or for code and data elements referenced in other object files. Symbols

include the following information: a unique name, the relative location of the element

in the object file, the size of the element represented by this symbol, the type of the

symbol - code or data4, the scope or binding of the symbol, and some additional flags

[54].

A symbol’s name, type, and binding are generated during semantic analysis [97].

The name of the symbol is based strictly on the programmer-supplied name of the

function or global data5 which the symbol represents. The type is simply marked as

code or data which corresponds to a function or global data declaration in the source

code. In C, the binding of a symbol can be one of three types with the two most

common being local binding and global binding6. Locally bound symbols are symbols

which refer to a function or global data within the object file itself. These symbols

cannot be referenced by another object file. Globally bound symbols are symbols

which refer to a function or global data available for other object files to reference.

Alternatively, globally bound symbols can represent references to functions or global

3Not all of this information is essential or always available in an object file, for example debugging
information is generally not available in an object file that has been optimized [90, 54]

4Other types are possible, however these are not relevant here
5Non-static data defined within a function does not have a corresponding symbol
6The third type, weak bindings, are not often used and will not be discussed here
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data in another object file [54]. The binding of the symbol is determined by the

source code declaration of the function or global data which defines the symbol. In

C, locally bound symbols are determined by presence of the static prefix keyword in

the function or global data declaration, such as:

static int* func(char arg1, int arg2);

or

static int data[10];

If the static prefix keyword is not present, or the data item is defined within a function,

the generated symbol will have a global binding.

External References

When the compiler encounters a reference to a function or data element whose func-

tion body or data storage does not exist in the current file, a symbol is generated

with a global binding that is marked as external7 in the object file. Taken as a whole,

the set of external symbols define the code and data the object file is dependent on

from one or more external object files.

Linking and Executable Creation

After compilation, all the produced object files are passed onto a linker to produce

an executable program. The linker will use the symbol information within object

files to determine how the set of object files to interact with each other and which

pieces of code and data need to be shared between them. This symbol information is

validated by the linker simply by looking at each external symbol in a given object

file and pairing it up with a matching global symbol in another object file [54]. If for

any reason, a matching global symbol is missing or is present in more than one object

file, the linker will report an error and fail to create the executable.

7Some literature may refer to this as undefined, which is synonymous in this context
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Figure 3.4: Chromosomal crossover. A-E signify gene locations along the homologous
chromosomes.

3.3.2 Object Files as Genes During Crossover

In biology an organisms genetic makeup determines its physical and behavioral traits

[29]. These specific traits are encoded within each organism’s genes, with a single trait

being represented by one or more genes [87]. This is not unlike software programs

where the underlying source code of the program determines its functional traits.

Moreover, the source code of a program is typically modular with a single source

file containing several sub-routines related to a given functional module[72]. For

example, the GNU implementation of the standard C library uses a single C file for

each exported sub-routine or sets of related exported sub-routines of a module [55].

As mentioned earlier, each source file corresponds to exactly one object file in most

compiled languages. Therefore, one or more object files will correspond to a given

functional trait of a software program.

The genes of a living organism are arranged linearly along chromosomes with

specific genes being found at specific locations[87]. Alternate forms of a particular

gene are known as alleles[87]. All living organisms contain at least one chromosome,

with more complex organisms containing many[87]. The exchange of the genetic

material of two organisms occurs during genetic recombination in a process known as

chromosomal crossover8 (illustrated in Figure 3.4). During this process, homologous

chromosomes – chromosomes which are similar both in structure and length – line up

and crossover to exchange genetic material[87]. The crossover location(s) for exchange

between these chromosomes are such that whole genes, and thus genetic traits, are

kept intact[87].

Given that the traits of living organisms and software programs are encoded within

the genes and object files respectively, a potential strategy for program recombination

is to consider object files as genes during crossover. Under this strategy a program

can be thought of as a single chromosome with its set of object files becoming the

8This is true for eukaryotic organisms, however prokaryotic organisms exchange genetic material
differently.
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Figure 3.5: Unequal chromosomal crossover. A-E signify gene locations, however
after recombination gene D is duplicated in the recombined chromosome.

genes along that chromosome. Two closely related software programs, however, can

contain slightly differing sets of object files and, as such, are not obviously compatible

(homologous).

In order to perform crossover between two software programs, it is necessary estab-

lish a common object file set (their chromosome) and only perform crossover within

that set. For example, consider two software program versions with two slightly dif-

ferent sets of object files: {a.ox, b.ox, c.ox, d.ox} and {b.oy, c.oy, d.oy, e.oy}. From these

versions, the common set of object files available for recombination is b.o, c.o, d.o,

with each program having an allele of this set. All remaining object files outside of

these homologous sets are used as needed to avoid linking errors. One possible recom-

bination of the software program chromosomes could be {a.ox, b.ox, c.oy, d.ox, e.oy},
with object files a.ox and e.oy added to the resulting crossover in order to ensure that

linking can be successful. Additionally, should there be significant changes such as

code removal or code additions between the two related software programs, it may

be necessary to include both alleles of the same object file in order to satisfy linking.

Using both versions of an object file containing slightly differing functionality to

successfully link the object files is not unlike unequal chromosomal crossover. Unequal

chromosomal crossover, illustrated in Figure 3.5, occurs when chromosomes do not

pair correctly leading to non-homologous crossover points[29]. This leads to gene

duplication in the resulting recombined chromosome however only one gene is actually

used – the other is redundant[29]. This redundant gene may mutate, however, leading

to the creation of a new gene rather than just remaining a copy of an existing one[29].

The same is true for the use of both alleles of an object file. Though both object

files are being used for the purpose of linking, one of the object files will likely be

redundant and benign or it could potentially lead to some unknown behavior.

Using this approach for recombination, it should be clear to see that, given two

closely related software programs with n common object files, the search space for all

possible recombinations becomes (2n).
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3.3.3 Object Files as Chromosomes During Crossover

An alternative analogy to object files as genes during crossover is to instead consider

the object files as whole chromosomes. In this case the functions and data within the

object files themselves are considered the genes to be exchanged. However, removing

or adding functions and data from an object file is inherently problematic for several

reasons. First, the compiler often optimizes code such that two or more functions can

share segments of the same generated code within an object file. Therefore, removing

code from one function may end up destroying another function[17]. Second, object

files are considered to be highly cohesive. This means that code and data items that

are internal to the object file are not easily identifiable and various compiler options

may discard information that would otherwise make these elements identifiable[17].

Lastly, once all functions in all object files are considered for recombination the search

space of possible recombinations greatly increases over using just object files alone. If

one considers two related software programs with n object files (chromosomes), each

with an average of m functions and data elements (genes), then the search space for

all possible recombinations of the programs becomes (n × 2m). For these reasons,

using object files as chromosomes during crossover will not be explored in this thesis.

3.4 Object File Recombination Problems

With respect to object file recombination, there are two problems areas: These are

problems that can occur during linking, and problems at runtime that will cause the

recombined software program to terminate abnormally due to incorrect execution.

These two problem areas will be explained further, including details of how even

small changes between closely related software programs can cause them.

3.4.1 Linking Problems

As previously mentioned, a linker enforces two validations rules when linking object

files: every symbol reference must be resolvable and symbols cannot be defined more

than once[54] A symbol reference is considered resolvable if some other object file9

defines that symbol. However, each symbol file can only be defined once, otherwise

9Or library file, which is simply a collection of object files
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the linker will not know which symbol to choose when resolving symbol references.

Consider a simple program consisting of only two object files, A and B. In version

alpha of the program (source code listed in Appendix A), object A contains two

functions with symbols fAn and fAm, along with two data items with symbols dAx

and dAy. Object B also has two functions with symbols fBn and fBm, in addition to

a single data item with symbol dBx. In version beta (source code listed in Appendix

B), function fAm has been removed from object A. Figure 3.6 illustrates objects A

and B from both versions with arrows indicating symbol references between the two

object files. Here we can see that all symbols within each version are uniquely defined

and therefore the object files of each version will successfully link together.

dAx

dAy

fAn

fAm

dBx

fBn

fBm

Object A Object B

Alpha

dAx

fAn

dBx

fBn

fBm

Object B

Beta

Object A

dAz

Figure 3.6: Object Files from versions Alpha and Beta

Examining the symbol references in figure 3.6 a bit more closely it becomes clear

that attempting to recombine and link object A from version alpha with object B

from version beta will be problematic. This is because function fBm from object B

has an unsatisfied symbol reference to a global data item dAz, which is not present

in object A of version alpha. Likewise, attempting to recombine and link object B

from version alpha with object A from versions beta will fail because object B will

have and unsatisfied symbol reference to function fAm.
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3.4.2 Runtime Problems

Though object files under go less validation than source code, ultimately object files

are merely an abstraction of the source code they were generated from. As such,

source code changes between program versions can introduce runtime issues in the

recombined program that cannot be overcome during the linking. In fact, even the

smallest of changes can cause disastrous runtime problems. These source code changes

can be classified into one of two distinct categories: syntactic changes and state

changes.

Syntactic Changes

Syntactic changes to externally accessible functions, global data, and common data

types can have catastrophic effects on any recombined program which will likely

cause the program to terminate abnormally at runtime. Because syntactic changes

are validated by the compiler, the ability to link the object files and produce an

executable is not effected because the symbols are generally not effected. Consider a

function, shared data, and data type defined in C as:

int* func(char arg1, int arg2);

int data[10];

typedef struct _DATATYPE {

int member1;

int member2;

char member3;

} DATATYPE, *PDATATYPE;

These items can be changed between software program versions and software program

forks in many ways. Listed below are several examples of syntactic changes to these

items which will undoubtedly lead to undesired behavior or abnormal termination of

a recombined program.

1. Adding or removing additional function arguments, thereby changing the re-

quired function input arguments between versions. This will cause a calling

function to pass arbitrary values as input. Consider a change such as:
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int* func(char arg1, int arg2, int arg3);

When this changed function attempts to use the last argument, it will be ac-

cessing a previous 4-byte value in memory. In all likelihood, this value will not

be valid for the function and will cause undesired behavior.

2. Re-arranging function arguments, which changes the order of the arguments

between versions. This means that a calling function could pass the correct

input, but in the incorrect order. Consider a change such as:

int* func(int arg2, char arg1);

Depending how the function uses the input arguments, this may work correctly;

but in the general case, a change such as this will cause undesired effects.

3. Modifying the return type, causing a calling function from a different version

to possibly misinterpret the returned data. Consider a change such as:

int func(char arg1, int arg2);

If the calling function is expecting a pointer to an integer as a return value, and

instead receives and integer, any attempt to dereference that integer will likely

cause undesired effects.

4. Modifying the type or size of the global data, causing any code from a different

version which uses the data to misread and / or misinterpret. Consider changes

such as:

char data[10];

or

int data[5];

Changing the data type or size alters the semantics of the data and the amount

of memory required to store the data. Any function not aware of this change

will likely misinterpret the data, or even read and write past the end of the data

therefore using and creating invalid data.
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5. Changing the mutability of the data, which causes invalid write operations

during the execution of the recombined program. Consider a change such as:

const int data[] = {0,1,2,3,4,5,6,7,8,9};

In this case, the type and size of the data has not changed. Instead the compiler

will mark the data as read-only, where previously it was writable. This will cause

an access violation if any unaware function attempts to write to the data.

6. Altering the data type definition by adding or removing members, such as:

typedef struct _DATATYPE {

int member1;

char member3;

} DATATYPE, *PDATATYPE;

In this case, because a member was removed, all subsequent members now

reside at different offsets in the data type. Any code which was compiled to

use the previous definition of this data type will inadvertently access member3

while attempting to member2. Similarly, any attempt to access member3 will

result in accessing invalid data beyond the size of the new data type leading to

undefined behavior.

State Changes

State changes are any changes that alter expected internal or external state between

object files. These can include changes to the format or location of files, changes to the

number or type of system resources used, or changes to the internal understanding of

how data is being processed within the program. When these changes occur between

program versions or forks, they will likely lead to runtime errors when those changes

affect the interaction and exchange of data between object files as sub-routines are

invoked. Similar to syntactic changes, state changes will not affect the ability to

link the program’s object files because no symbols are changed. Unlike syntactic

changes, however, state changes may not be as catastrophic and may not abnormally

terminate the running program on their own. In general it is more reasonable to
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expect undesired behavior during the execution of the recombined program because

well-designed and well-written sub-routines should be hardened against invalid or

erroneous data.

3.5 Summary

This chapter has presented a biologically inspired approach for selecting software

programs to be recombined and where the act of recombination between the programs

should occur.

Based upon the species concepts which exist in biology, existing software programs

selected for recombination should be ones which are identified to be closely related.

To be more specific, the various versions and forks of a similar software program

should be considered as the candidate software programs for recombination. This

criteria for selection ensures that the software programs are functionally similar and

increases the likelihood that the programs are compatible for recombination without

any of the requirements used in previous techniques.

While previous attempts at software reuse and recombination have focused on

recombining the source code of the programs, this chapter has proposed program

recombination using object files. While not without problems, this method of re-

combination is far less complex than source code recombination with respect to the

amount of validation that is performed against the recombined program. Like living

organisms, duplicate genes in the form of multiple versions of object files, can pos-

sibly occur. It is expected that using multiple object files will either provide similar

functionality to that of either parent or provide new combinations functionality from

both parents. There are, however, open problems with respect to object file recom-

bination. These problems include linking problems and runtime problems, and they

must be addressed.
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ObjRecombGA

This chapter addresses the aforementioned problems surrounding the recombination of

programs at the object file level and presents ObjRecombGA, a software program that

automates the recombination of closely related GNU/Linux based software programs

written in C. The first two sections of this chapter provide solutions to the linking and

runtime problems. The last section describes the implementation of these solutions

within ObjRecombGA.

4.1 Correcting Linking Problems

Correcting linking problems between a set of object files simply means ensuring that

all linking validation rules are satisfied. With respect to recombining the object files

of two software programs, it is assumed that all symbol references are resolvable and

defined in at least one of the two programs. If this were not the case then either

software program on their own would not be able to be linked because each would

be missing one ore more required symbols. Therefore, correcting linking problems

across the object files of the two programs becomes a matter of ensuring each symbol

is defined only once. This will not, however, correct the runtime problems.

Going back to the example in figure 3.6, regardless of how the object files are

chosen from each version, they cannot be recombined and linked together. In both

cases the linker will report an undefined symbol error and will fail to link the object

files together in a conventional manner. However, this is only true when limited to

one version of object A and one version of object B. Instead, consider what happens

if object A from alpha is recombined with object B and object A from beta. In this

case some external symbols, namely dAx and fAn, will be defined more than once.

To solve this problem, it is possible to simply rename these symbols in object A from

version beta. In doing so, a new copy of object A from version beta, labeled A′, is

created with new symbols dAx′ and fAn′. Figure 4.1 illustrates the new references

33
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between these three object files. As can be seen, all external references are satisfied,

and no symbols are defined more than once. A linker is now able to link these object

files and produce a program executable.

dAx

dAy

fAn

fAm

Object A

dBx

fBn

fBm

Object B

dAx’

fAn’

Object A’

dAz

Figure 4.1: Recombining object A from Alpha and object B from Beta by including
object A′.

In order to implement this corrective linking procedure it is necessary to first

process the object files to find all symbols and symbol references then manipulate the

object file symbols to remove all multiply defined symbols.

4.1.1 Processing the Object Files

In order to determine all of the multiply-defined symbols between the object files of

two related software programs, it is necessary to first analyze the set of object files

within each software program to record their set of globally bound symbols. Recall

that the set of globally bound symbols for an object file identifies the functions or data

that the object file is dependent on from another object file, or that are available for

other object files to reference. With all object files analyzed, the entire set of globally

bound symbols can be used to establish the interdependency between all object files

and libraries required to link either software program.

Once a chosen common set of object files is selected from both parent programs

(as described in section 3.3.2) the global symbols of each object file in the set are
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examined further. If any symbol of an object file in the set cannot be resolved within

the set of object files itself, the dependent object files from the corresponding parent

program is added to the set to satisfy that symbol resolution. The symbol itself, and

object file it resolves to, is recorded. This process continues until all symbols within

all object files in the set are resolved or the remaining symbols cannot be found within

the object files of either program. These symbols that are not resolved within either

program are assumed to be resolved when the actual linking takes place by simply

including all of the required libraries for both programs. The final set of all common

and dependent object files that has been identified is labeled as the recombination

set.

4.1.2 Manipulating the Object Files

After having determined the entire set of required object files, all that remains is to

remove any multiply defined symbols. This is done by enumerating the recombined

set of object files and validating that each symbol exists only once. To ensure that

this is done in a consistent manner, the object files are enumerated in the order

in which they appeared in the set. Object files that appear later in the set take

lower precedence over those which appear earlier, and as such, will be among the

first to have their symbols modified. Recall that the later object files in the set

were inserted because they were identified as being required by object files in the

‘original’ recombined set. Modifying object files with this ordering enforces a tighter

symbol resolution and thus linkage between the common set of object files identified

for recombination. This encourages the recombination functionality between the two

parent software programs.

The symbol modification of an object file is done by first making a copy of the

object file, then simply altering the symbol table entry for that symbol by renaming

it1. Any renaming scheme will work so long as the renamed symbol does not collide

with another existing symbol in the set of object files. Once all necessary object file

modifications are made, the collection of modified object files can be placed into a

library and this library can be added as input when linking the common object files

in the recombination set.

1Software tools exist to easily rename symbols within object files
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4.2 Addressing Runtime Problems

All of the runtime problems described in the previous chapter are a direct result of

source code incompatibilities between two software programs. As such, these issues

cannot be fully determined without a detailed examination of their source code. Fur-

thermore, these issues cannot be solved without making source code modifications,

which themselves cannot be performed during the examination or linking of the object

files. As mentioned in chapter 3, avoiding source code modifications was desirable

due to the many complexities involved and was the motivating factor for using object

files during recombination. Since there is no guarantee that any runtime issues will

actually be encountered, a straightforward approach is to identify and discard any

combinations of object files which fail to run or exhibit runtime failures. The pro-

posed approach is to use a genetic algorithm to search the space of possible object

file recombinations with a fitness function that identifies runtime errors and returns

very poor fitness for malfunctioning recombined programs. This identification of run-

time errors in the fitness function will steer the genetic algorithm away from using a

similar combination of object files in future generations thereby weeding out unstable

combinations.

4.2.1 Identifying Problems at Runtime

A program that terminates execution without being instructed to by the user is

referred to as an abnormal termination[55]. This behavior can be caused by a number

of program runtime problems such as execution of an invalid or privileged instruction,

reading or writing to invalid memory, or division by zero[55]. When this occurs, the

execution of the program is trapped by the operating system. In the case of the

GNU/Linux operating system using the Bash2 shell, a program termination file called

a core dump file is generated. This file can be used to diagnose the program errors,

and contains the state of the program as it existed in memory at the time that the

program termination occurred[90]. In the case of the Windows operating system, a

dialog window describing the program termination is generally presented to the user

and an application event log entry is generated.

2Bourne Again SHell - typically the default shell in GNU/Linux operating environments
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Many of the runtime problems identified in chapter 3 are expected to lead to

abnormal program termination. As such, providing a GA fitness function which is

able to identify these reports and negatively adjust the fitness of the recombined

variant that generated the error will encourage the GA to search more stable variants

that do not contain runtime problems.

4.3 Implementation Details

ObjRecombGA is a Java-based application that automates the processes described

in the previous section to recombine the object files of two-closely related software

programs, producing many recombined program variants. As currently implemented,

ObjRecombGA is limited to recombining C programs written for the Linux platform

and compilable using gcc. These limitations were chosen because utilities, specifically

the GNU Binutils3, exist which offer the ability to parse, copy, and manipulate ELF

object files created from compiled C programs.

ObjRecombGA performs its software recombination using a two stage process.

During the first stage the two previously built program versions are parsed for object

files and each program’s object files are pre-processed to determine an overlapping

set of common object files which are candidates for recombination. Next, all symbols

and symbol references within all object files and libraries of each version are cata-

loged and parsed to determine all interdependencies between object files. During the

second stage, ObjRecombGA uses a genetic algorithm (GA) to discover functional

recombined program variants of the given software programs. Functional variants are

discovered by using the pre-processing results to correct potential linker errors be-

tween the selected object file recombination allowing for the creation of a recombined

program executable. This executable is then tested using a provided set of tests,

called a fitness script, to determine the fitness for the variant.

In addition to the pre-processing results, the GA also requires: a temporary work-

ing directory; a population size, s; a desired number of generations, g; a selection

method, S(x); a crossover method, R(x), build strings for the program versions being

recombined, and the location of each versions object files on disk. The ObjRecombGA

user interface and required input parameters are shown in Figure 4.2.

3http://www.gnu.org/software/binutils/
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Figure 4.2: The ObjRecombGA user interface showing input for: (1) The program
version file locations; (2) the program version builds strings; (3) the program fitness
test script; (4) the GA selection and crossover function settings

4.3.1 Pre-processing the Object Files

The pre-processing of the two program versions, alpha and beta, object files is done

as follows:

1. Build the two program versions, alpha and beta, and extract the final gcc build

string needed to produce the final program binary for each.

2. Identify one program version, alpha or beta, as the primary recombination ver-

sion and the other as the secondary version. This is strictly used for internal

bookkeeping purposes.

3. Create a common build string by merging the two program build strings together

and removing any duplicate files, flags, or libraries. This common string contains

only common linker flags and external library files required for both versions.

It also contains a magic string that ObjRecombGA will replace with the list of

common object files to be included during linkage.
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4. Using both program version paths, the common build string, and the default

compiler libraries, create a list, Z, of all external object files and library names

(z1, z2, ..., zp). These are object file and libraries that are not part of either

program but are required to link either program versions.

5. ∀zi ∈ Z, use objdump (a software tool found within GNU Binutils) to create a

set ziE of all exported symbol names (z1E, z2E, ..., zpE)

6. Create a global export set ZE = (z1E
∪
z2E

∪
...zpE)

7. Create two sets,X and Y , of all the object file and library filenames (x1, x2, ..., xn)

and (y1, y2, ..., ym) for versions alpha and beta respectively. These object files

and library names are identified by simply parsing the build command for each

version respectively.

8. ∀xi ∈ X, use objdump to create a set xiE of all exported symbol names

(x1E, x2E, ..., xqE) and set xiI of all import symbol names (x1I, x2I, ..., xrI)

such that xiI /∈ ZE

9. ∀yi ∈ Y , use objdump to create a set yiE of all exported symbol names (yiE, yiE, ..., ysE)

and set yiI imported symbol names (y1I, y2I, ..., ytI) such that yiI /∈ ZE

10. Create the common set, C, such that ∀ci ∈ C, ci ∈ X ∩ Y . This represents the

matching filenames of the objects and libraries that are available for recombi-

nation between the two program versions.

It is worth noting that the first three steps - building the program versions, choos-

ing a primary and secondary version, and creating a common build string - are done

manually before running ObjRecombGA and are simply provided as input.

4.3.2 Program Variant Generation

Once the pre-processing of the object files has been completed, ObjRecombGA dis-

covers recombined program variants using a genetic algorithm as follows:

1. Create an initial program variant population set, P , of size s, where each mem-

ber is a random bit string of size | C | and is associated with a unique identifier.
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2. While g > 0, repeat the following:

i. ∀p ∈ P , decode pi using the program variant decoding function D(p)

defined below.

ii. ∀p ∈ P , calculate the fitness pif using the fitness function F (p) defined

below.

iii. Create a new, empty population set, P ′.

iv. Select and crossover two program variants, {pi, pj ∈ P}, using a selection

function S(P ) and a crossover function R(px, py), to produce a two new

program variants p′ij and p′ji

v. Insert p′ij and p′ji into P ′.

vi. Repeat steps (i. - v.) until | P ′ |=| P |.

vii. Replace P with P ′ and reduce g by 1.

The program variant decoding (which resolves linker problems), the fitness func-

tion, selection functions, and crossover functions used by the GA are now described

in more detail.

4.3.3 Program Variant Decoding Function

Decoding of a program variant is performed by determining which object files from

the common set are represented by the program variants bit string and then resolving

all their symbol references. This process is complicated by the fact that these object

files may have external references to other object files which exist outside the common

set. The decoding function must, therefore, examine all external references from the

results of the pre-processing stage to determine all object files required to successfully

link the program variant. The program variant decoding function copies any required

object files and modifies any symbols in those object files which may cause linker

errors. These copied and modified object files are then placed in a library and the

common build string is modified to include this new library. More formally, the

program variant decoding function, D(p), processes the solution as follows:

1. ∀pi bits in the bit string, ifpi = 1, randomize program variant p and call D(p)

(this is to avoid convergence on the primary program version).
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2. ∀pi bits in the bit string, ifpi = 0, randomize program variant p and call D(p)

(this is to avoid convergence on the secondary program version)

3. Create a new unique directory for the program variant based on its unique id.

4. Create an empty list, O, which will contain the object files (o1, o2, ..., om) re-

quired outside the common set.

5. Create an empty list, S, which will contain the required symbols names (s1, s2, ..., sm)

from the object files in list O.

6. Create an empty list, E, which will contain the export symbols (e1, e2, ..., em)

from the common set.

7. ∀pi bits in the bit string identify all export symbols from the common set by

performing the following:

i. if pi = 1: find j such that Xj = Ci. Next, ∀XjEl ∈ XjE add symbol XjEl

to list E.

ii. if pi = 0: find j such that Yj = Ci. Next, ∀YjEl ∈ YjE add symbol YjEl

to list E.

8. ∀pi bits in the bit string identify the corresponding object file and all its depen-

dents based on its symbol references by performing the following:

i. if pi = 1: find j such that Xj = Ci. Copy file Ci from the primary

version to the program variant directory. Next, ∀XjIl ∈ XjIandXjIl /∈ E,

∀XkE(k = 0 →| X |), if XjIl ∈ XkE then: if Xk /∈ O then add Xk to list

O; add symbol XjIl to list S. Recurse this process on Xk.

ii. if pi = 0: find j such that Yj = Ci. Copy file Ci from the secondary

version to the program variant directory. Next, ∀YjIl ∈ YjIandYjIl /∈ E,

∀YkE(k = 0 →| Y |), if YjIl ∈ YkE then: if Yk /∈ O then add Yk to list O;

add symbol YjIl to list S. Recurse this process on Yk.

9. Create an empty list, O′, which will contain the file names of the modified object

and library files.
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10. For each oi ∈ O perform the following:

i. Create a list OiS to contain the symbols from S corresponding to object

file oi.

ii. ∀oj ∈ O(i > j), if oi = oj insert sj into OiS and remove oj from O and sj

from S.

iii. Copy file oi to the temporary directory .

iv. Using the objcopy utility, for each symbol, t in file oi, if t /∈ OiS, rename t

to t′4.

v. Add oi to list O′.

11. Using the ar 5 utility, create a library of all files in O′.

12. Move the newly created library to the program variant directory and add it to

the build string for the program variant.

13. Remove all files from the temporary directory.

4.3.4 Fitness Function

In order to determine if ObjRecombGA has generated a usable program variant,

two conditions must be met: the program variant must successfully link to produce

a program executable and the program variant must execute successfully without

terminating abnormally. Both of these conditions can be validated by attempting

to link the object files and running the program variant if linking was successful. If

the program variant fails to link correctly, then no binary will be produced. If the

program variant fails to run properly, or terminates abnormally, then it is expected

that a core dump file will be generated.

If the program variant does in fact run successfully, then ObjRecombGA will

run a user provided fitness script to test the program variant further. This fitness

script is expected to be a Linux (bash) shell script which accepts the path to the

program variant executable and the unique program variant directory as its only two

4Each renamed symbol is simply prefixed and suffixed with an underscore. This renaming scheme
was chosen arbitrarily.

5Part of the GNU Binutils package
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inputs. Additionally, the fitness script is expected to return an integer value which

will augment the fitness value of the program variant being evaluated.

Evaluating the fitness of a population member, p, is done using the fitness function

F (p) defined as follows:

1. Set the fitness value for the program variant, f , to 0.

2. Run the modified build string (as determined by the decoding function) to

produce the program variant executable.

3. Check to see if the build was successful, incrementing f by 1 if a program

variant executable was produced, otherwise return f as the fitness value for this

program variant.

4. Execute the program variant. After 5 seconds of execution, terminate the pro-

gram variant if it is still executing.

5. Examine the program variant directory for a core dump file, incrementing f by

1 if one does not exist, otherwise return f as the fitness value for this solution.

6. If a fitness script was provided by the user, run the script and add the returned

value to f .

7. Return f as the fitness value for this program variant.

4.3.5 Crossover & Selection Functions

ObjRecombGA includes an implementation of two crossover functions and one fitness-

based selection function. The crossover functions being used by ObjRecombGA are

the Single Point Crossover and Two Point Crossover methods.

The Single-Point Crossover method recombines solutions by selecting a single

position in the solution at random and swapping the segments, bounded by this

position and the last position, between the two parents[64, p. 171-172]. Figure 4.3

illustrates the Single-Point Crossover method with position 8 being chosen at random.

The Two-Point Crossover method recombines solutions by selecting two posi-

tions in the solution at random and swapping the segments, bounded by these two
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1 0 0 1 1 1 0 1 000 1 0

0 0 1 0 0 1 0 1 011 1 0

1 0 0 1 1 1 0 0 100 0 1

Parent 1

Parent 2

Child 1

Child 2

1   2   3   4    5   6    7   8   9  10  11 12  13

Figure 4.3: Single-Point Crossover swapping the segment (8, 13) between Parent 1
and Parent 2 to produce Child 1 and Child 2

positions, between the two parents[64, p. 171-172]. Figure 4.4 illustrates the Two-

Point Crossover method with positions 5 and 11 being chosen at random. Two-Point

Crossover is advantageous when the size of a solution is large and solutions may con-

tain large segments in the solution which are valuable. Single-Point crossover is more

likely do destroy these large segments [64, p. 171-172].

0 0 1 0 0 1 0 0 111 0 1

1 0 0 1 1 1 0 1 000 1 0

0 0 0 1 1 1 0 1 011 0 1

1 0 1 0 0 1 0 0 100 1 0

Parent 1

Parent 2

Child 1

Child 2

1   2   3   4    5   6    7   8   9  10  11 12  13

Figure 4.4: Two-Point Crossover swapping the segment (5, 11) between Parent 1 and
Parent 2 to produce Child 1 and Child 2

The fitness-based selection function used by ObjRecombGA is the Tournament

Selection method. This selection method involves randomly selecting n individuals

from the population to form a tournament group. A tournament parameter, k where

(0 ≤ k ≤ 1), is compared against a randomly generated number, r, between 0 and

1. If r < k, the fittest member of the tournament group is chosen as a parent,

otherwise a parent from the tournament group is chosen at random. All members of

the tournament group are placed back into the population and the process is repeated

to find the second parent [64, p.170-171]. The selection parameters, such as the

tournament probability and the number of solutions selected for “Elitism”, are user-

defined at runtime. ”Elitism” is an extension of the selection method which ensures

that a portion of the fittest population members are retained at each generation. This
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generally improves the GAs performance because each new generation is now seeded

with desirable population members[64, p. 168].

4.4 Implementation Challenges

While implementing ObjRecombGA, several challenges were encountered and over-

come. These include dealing with object files that contain common block symbols

and how to best test the recombined variants created by ObjRecombGA.

4.4.1 Common Block Symbols

As previously discussed, when examining object files together, the linker is primar-

ily concerned with resolving symbols across object files such that no symbols are

multiply-defined and all undefined symbols can be resolved. However, object files

generated from C code can have a specific type of symbol known as common block

symbols[54]6. Common block symbols are symbols that represent uninitialized data

items within an object file and they cannot be linked against as they have no asso-

ciated storage space within the object file. When the linker encounters a common

block symbol; it reserves storage space within the final binary and all other matching

common block symbols from other object files will also refer to this reserved storage

space[54]. In effect, the symbol that represents this data item can be declared multiple

times so long as it is always declared uninitialized and the linker will happily combine

all these uninitialized instances into a single instance with only one storage space. If,

however, any source file provides an initialized instance of this variable then a global

symbol with storage will be created by the compiler and this symbol will collide with

all common block symbols causing the symbol to be multiply defined.

During the development and testing of ObjRecombGA there were a handful of

instances where the variables declared in a given program had been modified from

being uninitialized to being initialized across different versions. Recombining the

object files between these versions resulted in multiply-defined symbols, and thus

linkage failure between the common block symbols in earlier versions and the actual

symbols in later versions. In order to deal with these situations, limitations were put

6Also known as tentative symbols. Originally introduced in Fortran
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into ObjRecombGA such that common block symbols are treated as normal symbols

when any non-common block symbol with the same name is identified. This means

that common block symbols may end up being renamed such that they no longer

point to a common storage location. This will ultimately introduce runtime issues

into the resulting program because these symbols, which should all be pointing at the

same storage location, are pointing to unique storage locations. However, common

block symbols are rare and this limitation had minimal impact on the ability of

ObjRecombGA to identify and create successful recombinations of object files during

testing.

4.4.2 Library Version Conflicts

The object file manipulation performed by ObjRecombGA is localized to the object

files from the parent software programs being used for recombination. This means

that any additional libraries needed to build either parent program are not subject

to manipulation. Should a particular library dependency change between the parent

versions or forks, linker errors may be introduced that would limit the success of the

recombination.

For instance, consider a library that removes a handful of functions in its latest

version such that it is no longer compatible with the previous versions. If the first

parent program uses the older library version and the second parent program uses

the newer library version it will not be possible to link against both library versions

because this will introduce multiply-defined symbol linker errors. Similarly, in some

sets of object files it may not be possible to link against either version of the library

because this will introduce undefined symbol linker errors.

ObjrecombGA provides no solution to this problem. Instead, the build string

which specifies the libraries to use are provided as input to ObjrecombGA and it

does the best it can to find successful variants. Should a library version conflict arise

for a given set of object files, the linker will simply fail to link these object files

together. This will result in a very poor fitness score such that the object file set will

not be considered in subsequent generations of the GA.
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4.4.3 Testing of Recombined Variants

Though ObjRecombGA provides the ability to automatically run and test the recom-

bined variants it generates, determining an appropriate set of tests for the variants

is difficult. It is difficult because the recombined variants will likely contain broken

functionality or functionality that is a combination of both programs, creating poten-

tially inconsistent output results from the tests that are run. Moreover, each parent

program may have significantly different functionality such that a single test is unable

to execute properly without causing runtime problems or crashes. As such, the pur-

pose of using testing as a fitness measure is not to exhaustively test all functionality

of each variant within the GA but rather test some small subset of expected function-

ality such that the variants can be shown to function in some capacity. Determining

how to measure this functional capacity is also difficult because once the functionality

of either parent program is altered, it will effect the expected output of any tests run.

Therefore when examining any test results it is important to expect some variation

or use of fuzzy matching.

4.5 Summary

This chapter has presented two classes of problems that can occur when recombining

the object files of two closely related software programs, namely linking problems and

runtime problems. Solutions and approaches to dealing with these problems have also

been presented and implemented within a software program entitled ObjRecombGA.

Linking problems between sets of related object files are solved by manipulating

the symbolic information within those object files such that they can be successfully

linked together. ObjRecombGA solves this by cataloging all object files and their

symbolic information such that dependencies between object files can be identified.

When presented with one possible combination of object files, ObjRecombGA re-

solves all dependent objet files and symbol information, then modifies any duplicate

symbols such that linking and creating a recombined software program variant will

be successful.

Runtime problems, unlike linking problems, cannot be identified or solved through

object file analysis or modification. Instead, ObjRecombGA simply tries to avoid
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recombined variants in the search space that have runtime problems by using a genetic

algorithm paired with an appropriate fitness function which can run the program

through a series of tests. When runtime problems are identified or suspected for

a given variant, the GA fitness function will give that variant a low scoring fitness

value such that the particular combination of object files of that variant is less likely

to survive to subsequent generations of the GA.



Chapter 5

Results

This chapter discusses the results obtained from running the ObjRecombGA software

on a group of candidate programs. First, reasons for which these program were

selected will be discussed. Following this, a brief overview of each program and a

detailed set of results are presented and discussed.

The desired results of the ObjRecombGA testing are threefold. First, to show that

the recombination of closely related software programs using object file manipulation

is feasible; second, that using object file as a recombination method scales to even large

complex software programs with many object files; and lastly, that new previously

unseen combinations of functionality can be discovered.

5.1 Selecting Candidate Programs

Selection of the candidate programs for recombination is based on the following factors

and limitations of the ObjRecombGA software:

• The candidate programs must have several versions or forks available to test.

This allows for more recombination scenarios using multiple combinations of

program versions.

• The candidate programs should make minimal use of signal handling, so that

abnormal program termination will result in a core dump file being generated.

ObjRecombGA uses the presence of core dump files to identify recombined

program variants that have critical runtime failures.

• All versions of the candidate program must be able to be built with the same

compiler version. This ensures consistency across the object files and avoids

the complications of supporting multiple compilers. Specifically, compiler op-

timization adjustments between various compiler versions may introduce more

runtime issues than those examined in Chapter 3.

49
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Quake Dillo GNU-sed
libc-2.7.1 libc-2.7.1 libc-2.7.1

libX11-6.2.0 libX11-6.2.0
libXext-6.4.0 libXext-6.4.0
libSDL-1.2 libpng-1.2

libXxf86dga-1.0.0 libpthread-2.7.1
libgtk-1.2
libgdk-1.2

libgmodule-1.2
libXi-6.0
libjpeg-6.2

Table 5.1: Additional libraries required to successfully link the selected versions of
Quake, Dillo, and GNU-sed.

• All versions of the candidate program, once compiled, should exist as a single

executable binary. This simplifies recombination and testing because there will

only need to be one build command to execute and one program binary to test.

• The program executable should accept command line arguments for program

input. This is necessary in order to write a fitness script to exercise the function-

ality or alternate code paths of the recombined program variants and provide a

good fitness measurement.

For testing, three different programs with vastly different functionality and code

base sizes were used. Each of these programs fit the criteria outlined above and

allowed for testing the recombination of software programs with varying size and

complexity. The three chosen programs were: GNU-sed [26]; Dillo [88]; and Quake

[85]. The testing these programs with ObjRecombGA was done on an Intel x86 based

PC running Ubuntu Linux 8.04. GNU Make version 3.81 and GCC version 4.2.4 build

tools were used in addition to several specific libraries listed in table 5.1 were required

to successfully compile and build all versions of GNU-sed, Dillo, and Quake.

5.2 GNU-sed

GNU-sed (sed) is a stream editor which is used to perform text-based transformations

on an input stream. GNU-sed is considered to be an efficient editor due to the fact

that all text transformations occur using only a single pass over the input stream [28].
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Text transformations using sed are performed by using a sequence of sed com-

mands. These commands can be grouped together in a file which is referred to as

a sed program or sed script. When the sed executable is invoked, the script file is

provided to sed via an input argument and the commands within the script file are

executed against the desired input stream. Although there are only a limited number

of sed commands, these commands can be grouped together to enable very complex

text transformations [28].

GNU-sed was chosen due to its small number of object files and the fact that it

has a source code base that does not undergo a large number of changes between

program versions. GNU-sed is also a command-line based tool , thereby making

it easy to test any recombined program variants using a shell script. Though not

many exciting results were expected, the results gathered were encouraging enough

to consider larger and more complex software programs.

5.2.1 Fitness Calculation

To calculate the fitness of each GNU-sed program variant, a fitness script (listed in

Appendix A) was written to perform a set of six tests. The fitness script executes a

set of sed scripts, taken from the Sed Script Archive [7], which exercises a wide range

of functionality provided by sed. The scripts are executed in sequence as follows:

1. head.sed - output only the first 10 lines of text from the input stream

2. remccomms1.sed - output a C program file (provided as the input stream) with

all C-style comments (those contained within matching /* and */ comment

delimiters) removed

3. indentls.sed - Output a path depth indented copy of the input stream pro-

vided by a recursive directory listing (created using the “ls -lr“ command)

4. revchr 1.sed - output the entire input stream with each line reversed

5. cflword5.sed - output the entire input stream with the first letter of the first

word in each line capitalized
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6. sierpinski3.sed - output a text representation of a Sierpinski Triangle1 based

on a pre-formatted input stream which determines the triangle size

Each of these scripts were run against all tested GNU-sed versions to verify that each

version is capable of executing each script. In order to test the output from the sed

scripts as they were run against recombined program variants, each script was run

using the latest version (4.1.5) of GNU-sed and each script’s output was captured to

a file as reference.

After each of the sed scripts have been executed by a program variant, the fitness

script will validate the output against the reference output. This is accomplished by

capturing all output to a file, then performing a checksum calculation and comparing

the captured output to the reference output. If the checksums match, the fitness script

increments the script return value (R) by 1 and continues to the next sed script. If

the checksums do not match or there are no remaining sed scripts, the current value

of R is returned. The maximum value which can be returned by this fitness script

is 6, which is then paired with an addition score of 2 if the program variant being

tested links correctly and can be run without crashing (as discussed in Chapter 4).

This provides a total fitness range of 0 to 8 for all generated GNU-sed variants.

5.2.2 Versions Tested

At the time of this research, 11 versions (3.01, 3.02, 4.0.6 - 4.0.9, and 4.1.1 - 4.1.5) of

GNU-sed were available and could be built using the test environment. The object

files available for recombination in each version of GNU-sed are listed in Table 5.2.

Each possible version pair of GNU-sed has a minimum of 4 matching object or library

files available for recombination. Therefore, ObjRecombGA’s search space is bounded

by a minimum of 14 (24−2) and a maximum of 126 (27−2) possible recombinations2

for the GNU-sed version pairs tested.

Several pairs of versions were chosen as input for the ObjRecombGA software.

These pairs were tested using single-point crossover and tournament selection with a

population size of 12 over 8 generations, a tournament size of 7 with a 90% probability,

and using an elitism value of 4. Using these parameters allows ObjRecombGA to

1A fractal named after mathematician Waclaw Sierpinski
2Recall, the solution of all 0’s and all 1’s is ignored.
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Versions Object Files
All sed.o, compile.o,

execute.o, libsed.a
4.0.6 - 4.0.8 regex.o
4.0.6 - 4.1.5 fmt.o
4.0.9 - 4.1.5 regexp.o
4.1.1 - 4.1.5 mbcs.o

Table 5.2: GNU-sed object files available for recombination.

Version Pair # Files for Recombination #Variants Generated #Unique #Unstable
4.0.6 - 3.02 4 68 12 9
4.0.9 - 3.02 4 68 12 19
4.0.9 - 4.0.6 5 68 21 0
4.1.2 - 4.0.6 5 68 21 15
4.1.3 - 4.0.7 5 68 15 4
4.1.4 - 4.0.8 5 68 20 10
4.1.5 - 3.01 4 68 14 12
4.1.5 - 4.1.1 7 68 22 0

Table 5.3: Uniques and stability results for the tested GNU-sed pairs.

produce a maximum of 68 recombined program variants for each tested pair. Due to

the limited number of possible solutions, larger population and generations were not

considered practical. Additionally, Single-Point Crossover was chosen over Two-Point

Crossover because there was a small number of matching object files between any two

versions.

Table 5.3 lists each tested pair, the number of matching object or library files

available for recombination, the number of total and unique variants produced, and

the number of unstable variants generated. Variant uniqueness was determined by

comparing the bitstrings of all variants from each tested pair. Unstable variants are

variants which at some point during the fitness evaluation or the fitness script were

abnormally terminated, resulting in a core dump file being generated. In all tested

pairs, ObjRecombGA was able to recombine and successfully link all 68 created vari-

ants. This result shows that the manipulation of the object files is working correctly

to produce the recombined program executable.

Figure 5.1 and Figure 5.2 chart the average fitness value and number of stable

variants at each generation respectively. A variant is considered stable if it completes

its fitness evaluation and fitness script without generating a core dump file from an
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Figure 5.1: Average fitness at each Generation
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Figure 5.2: Number of stable program variants at each generation.

abnormal program termination.

Looking at the results, it can be seen that the specific versions of GNU-sed selected

for pairing have an impact on the fitness and stability of the recombined variants.

Specifically, version pairs 4.0.9 with 4.0.6 and 4.1.5 with 4.1.1 showed a consistently

high levels of fitness and stability throughout all generations. However, versions pairs

4.0.9 with 3.02 and 4.1.2 with 4.0.6 showed consistent instability and low levels of

fitness. In all cases ObjRecombGA was able to quickly weed out many unstable

variants with all version pairs tested having over 80% of their population stable by

the 3rd generation.
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5.2.3 Analysis

From the results, it seems clear that version pairs with a closely related development

history in terms of version number are more likely to create stable variants with high

fitness while version pairs that have version numbers further apart will be less stable

and less fit. This becomes clear when looking at the percentage of stable variants for

the closest pair (4.0.9 and 4.0.6) at 100% compared to the furthest pair (4.1.5 and

3.01) at 15%.

Looking at the fitness results, the general trend is that the fitness of the recom-

bined variants improves from the lower fitness values seen in the first generation.

This shows that the GA is successfully searching the space of possible program vari-

ants. Oddly enough, the fitness averages for many of the version pairs seems to be

somewhat erratic. This could be caused by subtle code changes, or semantic changes,

between the versions pairs that are being exercised and causing the output from the

sed scripts to be slightly off, which given the limited ranges of fitness scores, has a

drastic effect on the fitness average for the pair. Ultimately, some adjustment to the

fitness script is likely needed to smooth out some of these erratic fitness averages.

Together, both the success in the stability of the recombined variants and the

correctness of these variants (according to the selected test scripts) confirms that

finding stable and working recombined programs using object files as a recombination

approach is possible. Moreover, the results suggest that the more closely related the

pairs of software programs are with respect to development history, the more stable

the recombined variants become.

5.3 Dillo

The Dillo web browser (seen in Figure 5.3) is an HTML 4.01 compliant web browser

consisting of five key functional components: Dillo Widget, Dillo Cache, an HTML

Parser, an Image Processor and a Dillo Plugin Interface (DPI) Framework [6].

The Dillo Widget component is responsible for the graphical user interface and

window rendering. The Dillo Cache component acts as an input / output engine to

abstract all network and file activity required by Dillo. The HTML Parser and image

processor work with the Dillo Cache and Dillo widget components to read, process,
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Figure 5.3: The Dillo web browser - Version 0.8.5

and render HTML and images. The DPI Framework is used to allow developers to

extend the functionality of Dillo to external programs through a well defined interface

[6].

Several pieces of the DPI Framework component are built as separate programs,

each with its own linking step, within the Dillo source tree. These pieces are not

required to build or run the Dillo web browser program, and as such will not be

subject to recombination or testing.

Dillo was selected primarily for its large number of object files and offers a higher

level of complexity and less stable source code base compared to GNU-sed. Because

Dillo provides a graphical user interface, testing its recombined program variants

is much harder to do using a shell script. Manual inspection of stable recombined

variants was therefore necessary.
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5.3.1 Fitness Calculation

To evaluate the fitness of each Dillo program variant, a fitness script (listed in Ap-

pendix B) was written to perform a set of four tests. These tests are:

1. Running the Dillo program variant with no input arguments

2. Running the Dillo program with an input argument requesting that it load an

HTML file from the local disk

3. Running the Dillo program variant with an input argument directing it to load

the Dillo home page3

4. Running the Dillo program variant with an input argument directing it to load

the Google home page4

Each test was run against each tested version of Dillo to verify that each version is

capable of performing them and to capture any existing differences between versions.

These set of tests exercise the variants ability to: simply load without crashing;

load and render a simple HTML file from disk; load and render an Internet site

containing only HTML; and load and render an Internet site which contains HTML

and JavaScript.

After each test is run, the script checks for the presence of a core dump file. If no

core dump file is found the script takes a screen shot, terminates the program variant

and increments its return value (R) by 1 before proceeding to the next test. In the

case of the test which attempts to load a simple HTML file from disk, the script will

also verify the file was accessed by assessing the file’s last accessed time stamp. If the

time stamp has been updated, the test script will perform an additional increment

of R by 1. Once all tests have completed, or if any test produces a core dump file,

the current value of R is returned. A maximum value of 5 can be returned by the

Dillo fitness script, giving a possible fitness value range of 0 to 7 for all Dillo program

variants.

3http://www.dillo.org
4http://www.google.com
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Versions
Dillo Component

Dillo Widget Dillo
Cache

HTML
Parser

Image Pro-
cessing

Misc.

All commands.o,
dw.o, dw bullet.o,
dw aligned page.o,
dw button.o,
dw container.o,
dw embed gtk.o,
dw ext iterator.o,
dw gtk scrolled frame.o,
dw gtk scrolled window.o,
dw gtk statuslabel.o,
dw gtk viewport.o,
dw hruler.o,
dw list item.o,
dw marshal.o,
dw page.o, dw style.o,
dw table.o,
dw tooltip.o,
dw widget.o, inter-
face.o, selection.o,
progressbar.o, menu.o

cache.o,
capi.o,
cookies.o,
dicache.o,
dns.o,
libDio.a

html.o,
plain.o,
colors.o

image.o,
jpeg.o,
png.o,
gif.o,
dw image.o

klist.o, find-
text.o, prefs.o,
misc.o,
bitvec.o,
chain.o, url.o,
history.o,
web.o, nav.o,
dillo.o, book-
marks.o6

0.8.0 - 0.8.5 strbuf.o
0.8.2 - 0.8.5 gtk menu title.o,

gtk ext menu.o,
gtk ext menu item.o,
gtk ext button.o

0.8.3 - 0.8.5 dpiapi.o

Table 5.4: Dillo object files available for recombination.

5.3.2 Versions Tested

At the time of this research, 7 versions ( 0.7.3, 0.8.0, 0.8.1, 0.8.2, 0.8.3, 0.8.4 and 0.8.5)

of Dillo were available and could be built using the test environment. Other versions

( < 0.7.3, 0.8.6, and 2.0) were also available, however they either could not be built

successfully in the test environment5 or they had contained C++ code. The object

files available for recombination from each respective Dillo version are listed in Table

5.2. Each version pair of Dillo has a minimum of 51 matching object or library files

available for recombination. As such, ObjRecombGA has a minimum search space of

251 − 2 possible recombinations for every Dillo version pair.

Several pairs of versions were chosen as input for the ObjRecombGA software. These

pairs were tested using two-point crossover and tournament selection with a popu-

lation size of 30 over 20 generations, a tournament size of 7 with a 90% probability,

and an elitism value of 8. Using these parameters allows ObjRecombGA to produce

5Due to compiler version conflicts, and code which caused compilation errors
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Version Pair # Files for Recombination #Variants Generated #Unique #Unstable
0.8.5 - 0.8.2 56 448 365 0
0.8.5 - 0.8.0 52 448 265 86
0.8.5 - 0.7.3 51 448 233 165
0.8.4 - 0.8.1 52 448 274 145
0.8.3 - 0.8.0 52 448 227 59
0.8.0 - 0.7.3 51 448 348 91

Table 5.5: Uniqueness and stability results for the various tested Dillo pairs.

a maximum of 448 recombined program variants for each tested pair. Larger popu-

lation and generation sizes were not attempted due to the fact that successful results

were found using these parameters.

Table 5.5 lists each tested pair, the number of matching object or library files

available for recombination, the number of total and unique variants produced, and

the number of unstable variants generated. In all cases, ObjRecombGA was able to

recombine and successfully link all 448 created variants; however, not all of these are

stable programs. In all but two test pairs, the number of unstable program variants

accounted for approximately 20% or more of the total number of variants created.

The only exception being version 0.8.5 recombined with version 0.8.2. This particular

pair produced the lowest number of unique program variants, however no unstable

variants were produced. Interestingly enough, the pair with the widest version gap

(version 0.8.5 and version 0.7.3) produced the largest number of unstable variants.

This is likely do to the fact that this pair is the furthest apart with respect to version

number and meaning they encompass the largest number of code changes between

any two pairs in the test group.

Figure 5.4 and Figure 5.5 chart the average fitness value and number of stable

variants at each generation respectively. Again, the recombination of version 0.8.5

and 0.8.2 stands out from the rest with the average fitness at every generation being

7, the maximum possible fitness value. Its worth noting that all tested version pairs

begin generating stable variants quickly, with all but one version pair (version 0.8.5

and version 0.7.3) having 20 of their 30 population members being stable by the 5th

generation. This would suggest that these version pairs are prematurely converging

towards a small set of stable program variants with high scoring fitness. Additionally,

the version pair 0.8.5 and 0.7.3 highlights that having a wider version gap, with the
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Figure 5.4: Dillo average fitness at each Generation

Figure 5.5: # of Stable Dillo variants at each generation.

potential of more code changes, makes it more difficult for the GA to discover a larger

set of stable program variants.

Examining the screenshot results captured from the fitness script paints a slightly

different picture. Figures 5.6 and 5.7 are the screen shots captured by the Dillo

fitness script after running it against version 0.8.5 of Dillo. These will be used as

reference when discussing the screenshot results of several noteworthy recombined

Dillo variants.

While many of the tested version pairs tend to converge and produce stable pro-

gram variants quickly, most of the stable variants have difficulty accurately rendering

HTML correctly. This is because the fitness script used in the fitness evaluation of

the Dillo variants focuses on the stability of the variant rather than the correctness
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Figure 5.6: Screen shots from Test 1 (left) & Test 2 (right) of the Dillo fitness script
against Dillo version 0.8.5

of its output. In this sense the fitness evaluation encourages the exploration of the

search space of stable variants as opposed to ‘correct’ variants. When looking at the

results of the most fit recombined variants from version pairs 0.8.3 and 0.8.0, 0.8.5 and

0.7.3, 0.8.5 and 0.8.0, and 0.8.0 and 0.7.3 the shortcomings of the fitness script be-

come apparent. The screenshots in Figures 5.8 - 5.10 are representative of screenshots

captured from all of the recombined variants from these pairs. The images clearly

illustrate that these variants have difficulty rendering HTML from a file and from a

web site. The least usable recombined variants were created from versions 0.8.0 and

0.7.3. Variants generated from these versions present a minimal and unresponsive

user interface as seen in Figure 5.10.

Recombined variants from versions pairs 0.8.5 and 0.8.2, and 0.8.4 and 0.8.1 had

much more encouraging and interesting results. The screenshot results from all re-

combined variants generated from versions 0.8.5 and 0.8.2 were a mirror image of the

reference screenshots. However, while some screen shots results from versions 0.8.4

and 0.8.1 reflected the reference screenshots accurately, others, seen in figures 5.11

- 5.13, presented some interesting behavioral side effects. In Figure 5.11 we see one

recombined variant which does not appear to be able to render the HTML. However,

upon further inspection, the variant is clearly receiving and parsing the HTML as it
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Figure 5.7: Screen shots from Test 3 (left) & Test 4 (right) of the Dillo fitness script
against Dillo version 0.8.5

is possible to view the HTML source that the variant is attempting to render. This

would imply that only a subset of the HTML parsing component within this variant

is malfunctioning.

The screenshot results in figure 5.12 indicate that this particular recombined vari-

ant is incapable of completing the HTML rendering once a GIF7 image is encountered.

As can be clearly seen, a partial rendering of the Google website is displayed and only

the title of the Dillo website is presented correctly. In both cases this constitutes the

entirety of the HTML up to first reference to a GIF image.

Another, more interesting, recombined Dillo variant generated from versions 0.8.4

and 0.8.1 can is seen in figure 5.13. Here we see Dillo homepage rendered without

any of the HTML bullet points seen in figure 5.7. Additionally, the underlying HTML

table is vastly decreased in width causing the page to appear smaller and somewhat

compacted. However, with the exception of these strange characteristics, this variant

is accurate and correct in all other respects.

7Graphics Interchange Format
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Figure 5.8: Typical screen shot result of Dillo variants generated from versions 0.8.3
and 0.8.0 (left) and versions 0.8.5 and 0.7.3 (right). No HTML is rendered - regardless
of source.

5.3.3 Analysis

Similar to GNU-sed, it would appear that closer version pairs are more likely to

create stable variants with higher fitness than version pairs that have more distant

version numbers. This correlation is almost certainly due to the increased number of

code changes that are being introduced as each version is incremented. Regardless,

even the widest apart version pair (0.8.5 and 0.7.3) that had the greatest number of

unstable variants was eventually able to attain a high fitness as it moved further away

from these unstable variants at each generation.

Testing Dillo was much more complex than GNU-sed, but the results were en-

couraging as they clearly showed again that ObjRecombGA is capable of discovering

successful object file recombinations with even a limited set of tests. Judging by

the numerous screenshots analyzed from these results, the usability of many of these

Dillo variants is questionable, however. None of the generated variants were able to

accurately recreate the very simple reference shots (figures 5.6 and 5.7) meaning that

none of the variants were “fully functional” for all test cases. However, this is largely

an effect of the test case validation within the fitness script. Because the fitness script

here is only concerned with stable variants – those that do not crash and produce a

core dump file – that was precisely what the ObjRecombGA managed to find. As
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Figure 5.9: Typical screen shot result of Dillo variants generated from versions 0.8.5
and 0.8.0. The user interface is not displayed and no HTML is rendered.

such, neither ObjRecombGA nor the object file recombination methods were to blame

for the poor usability of the recombined variants.

Though perhaps not as successful as the GNU-sed results, the limited success of

recombining Dillo does highlight the fact that more complex programs are harder to

recombine correctly because of the large search space and the difficulty in creating

an adequate fitness script to identify correctly behaving variants.

5.4 Quake

Quake is a popular 3D first person shooter video game created by Id Software in 1996.

Quake (seen in figure 5.14) popularized the use of the OpenGL 3D programming API

and pushed the limits of video game graphics when it was introduced. The source

code for the game was released in 1999 under the GNU GPL Lincese and has led

to many forked versions of the game containing various enhancements and extended

functionality. Figure 5.15 depicts a partial evolutionary tree for Quake showing the

large number of forks that have been created.

Having a large number of forks makes Quake an excellent candidate for testing as

all of these forks are derived from the original Quake source. Additionally, because

each fork is its own unique version (unlike the sequential versions of GNU-Sed and
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Figure 5.10: Typical screen shot result of Dillo variants generated from versions 0.8.0
and 0.7.3. The user interface is nearly non-existent and unresponsive.

Dillo) it provides a more likely scenario for recombining different functionality between

two software programs. Quake, however, is also a much larger and more complex

program than either GNU-sed or Dillo. Properly testing a recombined Quake variant

to determine the success of the recombination is extremely difficult to accomplish

with a simple shell script, therefore manual testing was used to analyze many of the

stable recombined variants.

5.4.1 Fitness Calculation

Fitness evaluation for each Quake program variant was done using a simple fitness

script (listed in Appendix C). This script performs three simple and very similar tests.

1. Running the Quake program and loading the basic startup map.

2. Running the Quake program and running the default startup demo .

3. Running the Quake program and running the default startup demo with a

larger default program heap, CD support disabled, and without sound. This

test specifically exercises alternate code paths by altering the resources being

used.
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Figure 5.11: A Dillo variant generated from versions 0.8.4 and 0.8.1. No HTML is
rendered (left) yet the HTML code is visible when viewing the actual HTML source
(right)

The above tests do nothing more than run each recombined Quake variant under

slightly different constraints. Test 1 validates that a recombined variant can load

a simple game map and test 2 runs a pre-recorded game demo (a default demo is

started when the game is run without any other input). Test 3 attempts to run the

same pre-recorded demo using different system and environment constraints which

alter the flow of execution. With tests 2 and 3 the console output from running the

variant is captured for evaluation.

As with Dillo and GNU-Sed, after each test is run the script checks for the presence

of a core dump file. If no core dump file is found, the script terminates the program

variant and adjusts the fitness return value (R). A value of 10 is added to R if test 1

runs without a core dump. If tests 2 and 3 do not generate a core dump, the script

compares the resulting console output against a baseline console output taken from

the original Quake 1.09. The number of matching lines from these comparisons is

then added to the return value and testing continues. If any test generates a core

dump the script immediately exits and returns the current value of R. Based on

the number of lines in the baseline console output a maximum value of 240 can be

returned by the Quake fitness script, giving a possible fitness value range of 0 to 240

for any single recombined Quake variant.
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Figure 5.12: A Dillo variant generated from versions 0.8.4 and 0.8.1, which offers a
partial display of Google’s web site from Test 4 (left) and only the title of the Dillo
web site from Test 3 (right).

5.4.2 Versions Tested

Though there are dozens of forks of the original Quake source code, only five were

chosen for testing. These include:

• TyrQuake - a conservative fork of Quake primarily focusing on bug fixes and

code cleanup.

• SDLQuake - a re-factoring of the Quake code to make it compatible with the

SDL (Simple DirectMedia Layer) API.

• MakaQu - includes many graphical enhancements to Quake such as improved

menus, refined status bar, etc.

• ProQuake - uses anti-cheat technology and other competitive play enhance-

ments.

• FishEyeQuake - uses an interesting ‘fish-eye’ view to render the game.

These forks were chosen specifically because they include software rendered builds

(though most also included OpenGL builds) and were easy to obtain and build in the

test environment. Focusing on forked versions of Quake which contain software render
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Figure 5.13: A Dillo variant generated from versions 0.8.4 and 0.8.1, which ignores
HTML bullet points and the width parameter of an HTML table when rendering the
Dillo homepage from Test 3.

builds, reduces the hardware requirements for the test environment and reduces the

number of 3rd party libraries required - such as OpenGL. One exception to this is

MakaQu, which is primarily comprised of enhancements for the OpenGL build of

Quake, but does include a software build with a reduced set of these enhancements.

Figures 5.16 - 5.20 are screenshots of the above forks of Quake after loading the

default startup map. These figures are used as reference when describing some of the

results obtained. Of particular note from these figures is the apparent lack of model

rendering (no gun or zombies are displayed) in MakaQu and the lack of a heads-

up display (HUD) in the FishEyeQuake screenshots. The model rendering issue in

MakaQu is due to the fact that much of the model rendering code changes are specific

to OpenGL and as a side effect causes a bug in the software rendering. The lack of

a HUD in the FishEyeQuake fork is due to minor code changes with respect to the

default screen size and field of view. By increasing the default screen size, the HUD is

intentionally removed from view making it difficult for a player to know their current

status indicators (health, armor, ammo, etc.). It is also worth noting the unique

default aspect ratio seen in the reference screenshot of SDLQuake. This was not

present in any of the other versions.
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Figure 5.14: ID Software’s Quake - Version 1.09

Table 5.6 lists the number of object files available for each Quake version, the

number of exported symbols from those files, and the number of differing exported

symbols compared to the original Quake 1.09 version.

All possible version pairs were chosen as input for the ObjRecombGA software.

These pairs were tested using Two-Point Crossover and Tournament Selection with a

population size of 50 over 20 generations, a tournament size of 7 with 90% probability,

and using an elitism value of 10. Using these parameters allowed ObjRecombGA to

produce a maximum of 810 recombined program variants for each tested pair. Larger

population and generations sizes were not attempted due to the fact that successful

results were found using these parameters.

Table 5.7 lists each tested pair, the number of matching object or library files

available for recombination, the number of total and unique variants produced, and

the number of unstable variants. Also included is the number of differing symbols

between the pairs of forks. This was added to give some indication of how closely
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Figure 5.15: A partial evolutionary tree showing various Quake forks from 1999
thru 2006[12]. Image licensed under the Creative Commons Attribution 2.0 Generic
license[21].

related the pairs of forks are because, unlike the GNU-sed and Dillo tests which used

sequential versions, the versions of these forks have no obvious distance metric.

In all cases, ObjRecombGA was able to successfully create 810 variants for each

version pair. However, some test pairs experienced a high percentage of unstable

variants. Specifically, TyrQuake with SDLQuake and TyrQuake with MakaQu both

had unstable variants (204 and 292) accounting for 25% or more of their total variants

produced. One likely explanation for the instability is the high number of differing

symbols between the versions themselves (459 and 671) and between the original

Quake version. Contrast those results against the recombination of SDLQuake with
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Figure 5.16: TyrQuake - Version 0.38

 

Figure 5.17: SDLQuake - Version 1.09

 

Figure 5.18: MakaQu - Version 0.2

 

Figure 5.19: ProQuake - Version 3.60

FishEyeQuake or FishEyeQuake with ProQuake where the number of unstable vari-

ants (149 and 0) and number of symbol differences (180 and 168) are much lower.

This indicates that a high degree of symbolic differences, and thus more divergent ver-

sions, are more difficult to recombine successfully. However, version pairs SDLQuake

with ProQuake and MakaQu with ProQuake, while still very divergent, had a lower

degree of instability.

Examining the average fitness at each generation for the various Quake version

pairs, Figure 5.21, further solidifies the observation that versions which are more

divergent generally have more difficulty recombining successfully. Of all the versions

tested, TyrQuake was the most divergent with all other versions leading to a high

degree of instability and very low fitness averages in nearly every test. Many of the

variants generated through recombination with TyrQuake resulted in very strange

behaviors. Some crashed outright, others hung after loading the game, and some were
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Figure 5.20: FishEyeQuake - Version 1.09

Quake Version Object Files # Symbols # Symbols Diff.
TyrQuake 92 1807 375
SDLQuake 92 1962 168

FishEyeQuake 89 2104 12
MakaQu 89 2160 450
ProQuake 93 2246 156

Table 5.6: A comparison of the versions of Quake used

caught in infinite loops negatively affecting the fitness value. Figure 5.22 illustrates

some of these findings.

MakaQu was also highly divergent compared to other versions but was able to

achieve much better fitness averages across all tests. However, the fitness results

for MakaQu are misleading as manual inspection of the recombination results showed

that many variants would start correctly and produce significant correct output before

silently failing or freezing without producing a core dump file. This behavior can be

seen in figure 5.23.

However, not all results from recombinations involving MakaQu were unsuccessful.

A handful of variants generated from FishQuake with MakaQu and SDLQuake with

MakaQu showed promise. Figures 5.24 & 5.25 highlight some of the recombined

functionality found during manual inspection. Specifically, the menu selection system

fromMakaQu was successfully integrated with the unique aspect ratio of SDLQuake in

one variant, while another variant integrated the HUD from MakaQu into SDLQuake.

Even more promising was the successful recombination of the fish-eye view from

FishEyeQuake with the HUD from MakaQu.
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Version Pair Files Total Unique Unstable Symbols
Tyr × SDL 84 810 727 204 459

Tyr × FishEye 88 810 738 138 387
Tyr × MakaQu 88 810 679 292 671

Tyr × Pro 88 810 624 63 529
SDL × FishEye 85 810 676 149 180
SDL × MakaQu 85 810 476 64 428

SDL × Pro 85 810 529 60 324
FishEye × MakaQu 89 810 728 93 462

FishEye × Pro 89 810 528 0 168
MakaQu × Pro 89 810 570 58 604

Table 5.7: Results for the tested Quake version pairs

Additional positive results can be seen when looking at other, highly fit, recom-

binations. Figure 5.26 provides two screenshots from two different variants produced

from the recombination of SDLQuake with FishEyeQuake. Here we can see the fish-

eye view from FishEyeQuake integrated into SDLQuake; one without any HUD and

the other with the default HUD being displayed. Interestingly enough, displaying the

HUD causes minor graphical glitches on the top and bottom of the fish-eye view.

5.4.3 Analysis

There are several aspects of the Quake results which make them stand apart from

the results seen in both GNU-sed and Dillo. First, the successful recombinations of

Quake versions show that software program forks, not just versions, are entirely ca-

pable of being recombined using object file recombination. Second, not only do these

recombined variants of Quake run, but they actually exhibit a combined functional

behavior that does not exist in either of the parent programs. This is immediately

obvious when looking at figures 5.25 - 5.26 and comparing them against several of the

reference figures from the parent versions. Lastly, Quake is a highly complex program

with an enormous search space for possible object file recombinations, yet both stable

and fully playable recombined variants of Quake can be easily discovered with the

presented approach.

Though the fitness script for Quake is fairly simplistic given that it merely checks

console output and the presence of core dump files, it provides a drastic improvement

over the fitness script used for Dillo. By checking for both stability and correct output,

the majority of the pairs were able to produce stable, highly fit, and usable recombined
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Figure 5.21: Average fitness at each Generation

variants. However, recombinations involving the TyrQuake fork, in particular, seemed

to consistently generate unstable and poorly fit variants. This particular fork had

one of the highest number of symbol differences compared to the original Quake

and the fewest number of symbols in total. These numbers suggest that the code

in TyrQuake is a heavily re-factored with many new functions being created (more

differing symbols) and with each of those functions containing much more code (fewer

symbols in total). As such, TyrQuake is the most divergent of all the forks tested; and

its poor recombination results with many of the other forks reinforce this hypothesis.

Like Dillo and GNU-sed, the fewer the changes between the Quake forks, the more

successful ObjRecombGA is at creating stable and highly fit variants. The difference

here is that scope of the changes between forks is estimated by the number of symbol

differences against the original Quake version rather the version numbers of each fork.

5.5 Summary

ObjRecombGA was tested using three well known software programs with varying

degrees of success. It has been shown that the size and complexity of the software

program has an obvious impact on the ability of ObjRecombGA to find and create
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Figure 5.22: Screenshots of hung variants produced during recombination of
TyrQuake with MakaQu (left) and ProQuake and MakaQu (center) and variants
caught in infinite loops during the recombination of TyrQuake with SDLQuake
(right).

  

Figure 5.23: Example screen shots of Quake variants generated from recombining
FishQuake with MakaQu (left) and SDLQuake with MakaQu (right). In both screen-
shots, the game has hung silently without terminating. Manual inspection showed
many variants generated by these version pairs had similar issues.

successful recombined software program variants. Smaller software programs, such

as GNU-sed, which has limited complexity that are incrementally changed over time,

show a higher degree of success at object level program recombination. When tested

against a larger more complex program, such as Dillo and Quake, the GA search space

of possible recombined variants to be discovered by ObjRecombGA makes finding suc-

cessful recombinations much more difficult - though still possible. The recombination

results of Quake are particularly interesting as ObjRecombGA was able to successfully

recombine different Quake forks consisting of, in some cases, significantly divergent

code bases.
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Figure 5.24: Screenshots of SDLQuake recombined with MakaQu. The left screen-
shot shows the menu system from MakaQu integrated within SDLQuake. The right
screenshot shows the HUD from MakaQu in place of the HUD from SDLQuake.

 

Figure 5.25: Screenshot of FisheyeQuake recombined with MakaQu. Of note here is
the HUD from MakaQu integrated with the FishEye view from FishEyeQuake. This
solves the problem of the missing HUD in FishEyeQuake and the missing models in
MakaQu.

  

Figure 5.26: Screenshots of SDLQuake recombined with FishEyeQuake. Both variants
achieved high scoring fitness and were very playable during manual testing.



Chapter 6

Discussion

This chapter highlights some observations obtained from the experiments in the pre-

vious chapter. Major contributions of this research, along with known limitations and

suggested enhancements, are also identified in this chapter. Lastly, ideas for some

potential future work and improvements to the recombination approach are briefly

discussed.

6.1 Observations

Examining the results in the previous chapter leads to a number of observations

regarding the use of object files for recombination. The first observation is that soft-

ware recombination using object files will generally break the functionality of complex

software programs. For example, of the 8100 recombined program variants generated

from the various pairs of Quake, 1121( 15%) were unstable and lead to a program

crash. Furthermore, four pairs of forks failed to produce any noteworthy (based on

fitness) recombined programs variants. In fact, many of these variants simply hung

without crashing, effectively making them unstable also. These four pairs account

for an additional 3240(40%) of the total number of variants generated. Therefore,

a total of 4361( 54%) program variants were generated that were unstable. Though

Dillo and GNU-sed showed a slightly lower percentage (21% and 13% respectively)

of unusable variants these programs also contained fewer object files and are be con-

sidered less complex than Quake. This lack of stability is almost certainly a result of

the inability to correct potential runtime problems that are the result of source code

changes between the program versions. In most cases, however, the GA was able to

work past these runtime issues so that a larger number of stable recombined program

variants could be found.

Another observation is that this approach to recombination can actually create

software programs that exhibit recombined functionality or functionality that cannot

77
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be seen in either of the original software programs. Recombined functionality can

be seen within the Quake results where a few pairs of versions managed to produce

variants with combined graphical effects. In particular, the recombination of MakaQu

with FishEyeQuake and SDLQuake with FishEyeQuake were particularly promising,

with graphical enhancements from both versions recombining to provide a never be-

fore seen combination of graphical enhancements (see Figures 5.25 and 5.26). In terms

of unique functionality that exists in neither parent program, the recombination of

Dillo versions 0.8.4 and 0.8.1 provided the most interesting results (see Figure 5.13).

Here we saw that a recombined Dillo browser that was not capable of displaying

HTML bullets and did not respect the width parameter of the HTML tables. This

particular effect could not be reproduced with either of the original versions.

6.2 Contributions

The research presented in this work makes significant contributions to the domain

of evolutionary computing, particularly in the areas of program recombination and

genetic programming. The results in the previous chapter provide evidence that

emulating selection and recombination as it exists in nature can lead to the successful

recombination of existing software programs. Limiting the initial selection to software

programs that are closely related, according to their development evolution, more

accurately reflects the fact that living organism generally mate with organisms that

they are evolutionarly close to. This selection criteria was paired with object file

recombination which better represents the whole gene recombination seen during

chromosomal crossover in biology, and requires no source code modification of the

programs. Both of these design choices represent a fundamentally different approach

than those seen in any previous evolutionary computing, genetic programming, or

software reuse literature.

Much of the previously related research has focused on program evolution and the

creation of new software programs with very little mention of how to deal with existing

software programs. Though a few research efforts have tried to address existing

software programs, they have all either focused on source code modification to evolve

a single software program or relied on formal specifications and code annotations in

order to recombine software programs. The recombination approach presented here,
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however, works correctly on existing software programs without the need for formal

specifications, code annotations, or any other a priori knowledge of the program.

Moreover, no source code analysis or modification is required.

6.3 Limitations

The following sections discuss known limitations to not only the presented software

program recombination approach in general, but also to the ObjRecombGA imple-

mentation itself.

6.3.1 Closely Related Programs

As with genetic recombination, program recombination as presented here will only

work correctly when the parents are closely related. Though this is a defining argu-

ment of this research, it imposes severe limitations when selecting software programs

for recombination. As defined, the concept of closely related programs limits selection

to programs that share a common development history, which is essentially program

versions and program forks. This means that programs that are closely related in

other ways, such as using many of the same libraries or having large sections of

shared code, do not immediately fit this selection criteria. Such programs, however,

may also be suitable for object file recombination if a substantial amount of the object

files pair up correctly.

6.3.2 Object File Recombination

While object file recombination is a novel technique aimed at mimicking genes during

chromosomal crossover, it does come with its own drawbacks. For example, short of

modifying symbol names, there is very little modification that can be performed on an

object file. While it is possible to modify or insert addition code instructions into an

object file, great care is needed to ensure that the structure of the object file remains

intact and usable by the linker. Changing code within an object file will cause many

relative offsets within the file to be miscalculated and, if left uncorrected, will lead

to undefined behavior. A second drawback to using object files is that, unlike source

code, there is minimal validation occurring during linking. This is because the linker
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assumes that the compiler has validated all of the source code and that the resulting

object files are compatible. Therefore, in bypassing the compilation step all of the

validation and code compatibility checks are also bypassed. While forcing two object

files to link together is entirely possible due to this lack of validation, it is very difficult,

without source code analysis, to determine how the resulting linked binary will behave

at runtime. In the case of ObjRecombGA, the GAs fitness function is expected to

weed out object file combinations that have runtime problems. The shortcomings

with this approach is that identifying runtime problems may be difficult for many

programs. As such, writing an exhaustive fitness script to accurately describe the

program behavior the GA should be searching for is also difficult which will ultimately

affect the ability of ObjRecombGA to find interesting recombinations of functionality.

6.3.3 Object Files in Object-Oriented Programs

The recombination of object files for C programs is largely feasible because object files

generated from C source code are relatively simple and only contain code and data

symbol references to one another. Moving beyond object files from source code and

looking at the actual objects generated by object-oriented languages such as C++

brings an increasing set of issues to light. While the recombination of the object

files in a C++ program is similar to a C program, the impact this will have on the

objects that the recombined program will generate is much harder to determine. This

is because the actual generation of objects and their properties within the program

is determined by the source code and the dynamic runtime behavior of the program.

Object-oriented paradigm behaviors such as operator overloading, virtual functions,

and reflective program properties all introduce new runtime issues which cannot be

predicted or overcome during object file linking. However, assuming that a fitness

script can be written to steer ObjRecombGA away from such runtime issues, then

finding a usable and interesting recombined variants of C++ programs should be

possible.

6.3.4 C Programs with ELF Objects

In its current state ObjRecombGA will only successfully recombine programs written

in C and compiled by GCC to produce ELF object files. This is purely a superficial
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limitation and extending ObjRecombGA to work with programs written in other

languages such as C++ (object oriented limitations aside) or Objective-C which are

also compiled into object code files should be possible. Adding support for additional

compilers and object files, such as Microsofts Visual C++ compiler and COFF object

files, should also be possible but will require some work.

6.3.5 Linux Runtime Environment

Though ObjRecombGA was written in Java, it makes use of several common GNU

utilities typically found within any Linux operating environment. These utilities

include: find, grep, and gawk. All of these tools have been ported to other operating

systems, such as Windows1; however, they are not installed by default. Additionally,

because ObjRecombGA relies on the Bash shell to instantiate these utilities, small

modifications are be required to support a different shell environment.

6.4 Future Work

As mentioned above, recombining program versions using object files without regard

to the underlying source code changes can lead to many runtime problems which will

cause high instability in the recombined variants. Adding an additional source code

preprocessing step prior to the object file preprocessing would allow for the identifica-

tion of potentially incompatible symbols. A large number of symbol incompatibilities

can be identified by looking at the associated data and function definitions that they

represent within the source code. For example, changing the number of input pa-

rameters to a particular subroutine across program versions will cause changes in

the program stack alignment and will cause argument mismatches when calling a

particular version of the subroutine. These types of changes, however, do not alter

the symbol which represents this subroutine. Therefore, attempting to link to this

different object file version will succeed but ultimately lead to runtime problems.

Preprocessing the source code allows for runtime issues such as these can be avoided

by ensuring that symbols identified to be incompatible are not linked together.

There are a number of minor enhancements which can be made to ObjRecom-

bGA itself which could greatly improve its efficiency and robustness when creating

1GNU Win32 - http://gnuwin32.sourceforge.net/
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recombined program variants. One such enhancement includes verifying that the

object files and libraries used for recombination have actually changed between the

two target versions. Presently, ObjRecombGA assumes that all matching object and

library files between the versions are different. In many of the GNU-sed and Dillo

tested pairs, this was not the case; At least a handful of the matching object files

were identical across both versions. This assumption lead to an unnecessary inflation

of the GA search space. Another minor enhancement that can be made is to omit

object files names for object file pairing. Though it was not witnessed with GNU-sed,

Dillo, or Quake, object file names (based on the source file names) can easily change

across program versions. This name change leads to incorrectly pairing up object

files, or failing to pair up object files at all, thereby further inflating the search space.

Pairing object files based the number of matching symbols may be better approach in

situations where many object files names are different between the program versions

being recombined.



Chapter 7

Conclusion

Though various approaches for software program recombination exist, these approaches

have entirely focused on using source code as the recombination vector. Moreover,

approaches such as genetic programming and automated software engineering have

leveraged formal language specifications, design constraints, or other a priori knowl-

edge of the software programs in order to enable successful source code recombination.

These requirements, however, cannot be satisfied by existing software programs which

have no formal language specifications, design constraints, or source code annotations.

This thesis has shown that it is possible to recombine functionality from existing

software programs without the need for specific requirements on the implementation

or design of the software programs as long as the two software programs are closely

related. This was accomplished by recombining the object files of the two software

programs rather than their source code. This recombination process was automated

into ObjRecombGA, a software program which is capable of resolving symbolic de-

pendencies between the object files of the two target C programs and manipulating

these object files such that they could be linked to create many program variants. A

genetic algorithm was used to search the space of all possible object file combinations

using the testing results of each combination as a fitness measurement. While object

file recombination can introduce instability and runtime issues into the program, the

results have shown that it is successful on even large, complex, software programs so

long as the testing results are able to correctly steer the genetic algorithm. Further-

more, this approach to program recombination is capable of discovering combinations

of functionality from both parent programs that has never been observed before.
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Appendix A

Source Code for Program Version Alpha

File: a.c (produces object file a.o)

int dAx = 0;

int dAy = 0;

extern void fBn();

void fAn()

{

fBn();

}

void fAm()

{

dAx++;

}

int main(int argc, char argv[])

{

fAn();

}

File: b.c (produces object file b.o)

int dBx = 0;

extern int dAy;

extern int dAx;

extern void fAm();

void fBm()

{

dBx++;

dAx++;

}

void fBn()

{

dAy++;

fAm();

fBm();

}
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Appendix B

Source Code for Program Version Beta

File: a.c (produces object file a.o)

int dAx = 0;

int dAz = 0;

extern void fBn();

void fAn()

{

fBn();

dAx++;

}

int main(int argc, char argv[])

{

fAn();

}

File: b.c (produces object file b.o)

int dBx = 0;

extern int dAz;

void fBm()

{

dBx++;

dAz++;

}

void fBn()

{

dBx++;

fBm();

}
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Appendix C

Fitness Script used for calculating the fitness of GNU-sed

program variants

#!/bin/bash

ulimit -Sc unlimited

ulimit -Hc unlimited

ulimit -c unlimited

/bin/rm $2core

SCRIPT_HOME=/home/blair/192.168.1.4/masters/code/scripts/sed_scripts

R=0

###############################

#test 1 - excute ’head.sed’ script

###############################

$1 -f $SCRIPT_HOME/head.sed $SCRIPT_HOME/test_input/test.c > ./test_head.c &

/bin/sleep 10

if [ -a ./core ]; then

/usr/bin/killall -q -9 sed

exit $R

fi

#check the output vs. the expected output

checksum1=‘/usr/bin/md5sum ./test_head.c | /usr/bin/awk ’{print $1}’‘

checksum2=‘/usr/bin/md5sum $SCRIPT_HOME/test_output/test_head.c | /usr/bin/awk ’{print $1}’‘

if [ "$checksum1" = "$checksum2" ]

then

let "R += 1"

fi

/usr/bin/killall -q -9 sed

###############################

#test 2 - excute ’remccomms1.sed’ script

###############################

$1 -f $SCRIPT_HOME//remccoms1.sed $SCRIPT_HOME/test_input/test.c > ./test_nocomments.c &

/bin/sleep 10

if [ -a ./core ]; then

/usr/bin/killall -q -9 sed

exit $R

fi

checksum1=‘/usr/bin/md5sum ./test_nocomments.c | /usr/bin/awk ’{print $1}’‘

checksum2=‘/usr/bin/md5sum $SCRIPT_HOME/test_output/test_nocomments.c | /usr/bin/awk ’{print $1}’‘

#check the output vs. the expected output

if [ "$checksum1" = "$checksum2" ]

then

let "R += 1"

fi

/usr/bin/killall -q -9 sed

###############################

#test 3 - excute ’indentls.sed’ script

###############################

$1 -f $SCRIPT_HOME/indentls.sed $SCRIPT_HOME/test_input/lslr.txt > ./lslr_indent.txt &
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/bin/sleep 10

if [ -a ./core ]; then

/usr/bin/killall -q -9 sed

exit $R

fi

checksum1=‘/usr/bin/md5sum ./lslr_indent.txt | /usr/bin/awk ’{print $1}’‘

checksum2=‘/usr/bin/md5sum $SCRIPT_HOME/test_output/lslr_indent.txt | /usr/bin/awk ’{print $1}’‘

#check the output vs. the expected output

if [ "$checksum1" = "$checksum2" ]

then

let "R += 1"

fi

/usr/bin/killall -q -9 sed

###############################

#test 4 - excute ’revchr_1.sed’ script

###############################

$1 -f $SCRIPT_HOME/revchr_1.sed $SCRIPT_HOME/test_input/lslr.txt > ./lslr_rev.txt &

/bin/sleep 10

if [ -a ./core ]; then

/usr/bin/killall -q -9 sed

exit $R

fi

checksum1=‘/usr/bin/md5sum ./lslr_rev.txt | /usr/bin/awk ’{print $1}’‘

checksum2=‘/usr/bin/md5sum $SCRIPT_HOME/test_output/lslr_rev.txt | /usr/bin/awk ’{print $1}’‘

#check the output vs. the expected output

if [ "$checksum1" = "$checksum2" ]

then

let "R += 1"

fi

/usr/bin/killall -q -9 sed

###############################

#test 5 - excute ’cflword5.sed’ script

###############################

$1 -f $SCRIPT_HOME/cflword5.sed $SCRIPT_HOME/test_input/test.c > ./test_caps.c &

/bin/sleep 10

if [ -a ./core ]; then

/usr/bin/killall -q -9 sed

exit $R

fi

checksum1=‘/usr/bin/md5sum ./test_caps.c | /usr/bin/awk ’{print $1}’‘

checksum2=‘/usr/bin/md5sum $SCRIPT_HOME/test_output/test_caps.c | /usr/bin/awk ’{print $1}’‘

#check the output vs. the expected output

if [ "$checksum1" = "$checksum2" ]

then

let "R += 1"

fi

/usr/bin/killall -q -9 sed

###############################

#test 6 - excute ’sierpinski3.sed’ script

###############################

$1 -f $SCRIPT_HOME/sierpinski3.sed $SCRIPT_HOME/test_input/sp_tri.txt > ./sp_tri_out.txt &

/bin/sleep 10

if [ -a ./core ]; then

/usr/bin/killall -q -9 sed

exit $R

fi

checksum1=‘/usr/bin/md5sum ./sp_tri_out.txt | /usr/bin/awk ’{print $1}’‘
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checksum2=‘/usr/bin/md5sum $SCRIPT_HOME/test_output/sp_tri_out.txt | /usr/bin/awk ’{print $1}’‘

#check the output vs. the expected output

if [ "$checksum1" = "$checksum2" ]

then

let "R += 1"

fi

/usr/bin/killall -q -9 sed

exit $R



Appendix D

Fitness Script used for calculating the fitness of Dillo

program variants

#!/bin/bash

ulimit -Hc unlimited

ulimit -Sc unlimited

ulimit -c unlimited

/bin/rm $2core

R=0

###############################

#test 1 - loading dillo variant

###############################

$1 &

/bin/sleep 5

if [ -f ./core ]; then

/usr/bin/killall -9 dillo

exit $R

fi

let "R += 1"

/usr/bin/scrot

/bin/sleep 5

/usr/bin/killall -9 dillo

###############################

#test 2 - local HTML file

###############################

fileaccess=‘stat -c %x /home/blair/hello_world.html

$1 /home/blair/hello_world.html &

/bin/sleep 5

if [ -f ./core ]; then

/usr/bin/killall -9 dillo

exit $R

fi

let "R += 1"

fileaccess2=‘stat -c %x /home/blair/hello_world.html

if [ $fileaccess != $fileaccess2 ]

let "R += 1"

fi

/usr/bin/scrot

/bin/sleep 5

/usr/bin/killall -9 dillo

################################################

#test 3 - Internet site with HTML and JavaScript

################################################

$1 www.google.com &

/bin/sleep 5

if [ -f ./core ]; then

/usr/bin/killall -9 dillo

exit $R

fi

let "R += 1"

/usr/bin/scrot
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/bin/sleep 5

/usr/bin/killall -9 dillo

######################################

#test 4 - Internet site with HTML only

######################################

$1 www.dillo.org &

/bin/sleep 5

if [ -f ./core ]; then

/usr/bin/killall -9 dillo

exit $R

fi

let "R += 1"

/usr/bin/scrot

/bin/sleep 5

/usr/bin/killall -9 dillo

exit $R



Appendix E

Fitness Script used for calculating the fitness of Quake

program variants

#!/bin/bash

ulimit -Sc unlimited

ulimit -Hc unlimited

ulimit -c unlimited

/bin/rm $2core*

R=0

A=10

B=0

C=0

################

# setup the .pak files

# needed for the game to load

#################

/bin/ln -s /home/blair/Masters/quake_code/ID1 $2id1

###############################

#test 1 - loading quake variant

# simple map only

###############################

$1 +map start 2>$2stdout2.txt 1>$2stdout1.txt &

/bin/sleep 10

if [ -e $2core* ]; then

/bin/rm $2core*

echo "crash" > $2core

exit $R

fi

/usr/bin/killall -9 quake.x11

R=‘expr $A + $R‘

###############################

#test 2 - loading quake variant

# demo run

###############################

$1 2>$2stdout2.txt 1>$2stdout2.txt &

/bin/sleep 10

if [ -e $2core* ]; then

/bin/rm $2core*

echo "crash" > $2core

exit $R

fi

/usr/bin/killall -9 quake.x11

if [ -e $2stdout2.txt ]; then

B=‘/usr/bin/gawk -f lineDiff.awk -v flist1=$2stdout2.txt quake_stdout.txt‘

fi
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R=‘expr $B + $R‘

###############################

#test 3 - loading quake with

# larger heap,

# no CD support,

# no sound support.

#Hoping to increase stability

###############################

$1 -mem 32 -nocd -nosound 2>$2stdout3.txt 1>$2stdout3.txt &

/bin/sleep 10

if [ -e $2core* ]; then

/bin/rm $2core*

echo "crash" > $2core

exit $R

fi

/usr/bin/killall -9 quake.x11

if [ -e $2stdout3.txt ]; then

C=‘/usr/bin/gawk -f lineDiff.awk -v flist1=$2stdout3.txt quake_stdout.txt‘

fi

R=‘expr $R + $C‘

exit $R


