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Abstract

Although many have recognized that software monocultures are a major impediment

to improving security, it is currently unclear how much and what kind of diversity is

needed to counteract this problem. This thesis provides a framework for investigating

software diversity in the context of security. We propose a simple model of a software

ecosystem using sets of hosts and vulnerabilities represented as a bipartite graph, and

we exhibit a few examples of software security problems formulated precisely enough

in this model to admit rigorous analysis. We propose software diversity metrics

using entropy, illustrate a calculation using real world data, and analyse six popular

defence techniques for their effect on inhibiting large scale attacks. We then employ

game theory to understand why computer host owners would choose to diversify and

propose a slight variation of the popular security game Capture the Flag to determine

users’ underlying utility functions.
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Chapter 1

Introduction

1.1 Introduction

Software systems that power billions of computers around the world have grown

enormously in size and complexity over the past two decades. Ensuring the security

of these systems is critical to the functioning of virtually all major organizations in a

modern society. Despite efforts to the contrary, a large number of security incidents

occur each year costing the community billions of dollars.

A fundamental property of software that makes it economical to produce is the

virtually zero cost of making copies. This enables a developer to amortize development

costs and is responsible in no small part for the explosive growth of the computer

industry. Unfortunately, this write-once-copy-endlessly property of software has a

flip-side for security. It enables a single piece of malware to compromise a large

number of systems by exploiting vulnerabilities in a widely replicated piece of code.

Malware writers are conferred an asymmetric advantage over defenders: an attacker

needs to find just one vulnerability to compromise millions of hosts while the defender

is tasked with eliminating all possible vulnerabilities to secure a system.
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Security researchers have proposed that increasing the diversity of software run-

ning on the installed hardware base would prevent large scale catastrophic security

breaches [82, 71, 79]. In other words, if computer systems appear different to exploits,

many more exploits would need to be created to compromise the same number of sys-

tems. The resulting increase in malware creation costs would contribute to levelling

the efforts expended by attackers and defenders.

A few defences have been proposed with the intent of increasing diversity. The

purpose of this thesis is not to develop another technique to make systems diverse,

but rather to make a first step towards a more formal understanding of diversity in

software systems in the context of security.

1.2 Motivation

Traditionally, security breaches have been regarded as one-off events with potentially

severe undesirable consequences. Budgetary estimates often exclude them due to

their unpredictable nature in occurrence and impact. But the onslaught of attacks

endured by software year after year forces us to treat security breaches as part and

parcel of maintaining a software system. Annual security incident reports and their

corresponding financial cost estimates provide us with evidence of the systemic prob-

lem of security in software [62]. Software vulnerabilities in popular software continue

to be discovered at a prodigious rate and exploits taking advantage of them continue

to find ways of getting around increasingly sophisticated defensive mechanisms. In

the process, what has been left effectively unchecked is the scale of damage a single

exploit can cause.

Software monocultures have been recognized as a major impediment to improving

the security of software systems. Researchers, both in opinion papers [71, 29, 79,
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28] and peer reviewed work [82, 27, 25], have observed that software systems in

practice suffer from a lack of diversity. However, only a relatively modest amount of

research has gone into developing mechanisms to address this problem and of all the

techniques proposed, only one class of techniques have gained widespread adoption.

Randomization techniques aim to eliminate needless consistency among programs

with no incremental cost in deployment. Address space layout randomization (ASLR)

[52] is one such example that works at run time by modifying the base memory

location of critical data structures like the stack and the heap. When used with

sufficiently high entropy, ASLR can render some exploits relying on code running

in specific memory locations ineffective, but when the entropy is insufficient, it is

susceptible to brute-force derandomization attacks [64]. Randomization techniques

are diverse in one sense because they increase effective variability in software but are

not diverse in another sense because the difficulty of attack is uniform across the

population. In a diverse ecosystem, attack difficulty varies between members of the

population.

The concept of diversity is used in theory and practice to a much greater extent

in other disciplines. In finance, diversification of stock holdings and investments are

employed to reduce risk. In biology, a myriad of different mechanisms for regulating

life processes have been discovered that enable differential survival of some organisms

in harsh conditions and natural calamities. Diversity is a central theme in ecology,

where it has witnessed the most amount of research. Measuring diversity of natural

ecosystems and understanding interrelationships between species that affect the sta-

bility of such systems are some of the primary problems in biodiversity research. At

a smaller scale, studying the potency of pathogens to take down entire populations

of species is critical to both epidemiology and agriculture.

Software systems, despite growing to comparable levels of complexity as natural
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systems, have not been subjected to rigorous diversity analysis. It remains unclear

to what extent the defensive strategies developed to protect individual software com-

ponents are effective in improving the security of a software ecosystem treated as a

whole. We believe that investigating the notion of diversity of software systems from

a security standpoint would help us analyse current defences, predict the population

level success or failure of newly proposed defences, and provide us with metrics for

measuring progress in improving the diversity of systems.

1.3 Main Contributions

This thesis has five main contributions to the analysis of the concept of software

diversity. Parts of these ideas have been published (jointly with Anil Somayaji and

Michael Locasto) [46].

1. A model a software ecosystem that enables rigorous diversity analysis.

We propose a model of a software ecosystem that emphasizes relationships be-

tween hosts and vulnerabilities and allows them to be conveniently represented

as a bipartite graph. We discuss five plausible assumptions that enable viewing

real world software systems as an extension of the model. We formulate and

describe three problems of vulnerability discovery, prediction, and coordination

that become amenable to rigorous analysis in this model.

2. Introducing diversity indices for software. We formalize the intuitive

notion of diversity for software systems by drawing upon the extensive literature

of ecology. We discuss two components that comprise diversity indices and

propose a generalization of Shannon entropy as a measure of diversity. We show

an illustration of how to calculate approximate diversity values of operating
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systems and browsers running on commodity hardware using real world data.

We discuss implications of diversity on stability measures including resistance,

resilience and invasibility.

3. Analysis of the diversity-impact of current defences. We analyse the

scalability of six popular defences widely used in real world computer systems.

These include firewalls, anti-malware signatures, anti-malware heuristics, no-

execute memory, address space layout randomization and software updates. We

study their impact on the host-vulnerability graph and classify them based on

the properties of the graph they modify. We observe that none of these defences

alter the distribution of edges in the host-vulnerability graph and thus have no

significant effect on diversity.

4. Introducing game theory in diversity. Owing to the success of the explana-

tory power of game theory in economics [75], evolutionary biology [66], and

network security [78] we construct and analyse games relevant to diversity that

reflect choices available to users. Specifically, we formulate an anti-coordination

game and a dispersion game with additional costs to make changes to strategies.

Equilibrium values for these suggest that in the absence of external enforcement,

suboptimal strategies are likely to be employed.

5. A methodology for capturing diversity related user preferences in

security. In the real world, choices made by consumers and developers are not

often driven by a primary focus on security. Other factors like usability and

functionality play an important role. This inhibits employing real world data to

deduce user preferences regarding diversity parameters for security. Therefore,

we present a simple modification to the popular security game, Capture the

Flag, that will enable us to obtain data about revealed preferences in a security-
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focused setting.

1.4 Organization of Thesis

The remainder of this thesis is structured as follows. Chapter 2 provides the relevant

background needed to analyse diversity. It summarizes research findings on diversity

in Finance, Agriculture and Ecology and also discusses previous attempts to introduce

diversity in computer systems. (Game theoretic background and related work are

presented in Chapter 6.) Chapter 3 introduces the software ecosystem model that

is useful for analysing diversity. A list of simplifying assumptions and some open

problems are also discussed in this chapter. Chapter 4 introduces the reader to

the concept of vulnerability overlap, an essential aspect of diversity. We propose

generalised entropy as a measure of diversity, and using real-world data, show an

illustration of one such calculation. We also discuss diversity-stability relationships.

Chapter 5 systematically classifies and analyses six popular defensive strategies and

their effect on diversity. Basics of game theory are introduced in Chapter 6. Analysis

of two simple games provides a descriptive justification of why maximal diversity

is unlikely to naturally arise. We also proposes diversity-inspired modifications to

a popular playable security game to enable us to collect real world data on user

preference in the context of a cyber-conflict. Chapter 7 discusses limitations and

ideas for future work.



Chapter 2

Background and Related Work

This chapter provides background on research related to diversity in computer science

and other disciplines. In the first part of this chapter we review literature on analysis,

experiments, and practical use of diversity in three different fields that have studied

it in depth: finance, agriculture, and ecology. In finance, diversification strategies

are often employed to reduce risk and some past work provides a mathematical jus-

tification for desiring increased diversity. In agriculture, we learn about the massive

financial impact of monocultures. Several decades of ecological research aimed at

gaining a descriptive theory of diversity in species, their interactions, and ecosystem

stabilities provides a foundation for diversity analysis of computer systems.

The second part of this chapter reviews diversity techniques proposed for com-

puter systems. We first look at early literature on fault tolerance and approaches to

mitigate failures by simultaneously building and running alternative pieces of soft-

ware. We then review randomization techniques that aim to improve security by

eliminating unnecessary consistency among programs running on different systems.

We also review some explicit diversification techniques recently proposed and briefly

describe a paper that attempts to analyse optimum diversity in organizations. We

7
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defer describing background and related work on game theory and its application to

computer science until Chapter 6.

Towards the end of this chapter, the reader should note that although diversity

has been formally researched in some fields, the software security literature lacks

a general framework to understand most aspects of diversity including measures,

strategies, outcomes and testing methodologies.

2.1 Diversity in other fields

Diversity as a mechanism for managing risk under uncertain situations is studied and

practised in many fields.

2.1.1 Finance

In the financial industry, diversification is important strategy used to reduce risk. Dis-

tributing funds in a variety of investments ensures that the aggregate risk is smaller

than the weighted average of the risks of individual investments. As long as invest-

ments are not strongly correlated, an investor with a diversified portfolio is protected

from the failures of a few constituent investments. A mutual fund is an example of

a collective investment scheme that relies on diversity to provide increased assurance

of returns. A mutual fund provides opportunity for individual investors with limited

funds to pool money and purchase a variety of financial securities like bonds, stocks

or derivatives. In a volatile market, this scheme facilitates investors to trade off risk

for reduced returns.

The financial literature provides a formal justification for preferring increased di-

versity by generalizing the following observation: investing a fixed total wealth into

identically distributed investments will leave the mean unchanged but will minimize
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the variance. Assuming a concave utility function, it follows that all independently

distributed investments that have a common mean must enter the optimal portfo-

lio [60]. Diversification is effective when asset returns have near zero or somewhat

positive correlations. Brumley et al. give a precise condition for the case where inde-

pendence assumption of investments is dropped [11]. Consider an investor who has

two investment options represented as random variables X and Y . She chooses to

invest a proportion, λ, of her total wealth in X. If U is a concave utility function,

then E (U(λX + (1− λ)Y )) doesn’t achieve a maximum at λ = 1 ( i.e some funds

should also be invested in Y ) if and only if E (XU ′(X)) < E (Y U ′(X)). This pro-

vides the necessary and sufficient condition for choosing between one investment or

distributing the total wealth in both investments even if their returns are correlated.

2.1.2 Agriculture

Monoculture, or a lack of diversity, was identified as a major problem in the agricul-

ture industry. A single variety of seed planted extensively to produce uniform yield

made it possible to automate much of processing but also made the entire harvest

susceptible to complete destruction by a single pest [22]. For example, in the 1970s,

over $1 billion worth of harvestable corn crop was destroyed in the U.S by a single

pathogen [33].

Experiments conducted in European grasslands to measure effects of plant diver-

sity on productivity reveal that communities with fewer functional groups are less

productive [31]. Two primary factors responsible for over-yielding, where the total

biomass of a mixture of species exceeds the most productive monoculture biomass,

were determined to be niche complementarity and positive mutual interactions. Co-

existence of ecologically different species occupying different niches leads to a more

thorough utilization of resources.
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Polyculture is an agricultural movement that aims to contain and possibly re-

verse arable land degradation and soil erosion by planting multiple crops in the same

space. The hypothesis is that by imitating diverse natural systems, agriculture can

be made sustainable over longer periods of time. Self regulating features of natural

ecosystems are believed to be responsible for decreased incidence of plant diseases

and corresponding increase in yields [39]. An experimental study in China reported

over 80% increase in yields of rice crops when several varieties of rice were planted in

the same fields [83]. This result was primarily attributed to a dramatic 94% decrease

in disease rates making pesticides redundant.

2.1.3 Ecology

Ecology is the study of interrelationships between organisms and the environment in

which they coexist. Meticulous observations and efforts to classify species around us

has produced large data sets of valuable information that has not only led to great

conceptual breakthroughs [21] but also initiated research into stability, richness and

sustainability of natural ecosystems. Creating ecosystem models and theories for

predicting habitat survival rates, corroborating theories with empirical data mined

from large data sets on geographically dispersed ecosystems, and more recently, a

desire to understand the effect of humans on the loss of biodiversity has made the

field of ecology a leader in understanding and experimenting with diversity. We

borrow heavily from this literature.

Fischer initiated the study of diversity in 1940s in a paper that studied the re-

lation between the number of species and the number of individuals in an animal

population [24]. Soon, researchers began investigating correlations between several

other parameters of a variety of ecosystems. This resulted in the creation of a diverse

set of diversity indices, with often inconsistent interpretations, by combining vari-
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ous aspects of ecosystems including species richness, relative abundance, interaction

strengths and sampling size. It wasn’t always clear what diversity measure to use or

what each of them represented. Anne Magurran provides a consistent assimilation

and simplification of a large number of diversity measures and their interpretations

[43]. We also use Hill’s unifying notion of information theoretic measures [32] as a

measure of diversity in software ecosystems.

Quantifying the utility of diversity is still an active area of research in ecology.

Relationships between diversity, stability, resistance, resilience and other potentially

desirable outcomes are highly complex [54, 72]. McCann provides a comprehen-

sive overview of the diversity-stability debate [44]. It is unclear how observations

on diversity-stability relationships in ecology could be directly applied to computer

systems. We explore some possibilities in Section 4.4.

2.2 Diversity in Computer Science

2.2.1 Fault tolerance

Even before computer security was a major concern, the problem of working with

single implementations was recognized in the fault tolerance community. In the mid-

1980s, the n-version programming approach to fault tolerance was advocated where

multiple development teams would develop versions of the same software. These

would be executed in parallel and provided the same inputs [3]. Outputs were aggre-

gated for each input, and when they weren’t identical, a majority vote would serve

as an arbitrator. This approach attempted to reduce the probability of failure due

to a single bug, but experiments showed that different versions created continued to

exhibit considerably higher similarity than expected: the independence assumption
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was called into question [37].

In implementations, a few technical challenges were observed, including compar-

ing floating point outputs [10], while other experiments showed that using different

programming languages or development environments had no major impact on the

incidence of correlated failures [9].

2.2.2 Randomization techniques

Applications of principles of diversity for computer security was initially inspired by

biological processes [26]. Their implementations focused on removing unnecessary

consistency in software without affecting usability. An early example of this tech-

nique was able to thwart simple buffer overflow attacks by randomly increasing the

amount of memory allocated on a stack frame [25]. A more robust compile-time

improvement, Stackguard, that places and checks for random canary values before

returning from a function call is now a standard feature in GCC [19]. Address Space

Layout Randomization (ASLR) extends this concept to various memory structures

and is widely deployed in many current operating systems.

Instruction set randomization is another technique that follows the same philoso-

phy but prevents code injection attacks. By using emulators [4] or hardware support

[35], instruction-opcode mapping is altered in a pre-determined way using keys. The

same keys are then used to encode machine independent executable binaries into

their corresponding randomized instruction set. Compile-time and run-time random-

ization techniques take programs that might run on millions of systems and make

their instances individually distinct in some aspects. While they are usually inex-

pensive to implement for the increased security they offer, a single point of failure

can negate most of the protection provided, just like in cryptography. For example,

ASLR on 32-bit systems was found to be susceptible to de-randomization attacks due
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to insufficient entropy [64].

Along with the above mentioned preventive measures, automatically detecting

and generating patches for infected systems has been proposed [65]. In some limited

cases it is even possible to automatically generate patches for zero-day exploits using

genetic algorithms [77]. While these patching techniques are not explicit diversity

type defences, they do monitor and alter program behaviour differentiating themselves

from other instances at runtime.

2.2.3 Diversification techniques

As early as 1993, Cohen observed that the static nature of defences cannot hold up

against the dynamic nature of attacks and proposed several techniques for modifying

programs to achieve security through obscurity [16]. After describing many techniques

like instruction reordering, variable substitutions, garbage insertion, instruction en-

codings and so on he concludes that a mathematical analysis of attacks and defences

is needed to understand what we’re trying to conceal in security and to what extent

evolutionary techniques are effective in concealing them.

Explicit use of algorithms to increase diversity by assigning software packages

to nodes in communication networks was proposed by O’Donnell and Sethu [49].

Their contention is that by ensuring neighbouring nodes run distinct software as

far as possible, the spread of worms and viruses through email networks or client

server file shares would be minimized. This problem nicely translates into the graph

colouring problem, which is to assign colours from a given set to vertices of a graph

in order to minimize the number of pairs of vertices that share a colour. In the

distributed algorithms they propose, nodes communicate with their neighbours to

choose one among the available software packages that are as disparate as possible.

Interestingly, in their simulations they observe that hybrid algorithms outperform the
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rest indicating that methods used to introduce diversity in systems themselves need

to be diverse.

More recently Cox et. al. proposed n-variant systems, a framework for introducing

diversity in software systems, that enables simultaneous execution of automatically

modified versions of programs while preserving semantics [20]. By loading different

versions in non-overlapping memory addresses or by using different tags for instruc-

tions in each application, some attacks that use memory access or code injection are

prevented. It has also been suggested that compiling programs along multiple code

paths to create several different versions might be used to improve security through

diversity [27].

2.3 Software Diversity Analysis

The software engineering literature includes several methodologies of design, imple-

mentation, analysis and verification of software variants in product lines. Schaefer

et. al. provide a comprehensive overview of the state of the art of software diversity

in software engineering [61] including variability modeling, diversity in architectures

and implementation, quality assurance and model checking.

The software security literature, however, has witnessed little research on analysis

of diversity. Chen et al. argue that software monoculture can be understood as a

balance between positive externalities, like interoperability, and negative externalities,

like increased risk of attack [14]. By assuming that the loss experienced by a firm

increases quadratically with the number of computers compromised and that the scale

of the incident (i.e. number of computers affected) follows an exponential distribution,

they calculate the proportion of new software with respect to incumbent software that

computers in a firm must use to minimize loss. They claim that not just the variance
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of loss, but even expected loss can be reduced by increasing diversity.

Having made the observation that security is often employed as an after thought

by a majority of computer users and administrators, Cowan et al. analyse the effec-

tiveness of several post-hoc security techniques by classifying them into four major

categories [18]. They argue that interfaces and implementations are two major parts

of software that are subject to obfuscation and access restriction techniques for im-

proving security. By categorizing security techniques like file system access controls,

firewalls, static and dynamic type checking, chaffing and winnowing, random code

or data layout into four quadrants of interface restrictions, interface obfuscation, im-

plementation restriction and implementation obfuscation, they claim that restriction

techniques, which enforce strict rules to control known pathways of communication

between different components of software are almost always more effective and cheaper

to implement than obscurity techniques, which aim to deter a larger class of attacks

but succeed only a majority of the time as opposed to all the time.

2.4 Discussion

This chapter has outlined two distinct themes that have emerged from a survey of

diversity literature. In fields other than computer science where diversity is stud-

ied, there is scepticism, but appreciation for the concept that has stimulated much

empirical and mathematical research. In contrast, computer science has witnessed

very little research on diversity, especially from a security standpoint. A significant

number of researchers resonate with the views of Cowan et. al. who suggest the

use of restriction based techniques for improving security almost exclusively. This

is most certainly appealing from a practical perspective, and perhaps effective in

the short-term when attack methods are known a priori; but in the long term, this
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only escalates the arms race of creating and breaking increasingly higher barriers. A

stalemate situation is reached where the following two major problems of computer

security remain unsolved:

• Preventing large scale catastrophic damages because of new attacks that can

surmount restrictions.

• Making computer systems more autonomous by not requiring human interven-

tion every time there is a security breach.

Attempting to resolve both these problems requires a balance of flexible but some-

times unreliable adaptive techniques and the more rigid but reliable restriction based

techniques. Security researchers familiar with complex adaptive systems like natural

or biological systems argue for the former [67, 68], while those coming from a practical

viewpoint typically have a strong preference for the latter [18]. Unfortunately very

little progress has been made towards a resolution because of a lack of adequate tools

in our current security literature. The primary purpose of this thesis is to provide

some of these tools: diversity measures on software ecosystem models, game theo-

retic arguments for analysing strategies and expected outcomes, and a way to gather

real-world data about utilities related to diversity.



Chapter 3

Model and Assumptions

3.1 Introduction

In the real world, a software ecosystem is composed of hardware developers, software

and firmware developers, alpha and beta testers, end users and devices. Each entity

operates under functional and financial constraints and plays a part in affecting the

security of the ecosystem. Their complex interrelationships make it extremely hard

to model all aspects of an ecosystem simultaneously.

In this chapter we propose a simplified model of a software ecosystem that enables

us to analyse diversity from a security standpoint. This model is composed of the two

most important entities that are related to security: hosts and vulnerabilities. These

entities can be highly interconnected in many kinds of distributions allowing a range

of possibilities for the diversity of the ecosystem.

The rest of this chapter is divided into three parts. We first describe our model

both in terms of sets and as a bipartite graph. Then we list assumptions under which

this model is valid while commenting on the plausibility of these assumptions in the

real world. Finally we illustrate the utility of this model by posing various problems

17
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of interest to the security community in the context of this model.

3.2 Model

Figure 3.1. An example of non-uniform vulnerability distribution with n hosts,
m vulnerabilities and 3 vulnerabilities per host

Our model consists of a set of n hosts H, a set of m vulnerabilities V and a

mapping from every host to a subset of V . This is easily visualized as a bipartite

graph, an example of which is shown in Figure 3.1. Hosts and vulnerabilities comprise

vertices of the bipartite graph and an edge between vertices corresponding to a host

hi and a vulnerability vj indicates that hi runs software that contains vj.
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This model contains several simplifications. First, by associating hosts directly

with vulnerabilities, we’ve avoided the need to model software containing those vul-

nerabilities. Although we are interested in software diversity, our focus is primarily

on the effect of diversity on security and to that end we treat software as a set of

vulnerabilities.

When a vulnerability is exploited, all hosts connected to it can be compromised.

For example, in Figure 3.1 vulnerabilities v4 and v5 are highly connected and have the

potential to affect 6 hosts each, while vulnerabilities v1 and v2 can only affect 1 and

2 hosts respectively. In the real world, where the number of computers, n, might be

in millions and the number of vulnerabilities, m, might be in thousands, the number

of hosts that vulnerabilities can compromise can exhibit high variability. In other

words, the distribution of the degree of vulnerability vertices could be highly skewed

or highly even. Quantifying this variability gives us diversity measures as we will see

in Chapter 4.

3.3 Assumptions

Several simplifying assumptions are implicit in this model. Here we list all those

assumptions, discuss their plausibility and their necessity.

3.3.1 Computer equivalence

We assume that no host in the host-vulnerability graph is privileged or has control

over other hosts. For example, in automatic software updates, if an attacker com-

promises the central software distribution server, he may gain control of all clients

that pull software from that server. In our model, we represent this as a vulnerability

connected to hosts corresponding to the software update server and all clients that
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depend on it. There is no special distinction for the host that physically contains the

vulnerability. This assumption holds for other hierarchical network configurations

like subnets behind a NAT or a firewall.

3.3.2 Software-vulnerability equivalence

We assume that vulnerabilities cannot be completely eliminated from a large software

stack and that to bring a computer to a usable state a significant amount of code

needs to run. In other words, it is assumed that techniques like effective formal veri-

fication on the entire software stack of commodity computers is infeasible. Reliability

literature indicates that this might indeed be the case [12]. This assumption enables

us to avoid modelling complex software-vulnerability relationships and denote a host’s

choices only in terms of vulnerabilities. Instead of saying a host chooses software, we

say a host chooses vulnerabilities.

It is to be noted that this assumption places constraints on the applicability of

the model to real world software systems because in reality hosts do not get to choose

individual software components each containing a single vulnerability and mix them

in any manner to produce desired functionality. Moreover, software is layered into

firmware, kernel, user space libraries, applications and so on and while it is possible to

trade off functionality by moving components between layers, alternatives of software

available for users to choose from are often written to work in only one layer. These

two factors reduce the choice granted to a user in the real world as compared to our

model.

This assumption can be relaxed by introducing a component layer between hosts

and vulnerabilities so that hosts don’t choose vulnerabilities directly, but only com-

ponents which are connected to vulnerabilities. The resultant reduction in choice

would reflect the real world case better, but it would also necessitate introducing a
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granularity parameter in our model to control the extent to which software can be

divided into inter-operable components. We discuss this further in Section 7.3.1.

3.3.3 Vulnerability criticality

In order to create a successful exploit, an attacker might have to rely on not just

one vulnerability in one software, but a series of vulnerabilities leading up to a host’s

compromise. In our model, we assume that all vulnerabilities can be exploited indi-

vidually and any one is sufficient to compromise hosts connected to it. In the case

where several vulnerabilities need to be chained to create an exploit, we combine all

those vulnerabilities and treat them as one vertex in the host-vulnerability graph.

The other aspect of the Vulnerability criticality assumption is that the result of

exploiting a vulnerability is binary: either an attacker achieves his goal or he does not.

We do not model the various degrees to which a host can be compromised. There is

some practical evidence to support this assumption. The goal of many exploits is to

return a shell prompt to the attacker where arbitrary code execution is allowed with

either user or root privileges. For example Metasploit, an offensive security toolkit,

provides a mechanism whereby most exploits written in it result in dropping the user

to a shell [1].

3.3.4 Vulnerability equidistribution

Every host in our model is required to choose the same number of vulnerabilities—

every host vertex hi ∈ H has the same degree k. This statement is consistent with

both Computer equivalence and Vulnerability criticality assumptions but is indepen-

dent of them. It asserts that two different alternatives of software that can be sub-

stituted for one another have the same number of vulnerabilities.
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This assumption is also an idealization of the real world as there are several

cases where security-hardened alternatives to mainstream software are available which

trade off usability, configuration complexity or performance for a reduced number of

vulnerabilities. If we were to accommodate this in our model, we’d need a measure

to evaluate software security. In the context of our model, this translates to sourcing

a non-uniform distribution of host vertex degrees from the real world in order to

reflect the market share values of computers as their effective security varies. Despite

significantly increasing the complexity of our model, it is currently unclear to what

extent diversity related measures and outcomes would be effected if this is taken

into account. In our preliminary investigation of diversity for security we’re more

interested in the distribution of vulnerabilities among hosts than the relative security

of alternatives available. Therefore we do not believe that this assumption cripples

our model significantly.

3.3.5 Steady State assumption

Our analysis is confined to steady state where the number of vulnerabilities that

exist do not change over time. This assumption highlights the ontological status

of vulnerabilities in our model: they will continue to exist and can be found and

exploited by expending effort.

Implication of this assumption in our model is that if software corresponding to

a vulnerability v gets compromised then deg(v) hosts are affected, but in the next

iteration of analysis, everything remains unchanged— v is not removed from V . One

interpretation of this is that a security patch might itself have a vulnerability or that

new vulnerabilities might be discovered in the same software.

There has been some past work to empirically check if the security of software in

the real world is indeed improving over time. Rescorla argues that software security
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does not get better with time [56], but Ozment and Schechter report that vulnera-

bilities introduced prior to the initial version release of OpenBSD have continued to

decrease albeit with a median lifetime of over 2 years [51]. However, a security report

indicates that the exponential growth in the number of vulnerabilities reported until

2006 has essentially flattened [62].

While the answer to “Is security of computer systems improving?” remains vague

at best, our interest in this model is not primarily to study the deletion of host-

vulnerability edges but to understand the causes and effects of their re-organization.

3.4 Open Problems

While our model and assumptions are a great simplification of the real world software

ecosystem, they do allow us to capture the dynamics of commodity systems running

mainstream software that are in a constant state of code flux. In this section, we

discuss three possible broad questions of interest to security that might have impli-

cations for diversity. We do not attempt to solve these problems here but merely

express them using our model and discuss a few observations.

3.4.1 Vulnerability Discovery

To discover vulnerabilities and create exploits, attackers need to spend non-trivial

amount of effort either by directly investing time and expertise in investigating soft-

ware or by spending money to buy zero-days. Some security firms estimate that

zero-day vulnerabilities and exploits can cost attackers between $10K-$100K, making

it a fairly serious investment [2].

One of the questions attackers face is which software to investigate for vulnerabili-

ties given the expected number of hosts each software can be used to compromise and
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the expected difficulty in finding vulnerabilities in that software. Suppose we relax

part of the Vulnerability criticality assumption so that some vulnerabilities might be

easier to find than others: let the random variables Tf (vi) and Cf (vi) be the time and

cost of finding a vulnerability vi in software. Using estimates from previous vulnera-

bilities, attackers might have a way to estimate the expected values and maybe even

the distribution. Their task is to allocate a given amount of resource to attempt to

discover one or more vulnerabilities to maximize the total number of hosts that can be

compromised. Attackers would have to predict how deg(vi) would change with time,

subject to a constant
∑

i deg(vi). This problem of allocating resources to discovering

vulnerabilities is also applicable to white hat security researchers.

3.4.2 Vulnerability Prediction

Just as attackers have to figure out how vulnerability distribution among hosts

changes with time, defenders can actively switch one software for another to avoid

being the target of attacks as much as possible. In our model, we reduce the problem

of predicting which software might get compromised in the future to the well known

paging problem.

Suppose a host keeps track of vulnerabilities compromised over time w1, w2, w3..., wt

where wi ∈ V . In our model, by the Software-vulnerability equivalence assumption, a

host’s requirement to run software can be viewed as selecting k vulnerabilities from

V to fill its cache. It’s objective is to minimize the probability that the cached vul-

nerabilities will be compromised in the future.

Contrast this with the paging problem: as the CPU requests a series of pages

p1, p2, ..., pt the caching algorithm has to store k pages in its cache so as to maximize

the probability that they will be requested in the future. This problem is well studied

in operating systems literature because it is expensive to make fast memories in large
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sizes. Modern CPUs have several levels of cache memory in increasing order of size

and decreasing order of speed. When the CPU requests a page that isn’t in the cache,

a page miss occurs at which point the page replacement algorithm decides to evict a

page in the current cache. The page replacement problem is an online problem for

which several strategies are known: First in First out, Least Recently Used, Random

and other variants that use clocks and counters. While the optimal algorithm requires

complete knowledge of future requests and hence can’t be implemented, strategies like

Least Recently Used can be shown to be worse off than optimal only by a constant

factor [7].

The vulnerability prediction problem can be very simply translated into the pag-

ing problem by considering every host to have a cache of vulnerabilities that are not

connected to it. From this viewpoint, it is easy to see that against oblivious adver-

saries, a strategy of evicting the Least recently used page when a page fault occurs

corresponds to getting rid of the Most recently attacked vulnerability when an attack

occurs. The difference between these problems is that the CPUs are passive and

usually not malicious towards memory whereas attackers can adaptively change their

strategies. Further analysis is required to investigate if these two seemingly unrelated

problems have any deeper connection.

3.4.3 Vulnerability Selection and Coordination

In the Vulnerability prediction problem each host was tasked to select vulnerabilities

based on history of attacks. In addition to that, if hosts have the ability to select

vulnerabilities by coordinating with each other, the total expected number of attacks

could be reduced.

The problem is what protocols would hosts use to distribute vulnerabilities among

themselves. A central point of distribution can lead to a complete security breach
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if compromised. Therefore a single point of failure cannot be an integral part of

a system that aims to facilitate increased diversity. We look at a simple problem

where two hosts cooperate to choose vulnerabilities in a distributed fashion. Consider

the case where two hosts h1 and h2 decide to pick k vulnerabilities each from V ,

2k << |V | = m, such that they end up with no vulnerability in common. That is,

Vh1∩Vh2 = ∅, where Vh is the set of vulnerabilities chosen by host h. Assume that both

hosts know all elements of V and can uniquely identify them. If both hosts are honest,

then they can agree to pick the first k and the second k vulnerabilities respectively.

But it might be the case that one of the hosts is malicious and is attempting to

trick the other honest host to choose vulnerabilities it wishes to propagate. Therefore

what is required is a protocol where two honest hosts should be able to choose distinct

vulnerability sets, but if one of the hosts is malicious, the best it can do is a random

choice, i.e Pr(|Vh1 ∩ Vh2| = x) =
(
k
x

)(
m−k
k−x

)
.

Firstly, if a host has a deterministic strategy, then it is clear that a malicious host

can choose the same set of vulnerabilities and cause |Vh1 ∩ Vh2 | = k. One suboptimal

solution is the following simple strategy: h1 chooses k vulnerabilities randomly from

the first m/2 vulnerabilities in V , and h2 chooses k vulnerabilities randomly from the

second m/2 vulnerabilities in V . This assures no vulnerabilities are in common. If

one of the hosts is malicious, the only thing it knows is which half of V the other

host’s vulnerabilities are from, i.e Pr(|Vh1 ∩ Vh2| = x) =
(
k
x

)(
m/2−k
k−x

)
. Further work is

needed to investigate if h1 can communicate with h2 to choose different vulnerabilities

without revealing its random bits. Investigating variants of zero-knowledge protocols

might provide improved results.



Chapter 4

Diversity measures

In this chapter we review work on measuring diversity in ecological literature and

propose diversity measures for software ecosystems based on the simplified model de-

scribed in Chapter 3. Measuring diversity of species in various habitats is of tremen-

dous interest to researchers in ecology. Study of diversity in ecology started with

Fischer in the early 1940s. As increasing amount of information on species and their

relative abundance was becoming available, there was a need to fit the data collected

using theoretical distributions [24]. Several decades of effort to aggregate and explain

ecological data has resulted in a diverse set of diversity indices [43]. Although the

concept of diversity might seem intuitive to many, a concrete definition has proven

so elusive that it has even been called a ‘non-concept’ [34]. However, owing to its

importance in understanding other phenomena, unification of various measures and

their interpretations are still actively researched [57]. Here we aim to provide clarity

to the word diversity in relation to software security.

This chapter is divided into four sections. In the first, we examine possible ques-

tions about software security that might have answers related to diversity. The second

part introduces diversity indices that could be used to calculate diversity numbers for

27
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software ecosystems and the third part provides a simplified illustration of such a

calculation using real world data. Finally, we discuss the impact of software diversity

on security by drawing upon extensive work on diversity-stability relationships from

ecological literature.

4.1 Vulnerability overlap

An important aspect of the diversity of a software ecosystem from a security stand-

point is the number of vulnerabilities that hosts have in common. When several

hosts share vulnerabilities, an attack that exploits any common vulnerability can

compromise all those hosts. In fact, as the extent to which vulnerabilities are shared

increases, there is a concomitant increase in the scalability of attacks that utilize

those vulnerabilities. The phrase vulnerability overlap aims to capture this intuitive

notion. In this section, we explore how vulnerability overlap motivates the statistical

interpretation of entropy as a measure of diversity (as discussed in Section 4.2).

More concretely, by vulnerability overlap, we mean the number of vulnerabilities

that a given set of hosts have in common. Potency of vulnerabilities critically depends

on this number and one might ask how security of an ecosystem would be affected

as we vary the overlap while keeping all other parameters constant. Suppose we

fix the number of hosts, n, the number of vulnerabilities m, and also the number of

vulnerabilities per host, k (i.e effectively fixing the number of vertices and edges in the

graph). The number of ways in which we can distribute m unlabelled vulnerabilities

among n indistinguishable hosts, so that each host gets k vulnerabilities is the same as

the number of ways to partition the integer nk into m non-negative integers, which

is
(
nk−m−1

m−1

)
. Even for relatively small numbers, like n = 100, 000 hosts, m = 300

vulnerabilities and k = 10 vulnerabilities per host, this number is a gigantic 101182.



4.1. Vulnerability overlap 29

If we want to label and distinguish vulnerabilities, this number is even larger by a

factor of m!. Of all these possible configurations of the software ecosystem, those that

have a skewed distribution are far fewer than those that are more evenly distributed

leading us to the statistical interpretation of entropy as a measure of diversity. For

example, if 80% of the vulnerabilities are distributed evenly only among 20% of hosts,

as opposed to 80% of the hosts there are 10168 fewer possible configurations.

Figure 4.1. A host-vulnerability graph where vulnerabilities are normally dis-
tributed among hosts.

One might be interested to know how drastically vulnerability overlap changes

as the ecosystem becomes more evenly distributed. For example, we can ask on an

average, how many vulnerabilities two hosts have in common and how does it change

as vulnerabilities are increasingly dispersed?

Consider a software ecosystem as shown in Figure 4.1 where our n and m val-



4.1. Vulnerability overlap 30

ues are as above. We vary the number of vulnerabilities per host k between 5 and

60 by varying the degrees of vulnerability vertices using a normally distribution, i.e

deg(V ) ∼ N (µ, v2). Using a Gaussian distribution allows us to change the amount of

vulnerability overlap by changing a single parameter, the variance, v. As v is varied

between 10 and 90, the average vulnerability overlap between any two hosts decreases.

As shown in Figure 4.2, each curve corresponds to one Gaussian distribution. For

two randomly chosen hosts hx and hy, the curve is a graph of Vhx ∩ Vhy on the y-axis

and the number of vulnerabilities per host, k, on the x-axis, where Vh is the set of

vulnerabilities connected to host h. Computing vulnerability intersection between

random hosts was done by selecting 1000 pairs of hosts randomly and calculating the

average number of shared vulnerabilities. A higher variance implies more uniform dis-

tribution of vulnerabilities, where as a lower variance represents a spikier curve. With

a lower variance, a small set of vulnerabilities exist among a significant population

of hosts, i.e if we pick two hosts at random the number of vulnerabilities they have

in common is high. In fact for the same average vulnerability overlap between two

randomly chosen hosts, the number of vulnerabilities per host can vary significantly

with variance. For example, as shown in Figure 4.2, a distribution with a variance

of 10 (narrow, spiky) can have only 20 vulnerabilities per hosts where as one with a

variance of 70 (broader, more uniform) can afford 50 vulnerabilities per host for the

same average vulnerability overlap, 10, between two random hosts. In other words, it

is possible that a software ecosystem can have a lower average vulnerability overlap,

restricting attack scalability, despite each host individually having a higher number

of vulnerabilities as long as the vulnerabilities are more or less evenly distributed.
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Figure 4.2. Effect of change in the number of vulnerabilities per host on the
vulnerability overlap between two randomly chosen hosts for various values of
the variance of normally distributed vulnerabilities

4.2 Diversity Indices

It is important to note that that diversity, like randomness, is not an absolute concept

but is relative to an observer. In our case, observers are attackers and our software

ecosystems need to have just enough diversity to protect against attacks. For example,

if all hosts run a common piece of formally verified code which is guaranteed to have

no vulnerabilities, then that should not have any effect on diversity measures. This is

primarily the reason why we measure diversity for security in terms of vulnerabilities

and not some parameters of software like its code density.

Measuring diversity is not an unambiguously straightforward process because of

a simple reason—it contains two separate components. First, the absolute number of
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alternatives available or richness and second, the proportion in which each alternative

is distributed or relative abundance. It computer security terms, it matters that there

are 20 different alternatives of software that offer the same functionality as opposed

to 2, and it also matters that these alternatives are more or less equally distributed

among hosts. The ratio in which these two components are combined leads to a

continuum of diversity measures corresponding to Renyi entropy. A special case of

Renyi entropy is the well known Shannon entropy.

We now use the bipartite graph G (see Figure 3.1) to represent diversity as follows.

If vulnerabilities from V are uniformly distributed among hosts, diversity is high and

a compromise of any one vulnerability affects nk/m hosts, while a skewed distribution

leads to reduced diversity and, in an extreme case, would let an attacker take down all

n hosts using one vulnerability. A diversity index should capture both these extremes

and all possibilities in between.

Definitions

If a host h chosen at random finds a vulnerability v connected to it, let pi be the

probability that v = vi. We have pi = deg(vi)/kn where deg(v) is the degree of the

vertex associated with vulnerability v.

Let the fraction of edges connected to each vulnerability vertex, vi be pi. Note

that p1 +p2 + ...+pm = 1. Simpson’s index measures the abundance of more common

vulnerabilities and is regarded as a measure of dominance concentration [80]. It is

defined as

q =
p21 + p22 + ...+ p2m
p1 + p2 + ...+ pm

(4.1)

Shannon entropy is a popular information theoretic entropy measure and is defined
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as

H = −p1 log p1 + p2 log p2 + ...+ pm log pm
p1 + p2 + ...+ pm

(4.2)

Both these measures can be expressed as a special case of the following equation.

Na = (
w1p

a−1
1 + w2p

a−1
2 + ...+ wmp

a−1
m

w1 + w2 + ...+ wm

)
1

1−a (4.3)

Na, called the Diversity number [32], is the reciprocal of the (a − 1)th root of

weighted mean of the (a − 1)th powers of pi. If we set weights wi themselves as pi,

then we obtain

Na = (
m∑
i=1

pai )
1/1−a (4.4)

where the parameter a controls the relative importance given to less connected

vulnerabilities and highly connected vulnerabilities.

Renyi entropy is simply the logarithm of the diversity number: Ha = log(Na).

Further, we note the following special cases:

• N−∞ is the reciprocal of the proportional abundance of the rarest vulnerability.

• N0 counts the number of vulnerabilities.

• N1 = lima→1Na corresponds to Shannon entropy. log(N1) = H = −
∑m

i=1 pi log(pi)

as in Equation 4.2

• N2 is the reciprocal of the Simpson’s Index defined in Equation 4.1

• N∞ is the reciprocal of the proportional abundance of the commonest vulnera-

bility.

As the value of a increases from −∞ to +∞, the diversity number Na decreases

the weight assigned to the least connected vulnerabilities while increasing the weight
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of highly connected vulnerabilities. Before proceeding to discuss diversity-stability

relationships in the context of software security, an example of how one could calculate

these values in the real world is shown.

4.3 Illustration of a diversity calculation

For an illustration on how to approximately calculate diversities, we look at a real

world example. Figure 4.3 shows a host-vulnerability graph of desktop operating

systems during 2011. Market share data is taken from [45] and publicly disclosed

vulnerability statistics are taken from NVD [48]. We only consider vulnerabilities in

two classes of software - operating systems and browsers - because estimated market

shares for each are easily available. Every host has to choose one OS and one browser

and for simplicity we assume that all three browsers run on all operating systems.

Figure 4.4 plots Na for various values of a.

The first graph G1 is computed by assuming that all vulnerabilities from each

category, e.g., “Linux”, “Firefox”, are lumped together. This is done to reduce the

additional choice hosts would have if there were allowed to pick one vulnerability

from “Chrome” and one from “Firefox”. Since this isn’t possible in the real world,

and also because it is hard to estimate the total number of computers each software

is installed in, as opposed to just market share, we just have 6 vulnerabilities. If n is

the number of hosts, there are 2n edges. Therefore, vulnerability degrees are

{pi} = {0.91n

2n
,
0.03n

2n
,
0.06n

2n
,
0.56n

2n
,
0.23n

2n
,
0.21n

2n
}

from which Na can be computed.

In G2, we weight each vulnerability category (e.g., “Windows”), with the number
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Figure 4.3. Market share data and the number of vulnerabilities reported in
NVD for Operating Systems and Browsers in 2011. Every host chooses an
OS and a browser. Graph (number of vertices and edges) is not to scale.

of vulnerabilities reported (e.g., 244). In this case different combinations of OS and

Browser will lead to different number of vulnerabilities per host. We have

{pi} = {244 ∗ 0.91n

tot
, 57 ∗ 0.03n

tot
, 204 ∗ 0.06n

tot
, 99 ∗ 0.56n

tot
, 106 ∗ 0.23n

tot
, 266 ∗ 0.21n

tot
}

where tot is the total number of edges. This results in lower entropy because the num-

ber of vulnerabilities reported for each category is distributed more evenly than the

corresponding market share resulting in increased skewness. G3 is the hypothetical

case for comparison where all operating systems have the same market share, result-

ing in the highest diversity. If browsers are also assumed to be equally distributed,

we obtain a horizontal straight line passing through N0.
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Figure 4.4. Calculating diversity numbersNa for the software ecosystem shown
in Figure 4.3. Note that Renyi entropy Ha = log(Na) and a special case of that
when a = 1 is Shannon entropy. G1 is obtained by treating all vulnerabilities
from each category as just one vulnerability. G2 is calculated by weighing each
category with the number of vulnerabilities. G3 is for comparison where all OS
have equal market share.
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Which specific measure to use depends on relative weights in the exponent one

wishes to use for the least connected or highly connected vulnerabilities. Although

our example considers only browser and OS-specific vulnerabilities, it is possible to

include a larger variety of software if market share for each is known. An interesting

exercise would be to calculate diversity values for Unix-like distributions at the kernel,

userspace and application level especially since several variants and forks exist. How-

ever, obtaining accurate install base figures for every software is a formidable task.

Granularity of choice is a crucial difference in this example from our ideal model and

entropy as a diversity measure is highly sensitive to it. In order to increase diversity,

we not only have to increase the amount of choice, but also have to make software

in components that can be intermixed easily. As a trivial example, suppose SSL

libraries openssl and gnutls are API-level compatible and for all practical purposes

can be replaced with each other, then a package manager may decide depending on

market share values and security track record which library to install and use.

4.4 Diversity-Stability relationship

Stability of an ecosystem is intricately linked to its diversity. The diversity-stability

debate in ecological literature has produced several interesting observations despite

still being unresolved [44]. Elton first proposed in the 1950s that simple species pop-

ulation models tend to oscillate and are hence less stable, while more diverse models

are more stable as they can withstand perturbations [23]. Later theoretical studies

suggested the opposite and it was realized that just as diversity addresses two differ-

ent components (species richness and relative proportions), the gross word stability

can have several more precise meanings including resistance (how much variables un-

der consideration change due to perturbation), resilience (how fast variables return
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to equilibrium after perturbation) and variability (long term change of variance) [54].

Another concept of interest that is linked to diversity is invasibility—the study of

impact of introducing members of foreign species into an ecosystem.

The general consensus of various experiments conducted on plant communities

in Minnesota, on the grazing ecosystem in the Serengeti and various replicable mi-

crocosm experiments (both aquatic and terrestrial) indicate that there is a positive

correlation between stability and diversity [44]. However, there is evidence that di-

versity is not the prime driver of this relationship but instead ecosystem stability

depends on its ability to contain a community of species that are capable of differ-

ential response. The impact of harsh environmental conditions on the diversity of

an ecosystem remains an active area of research. On one hand, researchers have

claimed that the result of physiological or resource stress and strong fluctuations in

weather conditions reduce interactions among species favouring coexistence of ecolog-

ically very similar species. But to the contrary, Chesson and Huntly, in an important

theoretical contribution, have argued that harsh and fluctuating conditions create

new ecological niches that lead to increased diversity [15]. Maintenance of diversity

requires the two following components: the existence of flux or variability in ecosys-

tems and populations capable of differentially exploiting this flux or variability [44].

We shall return to see how this might apply to computer systems in our discussion

on the game theoretic aspects of diversity in Chapter 6.

Several analogies can be drawn between computer and natural ecosystems with

respect to stability. Obfuscation [40] and software tamper resistance [76] are static

methods to inhibit unintended or malicious modification of software, while dynamic

techniques like pH [69] aim to provide resistance and resilience by monitoring system

calls and delaying unusual ones. The concept of invasibility carries over to computer

systems in a simpler form primarily because of the relatively black and white nature of
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success or failure of exploit code and root or user privilege separation methods widely

used as defaults in access control systems. Literature on the analysis of stability

of computer systems includes the study of resistance to attacks when firewalls are

misconfigured [81] and of networks to limit propagation of viruses [63], while literature

on diversity predominantly includes opinion papers by security researchers [82, 71].

However, the diversity-stability debate itself has been left unexplored for computer

systems. In the future, as the major operating systems establish their dominance and

their core pieces of code evolve to a relatively stable state, it might be possible to

conduct experiments on applications running on higher layers by treating operating

systems as a model of the environment.

Although research on the diversity-stability debate in the context of computer

systems remains largely unexplored, the striking similarities between ecological sub-

systems and their software counterparts offer reason to believe that the positive cor-

relations between diversity and stability theorized and observed in ecology would be

applicable to computer systems. In fact, several security researchers agree with the

hypothesis that increased diversity has the potential to improve security [71, 29, 79].

The more contentious issues are whether current defences are effective in combating

monocultures and to what extent is the short-term and the long-term cost of trying

to pursue explicit diversification strategies rationally justifiable. Using the framework

described so far, we address these issues in the next two chapters.



Chapter 5

Current Defences

5.1 Introduction

Using the model described in Chapter 3 and diversity measures introduced in Chap-

ter 4 we here examine the effect on diversity of six popular defensive techniques: fire-

walls, signature-based anti-malware defences, heuristic-based anti-malware defences,

no-execute memory, address space layout randomization (ASLR), and software up-

dates. We briefly describe each of these defences, analyse their effect on some classes

of vulnerabilities, and discuss how much, if at all, they contribute towards making

attacks less effective from an ecosystem perspective.

5.2 Firewalls

Firewalls filter or block network traffic destined for specific hosts or services, either by

running on routers or bridges (network firewalls), or by running on individual hosts

(host-based firewalls).

Firewalls are an extremely scalable defence from a deployment perspective. Net-

40



5.3. Anti-Malware Signatures 41

work firewalls can protect thousands of hosts by sitting at an ingress point for a shared

network connection. Host-based firewalls, when configured with standard rules, can

also be deployed on many hosts for very little cost: the software and policies simply

have to be propagated.

Firewalls are also very effective at raising the cost of exploiting vulnerabilities in

network services that need not be accessible from the open Internet. But the very

ability of a network firewall to protect many hosts at once also means that once that

firewall is bypassed, it provides no further protection. The cost of having to bypass

the network firewall can be amortized over all of the hosts that it protects. Similarly,

the cost of developing a technique to bypass a host-based firewall can be amortized

over many hosts so protected.

In the host-vulnerability graph, let Vf ⊂ V be the set of vulnerabilities a that

a firewall running on Hf ⊂ H protects. Then, in the best-case scenario where an

attacker cannot exploit any vulnerability from Vf , a fraction of |Vf ||Hf |/kn edges

disappear from the graph. In the worst case where an attacker has managed to

bypass the firewall all those edges remain and the graph is unchanged.

Firewalls thus act as a coarse grained control system over what data is transferred

to and from a network. To an attacker this translates to a one-time cost for morphing

the exploit code into data which a firewall allows. After this transformation, he can

potentially access hundreds or thousands of hosts.

5.3 Anti-Malware Signatures

Signature-based anti-malware systems, whether implemented as network traffic, data

(email/document), or host-based scanners, all search for specific patterns of bytes

in order to detect known pieces of malware. While scanners may employ a num-
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ber of techniques, such as unpackers and machine emulators, to circumvent malware

obfuscation, these are all used to expose behaviour for signature matching.

Signature-based anti-malware systems can be deployed relatively easily: after in-

stallations, automated update mechanisms keep their signatures updated. The per-

host cost of deployment is thus quite minimal: it is software that is installed and then

largely forgotten.

Anti-malware systems can incur a cost to the defender, however, every time they

detect something that is suspected to be malicious. This is in contrast to firewalls,

where potentially malicious network connections are silently blocked. Vendors, how-

ever, devote significant resources to tuning their signatures to ensure that these costs,

particularly those caused by false alarms, are sufficiently low to preserve their deploy-

ment scalability.

As it turns out, the true role of these systems is actually to limit attack scalabil-

ity, rather than detect attacks, per se. Attackers have access to most anti-malware

packages; thus, they can design their malware so that they will not be detected. Once

a piece of malware becomes widely enough dispersed, though, it will be captured for

analysis by an anti-malware vendor who will then craft and distribute signatures to

detect it. Thus, the only attacks that signature-based anti-malware systems detect

reliably are the ones that have been widely deployed. If an attacker is willing to

forego attacking many targets that could have been attacked, or if attacks can be

mounted in a sufficiently covert way, it is possible for no signature to be created for

their malware for an indefinite period of time.

Anti-malware signatures can be viewed as having a “recycling” effect on the vul-

nerability set. As new vulnerabilities are discovered and added to V , anti-malware

signatures ensure that old well known vulnerabilities are deleted from V . This does

open up the possibility for hosts to choose different vulnerabilities and redistribute
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their edges, but only if we have defences that enable intelligent redistribution. If we

follow conventional ways, the steady state assumption holds and the graph remains

unaltered.

Signature-based defences can be largely circumvented through the use of poly-

morphism engines. By creating a variety of obfuscated binaries, the anti-malware

vendor has to devote resources to crafting signatures that can recognize each variant.

With effort, vendors can develop signatures for the parts of the malware that do not

change; unfortunately, this arms race does not favour the defenders [70].

5.4 Anti-Malware Heuristics

Heuristic-based anti-malware defences attempt to block malware by detecting known

patterns of behaviour that have been found to correlate with malicious activity.

However the behaviour pattern is generated, these systems can notice suspicious

behaviour—relaying keystrokes to the network, oddly-timed registry edits—and can

then quarantine the responsible piece of code.

These systems are more comparable to firewall-type defences than signature-based

anti-malware defences. They do not block specific pieces of malware, and they do not

eliminate vulnerabilities; instead, they generally make it more difficult for an attacker

to exploit a set of vulnerabilities.

Heuristic-based defences have similar per-host incremental costs to signature-

based anti-malware defences; indeed, in practice the two are generally combined.

However, heuristic-based defences are more like firewalls than signature-based de-

fences. Unless heuristics are collected and adapted on a per host basis they present a

relatively static challenge to attackers. An exploit that is carefully created to evade

detection by heuristics on one machine works on all the machines using those heuris-
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tics.

5.5 No-execute memory

No-execute memory, as for example implemented in the DEP protection on Windows

and segment-based no-execute stacks on Linux [19], interferes with stack-based buffer

overflow attacks and, depending on implementation, other code injection attacks, by

preventing code that has been injected from being executed. Because no-execute

memory defences normally have to be incorporated into operating system kernels and

operate with no user intervention and very few false alarms, they incrementally cost

almost nothing to deploy.

When first developed, no-execute memory made certain types of buffer overflow

attacks infeasible—they seemed to effectively remove an entire class of vulnerabilities

from the attacker’s repertoire. Unfortunately, those vulnerabilities were not elimi-

nated; they just needed to be exploited by a new attack technique. Return-to-libc

[53] and then return-oriented programming [13] made these vulnerabilities accessible

again, albeit at a higher one-time cost to the attacker.

In the host-vulnerability graph, no-execute memory, in the best case, deletes vul-

nerabilities from V , and in the worst case adds a one-time cost to the creation of

exploits.

5.6 ASLR

Address-space layout randomization (ASLR) randomly permutes the layout of a pro-

cess’s address space in such a way so as to defeat code injection attacks that have

rigid dependencies on there being a predictable layout to the target process’s address
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space. Like no-execute memory, ASLR provides significant protection against simple

buffer overflow attacks; also, like no-execute memory, it can be circumvented, in this

case through the use of a “derandomization” attack (i.e., by brute forcing the possible

variations in a process’s layout) [64]. Circumvention is only feasible if the attacker is

allowed to make many tries (i.e., they can crash a program thousands of times), and

if the target does not randomize enough. On 64-bit hosts, ASLR can potentially offer

enough entropy to keep hosts secure for years, even in the face of a derandomization

attack.

ASLR, like no-execute memory, can be deployed for almost no incremental cost

per host because it is a feature incorporated into the operating system. Also, like

most of the already discussed defences, ASLR does not have an impact on attack

scalability. If the implementation provides sufficient entropy or other protections to

prevent brute-force attacks, certain types of attacks are simply blocked. Yet, once it

is circumvented on one host, all hosts are now equally vulnerable.

In the host-vulnerability graph, ASLR used on a subset of hosts (like 64-bit ones)

simply disallows those hosts from choosing certain classes of vulnerabilities. As the

number of hosts on which ASLR is an effective defence increases, the corresponding

buffer overflow attacks it prevents against vanish from the vulnerability set. Thus, in

the best case, ASLR changes the graph by removing once and for all some vulnera-

bilities from the vulnerability set, while in the worst case, leaves the graph intact.

5.7 Software Updates

With a software update, code is replaced or patched in such a way that the updated

program (ideally) no longer has a vulnerability that the previous version had. If we

assume that most systems have many vulnerabilities, the removal of one vulnerability
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does not significantly change the security situation of the host: there still exist many

vulnerabilities that can be used to compromise the updated host. Nevertheless, if

the vulnerability is being actively exploited, eliminating that vulnerability can offer

significant practical protection.

Software updates used to be very expensive: they required downtime and manual

time and effort to apply. Updates now are increasingly automated, with patches being

propagated and often even installed in the background. These changes have greatly

reduced the incremental cost of deploying software updates: once the infrastructure

is in place, each new update can incur almost no cost per host. However, it is still

expensive to develop updates so that they are safe to deploy in an automated fashion.

And, not everyone can or does automatically install software updates.

Software updates have a rather paradoxical effect on attack scalability. In general

they serve to limit scalability by enabling defenders to quickly eliminate vulnerabilities

that are being actively targeted. Thus, any exploit that is sufficiently widespread

will quickly become much less effective as patches are developed and distributed.

However, the price of this is the creation of infrastructure that can quickly change

the code running on millions of hosts. If compromised, software update mechanisms

can become one of the most efficient ways of propagating an attack. Thus software

updates serve to limit attack scalability, except when they greatly enhance it.

On the host-vulnerability graph, software updates can been seen as having the

same recycling effect as Anti-malware signatures. They remove old vulnerabilities

from V and potentially introduce new ones. But unlike in the case of anti-malware

signatures, the automatic software update system does not provide an opportunity

for hosts to redistribute their edges. The single point of failure problem is discussed

in Section 7.3.1 and a simple potential solution to lack of opportunistic diversification

is proposed in Section 7.3.2.
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5.8 Conclusion

We’ve looked at six popular defensive techniques and their effect on reducing the

scalability of attacks. Several independent parameters are needed to describe these

defences in full detail, greatly increasing the complexity of analysis. Hence, we com-

promise accuracy for simplicity, and flatten the multi-dimensional space that char-

acterizes the wide range of exploits in into one single vulnerability set. The effect

of these defences on the host-vulnerability graph can be classified into the following

three categories:

• Remove a subset of vulnerabilities from V ; e.g., ASLR, No-execute memory.

• Remove a fraction of host-vulnerability edges; e.g., Firewalls, Anti-malware

heuristics.

• Recycle vulnerabilities in V ; e.g., Anti-malware signatures, Software updates.

None of these defences appear to cause any significant changes to the host-vulnerability

edge redistribution and consequently have no effect on the diversity indices defined

in Section 4.2. If we believe that diversity can indeed be an effective defensive strat-

egy, we need to design new kinds of defences that not only protect against individual

attacks but also reduce the scalability of attacks.



Chapter 6

Games for diversity

Increasingly, game theory is proving to be a useful tool in understanding strategies of

attackers and defenders and outcomes of the games they’re playing. In this chapter

we discuss games related to diversity. We provide a brief overview of game theory, its

scope and validity in explaining and predicting agent behaviour and review computer

science literature where game theory has been successfully employed. We then study

anti-coordination games and argue that they capture an important aspect of choice

in diversity. Analysis of equilibrium conditions reveals why rational agents might

not always end up choosing the most diverse outcomes. Finally, we propose a small

modification to a popular cyber security game, capture the flag, that would enable us

to collect interesting real world data about choices made in security-focused situations.

6.1 A brief overview of Game theory

In this section we introduce the reader to basic concepts of game theory that we’ll

use in the rest of this chapter. For a detailed overview on this topic, the reader may

refer to any of the several excellent books [50, 5, 55]. A reader familiar with game

48
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theory may skip this section.

6.1.1 History and Applications

Origins of formal game theory can be traced back to 1944 when John von Neumann

and Oskar Morgenstern published Theory of Games and Economic Behavior [75].

Their book laid the foundations of utility theory for consistently associating payoffs

with strategies and proved the minimax theorem which guarantees that every two

person zero-sum game with finitely many strategies has an equilibrium value. Since

then, game theory has been generalized in several different directions and applied in

a variety of fields.

The concept of Nash equilibrium was introduced for non-zero sum games and it

was shown that even non-cooperative games have an equilibrium value if probability

distributions over pure strategies were allowed. The field of economics was revolution-

ized by game theory because of its ability to model competition, markets, interacting

agents, bargaining and auctions. Design of a good auction system for the sale of

British 3G Telecom licenses brought in a revenue of $34 billion which was several

times more than what the finance ministry expected [6]. But other European coun-

tries with different auction designs including Italy and Switzerland fared far worse

despite having the same value of licenses sold. Per capita revenue ranged from 650

Euros in the UK to 20 Euros in Switzerland indicating that good auction design can

have a huge financial impact [36]. Evolutionary game theory was developed to explain

several aspects of living systems including animal cooperation, sexual behaviour and

biological altruism with surprisingly good results [66]. Game theory has also proved

its use in seemingly unrelated fields like topology and foundations of set theory [42].
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6.1.2 Game description

The following concepts are essential to all games :

• Players: Individuals who make decisions to maximize their utility by choice

of actions. A game may contain one or several players which could be humans,

algorithms pitted against each other or just hypothetical agents. In all cases

it is assumed that all players are rational in that they always try to maximize

their payoffs.

• Actions: Every player Pi has a set of actions Ai = {aj} she is allowed to make.

The set of actions available to each player may or may not be the same. An

action profile a = {ai}, i = 1, 2..., n is a list of actions one for each player. a−i

denotes the joint action taken by other players except Pi.

• Strategies: In a certain situation, a player may either select one action deter-

ministically or toss a coin and randomly choose one among all possible actions

available to her. A strategy si is a probability distribution over a player’s action

set. If the strategy picks out a single action deterministically then si is called a

pure strategy and otherwise it is called a mixed strategy.

• Payoff: Every player has an associated payoff function Ui(s1, s2, ..., sn) where

player Pi chooses si and the remaining choose other strategies. Just as in the

case of actions, this can be represented succinctly as Ui(si, s−i)

Games may involve each player making just one move each, or could go on for

several iterations. Outcomes in both these cases may be different. The order of play

might also be important if the game models a situation where players cannot all move

simultaneously. In these cases, players that move in subsequent turns might have the
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advantage of knowing the moves of previous players. This is typically modelled using

information sets.

In some real world cases it might be reasonable to assume the existence of a method

where players can make binding commitments. Games where such a mechanism

exists are called cooperative games as opposed to non-cooperative games where

players cannot make binding commitments. If they choose to cooperate, it would have

to be because cooperation increases payoffs of one or both players. Games where the

sum of payoffs of all players is always 0 are called zero-sum games as opposed to

non-zero sum games where the sum of total payoffs may not be zero.

6.1.3 Solution concepts

Given a complete description of a game, game theorists seek to find a way to predict

how a game will be played out. A solution describes which strategies are adopted

by each player and what the end result of the game is expected to be. Sometimes

games can have multiple solutions making it necessary to refine solution concepts until

implausible scenarios are eliminated and the desired equilibrium is reached. Typically,

game theorists are interested in finding actions and payoffs that occur at equilibrium

conditions.

A strategy that maximizes a player’s minimum expected payoff is called the max-

imin strategy. Formally, a maximin value is the following :

µm
i = max

si
min

a−i∈A−i

Ui(si, a−i) (6.1)

In the case of two player zero-sum games with finitely many strategies, minimax

theorem assures us that the maximin value (maximizing the minimum expected pay-

off) of one player is same as the minimax value (minimize the maximum expected
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loss) of the other player. However, in many games players can often do better than

their maximin strategies by outsmarting other players or by cooperating with them.

Nash equilibrium is generally considered to be the single most important solu-

tion concept in game theory. A game is said to be in a Nash equilibrium if no player

has an incentive to unilaterally deviate from his current strategy. More formally, a

profile strategy s∗ is a Nash equilibrium if ∀i,

Ui(s
∗
i , s
∗
−i) ≥ Ui(s

′

i, s
∗
−i),∀s

′

i (6.2)

It might be the case that if two or more players could change their strategies, every

individual’s payoff would increase. A strategy profile is said to be pareto optimum

if there exists no other strategy profile that results in a higher payoff for every player.

One of the more striking predictions of game theory is famously observed in a popular

two player game, the Prisoner’s Dilemma. In this game, both players can get a higher

payoff if they cooperate, but Nash equilibrium occurs when one of the players does

not cooperate leading to a predicted outcome that isn’t pareto optimal. In real world

experiments and game shows based on Prisoner’s Dilemma, people often behave in

a way predicted by Nash equilibrium [41]. But sometimes unexpected cooperation

among players is also observed, especially in repeated versions of the game [38].

6.1.4 Interpretation

In game theory, results on existence of various solution concepts are based on math-

ematically sound fixed point theorems. John Nash used Kakutani’s fixed point the-

orem to show that every non-zero sum game with finitely many strategies has at

least a mixed strategy Nash equilibrium. While theoretically, a mixed strategy is

just a probability distribution over pure strategies, in application it is still open to



6.2. Game theory and computer science 53

interpretation.

One major issue it raises is that in a two player game with completely determined

payoffs and no pure strategy nash equilibrium, in what sense is it rational to proba-

bilistically choose one strategy sometimes and another at other times. Mixed strategy

Nash equilibrium can be interpreted in the following ways [59]:

1. Purification idea. According to this interpretation players have motives

not captured by the model of the game that dictate which actions to pick when

choosing strategies. This interpretation is used with some caution because it im-

plies either that the model is incomplete or that the player is acting irrationally

by basing her preference over outcomes on extraneous reasons that have nothing

to do with payoffs. However, it does provide a consistent interpretation.

2. Large population interpretation. In this interpretation, each agent playing

the game is a proxy for a large set of agents and if the game is repeated inde-

pendently several times the mixed strategy is a probability distribution over all

the players in the game and not over a single player’s pure strategies. Thus, if a

game has a mixed strategy Nash equilibrium and is played by several individuals

in a population, some individuals will be worse off than others.

6.2 Game theory and computer science

Both computer science and game theory have found many useful applications in a large

number of other fields. In fact their spread is now so wide that the intersection of

both these fields has led to the creation of a new emerging field known as Algorithmic

game theory [47].
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6.2.1 Computation in games

Nash’s result that every finite game has a mixed strategy Nash equilibrium is exis-

tential. The problem of how an agent can go about computing such an equilibrium

and whether there exist efficient algorithms for it can be answered by computational

complexity analysis. Computing Nash equilibrium does not fall into the most com-

mon class of problems regarded as intractable, the NP-complete class, because unlike

SAT, NASH always has a solution. However, recent results have established that

computing Nash equilibrium is indeed a hard problem; NASH is PPAD-complete [47,

p. 29]. The most general algorithm for computing equilibrium for two players games,

the Lemke-Howson algorithm, is exponential in the worst case [47, p. 33].

This discovery is of importance to games in diversity because our hope is not just

to provide a descriptive theory, but also to investigate mechanisms that can improve

diversity. It is important that distributed algorithms running on individual machines

and negotiating software components in vulnerability markets are efficient in esti-

mating equilibrium values. There are positive results that indicate that approximate

Nash equilibrium might be computed in polynomial time.

Another area where algorithms are useful in game theory is in computing market

equilibria using combinatorial and convex programming techniques. Researchers are

also trying to relate the Multi-Party Communication problem in cryptography to the

problem of computing equilibria in strategic games.

6.2.2 Games in computation

Game theory is a useful tool in areas of computer systems where agents operate under

limited resources to maximize their output. For example, in non-cooperative routing

games in which self-interested agents route traffic through a congested network, it is



6.2. Game theory and computer science 55

important to estimate the inefficiency at equilibrium as compared to the case where all

traffic is routed in a centrally planned way. This is commonly referred to as the cost

of anarchy [47, p. 461]. Similarly, game theory helps in understanding the formation

of large computer networks by autonomous competing entities. Load balancing is

another area gaining prominence due to increasing number of data centres and large

Internet companies requiring scalable infrastructure.

Incentive modelling using game theory has proved to be a very important factor

in deciding the success or failure of a multi-agent system. Improving the resilience

of peer-to-peer systems by appropriately designing incentives to limit damage from

malicious nodes has been a fruitful area of research [47, p. 593]. Game theory is also

used in designing manipulation-resistant online reputation systems to prevent sybil

attacks and by search engines in online advertising to optimize profits by auctioning

parts of screen space.

6.2.3 Games in computer security

Misaligned incentives was one of the first problems related to game theory identified

in computer security. If individuals responsible for protecting systems don’t face

full consequences of a security breach, they may make socially suboptimal choices.

Economics of information security is an emerging sub-field whose import to security

might be comparable to that of cryptography [47, p. 633]. Hal Varian analyses the

problem of free riding where several agents responsible for reliable functioning of

a system would prefer to shirk than to contribute resulting in a suboptimal social

outcome [74].

Bootstrapping new security protocols is also conducive to game theoretic analysis.

If the cost of technology is greater than its benefit until a critical threshold of adopters

is reached, the improved technology might never get deployed. The essence of this
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problem is captured in coordination games where it is desirable to enforce coordi-

nation, but letting individuals independently choose strategies results in suboptimal

outcomes. In the case of diversity, we model one of its aspects using anti-coordination

games.

Our inability to estimate security of software has direct consequences for producing

poor quality software. When information asymmetry exists where consumers cannot

assess the value of the software, there is an incentive for sellers to distribute low quality

software creating a market for lemons [47, p. 638]. Games for analysis of computer

network security is an active area of research with several models of attackers, network

administrators and hosts modelled as players in many kinds of games. Quantitative

risk assessment, interactions between DDoS attackers and network administrators

and intrusion detection problems in mobile ad-hoc networks have been analysed as

games with imperfect information [58].

The recently proposed FlipIt game aims to analyse situations where it is unclear

if the defender or the attacker is in control of a host [73]. The identity of who is in

control of the host is not revealed until a player makes a move. Costs are associated

with moving and the objective of a player is to maximize the total time for which

she has the control of the host. Analysis reveals that aggressive play can motivate

opponents to drop out and close monitoring of resources is essential to detecting

attacks faster. A primary suggestion offered in the paper is that systems must be

designed for repeated total compromise.

We are unaware of any work that tries to analyse diversity from a game theoretic

point of view. As mentioned in Section 4.2, diversity consists of two components:

the absolute number of varieties available and the relative distribution of varieties.

The popular maxim, “Don’t put all your eggs in one basket” raises two important

questions:
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• How many baskets are needed?

• How should eggs be distributed in those baskets?

In terms of security, we are interested in investigating how many alternatives of

software are sufficient and how a host goes about choosing one among those alterna-

tives. The first part of this question depends on several factors and is quite complex

to analyse. We discuss a few approaches in Section 7.3.1. In the rest of this chapter

we study the second half of this question.

6.3 Anti-coordination games for diversity

In this section we model an essential aspect of choice in diversity from a computer

security standpoint as an anti-coordination game. Anti coordination games [8] are

two player, two strategy games where it is preferred that both players choose different

strategies. Using these games we can investigate what would happen when new soft-

ware alternatives become available enabling some hosts to make a switch. Consider

two hosts h1, h2 and two vulnerabilities v1, v2, such that both h1 and h2 are initially

connected to v2 as shown in Figure 6.1.

To start the analysis, one can think of an event when either a new software

containing v1 is released in the market or that software containing v2 is compromised

prompting hosts to consider other alternatives. Each host now has two choices: to

stay with v2 or to switch to v1. Since switching involves potentially installing new

software, getting it to interoperate and getting a user familiar with it, we associated

a cost, cw with it. But if both players continue to use v2, they risk another attack.

So there is a cost of sharing a vulnerability, c2 which is over and above the intrinsic

cost of having just one vulnerability c0. Since both hosts are required to select one
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vulnerability in all cases, it is assumed without loss of generality that c0 = 0. To

summarize:

• c2 = cost of choosing a vulnerability if both hosts choose the same vulnerability.

• cw = cost of switching to a different vulnerability

The corresponding payoff matrix for the game we described above is shown in

Figure 6.1. The entries in the matrix are utilities and hence are negatives of the cost

variables.

Payoffs Stay (v2) Switch (v1)

Stay (v2) −c2,−c2 0,−cw
Switch (v1) −cw, 0 −(c2 + cw,−c2 + cw)

Figure 6.1. Two player anti-coordination game with switching costs

We have the following two cases to consider:

Case 1: cw > c2

In this case it costs more to switch than to continue using the older software that

is already used by the other host. An example of this game with numerical payoffs

is shown in Table 6.1a. Suppose the column player chooses to stay. Then, the best

response for the row player is also to stay because switching costs him 15, while

staying only 10. Suppose the column player chooses to switch. Even then the best

response for the row player is to stay because it would cost him nothing. Therefore

unconditionally, the row player would continue to stay, and symmetrically by the

same argument so will the column player. This game has only one Nash equilibrium,

{stay, stay}, and the total social cost is 2c2 which is suboptimal if 2c2 > cw. In our
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example a {stay, switch} or {switch, stay} outcome would cost a total of only 15,

while the predicted outcome {stay, stay} would cost 20. This game has no mixed

strategy Nash equilibrium because for both players stay strongly dominates switch.

Case 2: cw < c2

If one were to assume that the software community managed to make inter-operable

variants extremely easy to replace, then it might be that the cost of switching to a

new variety is less than the expected risk of continuing to share the same variety

with other hosts. An example of a game with payoffs where cw = 10 and c2 = 15

is shown in Table 6.1b. To analyse this, suppose the column player chooses to stay.

Then the best response for the row player is to switch because it would cost him 10

and not 15. If the column player chooses to switch, the row player would prefer to

stay. The analysis is similar for the column player. This game has two pure strategy

Nash equilibria {stay, switch} and {switch, stay}.

While these outcomes are socially optimal, the problem is how do hosts arrive at

this equilibrium. Each host could wait for the other to make a switch, because it

wouldn’t have to bear the cost of switching but can reap the reward of not having to

share the software containing the vulnerability. Mixed strategy Nash equilibrium is

typically used as a solution concept when no Pure strategy Nash equilibrium exist.

However, in this case if we calculate the probabilities, we find that with a probability

of (cw + c2)/2c2 both hosts would choose to stay and the total cost for both players

is then 2(c2 − cw)cw/c2. If cw > c2/2, then the mixed strategy Nash equilibrium is

a better social outcome than either of the pure strategies. If one subscribes to the

large population interpretation of mixed strategy, then in our example, {stay, stay}

is the outcome of the game 69% of the time.
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Payoffs Stay Switch

Stay −10,−10 0,−15

Switch −15, 0 −25,−25

(a) Cost of switching is more than cost
of sharing. cw > c2

Payoffs Stay Switch

Stay −15,−15 0,−10

Switch −10, 0 −25,−25

(b) Cost of switching is less than cost of
sharing. cw < c2

Table 6.1. Two player anti-coordination games with numerical payoffs

6.4 Dispersion games for diversity

This section extends Section 6.3 by considering choice of several vulnerabilities among

several hosts. Two player anti-coordination games generalized to many players and

actions are called dispersion games [30]. In essence, these are games where utilities are

such that given a choice of strategies for every agent, maximally dispersed outcomes

are preferred. More formally, a normal form game G is a tuple < H,A,�i>, where H

is the set of agents, A is the set of actions available and �i is the preference relation

over outcomes O = An for agent hi.

Our model described in Section 3.2 has a list of assumptions associated with it.

Some of these assumptions correspond to symmetries of the game.

• Common action: If every agent has the same set of actions, Ai = A for all

hi ∈ H, then we have a common action (CA) game. In our model, any host can

pick any vulnerability and hence we consider only CA games.

• Agent symmetry: A CA game is agent symmetric if for all outcomes o =<

a1, a2, ..., an > and for all its permutations o
′
, o �i o

′
and o

′ �i o for all hosts

hi ∈ H. This means that all hosts have the same preference relation over

outcomes irrespective of which host choose which action. This is consistent

with our Computer equivalence assumption where we treat all hosts equally.
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• Action symmetry: A CA game is action symmetric iff for all outcomes o and

o
′
, if there exists a one-to-one mapping f : A → A such that for all hi ∈ H,

f(ai) = a
′
i, then o �i o

′
and o

′ �i o. This means no host inherently prefers one

action over the other. This definition is required because hosts may have an

action preference depending on how many other hosts choose those actions. In

our model, Vulnerability criticality assumption translates into Action symmetry

as it assigns equal apriori weight to all vulnerabilities.

In a fully symmetric game, agents cannot distinguish between outcomes with the

same configuration of number of agents choosing actions. In a diversity calculation

this is precisely what matters. To extend the problem of two player anti-coordination

game to many players, we study a specific game where a maximally dispersed outcome

is preferred but it costs to switch strategies that lead to it. Figure 6.2 shows n hosts,

m << n vulnerabilities where initially all hosts are connected to just one vulnerability

vc. The question we want to ask is: suppose vc is compromised and it costs cw to

switch to a different vulnerability, what will the final graph look like? How many

hosts switch and how many remain on vc?

To answer these questions, we first have to introduce a scalability factor. If a host

chooses a vulnerability v such that deg(v) = x, then the utility due to interoperability

and ease of creating and sharing software might grow as benefit(x) while the risk

associated with increased number of hosts choosing the same software leading to

higher probability of attacks might be risk(x). Since the risks and the benefits of

sharing vulnerabilities can depend on several factors that are hard to theoretically

determine, we combine the two and treat the utility of sharing vulnerabilities as

a single function. We define the scalability cost as a monotonic function Π(x) =

risk(x) − benefit(x). Let c0 be the intrinsic cost of choosing a lone vulnerability, v

such that deg(v) = 1. Then c0Π(x) is the cost of choosing v such that deg(v) = x.
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Figure 6.2. A graph of n hosts, m << n vulnerabilities with all hosts connected
to vc initially. Cost of switching is cw, while cost of choosing a vulnerability vi is
c0Π(deg(vi)) where Π(x) is the risk-payoff scalability factor.

As before, let cw = cost of switching from one vulnerability to another and o =<

a1, a2, ..., an > be an outcome of this game where ai ∈ V is the action taken by host

hi. Further, let no
ai

= number of hosts choosing ai in o. The utility of a host does not

depend on the specific hosts choosing ai, but only on the number of hosts that have

selected it. Therefore, utility for a host choosing ai in an outcome o is

Uai(o) = −c0Π(no
ai

)− cw(1− δaiac) (6.3)

where δij is the Kronecker delta function (i.e. δij = 1 iff i = j and 0 otherwise).

If a host chooses aj over ak, then we must have Uaj(o) ≥ Uak(o), i.e.

c0(Π(no
ak

)− Π(no
aj

)) + cw(δajac − δakac) ≥ 0 (6.4)

If j 6= c and k 6= c, this reduces to Π(no
ak

) ≥ Π(no
aj

), and symmetrically, a host

that chooses ak over aj must have Π(no
ak

) ≤ Π(no
aj

). By monotonicity of Π(x) we

have no
aj

= no
ak

, i.e all vi 6= vc will have equal preference as is to be expected.
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If j = c and k 6= c, we get Π(no
ac) ≤ Π(no

ak
) + cw/c0, and symmetrically, for j 6= c

and k = c we get Π(no
ac) ≥ Π(no

ak
) + cw/c0.

Therefore, if nc hosts continue to choose vc and (m − 1)ns hosts make a switch

from vc to vi 6= vc, then, observing that nc + (m− 1)ns = n, we have

Π(ns) = Π(n− (m− 1)ns)− cw/c0 (6.5)

We, of course, do not know what the scalability factor Π(x) is, but if we did know

that and if we could estimate cw/c0, we could calculate how many hosts would choose

to stay with vc and how many would shift to other vulnerabilities using Equation 6.5.

More interestingly, in the other direction, if we had a series of values for n, m, ns and

cw/c0, we could try to estimate Π(x). In the next section we propose a modification

to the popular Internet security game Capture the Flag that will make it possible to

collect this kind of data in the real world.

6.5 Capture the Diversity

Diversity is a very broad concept and although one can make several assumptions

and perform analysis, it is often hard to obtain data for corroboration. In the real

world, choices people make about software aren’t solely dictated by security. Hence

we turn to popular security competitions like Capture the Flag where the incentives

are primarily to secure one’s system, keep services running and attack other systems

[17]. Typically a team is provided with m vulnerable services, with m ≈ 10. A Game

server periodically checks every host for running services which yield points for the

host. If an attacker creates an exploit for a vulnerability in a service, periodic attacks

are launched on hosts running that service to capture its flag and report it to the

game server.
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The crucial point is that participants don’t get to choose which services to run—

they have to keep all m services running. In the real world, however, if a service

is easily exploited, one gets to replace it with an alternative. To model this, we

propose that 2m services be available to the participant, but only one from each of

m categories of services needs to be kept running simultaneously. Everyone gets to

see the host-service graph (available from the game server) and choose which of the

two alternative services to run, e.g., postfix or exim; mysql or postgresql and so on.

We hypothesize that this simple modification will yield very interesting data.

First, it will show the evolution of host-vulnerability graph and entropy Ha with

time. Second, we get to see the strategies employed by top teams that defend and

attack well. Third, it is entirely possible that some teams might score high points

primarily by strategically switching one service for the other based on the game-play.

Emphasizing this last point is one of the primary goals of this thesis. Although finding

and fixing bugs is important, as the security and hacking community are well aware,

choosing which software to run given ample choice is non-trivial and highly relevant

to security.

6.6 Summary

In this chapter we’ve introduced game theory, briefly reviewed past work on applica-

tions of game theory in computer science and vice versa. We’ve noted several areas

where both these fields complement each other including computer security.

Applications of game theory in security is still in its infancy, but as the complexity

of the system increases and more agents begin to partake in its upkeep, security

breaches have to be treated as an integral part of our model and not as extraneous

events. We looked at a game, FlipIt, in which repeated compromise of systems is
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treated as the norm. We also briefly touched upon applications of game theory in

understanding misaligned incentives, the problem of free riding and implications of

incomplete information on software quality.

We then argued that anti-coordination games capture an essential aspect of di-

versity. Using our simplified model of hosts and vulnerabilities, we studied an anti-

coordination game where players (hosts) have motives to choose different actions

(vulnerabilities) but where it costs to make a move. In the case where it is more ex-

pensive to make a move, we note that the equilibrium condition can lead to a socially

suboptimal outcome, while in the case where it is less expensive to make a move, pure

strategy Nash equilibria are optimal. However, there is also a mixed strategy Nash

equilibrium that might have a greater social payoff depending on cost ratios which

also causes a reduction in diversity.

In generalizing our proposed version of anti-coordination games to several players,

we observed that assumptions made in our model translate into symmetries of disper-

sion games. A specific game was analysed by assuming an unknown payoff multiplier

function, and its solution at the equilibrium condition led us to an equation that

could let us estimate the payoff function if other parameters were known. At this

point we proposed a modification to the popular security game Capture the flag to

include choice between services and argued that this would enable us to capture data

for estimating revealed user preference for diversity in a security context.



Chapter 7

Discussion

This chapter is divided into four sections. In the first section, we discuss the main

contributions of this thesis to the analysis of software diversity in the context of

security. The second section examines shortcomings in our model, assumptions and

analysis and also talks about general limitations of a formal theory of diversity. We

suggest both theoretical and practical avenues of future work in the next section. The

final section ends with a few concluding remarks.

7.1 Contributions

One of the first problems we faced was developing a software ecosystem model simple

enough to admit rigorous analysis but extensible enough to be applicable in the

real world. By treating software as a set of vulnerabilities and hosts as agents that

choose a subset of those vulnerabilities, our model of a software ecosystem presented

in Section 3.2 appeared to capture the essential aspect of scalability of attacks. In

Section 3.3, we listed several simplifying assumptions under the lenses of which our

model applied to the real world, while also providing justifications for some of these

66
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using real world examples.

Even without diversity measures defined on the model, we were able to investigate

some problems faced by attackers and defenders. In Section 3.4 we showed a simplified

formalization of the vulnerability discovery problem and reduced it to the well known

paging problem. We also studied the vulnerability coordination problem to learn that

even the simplest of cases can require complex algorithms to protect users against

malicious hosts.

In Section 4.2, we develop diversity measures for software using a generalized no-

tion of entropy called Renyi entropy. We show a natural derivation of the formula

used for entropy and discuss some of its intricacies. We specifically noted that diver-

sity is an amalgamation of two separate components and the ratio in which they’re

combined is partly responsible for a lack of clarity about the concept. In Section 4.3

we use real world market share and vulnerability data to illustrate how one could

approximately calculate diversities. Finally, in Section 4.4, we review ecological liter-

ature on diversity-stability relationships and note that despite being hard to quantify,

both experiments and theory reveal a positive correlation between the two. We draw

some comparisons between natural and software ecosystems and note that a positive

correlation between diversity and stability of software systems is similarly plausible

although this would require further investigation.

In Chapter 5 we analyse six popular current defences for their effect on diversity.

The effects of these defences on the host-vulnerability graph divides them into three

classes, none of which alter the vulnerability distribution in the steady state. We

argue that for explicit diversity-type defences to be effective, they need to be able

redistribute edges in the host-vulnerability graph.

Even if maximizing diversity might be an ideal goal for an ecosystem designer, our

software ecosystem composed of several entities with varying incentives, motivation
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and payoffs rarely have a central design. If we treat hosts choosing software as agents

acting selfishly, then it is unclear if the resulting ecosystem has optimal diversity even

if each host would prefer an outcome that has optimal diversity. In Section 6.3, we

propose that anti-coordination games with moving costs capture an essential aspect

of diversity. In both cases where moving costs are less than or more than sharing

costs, we notice that selfish actions can result in socially suboptimal outcomes. Sec-

tion 6.4 looks at dispersion games, a generalization of anti-coordination games to

several players and strategies. One of the major difficulties in game theory is coming

up with utility functions. We assume a certain risk-payoff scalability function and

come up with an equation involving that function at the equilibrium condition. In

order to estimate the scalability function empirically we propose an extension to a

popular security game called Capture the Flag in Section 6.5. Starting with propos-

ing the model, to creating diversity measures, to analysing the effect of user choice

on diversity using games, this testing methodology completes the final part of our

attempt to formalize software diversity.

7.2 Limitations

Here we discuss limitations in our approach and also comment on what we believe

are some inherent difficulties in modelling such a complex system.

7.2.1 Limitations in our approach

Software-vulnerability equivalence

The assumption of Software-vulnerability equivalence in our model lets hosts choose

any combination of vulnerabilities greatly increasing the total choice available to
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them. In the real world, a host gets to choose from alternatives of software or soft-

ware components, while the choice of attackers are vulnerabilities themselves. This

asymmetry of real world choice between attackers and defenders is lost in our bi-

partite model. By introducing a layer of components in the graph, we could have

fixed this problem, but at the cost of complicating the process of calculating diversity

measures.

Vulnerability equidistribution

Vulnerability equidistribution assumption can be critiqued on the grounds that some

hosts are designed to be more secure than others. Operating systems with security in

mind, like OpenBSD, or security enhancing frameworks, like SELinux, are regarded to

be more effective against exploits if configured correctly. We could have distributed

edges among hosts in a non-uniform manner but we weren’t sure how to quantify

the relative security of real world hosts and obtain data on the number of relatively

“secure” hosts and “insecure” ones.

Entropy measures sensitive to sample size

We introduced entropy as a measure of diversity in Section 4.2. Diversity measures are

sensitive to sample sizes. This means that in order to accurately calculate diversity in

a real world ecosystem, we need actual numbers of computers on which each individual

piece of software runs and not just market share values. In our real world software

ecosystem these numbers are usually hard to obtain for proprietary software and hard

to accurately estimate for open source software. In our study of diversity measures,

we have not investigated the effect of sample sizes on entropy calculation, although

we did mention that our illustrative example was only an approximation.
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7.2.2 Limitations in modelling

Heterogeneity in vulnerabilities

Our model assumes that any single vulnerability can be used to create an exploit. In

the real world, however, exploits may need to use a chain of vulnerabilities to compro-

mise hosts. These vulnerabilities may be software bugs, network configurations errors,

poorly chosen or stored passwords, bad cryptographic algorithms or sometimes even

social networking websites. Every entity involved in the development, deployment or

use of software is responsible for making choices that affect security and any model

that tries to capture all possible cases and interactions quickly becomes too complex.

Further, because of techniques like NAT, exploits may not be able to reach some hosts

that run vulnerable software making it hard to exactly determine the potency of a

vulnerability.

Utility of software

In our analysis of games in Chapter 6, agents’ choice between alternatives of software

was dictated only based on security concerns. But in reality, the utility of software

for a majority of users can depend on several factors including features, usability,

reliability and open or closed source nature. These extraneous and difficult to model

incentives place an enormous burden on the part of the analyst trying to study purely

security aspects of choice in a software ecosystem. One of the primary reasons we

choose Capture the Flag as a platform for obtaining user’s security preferences was

because it is a security-focused setting where other factors of software play no role,

unlike the real world where extrinsic motives interfere.
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7.3 Future Work

We believe that the framework we present for formalizing diversity is only a starting

point to understand the full implications diversity in security. This first attempt at

formalization leaves many unanswered questions but also points to avenues for further

research.

7.3.1 Theoretical improvements

Our formulation of this problem can be extended theoretically in several different

directions. Here we list a few interesting ones.

Improving the model

The first step in improving the model is to introduce the software component layer

between hosts and vulnerabilities. Each component would be connected to many vul-

nerabilities and hosts would get to choose components only. In order to simulate the

layers in our software architecture, components could be chunked into categories and

each host gets to pick a certain number of components from each category. For exam-

ple one may enforce a kernel, a C library, two runtimes for high level languages (like

Python or Java), several applications and a couple of browsers for each host. This

would result in a more realistic model with several parameters. Tuning them inde-

pendently may allow us to model desktop, server, mobile or even embedded software

ecosystems separately and compare their diversities.

Attacker strategies

Our analysis focuses primarily on defenders (hosts) and defensive strategies while

treating attackers passively. Attackers are assumed to prefer vulnerabilities that can
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compromise the largest number of hosts. In reality, the highly adaptive nature of

attackers makes it necessary to consider both attackers and defenders simultaneously.

Just like a user’s choice of software depends on more factors than just security, an

attacker’s choice of vulnerability might depend on ease of creating exploits or making

use of old ones, traceability of attacks, available computing power to launch attacks

and so on. As defenders need to be only as diverse as is required to thwart attackers,

it is necessary to understand attacker strategies to develop a more complete under-

standing of diversity.

Quantifying the amount of choice

In Chapter 6, we observed that the two components of diversity measures give rise

to two different questions: how many alternatives are needed and how to distribute

the alternatives. We focused on the second question, partly because it was easier to

analyse. The first question is of course equally important. The problem is complicated

because software development depends on finance, market requirements, perceived

quality of existing software and in the case of open source software, developer interest.

It remains to be seen if it’s possible to abstract some parts of this and arrive at an

answer to the following question: how many alternatives of software are sufficient?

Software coordination protocols

In Section 3.4, we looked at the simple problem of hosts coordinating in a distributed

manner to select software to ensure increased diversity. If one of the hosts is mali-

cious, it can influence what software gets chosen by the other host to influence the

distribution of software in the ecosystem. We saw that even in the simple two host

case, it is non-trivial to achieve this. For the n-agent case, consider the following

formulation of the problem. Suppose there are n hosts and each host needs to select
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k vulnerabilities from V . Assume that kn > m = |V |; hosts are forced to share

some vulnerabilities. Suppose it is in the interest of each honest host to maximize

the diversity of the resulting distribution. What distributed protocol should hosts

use to negotiate who chooses which vulnerability in the face of a few malicious hosts

trying to influence them. This problem is important because in practice virtually all

software distribution and updates happen in a centralized manner. This puts a large

number of hosts at risk if the distribution centre itself gets compromised. Identify-

ing and solving this problem might be the first step towards a distributed software

distribution infrastructure.

7.3.2 Practical improvements

This preliminary work on formalizing diversity has largely focused on the abstraction

aspect of creating a theory. While it is still premature to make concrete recommen-

dations to the software community, we can nevertheless suggest some mechanisms to

increase diversity and propose a method to monitor diversity in the real world.

Intelligent package management

Linux distributions typically use package managers to maintain software on users’

computers. A central repository of all packages is made available on the web and a

user gets to choose which package is installed on her computer. Some distributions,

like Gentoo, require users to select and compile all packages they need, but many

popular distributions come with pre-selected packages. This introduces uniformity

across installations, despite users having ample choice of alternatives in the repository.

We suggest that for back-end packages that are interface-level compatible, a package

manager would choose an alternative at random and install it. Users would of course

be given the option to override.
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For example, suppose that in Debian systems both SSL libraries, openssl and

gnutls, are API-level compatible. In order to install an SSL library, a user issues apt-

get install libssl. apt-get either randomly picks one of the alternatives or communicates

with other installations for security track records to assess which to use for optimum

diversity or total social payoff.

Interoperable components

Interoperability between software components is generally looked at as something

desirable because it offers more choice to end users, encourages competition among

developers, and prevents situations where users are locked into a vendor. Our analysis

of diversity points out that security is another important reason to motivate devel-

opment of interoperable software components. Having the ability to mix components

dramatically increases the set of possible configurations in which an ecosystem can

exist. Developing methods to more evenly distribute components is important to

increasing diversity, but the first step is to create those components in various gran-

ularities. Security researchers who work on large scale systems should encourage

development and use of interoperable software components.

Diversity observatory

Several organizations, like NIST, categorize and assign security ratings to publicly

disclosed vulnerabilities. These systems can be extended with data about the num-

ber of installations of software or market share data to produce real-time diversity

estimates of our software ecosystems. This would provide users with several benefits:

they could query their software configuration to check if their installation is typical

or they could receive suggestions from the observatory about possible alternatives

to use for increased diversity and reduced possibility of their system to be compro-
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mised. In the reverse direction, we could gain a better understanding of how diversity

is affected by the number of alternatives, the number and frequency of vulnerabil-

ity compromises and users making use of choices available. Finally, the observatory

would enable us to track diversity as a function of time.

7.4 Conclusion

Increasing the diversity of software running on systems has been proposed as a solution

for mitigating attacks capable of a large scale compromise. Improvements in current

defences have witnessed a concomitant increase in the sophistication of attacks calling

into question the effectiveness of current defensive strategies to tilt scales favourably

in the software security arms race. The ensuing debate on the merits and costs of

diversity intermittently shows up in the sidelines of the agenda of several security

researchers. Unfortunately, the broad and blanket nature of the concept of diversity

offers only a shaky ground at best for arguments to stick. The primary purpose of this

thesis was to affect remediations in this direction by making the notion of software

diversity in the context of security more precise.

We formulated a model of a software ecosystem as a host-vulnerability graph and

defined diversity metrics on it using entropy. With the support of several simplifying

assumptions, this model allowed us to precisely formulate some new open problems

in security. We then analysed the effect of six popular defences on the distribution of

edges in the host-vulnerability graph to learn that none could alter the diversity of

the ecosystem enough to deter scalable attacks. We employed game theory to explore

tradeoffs in user choices that affect diversity and proposed a mechanism to emperically

determine user preferences for diversifying in a security-sensitive context. In the final

chapter, we discussed limitations in our model and assumptions, diversity metrics
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and game theoretic analysis and proposed directions for future work in improvements

of theory and practical applications. We hope that our framework for understanding

diversity lends clarity to the concept and stimulates research into creating diversity-

type defenses that are effective against scalable attacks.
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