
A Practical, Lightweight, and Flexible
Confinement Framework in eBPF

by

William P. Findlay

A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Computer Science

August, 2021

Carleton University

Ottawa, Ontario

© 2021 William P. Findlay

To my parents and grandparents, for believing in me

even when I didn’t believe in myself.

Abstract

Confining operating system processes is essential for preserving least-privilege access to

system resources, hardening the system against successful exploitation by malicious actors.

Classically, confinement on Linux has been accomplished through a variety of disparate

confinement primitives, each targeting a different aspect of process behaviour and each with

its own set of policy semantics. This has led to difficulties in realizing practical confinement

goals due to the complexities, inter-dependence relationships, and semantic gaps that arise

from recombining existing confinement primitives in unintended ways. Linux containers

are a particularly poignant example of this phenomenon, with existing container security

policies often being overly complex and overly permissive in practice.

To better isolate user processes and achieve practical confinement goals, we argue that

novel confinement mechanisms are needed to bridge the semantic gap between security

policy and enforcement. We hypothesize that a new Linux kernel technology, eBPF, en-

ables the creation of precisely such a confinement mechanism. eBPF programs can be

dynamically loaded into the kernel by a privileged process and are checked for safety be-

fore they run in kernelspace. This approach affords an opportunity to create an adoptable,

container-specific confinement mechanism without tying the kernel down to one specific im-

plementation. Further, an eBPF-based confinement solution can be loaded and unloaded

at runtime, without updating or even restarting the operating system kernel; this prop-

ii

erty enables rapid prototyping and debugging, similar in spirit to how we debug userspace

applications in practice.

In this thesis, we present the design and implementation of two novel confinement so-

lutions based on eBPF, BPFBox and its successor, BPFContain. We discuss issues in

the Linux confinement space that motivated the creation of BPFBox and BPFContain,

discuss policy examples, and present the results of a performance evaluation and informal

security analysis. Results from this research indicate that BPFBox and BPFContain

incur modest overhead despite their increased flexibility over existing Linux security solu-

tions. We also find that there may be significant opportunities to improve BPFBox and

BPFContain and to introduce future security mechanisms based on eBPF.

iii

Acknowledgements

I would first and foremost like to thank my thesis supervisors, Dr. Anil Somayaji and Dr.

David Barrera for their constant support, sage advice, and invaluable feedback (particularly

on early drafts of this document). I feel confident in saying that I would not have reached

this point in my graduate school career if not for their dedication and encouragement. I

am also grateful to my other committee members, Dr. Lianying (Viau) Zhao, Dr. Paula

Branco, and Dr. Frank Dehne for taking the time to read and evaluate my work.

I would also like to thank the professors and fellow members of the CCSL/CISL sister labs

for their valuable feedback on early iterations of my work, and for providing a stimulating

environment to learn, grow, and foster my passion for operating system security.

I am indebted to the innumerable members of the BPF and Linux kernel development

community, whose hard work and dedication to free and open-source software are reflected

in the very foundations of this research. In particular, I would like to acknowledge Alexei

Starovoitov and Daniel Borkmann for creating eBPF, Andrii Nakryiko for his work on

libbpf and CO-RE, and K.P. Singh for his work on bringing LSM hook support to BPF.

Many other members of the BPF community have proved invaluable sources of inspiration

and guidance throughout my academic career. While they are too many to name here, I

appreciate them all the same.

Lastly, I would like to thank my friends and family for their continued and unwavering

support throughout this endeavour (and for many more endeavours to come).

iv

Prior Publication

A publication and pre-print have arisen as a direct result of the research in this thesis.

While these works represent joint contributions of all authors, any sections reproduced

in this thesis represent the sole work of the thesis author, with editorial and positioning

contributions by co-authors. Each work is listed below.

Chapter 4 contains text and ideas from our paper “BPFBox: Simple Precise Process

Confinement in eBPF (Extended BPF)” [58], co-authored with Anil Somayaji and David

Barrera, and published at the Cloud Computer Security Workshop (CCSW) 2020 as part

of the ACM CCS conference.

Chapter 5 contains some text and ideas from our paper “BPFContain: Fixing the Soft

Underbelly of Container Security” [57], co-authored with David Barrera and Anil Somayaji.

An early draft of this work is available on the arXiv pre-print database, although it differs

substantially from the version presented in this thesis.

v

Contents

Abstract ii

Acknowledgements iv

Prior Publication v

List of Figures x

List of Tables xi

List of Code Listings xii

1. Introduction 1
1.1. Research Questions . 4
1.2. Motivation . 4

1.2.1. Contextualizing the Problem 4
1.2.2. Why Design a New Confinement Framework? 7
1.2.3. Why eBPF? . 8

1.3. Contributions . 10
1.4. Outline . 11

2. Background and Related Work 13
2.1. Confinement in Operating Systems 14
2.2. Classic Unix Process Security Model 15

2.2.1. The Reference Monitor . 16
2.2.2. Virtual Memory and Memory Protection 18
2.2.3. Discretionary Access Control 20

vi

Contents

2.3. Extensions to the Unix Security Model 29
2.3.1. POSIX Capabilities . 29
2.3.2. Mandatory Access Control . 31
2.3.3. System Call Filtering and Capabilities 37
2.3.4. Taint Tracking . 44

2.4. Process-Level Virtualization . 45
2.5. Containers and Virtual Machines . 49

2.5.1. Container Security . 50
2.6. Extended BPF . 59

2.6.1. Origins of BPF: Efficient Packet Filtering and Beyond 59
2.6.2. eBPF Programs . 64
2.6.3. eBPF Maps . 70
2.6.4. Userspace Front Ends . 71
2.6.5. Comparing eBPF with Loadable Kernel Modules 73

3. The Confinement Problem 77
3.1. Rethinking the Virtualization Narrative 78
3.2. Fundamental Issues with Linux Confinement 81
3.3. How Containers Apply Confinement Primitives 86
3.4. Design Goals . 89
3.5. Why Two Implementations? . 92
3.6. The BPFBox and BPFContain Threat Model 92

3.6.1. Differences Between BPFBox and BPFContain 93
3.6.2. The Adversary and Attack Vectors 93

3.7. Summary . 94

4. ❇P❋❇♦①: A Prototype Process Confinement Mechanism 96
4.1. BPFBox Overview . 97

4.1.1. Policy Enforcement at a High Level 98
4.2. BPFBox Implementation . 100

4.2.1. Architectural Overview . 100
4.2.2. BPFBox Policy Enforcement 102
4.2.3. Managing Process State . 106
4.2.4. Context-Aware Policy . 108
4.2.5. Collecting and Logging Audit Data 110

4.3. BPFBox Policy Language . 111
4.3.1. Filesystem Rules . 111
4.3.2. Network Rules . 114
4.3.3. Signal Rules . 115

vii

Contents

4.3.4. Ptrace Rules . 116
4.3.5. Allow, Taint, and Audit Decorators 116
4.3.6. Func and Kfunc Decorators 117

4.4. State of the BPFBox Implementation 118
4.5. Summary . 118

5. ❇P❋❈♦♥t❛✐♥: Extending ❇P❋❇♦① to Model Containers 120
5.1. BPFBox’s Limitations and the Transition Toward BPFContain . . 121

5.1.1. Motivating BPFContain . 123
5.2. BPFContain Overview . 125

5.2.1. Policy Enforcement at a High Level 126
5.3. BPFContain Implementation . 129

5.3.1. Architectural Overview . 129
5.3.2. Policy Deserialization and Loading 131
5.3.3. Policy Enforcement . 134
5.3.4. Default Policy . 137
5.3.5. Managing Container State . 141
5.3.6. Collecting and Logging Audit Data 143

5.4. BPFContain Policy Language . 143
5.4.1. File and Filesystem Rules . 145
5.4.2. Device Rules . 147
5.4.3. Network Rules . 148
5.4.4. IPC Rules . 149
5.4.5. Capability Rules . 150

5.5. Improvements Over BPFBox . 151
5.5.1. Minimizing Runtime Dependencies 151
5.5.2. Improved Policy Language . 152
5.5.3. Container-Specific Extensions 153

5.6. Summary . 154

6. Evaluation 155
6.1. Performance Evaluation . 155

6.1.1. Methodology . 156
6.1.2. Results . 159
6.1.3. Discussion of Performance Results 171

6.2. Security Analysis . 175
6.2.1. Threat Model Revisited . 175
6.2.2. Files, Filesystems, and Kernel Interfaces 176
6.2.3. POSIX Capabilities and Privileged System Calls 180

viii

Contents

6.2.4. Networking . 182
6.2.5. IPC . 184
6.2.6. Breaking BPFBox and BPFContain 186

6.3. Summary . 188

7. Case Studies 190
7.1. Confining a Web Server and Database 190
7.2. The Default Docker Policy . 200
7.3. Confining an Untrusted Container . 208
7.4. Summary . 211

8. Discussion and Concluding Remarks 212
8.1. Research Questions Revisited . 212

8.1.1. Answering RQ1 . 213
8.1.2. Answering RQ2 . 213
8.1.3. Answering RQ3 . 214

8.2. Limitations . 215
8.2.1. Semantic Issues in the Policy Language 216
8.2.2. Fixed-Size Policy Maps . 218
8.2.3. Performance Overhead . 219
8.2.4. Security Guarantees . 220

8.3. Future Work and Research Directions 221
8.3.1. The Need for a User Study . 222
8.3.2. OCI Specification and Docker Integration 222
8.3.3. Fine-Grained Network Policy 223
8.3.4. BPFContain Policy Generation 224

8.4. Improving the Status Quo . 226
8.4.1. Application-Specific and Container-Specific Policies 226
8.4.2. Encouraging Local Policy Variation 228
8.4.3. eBPF, Adoptability, and Future Innovation 229

8.5. Conclusion . 231

Bibliography 233

A. List of Acronyms 259

B. License Attribution 262

ix

List of Figures

2.1. The reference monitor concept . 17
2.2. Protection rings on modern CPUs . 21
2.3. The access matrix . 25
2.4. The LSM architecture . 34
2.5. A comparison of virtual machine and container architectures 51
2.6. A sample threat model for container security 52
2.7. The classic BPF architecture . 61
2.8. The extended BPF architecture . 63
2.9. How eBPF LSM probes make policy decisions 69

3.1. Comparing the isolation and perceived security of containers and VMs 78
3.2. System calls and hypercalls as vulnerable interfaces 79

4.1. A high-level overview of how BPFBox confines applications 99
4.2. The various mechanisms that BPFBox uses to manage process state 107
4.3. How BPFBox tracks function calls 109

5.1. A high-level overview of how BPFContain confines containers . . . 128
5.2. The policy enforcement strategy under BPFContain 138

6.1. Benchmarking system configurations 158
6.2. The results of the OSBench micro-benchmarks 161
6.3. Results of the kernel compilation benchmark 169
6.4. Results of the Apache web server benchmark 169

x

List of Tables

2.1. Linux namespaces . 49
2.2. A selection of relevant eBPF program types for BPFBox and BPF-

Contain [64] . 67
2.3. A selection of relevant eBPF map types for BPFBox and BPFCon-

tain [64] . 71
2.4. A high-level comparison between eBPF, loadable kernel modules, and

kernel patches . 75

4.1. The filesystem access flags supported in BPFBox. 113
4.2. The socket operation flags supported in BPFBox. 115

5.1. Comparing BPFBox and BPFContain 124
5.2. File access flags in BPFContain . 147
5.3. Network access categories in BPFContain 149

6.1. System configuration for benchmarking tests 156
6.2. List of benchmarking suites and what they measure 157
6.3. Results of the Create Files benchmark 162
6.4. Results of the Create Processes benchmark 164
6.5. Results of the Create Threads benchmark 165
6.6. Results of the Launch Programs benchmark 166
6.7. Results of the Memory Allocations benchmark 167
6.8. Results of the Kernel Compilation benchmark 168
6.9. Results of the Apache benchmark . 170
6.10. Geometric means of Phoronix benchmarking results 172

7.1. The default Docker confinement policy 201

xi

List of Code Listings

4.1. An example BPFBox policy . 112

5.1. A simplified example of BPFContain’s policy deserialization logic . 132
5.2. An example BPFContain policy written in YAML 146

7.1. A BPFBox policy for Apache httpd 192
7.2. A BPFBox policy for MySQL . 194
7.3. A BPFContain policy for Apache httpd 196
7.4. A BPFContain policy for MySQL 198
7.5. A simplified BPFContain policy for Apache httpd 199
7.6. A simplified BPFContain policy for MySQL 200
7.7. Docker’s default AppArmor template 202
7.8. Implementing the default Docker policy in BPFBox 203
7.9. Implementing the default Docker policy in BPFContain 205
7.10. Confining an untrusted container with BPFContain 209

xii

Chapter 1.

Introduction

Virtualization is not confinement. Put simply, that which we can see is not the

same thing as that which we can do. To security experts, this may be an obvious

statement; however, not every user of an information technology system is a security

expert, nor should they be. Unfortunately, these two disparate yet related concepts

are often conflated, leading to dangerous security assumptions in practice. In par-

ticular, we tend to assume that a virtualized system is the same thing as a secure

system, which may not necessarily be the case. Confinement is critically important

to maintaining the principle of least-privilege [124], a quintessential property of a

truly secure system [107]. Despite playing a critical role in systems security, the

state of confinement on Linux is ill-suited to meet the practical needs end users.

Existing Linux confinement mechanisms are complex, and often target specific

use cases beyond simple confinement. This results in a motley collection of isola-

tion primitives being used to lock down basic application functionality. Namespaces

1

Chapter 1. Introduction

and cgroups virtualize system resources while Linux security modules, seccomp(2),

discretionary access controls, and more are used to restrict access. The need to com-

bine these mechanisms begets unintuitive inter-dependence relationships that lead

to additional complexity and security policies that are both painful to write and

difficult to audit. In turn, these difficulties weaken the ultimate authority of the

system administrator, shifting the burden of confinement onto distribution vendors

or application authors.

Linux containers [49, 88, 94, 140] are a motivating example of this phenomenon.

Intuitively, a user might be motivated to use a container to contain things. The reality

of container confinement does not match this intuition. Containers are nothing more

than a group of related processes (or even a single process) united by a shared

view of system resources (based on Linux virtualization primitives). Despite their

name, containers in general do a very poor job of actually containing anything. In

particular, security defaults in container management engines like Docker [49] or

LXC (Linux Containers) [94] rely on a myriad of unrelated confinement primitives,

many of which were designed to holistically lock down entire systems. Misuse of these

primitives results in a complex entanglement of related policies that ultimately must

be simplified down to their basest elements. The result is containers that “just work”,

albeit operating under highly coarse-grained policies that provide little protection in

practice [88, 140].

This thesis argues that the key to implementing lightweight confinement policies

that work well in the context of containers lies in simplifying and unifying the under-

lying confinement framework, and bridging the semantic gap between confinement

policies and the applications or containers they are designed to protect. In the past,

2

Chapter 1. Introduction

this may have been a difficult problem to solve. After all, existing confinement mech-

anisms are designed for general-purpose use cases, and the precise definition of what

constitutes “container semantics” varies depending on the needs of the container de-

ployment and the design of the container management engine. We posit that the

key to designing a confinement mechanism that meets these goals is the ability to

dynamically modify and extend the kernel’s security monitor, building a security

framework that is easy to deploy and simple to extend and modify. A new Linux

technology, eBPF, now enables us to fill this technological gap.

Specifically, eBPF [64, 139] enables a privileged userspace process to safely and

dynamically add simple hooking and filtering logic to key components of the kernel.

By designing and deploying a specific set of eBPF programs, we can adjust the

kernel’s security semantics, without necessarily tying it down to a specific “one-size-

fits-all” confinement solution. This enables us to build application- or container-

specific policies that scale well and meet the needs of end users.

To improve the status quo of confinement on Linux, we present two research proto-

types, BPFBox and its successor BPFContain. The former is a novel application

sandboxing framework, and the latter extends that framework to work well in the

context of container security. Both research systems are implemented using eBPF,

the first such systems of their kind. In this thesis, we present a motivating re-framing

of the confinement problem, examine the design and implementation of BPFBox

and BPFContain, and show that they improve application and container security

without a significant impact on system performance.

3

Chapter 1. Introduction

1.1. Research Questions

In this thesis, we consider the following research questions.

RQ1 What difficulties in the current state of Linux confinement lead to the semantic

gaps between policies and the entities they are designed to lock down? How

can we design a novel confinement mechanism to rectify these difficulties?

RQ2 Can eBPF be used to implement a full-featured confinement framework? What

would such a framework look like and how could it be made to model container

semantics?

RQ3 What levels of security and performance can we expect from a confinement

mechanism designed around eBPF? What improvements to eBPF would be

required for a complete solution?

1.2. Motivation

1.2.1. Contextualizing the Problem

Containers are everywhere. In the cloud, containers form the backbone of cloud-

native computation. Kubernetes [80] clusters drive the microservices that power

scalable web applications. In devops, Docker [49] containers often form the back-

bone of continuous integration workflows, providing reproducible environments for

development, testing, and debugging. On the desktop, containerized package man-

agers like Snap [132] and FlatPak [59] offer self-contained, isolated software bundles,

4

Chapter 1. Introduction

facilitating a smooth software installation process (mostly) free of dependency man-

agement concerns.

Despite a steadily increasing prevalence, containers face major adoptability chal-

lenges in deployments1 where they are expected to outright replace virtual machines.

Unlike virtual machines, which are abstracted away from the host and interact with

a hypervisor, containers interact directly with the host operating system kernel. This

means that, while much more lightweight than hypervisor-based virtualization, con-

tainers are inherently less isolated from each other and from the host system in

general [22, 88, 101, 140]. In order to have truly secure containers, we must take

great care to ensure that a container is properly confined. In practice, this means re-

stricting the processes that run within the container from performing certain actions

that can negatively impact or damage the system. As we have already discussed,

virtualization primitives alone are not enough to achieve proper isolation. These

primitives must be combined with confinement mechanisms and these confinement

mechanisms must be applied properly. Otherwise, we risk overprivilege, resulting in

potential violations of our security model.

Container security issues are widely studied in the literature [1, 22, 88, 101, 140].

Despite the fact that containers run directly on the host operating system and share

a single kernel with other native processes, security is generally treated as an af-

terthought in the design of container management engines. If we truly want contain-

ers to be as secure as virtual machines, we must rethink the way we secure container

deployments. Security must be prioritized from the ground up but must not get in

the way of functionality. Existing container frameworks accomplish the second goal

1E.g., Cloud-Native deployments [19].

5

Chapter 1. Introduction

but not the first.

Docker, for instance, applies a default AppArmor policy revoking access to only

the most sensitive kernel interfaces like procfs and sysfs and disabling the ability to

mount new filesystems. Beyond these basic controls, the container has full permis-

sion to access all filesystem resources, has access to several POSIX capabilities, and

may unmount any filesystem [48, 50]. Even worse, a kernel that does not support

AppArmor or that is not properly configured is left totally bereft of this protection to

begin with. Docker complements its default AppArmor profile with a set of sensible

seccomp rules, revoking access to many privileged system calls. While such a policy

does help to harden the container, it remains overly-generalized [140] and does not

uniquely capture the needs of every container deployment. Users who wish to grant

additional permissions to their container are left with the choice of either writing and

auditing custom AppArmor and seccomp policies or outright disabling protections

altogether with the --privileged flag.

Docker is but the most prominent example among many. In general, all existing

container management frameworks rely on a patchwork of isolation mechanisms, each

enforcing its own confinement policy and each with varying degrees of generalization.

As a result, these policies are often difficult to reason about, and thus are difficult to

effectively audit. A vulnerability in any individual mechanism or a misconfiguration

in any individual policy opens the container or the host system itself up to attack.

Blanket defaults are often ineffective for specific use cases and result in situations

where the end user is forced to either abandon all hope of security or muddle through

the configuration of multiple policy enforcement mechanisms.

6

Chapter 1. Introduction

1.2.2. Why Design a New Confinement Framework?

The process confinement problem dates back half a century [82]. Since the advent of

multi-processing and multi-tenant systems in the 1960s and 1970s [36, 119, 150] with

Multics and Unix, security experts have been concerned with designing systems in

such a way that two running programs minimally interfere with one another. Since

then, an abundance of tools and frameworks, some more practical than others, have

been proposed to limit the damage that untrusted software can do to the system as

a whole [128]. These are covered in more depth in Chapter 2. For now, we focus on

why it might be prudent to design yet another confinement framework amidst this

veritable ocean of prior work.

The Linux kernel already provides a number of confinement primitives. Seccomp

allows for a process to confine itself by filtering the system calls it can make. Manda-

tory access control solutions based on LSM (Linux Security Modules) hooks can be

configured to define and enforce powerful per-application policies, protecting system

resources from unwanted access. Unix DAC (Discretionary Access Control) [75, 107,

119, 128] restricts access to system resources according to resource owners, groups,

permission bits, and access control lists. When applied to container security, the

common problem faced by these security mechanisms is that they are being applied

to solve a problem for which they were not originally designed. To solve this prob-

lem, we seek to design a unifying security abstraction for containers and apply this

abstraction to enforce per-container policy in kernelspace.

From the kernel’s perspective, a containerized process is just like any other [140].

While it may be virtualized under one or more namespace and process control groups,

7

Chapter 1. Introduction

there is no precise definition of what exactly constitutes a container. This lack of

a solid abstraction widens the semantic gap between traditional policy enforcement

mechanisms and security policy designed to protect containers. In defining a new

policy enforcement mechanism focused specifically on containers, we have an oppor-

tunity to narrow this semantic gap, simplify the resulting policies, and eliminate

the need to combine several security mechanisms together to do a job that could be

accomplished by just one. Since our proposed solution is based on eBPF, it requires

no modification of the kernel and can be dynamically loaded at runtime. This means

that we can provide such a unified abstraction without sacrificing compatibility with

alternate approaches or subsequent versions of the kernel.

1.2.3. Why eBPF?

An eBPF-based confinement mechanism provides several advantages over traditional

confinement models. Firstly, eBPF is lightweight. eBPF programs can monitor many

aspects of system behaviour, from userspace function calls to kernelspace function

calls, system calls, security hooks, and the networking stack. Data from these events

can be aggregated in real time in kernelspace, providing an extensible, performant,

and flexible framework for modelling relationships and enforcing policy decisions

based on these relationships. A single security mechanism based on eBPF can com-

bine the advantages of several disparate mechanisms that would ordinarily need to

be combined together to provide full protection. This notion is the antithesis of the

way container security is currently done on Linux. Rather than combining names-

paces, cgroups, seccomp, and mandatory access control together, eBPF provides the

8

Chapter 1. Introduction

opportunity to design a single framework providing the advantages of each.

A second advantage of eBPF for writing a security framework is that it is dynamic.

eBPF programs can be loaded into the kernel dynamically and attached to multiple

events. Instrumenting a system event with eBPF can be done at runtime, without

the need to modify the kernel in any way. Similarly, eBPF maps, the canonical

runtime data store for eBPF programs, can be loaded, unloaded, modified, and

queried at runtime from both userspace and kernelspace, providing a rich substrate

for a dynamic model of system behaviour. These properties culminate in the ability

to design a flexible security mechanism without tying the kernel down to any one

particular abstraction. In the context of container security, this is a particularly

important goal, as containers are traditionally a userspace concept, glued together

with various abstractions provided by the kernel.

Production safety is a third advantage provided by eBPF. All eBPF programs go

through a verification process before they are loaded into the kernel. The eBPF

verifier analyzes the program, asserting that it conforms to a number of safety re-

quirements, such as program termination2, memory safety, and read-only access to

kernel data structures. While itself not formally verified, the eBPF verifier facilitates

the adoption of new eBPF programs into production use cases, since an eBPF pro-

gram is far less likely to adversely impact a production system than other methods

of extending the kernel (e.g. kernel patches and loadable kernel modules). In fact,

eBPF is already being used in production at large datacenters by Facebook, Netflix,

Google, and others to monitor server workloads for security and performance regres-

sions [64]. These factors make eBPF a promising choice for designing an adoptable

2This property is enforceable due to the fact that eBPF programs are not Turing complete [64].

9

Chapter 1. Introduction

security mechanism.

In summary, eBPF offers unique and promising advantages for developing novel

security mechanisms. Its lightweight execution model coupled with the flexibility to

monitor and aggregate events across userspace and kernelspace provide the ability to

control and audit nearly any aspect of the running system. eBPF maps, shareable

across programs and between userspace and the kernel offer a means of aggregating

data from multiple sources at runtime and using it to inform policy decisions across

domains. A security mechanism based on eBPF can be dynamically loaded into the

kernel as needed, and eBPF’s safety guarantees combined with its increasing adoption

in production use cases provide strong adoptability advantages. This means that a

security mechanism based on eBPF can be both adoptable and effective.

1.3. Contributions

This thesis offers several contributions to the fields of computer science, computer

security, and confinement. These contributions are as follows.

• We present a novel framing of the confinement problem (Chapter 3) in the con-

text of Linux, arguing that inherent complexity and misuse of existing prim-

itives has led to semantic gaps in confinement. We argue that these gaps, in

turn, impact security by encouraging the adoption of overly-generic polices that

impact each other in unforeseen ways.

• We present the design and implementation of two eBPF-based confinement en-

gines, BPFBox (Chapter 4) and BPFContain (Chapter 5). The former is a

10

Chapter 1. Introduction

prototype for eBPF-based confinement and the latter extends BPFBox, im-

proving its security and introducing a model for container-specific confinement.

BPFBox and BPFContain are the first high-level, eBPF-based confinement

frameworks of their kind.

• We evaluate (Chapter 6) BPFBox and BPFContain in the context of their

performance overhead and security. Specifically, we present results from bench-

marks along with an informal security analysis. We also discuss how extensions

on top of BPFBox and BPFContain could improve their performance and

security in the future.

1.4. Outline

The rest of this thesis proceeds as follows. Chapter 2 presents detailed background

information on virtualization, confinement, operating system security, and eBPF.

Chapter 3 presents a novel framing of the confinement problem, outlining the mo-

tivation and design goals for BPFBox and BPFContain, and presenting a threat

model for confinement. Chapter 4 describes the design and implementation of the

initial BPFBox prototype and documents its original policy language. Chapter 5

describes the design and implementation of BPFContain, discusses how it has

evolved from BPFBox, and highlights opportunities for future extensions that can

make BPFContain more useful for confining containers.

Chapter 6 presents an evaluation of the BPFBox and BPFContain prototypes

from the perspective of performance and security. We present benchmarking data

11

Chapter 1. Introduction

comparing both systems with AppArmor, a popular LSM (Linux Security Modules)

implementation of mandatory access control. We also present a security analysis of

BPFBox and BPFContain, highlighting areas of weakness and specific aspects of

BPFBox upon which BPFContain improves. Chapter 7 presents policy examples

for BPFBox and BPFContain and provides a detailed comparison, highlighting

the strengths and weaknesses of each. Chapter 8 concludes with a high-level discus-

sion on BPFBox and BPFContain, including limitations and opportunities for

future work.

12

Chapter 2.

Background and Related Work

This chapter presents technical background information required to understand this

thesis and discusses related work from the perspective of industry and academia.

Section 2.1 provides a definition of the term confinement in the context of this the-

sis. Section 2.2 presents technical background on historical models for process-level

confinement, with a particular emphasis on Multics, Unix, and Unix derivatives.

Section 2.3 focuses on subsequent extensions to the Unix security model and covers

related work in the confinement space. Section 2.4 examines process-level virtual-

ization technologies in Unix-like operating systems. Section 2.5 discusses the differ-

ences between hypervisor- and container-based virtualization, container security, and

presents related work in the container security space. Finally, Section 2.6 presents

a detailed history of eBPF, describes its architectural components and features, and

discusses use cases in security and beyond.

13

Chapter 2. Background and Related Work

2.1. Confinement in Operating Systems

Before discussing the design and implementation of a novel confinement framework,

it is critical to understand precisely what we mean by the term confinement. This

section provides a definition of confinement in operating systems that will inform

later discussion on the design and implementation of BPFBox and BPFContain

as well as provide some context for the selection of related work presented later in

this chapter.

We define confinement as the establishment of a security boundary around some

unit of computation C (e.g. a process or a container). This boundary limits C’s abil-

ity to access system resources which reside outside of the boundary or to perform

privileged operations which could impact the rest of the system. An enforcement

engine mediates security-sensitive operations which would cross the security bound-

ary, enforcing a confinement policy. In particular, our goal is to limit the ability of

a misbehaving C (for example, having been compromised by an attacker) to damage

the rest of the system.

This definition of confinement is consistent with seminal work in the field. Lamp-

son [82] first defines process confinement as the inability for a confined process to

leak sensitive data, but focuses on the fact that a misbehaving program should be

trapped when attempting to escape. Others later expanded this definition to include

other threats such as tampering with the host system [63, 76, 79, 115, 151, 152].

BPFBox and BPFContain focus on process-level and container-level confine-

ment respectively. We define process-level confinement as confinement which targets

the process as a unit of computation. Similarly, container-level confinement targets

14

Chapter 2. Background and Related Work

the container as a unit of computation and security. The key differentiating factor

between these two models is the location in which we define our security boundary.

In process-level confinement, our boundary exists around a given process and the

corresponding confinement policy is largely defined by the application code which is

running. In container-level confinement, we are concerned with defining a security

boundary around a group of related processes, defined by a shared set of resource

mappings. Chapter 3 discusses these two models in more detail. The rest of this

chapter focuses on surveying the existing confinement landscape at various levels of

the software stack.

2.2. Classic Unix Process Security Model

This section reviews foundational concepts in OS (Operating System) (particularly

Unix-like OSs and Linux) security. In particular, we discuss the reference monitor

concept, virtual memory and user processes, and discretionary access control and

how these concepts interact to form the backbone of process-level security in Unix.

The goal of this section is to help the reader build a mental model of how operating

systems isolate and protect processes and system resources at the most fundamental

level. Readers familiar with these OS security concepts can skip this section in favour

of Section 2.3 which examines more advanced security mechanisms and discusses

related work.

15

Chapter 2. Background and Related Work

2.2.1. The Reference Monitor

The reference monitor concept, first introduced in the landmark 1972 Anderson Re-

port [2], was among the earliest complete descriptions of a full access control mech-

anism and remains influential in operating system design to date. The reference

monitor is an abstract model for a secure reference validation mechanism built into

the operating system. The model partitions the system into subjects (users, pro-

cesses, etc.) and objects (system resources). Subjects request access to objects and

the reference monitor checks this access against a known list of allowed accesses,

parameterized by the subject, object, and requested access. The software implemen-

tation of a reference monitor is known as the security kernel. Figure 2.1 depicts the

reference monitor concept as it was first presented by Anderson [2].

While the majority of modern operating systems do not include a security kernel as

described by Anderson, the reference monitor architecture has informed the design

of modern access control mechanisms and models the reference validation process

that occurs when the kernel is servicing userspace requests (i.e. system calls) [107].

In order for such a design to be considered valid, Anderson enumerates three key

properties: (i) Tamper Resistance; (ii) Complete Mediation; and (iii) Verifiability.

These properties facilitate reasoning about the security of modern access control

mechanisms, even if they do not strictly adhere to the reference monitor model.

Tamper Resistance In order for the reference monitor to be considered tamper

resistant, an unauthorized party must not be able to alter the reference monitor’s

code or modify any data (e.g. memory, persistent storage) that the reference monitor

relies on to enforce correct reference validation [2]. This property follows from the

16

Chapter 2. Background and Related Work

Reference
Monitor

(Security Kernel)

User Process

Request
(i.e. system call)

Response
(security decision)

Program Data I/O Device

Userspace
Kernelspace

Underlying Resources

...

Figure 2.1: The reference monitor concept as outlined in the Anderson Report.

Redrawn and adapted from Anderson [2]. User processes make requests (e.g. via

system calls to the operating system). The OS kernel invokes the reference monitor,

which is implemented in software as a security kernel. The reference monitor queries

its security policy taking the subject, object, and other parameters as input. As

output, it returns a security decision (i.e. whether the requested access should be

allowed or denied).

17

Chapter 2. Background and Related Work

fact that unauthorized tampering with the reference monitor totally invalidates any

security guarantees.

Complete Mediation The property of complete mediation means that the refer-

ence monitor should be invoked on all security sensitive events. It should be impos-

sible for an attacker to bypass the reference monitor in any way. Any software that

is not subject to reference validation should be considered a part of the reference

monitor [2].

Verifiability Verifiability refers to the ability to reason about or prove the cor-

rectness of the reference monitor (i.e. that the first two properties hold). Formal

verification methods are the best way of achieving verifiability, although this may

not necessarily be practical for highly complex systems. For this reason, it is rec-

ommended to design the reference monitor in such a way that verifiability is maxi-

mized [2].

2.2.2. Virtual Memory and Memory Protection

Virtual memory [44] is a mechanism for mapping virtual memory addresses to phys-

ical machine addresses. First introduced in the 1950s, the original goal of virtual

memory was to make it easier for programmers to manipulate memory without wor-

rying about the underlying details of storage configuration [44]. With the advent of

multi-processing systems, virtual memory took on a new role— separation of memory

resources between distinct user processes. This separation is a fundamental notion

for secure multi-processing; two user processes should not be able to interfere with

18

Chapter 2. Background and Related Work

each other’s memory, and a user process should not be able to interfere with the OS

kernel, resident in ring 0 memory.

By partitioning memory into virtual address spaces, virtual memory forms the

most fundamental isolation barrier between user processes. To accomplish this goal,

a hardware mechanism, the MMU (Memory Management Unit), translates virtual

addresses to physical addresses using a page table maintained by the operating system

in main memory. To accelerate the translation of memory addresses, processors cache

this mapping in a specialized cache area called the TLB (Translation Lookaside

Buffer). In Unix, each user process gets its own virtual address space by default,

maintained in a per-process page table. Where necessary, this isolation may be

voluntarily broken using memory sharing mechanisms provided by the OS kernel

(e.g. multi-threading or shared memory mappings). The kernel also gets its own

address space which maps the entirety of physical memory.

While virtual memory can help isolate user processes from each other and user pro-

cess from the kernel, additional protection mechanisms are required to strengthen

this isolation. To this end, the CPU (Central Processing Unit) ISA (Instruction

Set Architecture) generally defines memory protection bits that can be applied to

physical pages and enforced in the MMU. For instance, individual pages can be

marked as readable, writable, and/or executable depending on how the memory is

to be used. How these protections are used is generally up to the operating system;

for instance, modern operating systems often enforce a policy where pages marked

writable are not allowed to be marked executable and vice versa (this is often referred

to as W⊕X). This helps to prevent basic buffer overflow attacks. Another important

protection mechanism employed by the operating system is ASLR (Address Space

19

Chapter 2. Background and Related Work

Layout Randomization), which slightly randomizes virtual address space mappings,

making them unpredictable and thus more difficult for attackers to exploit consis-

tently. A similar mechanism, KASLR (Kernel ASLR), protects the kernel. The

grsecurity patch set [67] offers additional memory protection for the Linux kernel,

hardening the boundary between userspace and kernelspace and applying additional

mitigations to prevent return oriented programming attacks.

Additional protections are afforded by memory protection rings, a concept first

introduced by Multics [36, 150] in the mid-1960s. In the original design, 64 pro-

tection rings were defined in hardware, numbered from 0–63. A task running in

a higher-numbered protection ring would be unable to access any memory marked

with a lower-numbered protection ring, effectively isolating sensitive code and data

from unprivileged tasks. Modern CPUs carry forward this notion of protection rings,

although a typical modern processor only defines far fewer protection rings in prac-

tice. For instance, x86 only implements four protection rings in total. Modern OSs,

including Linux, generally only use two of these rings, ring 0 and ring 3 (on x86 pro-

cessors) for kernelspace and userspace respectively. Figure 2.2 depicts this design.

Lee et al. [84] have proposed using the remaining two rings for finer-grained isolation

on x86.

2.2.3. Discretionary Access Control

DAC (Discretionary Access Control) comprises the most basic form of access con-

trol in many operating systems, including Linux, other Unix-like operating systems,

and Microsoft Windows. First formalized in the 1983 US Department of Defense

20

Chapter 2. Background and Related Work

Kernelspace

Unused

Unused

Userspace

Ring 0

Ring 1

Ring 2

Ring 3

Virtualized Lower Rings
(Implemented in Firmware)

Figure 2.2: A visualization of protection rings on x86 CPUs. Ring 3 contains

userspace, the address space of ordinary applications that run in user mode. Ring

0 contains kernselspace, the kernel’s address space. Code running in ring 0 is said

to run in supervisor mode. Rings 1–2 are generally unused by COTS (Commercial

Off-The-Shelf) operating systems. CPUs often implement “lower” rings (-1, -2, etc.)

by virtualizing ring 0 in firmware. These are typically reserved for the hypervisor

and other hardware-backed features like Intel’s System Management Mode [144].

21

Chapter 2. Background and Related Work

standard [149], a discretionary access control mechanism partitions and labels sys-

tem objects (i.e. resources such as files) by the subjects (i.e. actors such as users

and user processes) that own them. The corresponding resource owner then has full

authority to decide which subjects have access to its owned objects. This notion of

ultimate authority over a subject’s owned objects constitutes the primary difference

between discretionary access control and mandatory access control, which is covered

in Section 2.3.2.

Classically, Unix-like systems have implemented discretionary access control in the

form of permission bits and access control lists. Each process on the system runs

under a specific user and group ID, which uniquely identify the user and group of the

process respectively, where each group is a collection of one or more users. Permission

bits and access control lists denote access permissions according to the user ID and

group ID of the process requesting the resource. These permissions can in turn be

overridden by the superuser or root [75, 107].

Permission Bits

Permission bits in Unix are special metadata associated with a file that determine

coarse-grained access to the file according to a subject’s UID (User ID) and GID

(Group ID). Permission bits are divided into three sections: User, Group, and Other.

The User bits apply to subjects whose UID matches the resource owner’s UID,

while the Group bits consider the GID instead. In all other cases (i.e. when neither

the UID nor the GID matches), the Other bits determine the allowed access. To

determine which access should be allowed, permission bits encode a coarse-grained

access vector, specifying read, write, and execute access on a file or directory (in the

22

Chapter 2. Background and Related Work

case of a directory, execute access implies the ability to chdir(2) into that directory).

While convenient, permission bits are generally insufficient to provide legitimate

security guarantees to modern systems [75, 107]. In particular, permission bits en-

code coarse-grained permissions and apply these permissions in a coarse-grained,

all-or-nothing, manner. For instance, consider the use case of granting read-only

access to another user. Specifying such access as part of the Other bitmask implies

granting access to any user on the system. Specifying access to a particular Group is

slightly better, but the resource owner has no direct control over which other users

belong to this group, now or in the future. Thus, we cannot say with certainty that

we may specify such access without violating our security assumptions.

Access Control Lists

ACLs (Access Control Lists) offer a slightly more granular alternative to permission

bits, at the expense of increased complexity [75, 107]. Unlike permission bits, which

rely on three coarse-grained subject categories (User, Group, and Other), an access

control list defines a set of subjects and their corresponding permissions for every

object. It may be helpful to think of this as breaking up the Other category into

distinct subjects rather than granting or revoking blanket access to all other users

on the system.

Capability lists, complementary to access control lists, define a set of objects and

allowed access patterns for every subject. A capability list for a given subject can

be derived by taking the set of all access control lists for every object and vice

versa [107]. Together, the set of all access control lists (or capability lists) forms an

access matrix, describing the DAC policy over the entire system. Figure 2.3 depicts

23

Chapter 2. Background and Related Work

this relationship.

The Superuser and Setuid

To facilitate system administration, many DAC schemes incorporate the notion of a

superuser or administrator role into their model. In Unix and Unix-like operating

systems, the superuser or root user is denoted by the UID of zero. Any process

running with the EUID (Effective User ID) of zero is said to be root-privileged.

These root-privileged processes can then override the system’s DAC policy, bypassing

permission bits and access control entries on system objects.

In many cases, a program requires additional privileges in order to function. For

instance, a login program would require the ability to read security-sensitive pass-

word entries in /etc/shadow. To achieve such functionality, Unix provides special

setuid and setgid permission bits that implicitly set the effective user and group

IDs of a process to those of the file owner. A sufficiently-privileged process may also

change its own EUID or EGID (Effective Group ID) at runtime using the setuid(2)

and setgid(2) family of system calls. The example login program, for instance,

could use these system calls to drop its privileges to those of the user being logged

in. While necessary under the Unix DAC model, setuid and setgid binaries have long

been the target of exploitation, particularly for privilege escalation attacks [46, 75,

107].

User and Group Assignment

To alleviate concerns with discretionary access control, systems often take the ap-

proach of assigning a unique user and/or group to a specific application. Such appli-

24

Chapter 2. Background and Related Work

cations are typically security sensitive, such as a privileged daemon or network-facing

service. This technique achieves a dual purpose: firstly, the application can lock down

any resources it owns, simply by restricting any access to its own UID; secondly, the

resulting process no longer needs to run under the same UID as its parent. This

effectively limits the amount of outside resources that the application can access (so

long as permission bits are correctly configured).

The Android operating system takes this model a step further, assigning a unique

UID and GID to every application on the system, with optional UID sharing between

applications that come from the same vendor. Under this model, no process’ UID

ever corresponds to a human user. While this arguably improves security, Barrera et

al. [10] found weaknesses in Android’s UID sharing model that can reduce its security

to the trustworthiness of an app’s signing key.

DAC Security Assumptions and Attacks

Although discretionary access control provides a convenient and intuitive user-centric

model for object ownership and permissions, it makes some dangerous assumptions

about security that can totally invalidate the model in practice [128]. In particular,

DAC assumes that all processes are benign and contain no exploitable vulnerabilities.

The mere existence off malware and exploitable vulnerabilities (e.g. memory safety

vulnerabilities) immediately invalidates this assumption. For instance, consider an

honest but vulnerable piece of software running under a given UID X. An attacker

exploiting a vulnerability in this application could perform arbitrary operations on

26

Chapter 2. Background and Related Work

any files owned by X. Similarly, a Trojan horse1 [107, 128] can perform arbitrary

malicious operations on X’s files without needing to exploit any vulnerability. The

fundamental issue with Unix DAC is that these files need not necessarily have any-

thing to do with the program in question.

Another fundamental issue with Unix DAC lies in the ultimate authority of the root

user. Any process running with EUID=0 is immediately part of the system’s TCB

(Trusted Computing Base)2. The same applies to any executable marked as setuid

root. Processes that run with root privileges are prime targets for attacker exploit,

since a successful attack can effectively compromise the entire system. For instance,

confused deputy attacks [69, 128] can exploit privileged processes by tricking them

into performing some undesired action. The coarse granularity of Unix DAC renders

it particularly vulnerable against such attacks.

Proposals for Alternative Schemes

Both industry and academia have long recognized that weaknesses in the Unix dis-

cretionary access control model must be addressed. Many have turned to mandatory

access control [42, 68, 70, 122, 123, 125, 129, 130, 137, 153] (c.f. Section 2.3.2) to

solve the fundamental issues in DAC, while others have proposed improvements or

alternative schemes for implementing discretionary access control [25, 46, 51, 96, 134,

146]. This subsection focuses specifically on the latter.

Mao et al. [96] proposed IFEDAC (Information Flow Enhanced DAC) as an alter-

1A Trojan horse is a piece of ostensibly benign software that is designed to perform some malicious
action or actions in addition to its ordinary functionality [107].

2The trusted computing base is the set of all hardware and software that must be trusted in order
for the system to be considered trusted. Typically, this includes system hardware, the operating
system itself, and a small subset of userspace programs [75].

27

Chapter 2. Background and Related Work

native DAC model that is resistant to Trojan horse attacks. The insight behind their

work was that DAC’s primary weaknesses lie in the inability to distinguish requests

involving multiple actors. Their mechanism proposes to track information flows be-

tween subjects and use these flows to infer a list of subjects that have influenced a

request.

Under the traditional Unix DAC model, only the UID and GID of the process

are considered when making access control decisions; under IFEDAC, the UID and

GID of the owner of the underlying executable would also be considered, along with

any other parties that may have influenced the state of the running process. This

approach is similar in spirit to taint tracking mechanisms [90] (c.f. Section 2.3.4). To

enable programs to function correctly, IFEDAC enables the user to define exception

policy that specifies exceptions to IFEDAC enforcement. Mao et al. recommend

that application authors and OS vendors should be responsible for distributing such

policies [96].

Dranger, Solworth, and Sloan [51, 134] presented a three-layered model of DAC

mechanisms. The base layer defines the general access control model, while the

parameterization layer parameterizes it according to deployment needs. Finally, the

local initialization layer comprises the set of subjects and objects along with their

associated protections. The authors showed that their model was generalizable and

that it could be used to implement any DAC mechanism.

Dittmer and Tripunitara [46] examined the implementation and common usage

patterns of the POSIX setuid and setgid API (Application Programming Interface)

across multiple Unix-like operating systems. They identified weaknesses in systems

that do not implement the latest POSIX standard revisions and suggested that mis-

28

Chapter 2. Background and Related Work

matched semantics between various implementors can be a source of developer error.

Finally, they presented an alternative API that partitions UID changes into perma-

nent and temporary categories. Tsafrir et al. [146] and Chen et al. [25] identified the

same fundamental issues and proposed the adoption of similar mechanisms.

2.3. Extensions to the Unix Security Model

Having examined the classical components of an operating system security frame-

work, we now turn our attention to recent extensions on top of the Unix security

model, with a particular emphasis on Linux and other free and open source Unix-like

operating systems. This section presents a selection of key developments on top of

the original Unix security model which have developed over time, with a particular

emphasis on process-level confinement.

2.3.1. POSIX Capabilities

POSIX capabilities [24, 37, 38] are highly related to Unix DAC in the sense that

they were originally designed to break up the multitude of privileges associated with

the root user into more manageable pieces. In this sense, POSIX capabilities (when

properly used) are more conducive to the principle of least-privilege. A process need

not necessarily possess full root-level access to the system when only a small subset

of those privileges are actually required.

Originally specified in the (now withdrawn) 1003.1e POSIX standard, POSIX ca-

pabilities were only ever (partially) implemented on Linux [3]. Other Unix-like op-

erating systems prefer alternative methods of restricting privileges, many of which

29

Chapter 2. Background and Related Work

are discussed in Section 2.3.3. POSIX capabilities specify three capability sets for a

given process: the bounding set, the inheritable set, and the effective set. The

bounding set determines the set of all capabilities that a process is ever allowed to

possess. The inheritable set determines the set of all capabilities that can be inher-

ited across execve calls. Finally, the effective set determines the set of capabilities

that a process can use (i.e. which capabilities a process currently possesses).

Linux exposes POSIX capabilities through extended filesystem attributes, much

the same way that ACLs are implemented [38]. These file-based capabilities function

in a similar manner to the setuid bit, implicitly setting the bounding, inheritable,

and effective capability sets on execution. In addition to supporting capabilities as

extended filesystem attributes, the kernel also supports dropping specific capabilities

from each of the three sets through the ptrctl(2) system call. This enables a higher-

privileged process (e.g. running as root) to drop elevated privileges while retaining

those it needs to function. As of Linux 5.12, the kernel supports 41 capabilities in

total, including the all-encompassing CAP SYS ADMIN [147].

It is worth mentioning that the term “POSIX capabilities” does not describe ca-

pabilities as they are broadly defined by operating system security researchers [3].

In particular, Dennis and Van Horn [45] first defined the notion of capabilities as a

means of restricting access to pointers, guarding references to system objects. Unlike

the capabilities defined by Dennis and Van Horn, POSIX capabilities are not associ-

ated with any given system object. Dennis and Van Horn’s capabilities more closely

resemble that of the access matrix introduced by Anderson [2] and similar mecha-

nisms have been implemented in other systems such as FreeBSD’s Capsicum [152].

These are discussed in more detail in Section 2.3.3.

30

Chapter 2. Background and Related Work

2.3.2. Mandatory Access Control

In contrast with DAC, MAC (Mandatory Access Control) does not delegate permis-

sion assignment to the resource owner [75, 107, 137]. In the context of Unix, this

means that MAC both overrides traditional discretionary access controls and applies

access controls to all users on the system, including root. Historical implementations

of MAC have focused primarily on MLS (Multi-Level Security), an access control

scheme that revolves around the secrecy of objects and access level of subjects [12].

In a nutshell, MLS prevents a subject from reading data with a higher secrecy level

or writing data with a lower secrecy level, preventing breaches in confidentiality and

integrity [75].

Historical Approaches

Multics [36, 150] was the first operating system to pioneer the use of an MLS access

control scheme. Memory in Multics was virtualized into segments, each with a seg-

ment descriptor that outlined protections that should be applied to that memory. To

define an MLS policy, these protections included a secrecy level, enforced according

to the subjects secrecy level. These MLS-style protections were complementary to

discretionary ACLs defined for every segment along with memory protection rings

(the first of their kind), enforced in hardware [75].

While MLS is primarily applicable to military contexts, MAC has since evolved

into mainstream use through the advent of alternative implementations. The Flask

microkernel [137] introduced a practical architecture for MAC policy enforcement

that was both scalable and effective. The non-discretionary components of the Flask

31

Chapter 2. Background and Related Work

security model were hugely influential in the design and implementation of subse-

quent MAC enforcement mechanisms, most notably SELinux [92, 130].

The basic notion behind flask is straightforward; the security architecture is di-

vided into a security server, responsible for storing security policy, and an object

manager that serves requests to userspace applications. When an application re-

quests a resource, the object manager queries security policy from the security server

and decides whether or not to serve the request based on the resulting enforcement

decision. By designing Flask to be modular in this way, Spencer et al. achieved a

separation of concerns between policy enforcement and policy decision-making, vital

for scalability [92, 130, 137].

Linux Security Modules, SELinux, and AppArmor

The NSA first introduced SELinux (Security Enhanced Linux) [92, 130] as a Linux

kernel patch, with the goal of providing an implementation of the Flask security ar-

chitecture [137] for the Linux kernel. Reluctant to restrict users to just one security

architecture, the kernel community eventually agreed that a generic security frame-

work would provide more value than a single implementation, allowing for multiple

upstream security implementations that could be selected based on the downstream

use case. This effort culminated in the introduction of the Linux Security Modules

(LSM) [153] framework.

The LSM framework consists of a set of security hooks, placed in strategic loca-

tions throughout the kernel [153]. Hooks can roughly be divided into enforcement

hooks and bookkeeping hooks. Enforcement hooks serve as checkpoints for security

enforcement over specific access categories, while bookkeeping hooks enable a se-

32

Chapter 2. Background and Related Work

curity module to maintain stateful information about subjects and objects on the

system. LSM hooks are not considered to be static, and often change between kernel

versions as new hooks are implemented and both new and existing hooks placed into

various kernel functions [158]. The eventual goal of the LSM framework is to provide

complete mediation over kernel security events, however this is an evolving process

and no formal verification exists to prove the security of LSM hooks [60]. Figure 2.4

depicts the basic LSM architecture.

After the introduction of the LSM framework, SELinux was refactored into a

Linux security module [130] and subsequently merged into the mainline kernel.

SELinux supports three major types of mandatory access control: (i) role-based

access controls; (ii) type enforcement; and (iii) an optional MLS policy. Fundamen-

tally, SELinux policies are based on a notion of subject and object labelling. A

security policy assigns a specific label to subjects and objects, and then specifies

access patterns between these labels.

In an effort to simplify the SELinux policy language, a reference policy was intro-

duced by PeBenito in 2006 [110], providing a framework for creating and managing

reusable policy templates which can be integrated into new and existing security

policies. SELinux reference policies can be augmented with boolean options, called

tunables that provide coarse-grained control over policy behaviour to system admin-

istrators. Sniffen [133] implemented a guided policy generation system that walks

application authors through the process of writing SELinux policy. This framework

was further augmented by MacMillan [95], culminating in the eventual introduc-

tion of the audit2allow [131] command line utility for automated policy generation.

Despite these usability improvements, the SELinux policy language is generally con-

33

Chapter 2. Background and Related Work

sidered to be quite arcane [125], rendering it difficult for non-expert users to write

and audit security policy.

Since the introduction of SELinux, several alternative LSMs have been proposed,

many of which have subsequently been merged into the mainline Linux kernel. App-

Armor (originally called SubDomain) [42] takes an alternative approach to SELinux,

enforcing security policy based on pathnames rather than security labels. AppArmor

policies, called profiles, are assigned on a per-executable basis. Rather than being la-

belled, AppArmor policies identify system objects directly (e.g. through pathnames,

IPC (Inter-Process Communication) categories, or network IP (Internet Protocol)

addresses). Each system object is associated with a particular access pattern, which

determines the privileges for a given AppArmor profile. Similar to SELinux, App-

Armor offers a suite of userspace tooling for automated and semi-automated policy

generation based on enforcement logs [4, 5, 6].

Alternative Linux Security Modules

Recognizing usability issues in the complexity of SELinux and AppArmor policies,

Schaufler [123] introduced SMACK (Simplified Mandatory Access Control Kernel) to

offer a simplified label-based enforcement scheme that focuses on expressing a mini-

mal set of permissions. Like SELinux, SMACK relies on labelling filesystem objects

using extended filesystem attributes. Policies then attach simple access specifiers to

these labels, based on canonical Unix permissions like read, write, and execute.

Some default labels are provided, which grant or revoke blanket permissions for

common tasks such as system daemons or the init process.

Schreuders et al. [125] designed FBAC-LSM (Functionality-Based Access Control

35

Chapter 2. Background and Related Work

LSM) with a similar goal of simplifying policy definition. Unlike SMACK, which

is based on labelling, FBAC-LSM specifies policy in terms of desired functional-

ity. Specifically, FBAC-LSM policies define a set of high-level functionalities that

an application should exhibit. All other functionalities are prohibited. Schreuders

et al. evaluated FBAC-LSM in terms of its usability and found that it compares

favourably against AppArmor and SELinux [125].

Hu et al. [70] proposed FSF (File System Firewall), which applies firewall-like

semantics to filesystem objects. Their goal was to create a more usable, file-specific

access control mechanism. FSF policies are defined in policy files, comprised of

simple rules that specify a file along with some combination of read, write, and

execute access. Redirection rules are primary differentiating factor between FSF and

conventional file-based access controls. Taking inspiration from similar functionality

in network firewalls, a redirection rule can be used to convert one file access into

another, transparently to the target application. Hu et al. conducted a user study

comparing their prototype to Unix DAC and SELinux and found that FSF performed

favourably in policy comprehensibility and accuracy.

The TOMOYO [68] LSM takes an alternative approach, emphasizing policy gen-

eration and building generation functionality into the LSM directly. Rather than

involving userspace helpers, TOMOYO generates policy by inferring per-application

profiles through the LSM hooks they invoke. Programs can additionally discard their

privileges through a TOMOYO-specific system call, similar to the notion of dropping

privileges under the POSIX capabilities model. Like AppArmor, TOMOYO relies

on pathnames to identify resources rather than assigning security labels. Users have

the option to edit generated policies as required, but the intent is to require as little

36

Chapter 2. Background and Related Work

user involvement as possible [68].

The Landlock [121, 122] LSM was recently introduced into the mainline Linux ker-

nel as a contemporary alternative to seccomp(2) (covered in Section 2.3.3). Land-

lock was originally intended to allow unprivileged userspace processes to load highly

restricted eBPF programs into the kernel to define security filtering logic [121]. How-

ever, due to concerns related to the security of unprivileged eBPF, this functionality

was later reworked into a set of simple access rules and no longer has any asso-

ciation with eBPF [122]. Under Landlock, a process creates a ruleset using the

landlock create ruleset(2) system call, adds rules to that ruleset, then confines

itself by committing to that ruleset. Developers may add this confinement logic

directly into their software or may write specialized userspace wrappers to apply

generic confinement to applications.

Singh [129] introduced the KRSI (Kernel Runtime Security Instrumentation)

framework for attaching eBPF programs to LSM hooks with the goal of defining

dynamic audit and policy enforcement filters. While similar in spirit to the original

Landlock proposal [121], KRSI differs fundamentally in that it remains a privileged

LSM; only root-privileged processes may load eBPF LSM programs into the kernel.

BPFContain and BPFBox are both based on the KRSI framework. Section 2.6.2

examines the KRSI framework in more detail.

2.3.3. System Call Filtering and Capabilities

Since system calls define the canonical interface for communication between userspace

processes and the operating system kernel [75], they are a natural fit for defining the

37

Chapter 2. Background and Related Work

protection interface of a confinement mechanism. In particular, system call filtering

is a widely-used technique for application sandboxing and self-confinement [3]. In-

deed, LSMs, covered in the previous section, can be thought of as a form of system

call filtering, although security hooks are placed manually within system call imple-

mentations and do not necessarily conform to the same semantics as the underlying

system calls [153].

Related to this notion of system call filtering are capabilities3, which guard access

to a particular reference, associating privileges with a handle to a given object on

the system. For instance, the open(2) system call returns a file descriptor, which

constitutes a reference to a particular filesystem object. A capability associated

with this file descriptor would then allow specific operations on the file descriptor,

applying a default-deny policy to all other operations.

System Call Tracing

In Unix, ptrace [108, 117] (short for process trace) is a mechanism provided by the

kernel that allows one process (the tracer) to attach itself to another (the tracee),

tracing and possibly manipulating nearly any aspect of its execution, system calls,

memory, and registers. Originally designed as a debugging interface [108, 117], ptrace

has also been applied to implement system call filtering [63, 76, 79, 151]. How-

ever, ptrace has fallen out of favour, particularly in production use cases, due to

its immensely high overhead (on the order of several thousand percent [160]) and

propensity to introduce undefined behaviour when tracing even moderately com-

3Here, the term “capabilities” is a disparate term from “POSIX capabilities,” covered in Sec-
tion 2.2.3.

38

Chapter 2. Background and Related Work

plex software [142]. Due to its invasive nature, a tracer process must either be

the direct parent of a tracee or must have sufficient privileges to trace the child

process—on Linux, this translates to either the CAP SYS PTRACE capability or the

all-encompassing CAP SYS ADMIN.

Janus [63, 151] was an early exploration of how ptrace could be applied to confine

applications by filtering system calls. The original Janus prototype was designed

for Oracle Solaris using its ptrace interface, exposed through the procfs virtual

filesystem [63]. A subsequent port of Janus was released for Linux [151], although it

required invasive modifications to Linux’s ptrace implementation, dubbed ptrace++

by the authors. Janus worked by attaching to the target process using ptrace, then

tracing system calls made by the target process and categorizing them into groups

based on functionality. A Janus policy could allow or deny specific categories of

system call, confining the application in a coarse-grained manner. The tracer process,

called the supervisor process, would then be able to kill the offending process or

inject failure into the offending system call when it detected a policy violation. Jain

and Sekar [76] implemented a similar system call monitor, adding the ability to

modify system call arguments and using a different policy language design. Kim

and Zeldovich [79] used a combination of seccomp-bpf and ptrace to interpose on

filesystem operations and rewrite arguments, redirecting access into a sandboxed

filesystem.

Provos’ Systrace [115] uses ptrace to analyze per-process system calls and gen-

erate a system-call-level policy. Unlike Janus [63, 151] and Jain et al. [76], Sys-

trace supports intrusion detection, policy generation, and audit logging, providing a

mechanism to automatically analyze process behaviour. Systrace also supports one

39

Chapter 2. Background and Related Work

highly unconventional feature, which Provos calls privilege elevation. The notion be-

hind privilege elevation is to allow a program to escalate its privileges selectively for

specific system call access patterns, preventing the need for coarse-grained privilege

escalation such as setuid root.

Somayaji and Forrest [136] implement an intrusion detection system, pH (process

Homeostasis), based on system call sequences, although it does not rely on ptrace

and analyzes system call sequences instead of individual call patterns. Rather than

as a confinement solution, pH was strictly designed as a behavioural anomaly de-

tection system, although this approaches confinement as profile accuracy improves.

Findlay [56] (the author of this thesis) later ported pH to use eBPF to analyze system

call sequences.

OpenBSD Pledge and Unveil

OpenBSD’s pledge(2) and unveil(2) system calls form the backbone of its built-

in sandboxing framework. A pledge [112] consists of a list of promises, high-level

descriptions of what behaviours a program expects to exhibit in the future, similar

in spirit to Janus’ high-level categories [63, 151]. The pledge system call takes two

space-separated lists of promises, one to be applied immediately and another to be

applied upon making an execve(2) call. To prevent privilege escalation, subsequent

calls to pledge(2) take the union of existing promises and new promises, precluding

a process from escaping its initial bounding set [112].

Promises vary in granularity; the most coarse-grained promise, stdio, allows a

total of 69 distinct system calls, enabling the full suite of C standard library stdio-

family calls. Others, like chown, are more conservative, enabling only one (albeit

40

Chapter 2. Background and Related Work

in this case very powerful) system call. In total, pledge(2) includes 33 distinct

promises, as of OpenBSD 6.9 [112]. Due to its coarse granularity and lack of concern

for specific system objects, pledge has been criticized as being overly-permissive [3].

Unlike pledge, unveil(2) [39, 148] operates on specific filesystem paths, making

a promise about the kinds of operations the process will perform on file descriptors

associated with these paths. Specifically, unveil is concerned with four kinds of

permissions: read, write, execute, and create/delete. Unveiling a directory unveils all

files and directories underneath, recursively. Although this approach is finer-grained

than pledge, it is file-specific and offers a trade-off between granularity and usability.

The official manual page for unveil [148] recommends that developers use it at the

granularity of directories, despite the fact that this may result in overpermission in

practice. For instance, consider a hard link to the root of the filesystem placed by

an attacker within some unveiled directory. The unveiling process would now have

full access to the entire filesystem, constituting a sandbox escape.

Linux Seccomp and Seccomp-bpf

In Linux, the primary facility for direct system call filtering is seccomp(2) [3, 53,

116, 126]. Unlike OpenBSD’s pledge and unveil [112, 148], seccomp filters directly

over system calls, without any blanket categorization. Initially, seccomp was highly

limited, restricting a process to only four system calls: read(2) and write(2) for

reading and writing open file descriptors, sigreturn(2) for handling signals, and

exit(2) to enable self-termination. Using any other system call would result in

an immediate SIGKILL delivered from the kernel, forcefully ending the offending

process.

41

Chapter 2. Background and Related Work

Later, seccomp was extended to enable processes to define custom allowlists4,

denylists, and enforcement actions using classic BPF (Berkeley Packet Filter) fil-

ters [53]. This new incarnation was dubbed seccomp-bpf. While allowing for much

finer-grained confinement policy than pledge and unveil, seccomp-bpf has its own lim-

itations which can result in ineffective (and possibly dangerous) policies. In seccomp-

bpf, filters are defined over system call numbers and (optionally) arguments. Unless

the developer takes great care to correlate system call numbers with the specific

target architecture, the resulting policy may allow and deny incorrect system calls,

resulting in broken policies that break applications in the best case and expose se-

curity vulnerabilities in the worst case.

Another innate problem with seccomp arises due to its fine granularity. Paradox-

ically, avoiding system call categorization can expose vulnerabilities, due to system

call equivalence classes. For instance, the openat(2) system call can perform the

same functionality as the open(2) system call, with slightly different API semantics.

A seccomp-bpf filter allowing one system call but denying the other is now totally

broken and vulnerable to sandbox escape. Similarly, argument checking on path-

names or file descriptors can be vulnerable to TOCTTOU (Time of Check to Time

of Use) race conditions in practice, rendering such policies ineffective [3].

A final consideration for seccomp-bpf is that the development of seccomp-bpf poli-

cies requires knowledge of the relatively arcane cBPF (Classic BPF) syntax. This

problem is somewhat alleviated by the existence of library wrappers [87] around

seccomp-bpf functionality, although the usability of these solutions remains some-

4Allowlist and denylist are the new politically correct terms (in addition to being more semantically
meaningful) for whitelist and blacklist respectively.

42

Chapter 2. Background and Related Work

what questionable, particularly given the many pitfalls of seccomp-bpf policy au-

thorship [3].

FreeBSD Capsicum

Unlike the system call filters presented earlier in this section, FreeBSD’s capsicum(2)

[3, 152] is a true implementation of capabilities as they were originally described by

Dennis and Van Horn [45]. Specifically, capsicum capabilities are an extension on top

of Unix file descriptors, the canonical reference to files and file-like objects such as

network sockets and character devices. Capsicum adds an unforgeable access token

to each file descriptor, granting the corresponding process specific access rights over

that file descriptor. Whereas alternatives like seccomp-bpf [126] and pledge [112]

restrict access at the system-call-level, Capsicum restricts access at the resource-

level and enforces this access within the system call layer.

To confine processes, Capsicum exposes a special cap enter(2) system call which

causes a process to enter capability mode. A process in capability mode no longer has

access to global namespaces (e.g. the PID (Process ID) namespace) and may only

make a subset of system calls which do not directly access these global namespaces.

Other system calls are constrained so that they may only operate under the context

of an open capability descriptor (a file descriptor which has been extended with

capability information) [152]. The end-result is an expressive and fine-grained self-

confinement framework for FreeBSD applications, which comes at a small usability

cost compared with coarser-grained alternatives like pledge(2) [112].

43

Chapter 2. Background and Related Work

2.3.4. Taint Tracking

Taint tracking [90] describes the notion of tracking changes to memory containing

application data as it is mutated, copied, and moved by the underlying application.

Such data is considered tainted when it is modified by some external source in such a

way as the data can no longer be trusted. For instance, a buffer might be populated

by an external network connection or local user input. The security benefits of such

a mechanism are obvious. An active attack requires some user input into a program

in order to exploit a vulnerability; by tracking untrusted user input and treating

it as untrusted, developers can avoid attacker exploitation of sensitive code paths.

Beginning with Perl’s taint mode [71], taint tracking has enjoyed a rich body of

literature [13, 26, 27, 30, 33, 54, 90, 155, 156, 159] since its inception.

In Perl’s taint mode [71], a special command line flag triggers the interpreter to flag

untrusted user input and prevent it from being passed as input to functions explicitly

marked as unsafe. To circumvent this restriction, a developer could perform a pre-

determined set of sanity checks on the data to untaint it. Rather than acting as

an outright security mechanism, the goal was to encourage developers to take care

in processing untrusted data. Incorrect or insufficient sanity checks on the data

or running the Perl interpreter without the taint flag would result in no additional

security benefits whatsoever. After Perl, similar taint tracking mechanisms have

been added to other interpreters and language runtimes, including Ruby, PHP, and

Python [33].

Conti, Bello, and Russo [13, 33] implemented more advanced taint tracking func-

tionality for the Python programming language as a library that developers could

44

Chapter 2. Background and Related Work

use directly. Their argument was that implementing such a taint mechanism at

the language-level rather than at the interpreter-level could enrich the traditional

taint-tracking approach with use-case-specific metadata and facilitate extensions to

support complex data types.

With the goal of creating a generic and reusable taint tracking mechanism, several

researchers have proposed application-transparent taint tracking. Many have turned

to virtualization or emulation runtimes [54, 155, 156] such as QEMU, KVM, or Xen,

using built-in introspection features to track the propagation of data within (and even

between) running processes. Others have proposed the adoption of static analysis

or library instrumentation [26, 30, 159] techniques to reduce overhead and eliminate

the need to run applications under expensive virtualization monitors. Others have

built taint tracking logic into existing language runtimes, such as the Java Virtual

Machine [27].

2.4. Process-Level Virtualization

What we commonly think of as virtualization can be divided into two major cate-

gories: aggregation and segregation. Aggregation can be thought of as provisioning

a single virtual interface on top of disparate resources (for example, combining two

physical disks into one virtual disk). On the other hand, segregation involves pro-

viding an isolated view of a given resource (for example, virtual memory to isolate

process address spaces). This section focuses primarily on segregation and how it

relates to confinement.

45

Chapter 2. Background and Related Work

Chroots and Chroot Jails

To virtualize the filesystem, Unix has classically supported the chroot(2) system

call [99], used to change the filesystem root (“/”) to some directory, specified as an

argument. From the process’ point of view, this directory becomes its new filesystem

root. However, chroot suffers from several issues that render it totally ineffective as

a security mechanism. Chroot escapes, path traversals, spurious access to special

filesystems and devices, and superuser privileges all totally invalidate chroot as an

isolation mechanism [99].

For instance, consider a call to chroot("/my/new/root"). Without a follow-up

call to chdir(2) to change the process’ current working directory, a simple call to

chdir("..") is enough to escape the chroot jail. Even with the aforementioned

precautions, a process that has or is able to obtain superuser privileges can simply

create a new directory, re-invoke chroot, and perform the same escape as before [99].

Without the proper confinement mechanisms and necessary precautions to prevent

such escapes, chroot cannot be considered an effective isolation technique. In fact,

chroot escapes have been a source of many vulnerabilities with container management

engines like Docker in the past [32]. McFearin [99] proposed updates to the POSIX

standard that fix many of chroot’s security flaws, but these have not been adopted.

FreeBSD Jails and Solaris Zones

Kamp et al. [78] presented FreeBSD’s jail(2) as a more secure alternative to

chroot(2) jails. In particular, the jail system call is a heavily extended wrapper

around FreeBSD’s chroot implementation. A call to jail begins by allocating and

46

Chapter 2. Background and Related Work

populating a prison data structure that maintains metadata related to the jailed

process group, and finishes by simply invoking the standard chroot implementation.

Unlike chroot, Jails take care to avoid the standard pitfalls that may result in a

chroot escape and heavily limit the privileges of the root user within the jail. In this

respect, the jail system call can be seen as a hybrid between a virtualization and

confinement mechanism, approaching a full solution.

Jails take the approach of defining a clear security boundary around a collection of

processes, filesystem resources, and network resources [78]. A process existing within

this boundary (i.e. a member of the jail) enjoys the standard set of Unix permissions

on resources within the jail. Access to resources outside of the jail is forbidden,

including access by the root user. Visibility is similarly restricted by remapping

namespaces in such a way as outside resources are effectively invisible. Defining a

clear protection boundary enables the jail to enforce sensible security policy without

burdening the administrator with the details of writing such a policy [78].

Solaris Zones [114] later arose as a commercial solution for process-level virtual-

ization. The goal was to implement namespace remapping and security isolation for

commercial server deployments in (possibly multi-tenant) Solaris environments. The

implementation details of Solaris’ Zones are similar to those of FreeBSD’s Jails; a

per-task data structure manages the associate between tasks and Zones, allowing the

kernel to perform the necessary remapping and security checks.

Linux Namespaces and Cgroups

Unlike FreeBSD [78] and Solaris [114], Linux takes a different approach to process-

level virtualization. In particular, Linux’s virtualization strategy consists of two

47

Chapter 2. Background and Related Work

separate mechanisms, namespaces and cgroups (short for process control groups).

These mechanisms, in turn, can be further subdivided into specific types, target-

ing different kinds of system resources. Notably, namespaces and cgroups are not

confinement mechanisms in and of themselves. This property is in stark contrast

with Jails and Zones, which were designed to offer strong confinement guarantees

over their respective security boundaries. As the canonical process-level virtualiza-

tion building blocks in Linux, namespaces and cgroups form the backbone of Linux

containers (c.f. Section 2.5.1).

Linux namespaces [14, 104] limit the visibility of system resource by providing

a virtual remapping of global resource identifiers to a process or process group.

Such identifiers include process IDs, user IDs, filesystem mounts, IPC objects, and

network interfaces, among others. Linux supports namespace creation and entry

via the clone(2) and unshare(2) system calls, for isolating child processes and

existing processes respectively. As of version 5.13, the Linux kernel supports eight

distinct namespaces, depicted in Table 2.1. Other namespaces have been proposed

and/or planned for inclusion, including a security namespace [141] for virtualizing

LSM hooks.

Complementary to namespaces, cgroups [34, 61] divide processes into hierarchi-

cal groups, performing resource accounting and restricting access to quantifiable

resources such as memory, CPU clock cycles, block I/O, and device drivers. From

a security perspective, such restrictions are useful to prevent resource starvation

attacks against the host. However, Gao et al. [61] found that this protection is in-

complete and often misleading, allowing up to 200× the allotted resource limits by

exploiting out-of-band resource consumption techniques. To interact with the cgroup

48

Chapter 2. Background and Related Work

Table 2.1: Linux namespaces (as of kernel version 5.13) and what they can be used

to isolate [104].

Namespace Isolates

PID PIDs

Mount Filesystem mountpoints

Net Networking stack

UTS Host and domain names

IPC Inter-process communication objects

User UIDs and GIDs

Time System time

Cgroup Cgroup membership

hierarchy, Linux exposes a virtual filesystem which encodes cgroup membership in

its directory structure. Cgroup membership visibility can be virtualized using the

cgroup namespace [34].

2.5. Containers and Virtual Machines

Classically, virtualization of a system has been accomplished by means of a hyper-

visor [52, 140]. Hypervisors implement an interface which overlays the underlying

system hardware, enabling one or more guest operating systems to be installed on a

single physical host. These guest systems are then called virtual machines. Due to

the level of indirection provided by the hypervisor and the guest operating system

kernel, virtual machines are generally considered to be quite strongly isolated from

each other, but this isolation comes at the cost of much higher overhead, both in

49

Chapter 2. Background and Related Work

terms of storage and performance [52, 140]. Section 3.1 in Chapter 3 discusses the

differences between virtual machines and containers in more detail and addresses

some common misconceptions about the levels of isolation they provide.

Containers have emerged as a new unit of computation in recent years, providing

a more lightweight alternative to full hypervisor-based virtualization [52, 140]. Un-

like virtual machines, containers run directly on the host operating system, rather

than directly atop a hypervisor, and share the host operating system kernel with

each other and with ordinary host processes. In fact, a container is nothing more

than a discrete collection of processes (sometimes only one process) that share some

common isolation from the rest of the system by way of virtualization and confine-

ment primitives. These primitives typically include namespaces and cgroups, along

with optional confinement mechanisms like seccomp-BPF and Linux MAC policy.

Since they directly share the host OS kernel and do not require a guest operating

system, containers are significantly more lightweight and more performant than vir-

tual machines, but at the cost of weaker base isolation. Figure 2.5 depicts the major

differences between container and hypervisor-based architectures.

2.5.1. Container Security

Due to the nature of containers as specialized process groups, any notion of container

security is necessarily tightly coupled with the underlying security primitives exposed

by the host operating system. These include the virtualization primitives discussed

in Section 2.4, and the confinement primitives discussed in Sections 2.2 and 2.3.

Whereas the primary attack surface of a virtual machine is comprised of the interface

50

Chapter 2. Background and Related Work

Host Operating System

Hardware

Container Runtime

Container Management Engine

Virtualization Layer

Confinement Layer

Linux MAC
Unix DAC
Seccomp-BPF
POSIX CapabilitiesNamespaces

Cgroups

Chroots

(a) Container-Based

Host Operating
System

Process Process

System Libraries

(b) Hypervisor-Based

Hypervisor

Guest OS

Virtual Machine A

Container A

System Libraries

Process Process

System Libraries

Process Process

Container B

Process Process

System Libraries

Guest OS

Virtual Machine B

Process Process

System Libraries

Container C

Hardware

Figure 2.5: A comparison of virtual machine and container architectures [52, 140].

Containers (a) achieve virtualization using a thin layer provided by the host OS

itself. They share the underlying operating system kernel and resources, requiring

no guest OS. A hypervisor (b) virtualizes and controls the underlying hardware

directly, but requires full guest operating systems on top of the virtualization layer.

Note that hypervisor-based virtualization may be further subdivided into Type I and

Type II based on the presence (or lack thereof) of a host operating system. This

figure depicts both types simultaneously.

51

Chapter 2. Background and Related Work

A malicious container process can also target a process belonging to another con-

tainer (Item B in Figure 2.6) or a (possibly privileged) host process (Item C in

Figure 2.6). An attack could occur as a result of a misconfigured security policy or

some system resource shared by both processes. The end goal might be tampering

with the other process, or privilege escalation (for instance, via a Confused Deputy

attack [69]). Finally, a host process can attack a container process (Item D in Fig-

ure 2.6). Goals in this case might include tampering with a container belonging to

another user of a multi-tenant system.

Not pictured in Figure 2.6 but important nonetheless is the case where a process

(containerized or otherwise) abuses a vulnerability in system hardware or firmware

(e.g. a side channel attack on cache memory) to leak information about another

process (containerized or otherwise). Such attacks can totally bypass the operating

system’s reference monitor and generally require trusted computing technologies or

hardware/software co-design to mitigate. As such, they are out of scope for this

thesis.

Resource starvation attacks constitute another important threat in container se-

curity. In such an attack, a malicious container greedily consumes system resources,

limiting their availability for benign processes. Linux cgroups, when properly con-

figured, can mostly defeat such attacks, although some researchers argue that such

protection can be misleading or incomplete in practice [61]. While resource starva-

tion attacks are currently considered out of scope for this thesis, future iterations

of BPFContain may work cooperatively with the kernel’s cgroup mechanism to

provide more complete protection.

53

Chapter 2. Background and Related Work

Container Security in Industry

Existing container security on Linux is supported by a number of fundamental vir-

tualization and confinement mechanisms, covered in Section 2.2 and Section 2.3.

Namespaces virtualize and limit the visibility of global resource identifiers and

cgroups virtualize and limit the available quantities of system resources. Dropped

POSIX capabilities allow the container to partition coarse-grained root privileges

into finer components. Seccomp-bpf filters limit the availability of system calls to

the container, while Linux MAC policies, enforced by an LSM restrict the con-

tainer’s access to system resources. Unix DAC, possibly accompanied by a new user

namespace, can limit the container’s access as well, when properly configured.

LXC [94] is a container runtime for Linux that directly exposes low-level virtualiza-

tion and confinement primitives. LXC exposes namespaces and cgroups to virtualize

system resources and seccomp-bpf to filter system calls, reducing the kernel’s attack

surface.

Docker [22, 32, 49], originally based on LXC, provides a high-level interface for

creating, manipulating, and running container images. Docker places containers in a

new cgroup with sensible defaults for resource virtualization. To isolate processes, the

filesytem, and network interfaces, Docker containers run in a new PID, IPC, mount,

and net namespace by default. Similarly, Docker uses the UTS (Unix Timesharing

System) namespace for hostname virtualization and the cgroup namespace to limit

cgroup membership visibility. To reduce the kernel’s attack surface, Docker also

includes a default seccomp-bpf profile that blocks 51 system calls. Finally, Docker

supports integration with the AppArmor LSM when it is enabled on the host, using

54

Chapter 2. Background and Related Work

a generic default profile that provides modest protection [48, 50].

Unfortunately, Docker does not run in a new user namespace by default, making

privilege escalation from within a container significantly more likely [49]. However, it

does offer the ability to opt-in to user namespace confinement with some additional

setup. Docker also provides a --privileged flag which allows a user to totally ignore

all security defaults, essentially granting the container the same access as a (often

root-privileged) host process.

Container Security in Academia

Sultan et al. [140] published a comprehensive review of container security, including a

threat model and comparison with full-virtualization solutions like type I and type II

hypervisors. Their work outlined four distinct cases and presented a survey of existing

security mechanisms targeting each case: (i) a containerized process attacking the

container; (ii) a container attacking other containers; (iii) a container attacking the

host; and (iv) the host attacking a container. Their recommendations included an

increased adoption of trusted computing technologies to solve case iv and that work

towards a container-specific LSM would be necessary to harden against cases i–iii.

BPFContain, one of the two research systems presented in this thesis, represents

a step towards such a container-specific LSM.

Lin et al. [88] presented a measurement study on container security measures

and attacks. They hand-crafted an exploit data set consisting of 233 exploits and

used it to test the security defaults employed by Docker. Their findings indicated

that inter-dependence and mutual-influence among several disparate kernel security

mechanisms resulted in weaknesses in protection. Motivated by their findings, they

55

Chapter 2. Background and Related Work

developed a simple kernel patch hardening the commit creds() function against

simple privilege escalation attacks mounted from containers.

Combe et al. [32] and Bui [22] presented informal security analyses of Docker’s

default security configurations and Docker security in general. Combe et al. [32]

found that Docker configurations are weak to supply-chain attacks involving ma-

licious images and configurations on Docker Hub. Additionally, they found that,

while Docker’s default configuration is relatively secure, container misconfiguration,

or the absence of security mechanisms such as AppArmor on the host leaves the

host vulnerable to attack. They also found that the default mandatory access con-

trol policies employed by Docker were overly-permissive and far too generalized to

provide practical protection.

Bui [22] found that, while Docker does offer inadequate protection against many

sophisticated attacks, it still yielded security benefits over running applications na-

tively on the host. Bui recommends that containers be run under virtual machines to

add an additional layer of isolation from the host system. These findings, however,

demonstrate a lax attitude toward container security, opting to rely on additional

layers of indirection to provide real security guarantees and positing that at least

some protection is better than none at all. Eder [52] compared hypervisor- and

container-based virtualization and found that hypervisors are naturally more secure

due to increased levels of independence and isolation.

Babar et al. [9], and Mullinix et al. [101] studied the container security mechanisms

underlying the Linux container infrastructure. Their findings separately indicate

that existing security mechanisms provided by the kernel are insufficient to offer

full protection from container vulnerabilities, particularly given the unique nature of

56

Chapter 2. Background and Related Work

the attack surface exposed by the container running directly on the host operating

system.

To address limitations imposed by container security defaults and alleviate con-

cerns about poor security practices in default configurations, many researchers have

turned to automatic policy generation [62, 85, 93]. Dockersec [93] uses a combination

of static analysis techniques on existing security profiles and a dynamic training pro-

cess to automatically infer AppArmor profiles for containers. These inferred profiles

provide greater protection than the generic default profile since they are finer-grained

and tailored to the container’s access patterns. In addition to generating MAC policy,

others have focused on generating seccomp-bpf policy to reduce the kernel’s attack

surface from within a container. Confine [62] uses static binary analysis and library

call instrumentation to generate seccomp-bpf policy for container images. Their re-

sults showed that they were able to significantly reduce the attack surface for kernel

exploitation in many of the most popular Docker images. SPEAKER [85] partitions

application containers into two distinct phases— the setup and execution phase—

and generates a unique seccomp-bpf policy for each phase, enabling a tighter bound

on confinement for each phase.

Others have focused on promoting self-confinement for containerized applications.

Sun et al. [141] proposed the inclusion of a security namespace into the kernel, allow-

ing individual containers to load their own independent MAC policy. This approach

enables a clear separation of concerns between host policy and container policy, and

provides a clear path toward unprivileged self-confinement. The approach is also

generic enough to enable the use of alternative LSM-based confinement solutions on

a per-container basis. BPFContain, for instance, might work cooperatively with

57

Chapter 2. Background and Related Work

security namespaces for more efficient per-container confinement.

Vulnerability analysis of container images [19, 81, 127] can be an effective tech-

nique for identifying weaknesses in container deployments. Unlike policy generation,

vulnerability analysis is a strictly informative tool, allowing security experts to iden-

tify weaknesses in production deployments and fix them. Shu et al. [127] presented

DIVA, a framework for analyzing vulnerabilities in images deployed from Docker

Hub. They aggregated data from over 350,000 container images and found that

images contained an average of 180 security vulnerabilities. Kwon and Lee [81] pro-

posed DIVDS, which extends prior work by providing an interface to compare and

allow specific image vulnerabilities. Brady et al. [19] applied similar vulnerability

scanning techniques to a continuous integration pipeline, flagging and fixing image

vulnerabilities during development.

eBPF is seeing increasing prominence within the container security space. Besides

BPFBox (c.f. Chapter 4) and BPFContain (c.f. Chapter 5), other projects have

arisen over the past few years, albeit with a general focus on observability rather

than policy enforcement. Tracee [8] is a container observability tool developed by

Aqua Security that can watch system calls made by a container, along with other

security-sensitive events, and generate audit logs for further analysis. Cilium [28] is a

popular security daemon for the Kubernetes container orchestration framework, with

a focus on network security for distributed container deployments. Cilium provides

observability metrics through a configurable audit framework and allows the end user

to define network policy for telemetry, performance optimization, and security.

58

Chapter 2. Background and Related Work

2.6. Extended BPF

eBPF stands for “Extended BPF”, though in reality it has very little to do with

Berkeley, packets, or filtering in its current form [64]. In a nutshell, eBPF is a Linux

kernel technology that supports dynamic system monitoring through the attachment

of special “hooks” called BPF programs to specific kernel interfaces and userspace

functions. In recent years, eBPF’s role has expanded, providing an interface to make

extensions to the kernel as well as the classic monitoring use case. In this section,

we discuss the origins of eBPF, its components and how they work, its applications

under the Linux kernel, and how it has evolved over time.

2.6.1. Origins of BPF: Efficient Packet Filtering and Beyond

The original Berkeley Packet Filter, hereafter referred to as cBPF5, arose out of

a need to implement a more efficient packet filtering mechanism for BSD Unix.

McCanne and Jacobson [98] published their work on cBPF in 1993, marking an

improvement over existing mechanisms in a number of ways. Many of the reasons

why classic BPF was such an improvement over the status quo are still relevant when

discussing eBPF, and so we will briefly cover them here as well.

In essence, classic BPF is a register virtual machine designed to take packets as

input and produce filtering decisions as output. These filtering decisions could then

be used to make decisions about whether a packet should be passed down to a more

complex pipeline for further analysis. The key insight behind cBPF is that these

5Throughout the rest of this thesis, we refer to extended BPF using the terms “eBPF” and “BPF”
interchangeably. This is a matter of established convention within the eBPF community. Classic
BPF will be explicitly referred to by its full name or the cBPF acronym.

59

Chapter 2. Background and Related Work

filtering decisions could be made more efficiently in kernelspace, the part of the oper-

ating system that runs in protection ring 06 and which is most commonly associated

with any parts of the operating system that do not run in userland (i.e. the context of

an ordinary user process). This provides a considerable performance advantage over

conventional approaches to network monitoring. A typical network monitor runs in

userspace, meaning that packets need to be copied over from kernelspace before they

can be properly analyzed. This is an expensive operation, requiring several context

switches and potentially sleeping in the event of a page fault [98]. By applying fil-

tering logic in the kernel, this expensive copying could be skipped for packets that

would be discarded or ignored by the network monitor anyway.

Classic BPF can be divided into two major components: a tap mechanism and a

set of one or more filter programs. The cBPF architecture is depicted in Figure 2.7.

cBPF programs are expressed as a control-flow graph (CFG) over a set of abstract

registers, backed by physical registers on the CPU. The tap mechanism hooks into

packets as they enter the networking stack, copying and forwarding them to the

filters. At runtime, the filter programs walk their control-flow graph, taking the

forwarded packets as input. As output, they return a filtering decision which controls

whether or not the packet should be forwarded to userspace [98].

Since its original introduction in 1993, classic BPF has since been ported to a

number of Unix-like operating systems, including Linux [16], OpenBSD [17], and

FreeBSD [18]. Classic BPF forms the backbone of widely used traffic monitoring

tools, most notably tcpdump [98, 143]. In Linux, the seccomp(2) system call [3] was

6Code that runs in ring 0 is said to run with supervisor privileges and is able to access all system
memory. Ring 0 is the highest level of memory protection provided by the CPU [75].

60

Chapter 2. Background and Related Work

BPF
Subsystem

Filter
Program

Filter
Program

Filter
Program

NIC Driver(s)

Protocol Stack

Userspace
Kernelspace

Kernelspace
Hardware

Network traffic

Copy packets

Process packets

Tapping mechanism

Filtering mechanism

Network
Monitor

Network
Monitor

Userspace
Daemon

Userspace
Daemon

Figure 2.7: The classic BPF architecture. A tap intercepts and copies packets as

they arrive from the NIC driver before they are forwarded to the operating system’s

protocol stack. The tap then passes packets through a filtering mechanism which

selectively delivers them to various consuming userspace applications. This figure

was adapted from McCanne and Jacobson [98].

61

Chapter 2. Background and Related Work

enhanced to include classic BPF filters, allowing a user process to use classic BPF

programs to define allowlists and denylists of system calls (c.f. Section 2.3.3).

In 2014, Alexei Starovoitov and Daniel Borkmann [139] first proposed a total

overhaul of the Linux BPF engine. Their proposal, dubbed eBPF, expanded the

classic BPF execution model into a full-fledged virtual instruction set. In particular,

the extensions included a 512 byte stack, 11 registers (10 of which are general-

purpose), the ability to call a set of allowlisted kernel helper functions, the ability

to attach programs to a variety of system events, specialized data structures (called

BPF maps) to store and share data at runtime, and an in-kernel verification engine

to check for program safety. At runtime, programs can be dynamically attached to

system events and are just-in-time compiled into the native instruction set. Figure 2.8

depicts the eBPF architecture in detail. The reader is encouraged to compare this

with the classic BPF architecture, depicted in Figure 2.7.

Dtrace [23, 66] served as an early inspiration for the design of eBPF and related

tooling. The original Dtrace model was to make low-level systems tracing available to

end users by exporting a simple tracing language (called D) and supporting upstream

hooking of kernel functions using this language. eBPF implements a superset of

Dtrace’s original functionality, enabling userspace applications to hook into the kernel

and other userspace applications, attaching bytecode programs to be run as callbacks.

Userspace eBPF tooling then simplifies the process of writing eBPF programs by

introducing increasingly high-level layers of abstraction.

While modern eBPF has very little to do with the execution model of its older

cousin, some of the properties that made classic BPF so performant still hold true

today. In particular, to notion of aggregating and processing data in kernelspace

62

Chapter 2. Background and Related Work

before (optionally) handing it off to userspace is a key aspect of classic BPF that

has carried over to eBPF. What this means in practice is that eBPF programs can

be used to implement very efficient monitoring software, harnessing the performance

benefits of a pure kernelspace implementation while maintaining the flexibility of a

userspace implementation.

2.6.2. eBPF Programs

eBPF programs are expressed in a virtual RISC machine language called BPF byte-

code. While it is technically possible to write BPF bytecode by hand, programs are

most often compiled from a restricted subset of the C programming language7 using

the LLVM toolchain. Programs can be loaded and attached to system events using

the bpf(2) system call, at which point control passes to the eBPF verifier, which

checks the programs to make sure they satisfy a set of safety constraints [64, 139].

In particular, eBPF programs must consist of fewer than 1 million BPF instructions

and must not call into any kernel functions outside of the allowlisted helpers. The

program is also constrained to a 512 byte stack size; any additional memory required

by the program must come from an eBPF map (c.f. Section 2.6.3). For safety, memory

accesses into allocated buffers must be properly bounds checked, pointers must be null

checked before dereferencing, and any access to external memory (e.g. belonging to

userspace programs or to the kernel itself) must be read only. Since eBPF programs

must provably terminate, no back-edges are permitted in their control flow and all

7Other languages may eventually be used to write eBPF programs as well. For instance, an
experimental Rust eBPF target has recently been merged into the Rust compiler [43]. The
important distinction here is that the set of all possible eBPF programs is a strict subset of the
set of all possible programs.

64

Chapter 2. Background and Related Work

loops must be bounded by some fixed constant i iterations.

To guard against data races, eBPF programs always hold the kernel’s RCU (read-

copy-update) lock while executing, gated by the bpf prog enter and bpf prog exit

functions in the kernel. In simple terms, the RCU lock allows concurrent reads, ex-

cept in the presence of updates, optimizing for read-mostly workloads (i.e. precisely

the sort of workload eBPF is designed for) [100]. This implicitly enables BPF pro-

grams to read from many common kernel data structures without fear of data races

and simultaneously protects reads and updates to eBPF maps, at a slight (albeit

reasonable) performance penalty [100]. In addition to holding the RCU lock, eBPF

programs are not considered preemptable by default. In practice, this means that

eBPF programs cannot sleep and must run to termination on their assigned core.

This property, while useful in many circumstances, enforces undesirable limitations

on eBPF helpers, since it precludes any functionality that may cause the program

to sleep (e.g. a page fault). To account for use cases where sleeping is unavoidable,

Linux 5.10 introduced sleepable versions of some eBPF program types [138].

Once loaded into the kernel, eBPF programs are represented as BPF objects, each

with its own reference count. Loading a BPF program and attaching it to a system

event increments the reference count, while detaching and unloading the program

decrements the reference count. The kernel also exposes a special filesystem, bpffs,

which allows BPF programs to be pinned. This also increments the reference count,

allowing an attached program to outlive its controlling process (i.e. the process that

loaded and attached it) [64].

65

Chapter 2. Background and Related Work

Working with the Verifier

In practice, the restrictions imposed by the verifier mean that eBPF programs are

not Turing complete [64]. This property is required, given that the halting problem

(i.e. the decidability of program termination) is known to be unsolvable for Turing-

complete programs. This notion of Turing-incompleteness means that the set of

all possible eBPF programs is a strict subset of the set of all possible C programs.

While these limitations help to ensure program safety, they also naturally restrict

some operations which may be safe but are not strictly verifiable. To overcome the

limitations imposed by the verifier and achieve this safe-yet-unverifiable behaviour,

eBPF programmers have a few tools in their arsenal. For instance, a specific set

of allowlisted kernel helpers offers the ability to call into specific kernel functions,

bypassing the limitations imposed by the eBPF verifier. As a simple example, the

bpf probe write user() helper allows an eBPF program to write to a userspace

memory address, bypassing the read-only restrictions imposed by the verifier. While

these allowlisted helpers operate in a mostly unrestricted context, their usage is

restricted at the function call boundary, ensuring that the eBPF program obeys the

safety contract specified by the helper function. Another common design pattern is

using a dummy eBPF map as a scratch buffer to reserve a larger amount of memory

for the eBPF program. Since eBPF programs cannot sleep [64], dynamic memory

allocation within the BPF context is impossible. These dummy maps offer a way to

access additional memory from a pool reserved at the time the map was loaded into

the kernel.

66

Chapter 2. Background and Related Work

eBPF Program Types and Use Cases

Each eBPF program has a specific program type, which determines both the set

of system events to which the program can attach and the set of allowed kernel

helpers that can be called from within the program context. Each program type

roughly corresponds with a distinct eBPF use case. For the purposes of this thesis,

we will primarily be dealing with LSM probes, raw tracepoints, uprobes/uretprobes,

kprobes/kretprobes, fentry/fexit probes, and USDT (User Statically Defined Trace-

points) probes as they form the basis of BPFBox and BPFContain’s kernelspace

implementations. Table 2.2 summarizes the relevant program types and their prop-

erties.

Table 2.2: A selection of relevant eBPF program types for BPFBox and BPF-

Contain.

Program Type Description

LSM Probes LSM probes [129] attach to the kernel’s LSM hooks and can be
used to audit security events and make policy decisions.

Raw Tracepoints Raw tracepoint programs attach to a stable tracing interface
exposed by the Linux kernel. Tracepoints are considered a stable
API but are more limiting than alternatives such as Kprobes or
Fentry probes.

Kprobes/Kretprobes Kprobe programs can attach to any kernel function, by replac-
ing the function with a trap into the BPF program. The BPF
program has read-only access to the function arguments. Kret-
probes work in the same way, but handle function returns in-
stead of function calls.

67

Chapter 2. Background and Related Work

Fentry/Fexit Probes A more efficient version of Kprobes and Kretprobes that di-
rectly trampolines into the BPF program instead of trapping.
These programs can also be used to modify the return value of
specifically allowlisted kernel functions (e.g. system call imple-
mentations).

Uprobes/Uretprobes The userspace equivalent of Kprobes and Kretprobes.

USDT Probes A statically defined version of uprobes and uretprobes. Appli-
cation developers may place these at strategic points within an
application in order to add explicit support for userspace tracing
at compile-time.

LSM Probes: Making Security Decisions with eBPF

It is worth spending more time focusing specifically on LSM probes, as these are

used extensively in BPFBox and BPFContain to enforce policy over security-

sensitive events. Introduced by KP Singh in his KRSI (Kernel Runtime Security

Instrumentation) patch [129], LSM probes define a canonical framework for attaching

eBPF programs to the Linux kernel’s LSM security hooks (c.f. Section 2.3.2). Unlike

traditional LSMs which are implemented as static kernel modules, LSM probes are

dynamically attachable, meaning that access control and audit policy can be adjusted

at runtime, simply by loading a new eBPF program. Figure 2.9 depicts how LSM

probes integrate with the LSM framework.

Each LSM probe can be attached to one or more LSM hooks defined in the kernel.

When the hook fires (i.e. when a task requests a privileged operation form the kernel),

every attached probe fires as part of the normal LSM pipeline. The body of the BPF

program defines filtering and audit logic, optionally accessing maps to store and query

persistent state. The BPF program then returns a security decision about whether

68

Chapter 2. Background and Related Work

the requested operation should be allowed or denied. In order for an operation to

be allowed, all other LSMs and LSM probes must agree on the policy decision and

ordinary security checks performed by the operating system must also succeed. In

other words, it is not possible to grant additional privileges using an LSM probe.

Owing to the properties discussed earlier in this section, eBPF confers a natural

flexibility to LSM probes quite unlike that of traditional LSM-based security frame-

works. In particular, LSM probes can be attached at runtime and can cooperate

with other eBPF program types using eBPF maps (c.f. Section 2.6.3). This notion

of cooperating programs presents an opportunity to design modular policy enforce-

ment mechanisms that operate beyond the scope of the LSM hooks framework itself.

Another key advantage of LSM probes over traditional LSMs lies in their adoptabil-

ity. While industry actors may be understandably reluctant to adopt “yet another

out-of-tree LSM”, a security mechanism based on eBPF does not carry the same tech-

nical baggage. eBPF programs are safe to use in production and can be deployed at

runtime on an unmodified kernel. This makes eBPF a particularly attractive target

for developing new security solutions.

2.6.3. eBPF Maps

eBPF maps serve as both a runtime data store for eBPF programs and the canonical

method of communication between different eBPF programs and userspace applica-

tions. Like eBPF programs, maps can be pinned to bpffs to increment their reference

count in the kernel. Concurrent access to eBPF maps from within kernelspace is pro-

tected by an implicit RCU lock, and a spinlock concurrency primitive is exposed via a

70

Chapter 2. Background and Related Work

helper function to guard map accesses between kernelspace and userspace. From the

eBPF side, maps can be accessed using a set of provided helper functions. Userspace

applications can access maps using the bpf(2) system call or through direct memory

mapping (only available for arrays) via mmap(2) [64]. While many eBPF maps are

designed to be generic, others are highly specialized for specific use cases. BPF-

Contain and BPFBox make use of several eBPF map types (see Table 2.3.

Table 2.3: A selection of relevant eBPF map types forBPFBox andBPFContain.

Map Type Description

BPF Hashmap A key-value hashmap. Keys and values can be arbitrary data
structures.

BPF Array A fixed-size array with integer indices. Values can be arbitrary
data structures.

BPF Array/Map of Maps A BPF array or map that stores handles into other maps.

BPF Per-CPU Array/Map Like a BPF hashmap or BPF array but with a separate copy per
logical CPU. This enables concurrent access across CPUs, but
without synchronization.

BPF Local Storage A dummy BPF map that provides a handle into local storage for
a given kernel data structure. For instance, task local storage
provides storage per task struct. Values can be arbitrary data
structures.

BPF Ringbuf A concurrent circular buffer that passes event handles from ker-
nelspace to userspace. To communicate, eBPF programs submit
events and userspace applications poll events.

2.6.4. Userspace Front Ends

Although eBPF programs and maps can exist on their own after being pinned to bpffs,

the more common approach is to manage their lifetime using a controlling process.

Userspace applications implementing such a controlling process typically use an eBPF

71

Chapter 2. Background and Related Work

front-end framework to facilitate loading and interacting with programs and maps.

A number of such front ends exist [7, 29, 73, 74, 86, 118, 154], some more practical

than others. bcc [73] was the first eBPF framework to offer high-level userspace

tooling around eBPF, providing an LLVM backend for compiling eBPF programs

and a Python library for loading and interacting with them. libbpf [86] offers a pure

C alternative to bcc and has since been upstreamed into the Linux kernel. libbpf-

rs [154] and libbpfgo [7] offer Rust and Golang bindings for libbpf respectively. Other

tooling [29, 118] bypasses libbpf entirely, providing fully native eBPF bindings for

Rust and Golang.

Libbpf and BPF CO-RE

Among the myriad of userspace front ends available for eBPF, libbpf stands out as the

only one with official upstream support from the Linux kernel. Recent improvements

to libbpf have solidified its position as the dominant framework. In particular, libbpf

supports a new way of compiling and loading BPF programs into the kernel, BPF

CO-RE (Compile Once, Run Everywhere) [65, 102]. BPF CO-RE uses BTF (BPF

Type Format) debugging information exposed by the kernel, along with load-time

relocation logic to support loading the same compiled eBPF bytecode across multiple

target kernels.

With libbpf and CO-RE, eBPF programs can now be compiled once and run

on any target kernel that supports the required BPF features. This provides a

powerful advantage over other eBPF frameworks and even alternatives to eBPF,

such as loadable kernel modules. A CO-RE program that runs on one kernel will

be guaranteed to run on another of the same version or higher, barring any API

72

Chapter 2. Background and Related Work

incompatibilities like changes in a hooked function signature. Such incompatibilities

can be resolved with the use of built-in kernel configuration checks.

BPFContain (c.f. Chapter 5) leverages libbpf and CO-RE through libbpf-rs,

the canonical Rust bindings for libbpf, providing adoptability advantages over the

original BPFBox prototype (c.f. Chapter 4), which uses bcc.

2.6.5. Comparing eBPF with Loadable Kernel Modules

Before eBPF, the primary means of modifying the Linux kernel at runtime was

through the use of loadable kernel modules [41]. A kernel module can be thought

of as a discrete bundle of code that can be loaded into the kernel (or compiled into

its binary image). Like other kernel code, including eBPF, modules are event-based

and run in ring 0, responding to and handling system events as they occur. Since

kernel modules and eBPF can serve similar (but not strictly equivalent) purposes,

comparing the two can offer some insight about how they differ and which technology

is better fit for a specific purpose.

At a first approximation, eBPF differs from kernel modules in the following mean-

ingful ways [64]:

1. eBPF programs must pass verification checks before they can be loaded into

the kernel. This verification step provides assurances about program safety. For

instance, eBPF programs are guaranteed not to deadlock the kernel, and are far

less likely to suffer from memory safety issues. In contrast, misuse of kernel APIs

in a kernel module can have dangerous implications for system safety and security.

73

Chapter 2. Background and Related Work

2. An implicit advantage provided by eBPF is that BPF programs can be easier

to reason about than other kernel code. eBPF abstracts away much of the

complex functionality required to make kernel code operate correctly by providing

implicit guarantees about program execution. Even helper functions, which offer

functionality beyond the scope of verifiability, must obey a predetermined contract

with the verifier in order to be considered safe. Thus, when an eBPF program

passes verification, there is a much higher likelihood that it will “just work.”

3. eBPF exposes map-like data structures to facilitate runtime data storage,

communication between eBPF programs, and communication with userspace ap-

plications. In the case of kernel modules, data structures often must be imple-

mented by hand, taking great care not to introduce potential bugs or security

vulnerabilities, particularly in the case of memory management. Communication

with userspace from a kernel module might be done via netlink sockets, file op-

erations, or similar means [41]. These modes of communication are often less

streamlined and, in the case of file operations, must be implemented by hand,

increasing the likelihood of programmer error.

4. eBPF programs are not Turing-complete. Intuitively, this means that the set

of operations a kernel module can perform is a strict superset of eBPF. While this

may appear to be a hugely limiting factor, in practice eBPF programs are often

sufficient to implement sophisticated tracing, filtering, and policy enforcement

logic. Where the verifier gets in the way, the programmer can reach for a number

of helper functions provided by the kernel to achieve more complex behaviour.

74

Chapter 2. Background and Related Work

5. eBPF is not generally suitable for implementing device drivers or other

complex functionality that requires ad-hoc access to various kernel facilities and

write access to arbitrary memory locations. Where necessary, eBPF helpers can

be added to the kernel to perform more complex functionality from within a BPF

program. However, these helpers must be upstreamed in the kernel in order to be

used, are limited to specific program types, and must obey a safety contract with

the verifier.

Table 2.4: A high-level comparison between eBPF, loadable kernel modules, and

kernel patches. = property satisfied; G# = property somewhat satisfied; # =

property not satisfied.

Lo
ad
ab
le
at
R
un
tim

e

Ve
rifi
ed
Sa
fe
ty

Ea
sy
A
bs
tr
ac
tio
ns

Cr
os
s-
Bo
un
da
ry
D
at
a
St
ru
ct
ur
es

Tu
rin
g
Co
m
pl
et
e

Co
m
pl
ex
Fu
nc
tio
na
lit
y

eBPF # G#

Kernel Modules G# # # #

Kernel Patches # # # #

Table 2.4 presents a summary comparison of eBPF, kernel modules, and kernel

patches as a means of running custom code in the kernel. In summary, eBPF is useful

for observability use cases, or cases in which the functional requirements of the kernel

code are not expected to be complex or might be expected to change frequently. eBPF

75

Chapter 2. Background and Related Work

programs and maps are particularly good at separation of concerns, composability,

and modularity. eBPF maps facilitate easy communication between kernelspace and

userspace, and provide the ability to build relationships between data from different

program types. Kernel modules should be preferred for the implementation of more

complex kernel functionality, such as device drivers.

76

Chapter 3.

The Confinement Problem

Researchers have been studying confinement for decades [82], and have been de-

signing and applying confinement primitives since the early days of time-sharing

computers and multi-tenant systems [128]. While many developments have been

made in the mean time, the current confinement landscape (particularly within the

Linux ecosystem) suffers from fundamental flaws that culminate in poor container

security practices; this does not need to be so. This chapter presents a critique of

the current state of confinement on Linux, examines how confinement primitives are

applied to containers, and proposes a fundamental re-framing of the problem to fo-

cus on complexity, adoptability, and suitability for container-specific applications. In

light of this re-framing, we consider design goals for BPFBox and BPFContain

and present the threat model for confinement under these research systems.

77

Chapter 3. The Confinement Problem

3.1. Rethinking the Virtualization Narrative

Hypervisor-backed virtualization is commonly considered more secure than contain-

er-based virtualization [52, 140] (see Figure 3.1). Intuitively, this makes sense. Con-

tainers run directly on the host operating system, whereas a virtual machine runs

on top of a hypervisor, separated by at least one layer of indirection from the host

system. However, this intuition does not strictly stand up to scrutiny. A virtual

machine running on top of a hypervisor makes requests to the hypervisor’s API (via

hypercalls), in much the same way as a container running on a host operating sys-

tem makes requests to the kernel’s API (via system calls). Figure 3.2 illustrates this

parity. In both cases, a vulnerable interface into a more privileged component of the

system is directly exposed to the attacker.

Bare-Metal
HVMsContainers

Isolation Provided
by Software

(Perceived Less Secure)

Isolation Provided
by Hardware/Firmware
(Perceived More Secure)

Host OS
VMs

Figure 3.1: Comparing the isolation and perceived security of containers and VMs.

A boundary defined in hardware is often considered more rigid, whereas a software

defined boundary is generally considered more malleable, and thus weaker. However,

this need not be the case. A goal of this thesis is to improve the security of containers

by hardening the boundary between the container and the host operating system.

In the case of virtual machines, security is an emergent phenomenon. The implicit

isolation provided by a virtual machine is purely a function of the semantic gap be-

tween guest operating system, virtualized hardware, and physical hardware. Here,

78

Chapter 3. The Confinement Problem

ProcessesProcesses

Container

Host OS

Container Host OS

Hypervisor

Guest OS

Processes

Hardware Hardware

System Call
Hypercall
Vulnerable Interface

ProcessesProcessesProcesses

Figure 3.2: System calls and hypercalls as vulnerable interfaces. Containers (which

are really just process groups running on the host OS) make system calls to the more-

privileged host OS kernel. Similarly, a guest operating system makes hypercalls to

the more-privileged hypervisor. Both of these interfaces are ripe targets for a myriad

of attacks, including privilege escalation and tampering with sensitive resources. This

parity becomes particularly evident when we assume that an attacker has or is able

to obtain control over the guest OS.

79

Chapter 3. The Confinement Problem

security is intrinsically tied to functionality. Administrators poke holes in this iso-

lation all the time through shared filesystems, virtual network interfaces, and other

virtual device drivers. From there, it is up to the administrator to use conventional

OS security mechanisms (c.f. Sections 2.2 and 2.3 in Chapter 2) such as filesystem

access controls and network firewalls to lock down the exposed interfaces. A clear

pattern emerges: first provision the resource, then secure it, just as in an ordinary

operating system (after all, a guest operating system is just an operating system).

The end result of this process is a combination of implicit isolation and additional

OS-level security mechanisms: a form of policy through mechanism.

The central argument of this thesis is that container security can be greatly im-

proved by providing the operating system with the right set of confinement primitives.

In particular, such primitives should enable the definition of a security boundary

around the container similar in spirit to the implicit boundary that exists around

a virtual machine. A policy author could then define exceptions to this security

boundary to expose specific container interfaces to the outside world and vice versa.

In order to define such a protection boundary, our confinement mechanism would

need to be container aware, incorporating container-specific semantics into policy

enforcement.

However, the above depiction of container security does not match the current

reality. Existing container runtimes simply reuse confinement primitives exposed by

the operating system, combining multiple OS-level security mechanisms to secure

specific system resources. This approach is neither simple nor unified, and results

in increasingly complex and verbose policies, inundated with the technical baggage

associated with locking down an entire operating system. Yet it is hard to fault the

80

Chapter 3. The Confinement Problem

designers of container runtimes for this design choice; a container runtime’s job is

to run containers, not to implement new security mechanisms. Intuitively, it makes

sense to reach for primitives that already exist, regardless of the fact that these prim-

itives may have been designed for system-wide use cases, beyond individual processes

or even process groups. Likewise, the goal of this thesis is not to design a new con-

tainer runtime—rather, it is to implement the missing confinement mechanism that

will enable our vision for container security to become a reality.

Before we can address concrete goals for such a confinement mechanism (c.f. Sec-

tions 3.4 and 3.6), it is important to understand the fundamental issues underlying

the current state-of-the-art in Linux confinement and container security. To that end,

Section 3.2 outlines three main issues with current Linux confinement primitives and

Section 3.3 examines and critiques how container runtimes apply these primitives in

practice.

3.2. Fundamental Issues with Linux Confinement

Here we identify three fundamental issues with the current state of Linux confine-

ment and contextualize them with examples from existing container and confinement

frameworks. This section serves to provide additional context for the container-

specific issues discussed in Section 3.3, and the design goals for BPFBox and BPF-

Contain, discussed in Section 3.4.

1. Complexity, Interdependence, and Inflexibility. Existing confinement

primitives are overly complex and designed for use cases beyond simple process

81

Chapter 3. The Confinement Problem

confinement. To achieve simple confinement, frameworks must abuse and re-

combine a number of existing primitives, each designed for a different use case.

Namespaces [14, 104] were designed to virtualize resources; they do not provide

confinement by themselves. To truly confine a process using namespaces, we need

a way to account for namespace escapes. Cgroups [34] similarly, were designed

to virtualize the availability of quantifiable resources, not to directly confine.

Unix DAC [75, 107] is far too coarse-grained and easy to bypass to be directly

useful for confinement. POSIX capabilities [24] can be used to reduce overprivi-

lege by partitioning root privileges, but these do not implement confinement by

themselves.

Seccomp-bpf [53, 126] works well to reduce the attack surface exposed by sys-

tem calls, but writing classic BPF filters is a complex and error-prone process.

Fine-grained filtering quickly becomes untenable, particularly when considering

race conditions when checking system call arguments and system call equivalence

classes. Linux MAC can be used to implement true confinement, but a typi-

cal LSM like AppArmor [42] or SELinux [130] is designed for use cases beyond

simple sandboxing. These mechanisms are designed to implement and enforce

system-wide MAC policy, not simple process-level confinement [11]. Further, ma-

jor LSMs are statically loaded and unstackable, meaning that end users must

generally choose one major solution with little room to adjust enforcement at

runtime.

To implement confinement, sandboxing and containerization frameworks gener-

ally mix and match the aforementioned solutions— some of which were designed

82

Chapter 3. The Confinement Problem

for confinement, some of which were not, and none of which were designed for

simple, process-level confinement. LXC, Docker, Snap, and others all combine

namespaces, cgroups, capabilities, seccomp-bpf, and AppArmor/SELinux policy

to achieve confinement. In the case of Snap, high-level abstractions in policy

definition can simplify the process of policy authorship to a certain extent, but

simple policies are still compiled down into thousands of lines of policy soup, span-

ning multiple confinement mechanisms. FreeBSD Jails and Solaris Zones take an

alternate approach, enforcing a rigid protection boundary around the container,

but with little flexibility for policy customization. Flexibility in confinement pol-

icy, however, is a desirable property due to the diversity of application code in

practice.

2. Unsuitability for Containers. Existing Linux DAC and MAC is unsuitable

for containers. LSM-based MAC implementations like AppArmor and SELinux

are designed to implement global, system-wide confinement policy; they are not

designed for ad-hoc, process-level confinement [11]. Additionally, these LSM im-

plementations were not designed with containers in mind and thus do not consider

container semantics in policy definition and enforcement. This lack of semantic

awareness further complicates policy authorship for containers and forces the end

user to make compromises between security and functionality.

Sultan et al. [140] suggest that the container security community should move

towards a container-specific LSM implementation. Security namespaces, proposed

by Sun et al. [141] can be seen as a partial step toward solving this problem. Under

security namespaces, each container can load and use its own LSM of choice, but

83

Chapter 3. The Confinement Problem

these LSMs would still be subject to many of the same aforementioned restrictions.

That is, existing LSMs are not designed with container semantics in mind. A

truly container-specific LSM could incorporate container semantics into policy

enforcement for cleaner and more effective policies.

UID remapping under a new user namespace does help with the DAC case by

remapping root to a non-root UID, but this is only really helpful for limiting the

power of root. Other limitations of DAC still apply. For instance, a world-readable

file could still be used for information disclosure or a world-writable file could still

be the target of data corruption. For such reasons, DAC alone appears to be

fundamentally insufficient for true isolation between host and container. Thus, to

achieve proper process-level confinement for containers, we need an LSM-based

solution that is aware of container semantics.

3. Difficulty Adopting New Solutions. Motivated by the inherent difficulties

associated with the existing confinement space, academics are often tempted to

propose new confinement solutions. Many try to solve the problem by simply

recombining and reusing existing primitives in new and innovative ways. However,

these types of solutions generally are not really a step forward with respect to

addressing the issues in items 1 and 2, since these are emergent properties inherent

to the underlying confinement primitives themselves.

In order to truly solve these fundamental issues, we need kernel support for

new primitives. Unfortunately, this begets yet another fundamental issue: adding

new solutions directly to the kernel is difficult, particularly from an adoptability

standpoint. New kernel code can introduce bugs and security vulnerabilities.

84

Chapter 3. The Confinement Problem

It needs to be thoroughly tested before it can be considered production ready.

Paradoxically, the potential to introduce new security vulnerabilities can make

the use of such novel primitives less secure. Similarly, kernel bugs can introduce

availability concerns in production systems, even when such bugs are not security

critical. For these reasons, industry managers may be reluctant to adopt new,

out-of-tree solutions based on loadable kernel modules, for example [64].

Another adoptability concern arises when we consider container-specific con-

finement [140, 141] as an end-goal. To date, the definition of precisely what a

container is has been more or less in flux. The requirements and precise specifi-

cations of what constitutes a container tend to change as container frameworks

evolve and new use cases crop up. If not everyone can agree on what a container

even is, how can we expect to reach agreement on which underlying container

security abstraction should be merged into the mainline kernel? To solve this

problem, we need a way to add abstractions into the kernel in such a way that

is neither binding nor limited by the lack of adoptability associated with tradi-

tional kernel-based solutions. These requirements motivate the use of eBPF for

designing a container-specific security solution, and thus motivate the design of

BPFBox and BPFContain.

85

Chapter 3. The Confinement Problem

3.3. How Containers Apply Confinement

Primitives

This section examines and critiques the way Linux container technologies apply con-

finement primitives to lock down container deployments. We focus primarily on

Docker as a case study; however, these principles in general apply to the majority of

container management frameworks.

In general, Linux containers have three broad goals. However, these goals are

neither equally met nor equally prioritized by existing container management frame-

works. In order of decreasing prioritization, they are:

1. Dependency Management / Reproducibility. Containers should provide an

easy and robust framework for creating reproducible development environments.

Dependencies should be maximally self-contained such that a containerized en-

vironment “just works” to the maximum possible extent. We can see examples

of this property in Docker, the predominant container framework at the time of

writing. Docker Hub [47] allows container images to be pulled from the Inter-

net, recombined, and used to create further images. The end result is a flexible

framework for creating and distributing reproducible development environments.

2. Virtualization. Containers should virtualize system resources, creating the illu-

sion of running on a separate physical machine. Where possible, resources should

be transparently reused between multiple containers (e.g. sharing a single base

copy of the same shared library between two container images).

86

Chapter 3. The Confinement Problem

To achieve virtualization, containers generally rely on the namespaces and

cgroups primitives provided by the Linux kernel. Overlay filesystems [21] com-

bined with the mount namespace allow containers to perform one-way sharing

of filesystem resources. The PID namespace allows each container to have its

own init process and virtual process tree. The network namespace allows the

container to virtualize its network devices while the UTS (Unix Timesharing Sys-

tem) namespace virtualizes host and domain names. Control groups virtualize

other resources such as the CPU, main memory, and device drivers.

3. Confinement. Containerized processes should be confined by default. That is, a

containerized process should have access to the minimal set of privileges required

for it to operate normally. Container runtimes leverage existing confinement prim-

itives provided by the operating system, when available, to confine themselves.

However, the extent to which this property is achieved varies greatly, both by

the specific container runtime and by the characteristics of the deployment en-

vironment [22, 88, 140]. In general, proper confinement is not a high priority

of container runtimes, and this tends to result in sacrificing security for ease of

deployment.

The aforementioned goals are not only ordered by their decreasing prioritization

in extant container management frameworks; they are also ordered by increasing rel-

evance to container security. That is to say, existing frameworks generally prioritize

goals unrelated to security and leave security as an afterthought. Since containers are

really just process groups running directly on the host operating system, an uncon-

fined container therefore exposes the same attack surface as an ordinary host process.

87

Chapter 3. The Confinement Problem

Thus, one might expect container security to be of paramount importance. Unfor-

tunately, this is not the case. These difficulties in confinement motivate the need to

revisit container security and approach it from a confinement-first perspective. To

understand how these confinement issues impact containers, we briefly review how

container management systems apply confinement primitives in practice.

To achieve confinement in the first place, container frameworks cobble together

existing confinement technologies and apply them ways that are often simultaneously

confusing and difficult to audit. The result is a complex policy soup with little room

for customization or auditability. Item 1 in Section 3.2 outlines some examples of the

inherent complexity that arises from mixing and matching confinement primitives in

this way. To deal with this complexity, some container runtimes elect to use a high-

level policy language that compiles down to thousands of lines of policy under the

hood. Snap [132] is one such mechanism. Docker [48, 49, 50] instead elects to use

an overly-permissive, generic policy template to avoid the potential issues associated

with fine-grained policy defaults.

Part of the problem in confining containers is that, in general, they are designed to

“just work”. Overly fine-grained security policies may get in the way of this, partic-

ularly as end user requirements vary and evolve across deployments. Docker [49], for

instance, provisions an overly-permissive default AppArmor policy [50] designed to

enforce basic protections against interacting with sensitive kernel parameters without

impacting the functionality of the container.

Even worse, many container management systems operate under a fail-open ap-

proach when the necessary security mechanisms are not supported. This results in

low-security deployments, often without even notifying the user that there may be

88

Chapter 3. The Confinement Problem

such a configuration. Since the end user generally doesn’t even participate in the

policy authorship process, they may not even be aware of the level of protection that

is being applied, resulting in a dangerous false sense of security. Docker’s AppArmor

policy [48, 50], for instance, is not applied when the deployment environment doesn’t

support AppArmor or AppArmor is disabled. Snap [132] and others that rely on the

AppArmor or SELinux LSMs for confinement suffer from similar failings.

Other aspects of confinement policy may be ignored entirely or even worse, overrid-

den by a more permissive policy, possibly without the user’s knowledge. Docker [49]

applies a dangerously permissive iptables policy that can transparently expose a

container to an external network, even overriding existing deny rules. This overly-

permissive network policy was the direct cause of a recent data breach at News-

Blur [31], a news aggregation website.

3.4. Design Goals

To rectify the issues discussed in Section 3.2 and Section 3.3, this thesis introduces

two novel confinement mechanisms, BPFBox and BPFContain, implemented us-

ing eBPF. BPFBox (c.f. Chapter 4) is a sandboxing framework that enables the def-

inition of simple yet precise per-application policies that can be dynamically loaded

and enforced at runtime. Leveraging eBPF’s system introspection capabilities, BPF-

Box policies can specify rules that span userspace and kernelspace, targeting be-

haviours at the per-function-call level and enforcing policy through LSM hooks.

BPFContain (c.f. Chapter 5) extends BPFBox to model container semantics,

enabling it to clearly define a hard boundary around containerized processes. BPF-

89

Chapter 3. The Confinement Problem

Contain policies then define explicit exceptions to the default protection boundary,

offering fine-grained control over the interface that a container exposes to the outside

world.

The ultimate goal of BPFBox and BPFContain is to expose centralized, flexi-

ble policies that are simple enough for an end user to perform ad-hoc confinement.

In the case of BPFContain, this goal is further extended to promote the adoption

of container-specific policies that isolate by default and can be extended to support

inter-container communication and resource sharing. To guide BPFBox and BPF-

Contain toward this goal, we consider three primary design goals, derived from the

fundamental issues identified in Section 3.2. They are enumerated as follows.

1. Simple and Flexible Policies. Policies should be simple and flexible, without

sacrificing expressiveness. It should be possible to use our solution for ad-hoc

confinement of individual applications and containers, without worrying about

the underlying details of enforcement. At the same time, the policy language

and enforcement engine should be flexible enough to support expressive and fine-

grained policies that target specific system resources where required. That is, the

barrier to entry for writing an effective security policy should be low, yet it should

still be possible to write a sophisticated security policy where needed. Further, the

policy enforcement engine underlying our confinement solution should be readily

extensible, such that new kernel interfaces and policy rules can be easily supported

as required.

2. Suitable for Containers. Our confinement solution should be suitable for con-

tainers. To support this goal, the policy language should encourage the authorship

90

Chapter 3. The Confinement Problem

of lightweight, localized policies, tailored to specific use cases rather than a heavy-

weight, system-wide MAC policy. An ideal policy language for this purpose should

be designed with container semantics in mind, enforcing a strong boundary around

a container and related resources. To support inter-container communication and

resource sharing, such a policy language should support the ability to selectively

define exceptions to this boundary, as required.

3. High Adoptability. Our confinement solution should be readily adoptable, even

in production environments. All privileged code should be verifiably production-

safe and should not negatively impact the rest of the system when loaded into

the kernel. Performance overhead should at least be in line with alternatives like

SELinux and AppArmor and our solution should work out of the box on a vanilla

Linux kernel, without requiring any out-of-tree kernel patches or modules.

The key insight behind this work is that novel kernel-level mechanisms are required

to realize the aforementioned design goals. eBPF provides precisely the right frame-

work for developing such mechanisms. Its safety, compatibility with vanilla Linux

kernels, and the ability to dynamically load and unload programs all contribute to

strong adoptability guarantees. The ability for distinct program types to use eBPF

maps to communicate and share state enables the development of powerful confine-

ment solutions that can unify policy across disparate interfaces. Using eBPF, we can

trace individual userspace and kernel function calls, along with the entire lifecycle

of a process or container. This property enables the creation of a fine-grained policy

enforcement mechanism that can easily be adapted and extended to support new

semantics and kernel interfaces as required.

91

Chapter 3. The Confinement Problem

3.5. Why Two Implementations?

In light of the design goals outlined in Section 3.4, we now examine why this thesis

presents two confinement implementations, rather than just one. The simple ex-

planation for this is that BPFBox can be seen as a rough, first cut at solving the

confinement problem described in this chapter. Rather than a completely new sys-

tem, BPFContain should be seen as an iteration on the original BPFBox design.

In particular, BPFBox satisfies each of the design goals enumerated in Section 3.4 to

varying degrees; BPFContain improves upon this by further simplifying the policy

language, introducing container-level policy semantics, and improving adoptability

by leveraging BPF CO-RE (c.f. Section 2.6.4 in Chapter 2).

Thus, BPFBox and BPFContain should not be seen as competing or even com-

plementary solutions to the confinement problem. Rather, the delta from BPFBox

to BPFContain is representative of the intellectual journey from a first approxi-

mation to a far more refined approach, more conducive to the insights outlined in

this chapter. Chapter 4 and Chapter 5 outline this journey in more detail, focusing

on specific implementation differences between the two systems and how they arise

from an evolution in understanding the confinement problem from a container-centric

perspective.

3.6. The ❇P❋❇♦① and ❇P❋❈♦♥t❛✐♥ Threat Model

This section outlines the threat model for BPFBox and BPFContain. In partic-

ular, we provide a scoping definition of confinement policy and what it means for a

92

Chapter 3. The Confinement Problem

policy enforcement mechanism to confine a subject using that policy. We also dis-

cuss the adversary’s capabilities, goals, and potential attack vectors in a commodity

Linux-based operating system. In the rest of this section, we consider the defini-

tions for confinement, confinement policy, and the enforcement engine as they were

presented in Section 2.1.

3.6.1. Differences Between ❇P❋❇♦① and ❇P❋❈♦♥t❛✐♥

Under BPFBox, the enforcement engine targets access at the process level, in-

terposing on individual system calls using eBPF programs attached to LSM hooks

and enforcing access based on per-executable policies. Under BPFContain, this

enforcement is expanded to operate at the container level. Like BPFBox, BPF-

Contain interposes on system calls using eBPF programs attached to LSM hooks,

but these programs account for the state of an individual container, including prop-

erties like a process’ container membership and whether a given resource is part

of a container-local namespace. Whereas BPFBox defines its protection bound-

ary around the process, BPFContain defines a protection boundary around the

container itself; access to resources within the container is considered default-allow,

whereas resources outside of the container or operations that can affect global system

state are considered default-deny.

3.6.2. The Adversary and Attack Vectors

We consider a privileged adversary with root-level access under conventional Unix

discretionary access controls. Further, we assume that the adversary has already

93

Chapter 3. The Confinement Problem

achieved local code execution (i.e. the ability to execute arbitrary code within a given

process) at the process level. This means that the adversary is capable of running

arbitrary code in the context of a given process or container and can perform arbitrary

interactions with the kernel’s reference monitor; these interactions may be allowed

or denied at the discretion of the reference monitor, and may or may not result

in the subsequent execution of kernel code, such as system call implementations.

Without any confinement in place, the adversary is capable of reading or writing any

file, accessing any device, loading kernel code, and performing any other privileged

operation.

Our goal is to confine the adversary such that they are unable to access security-

sensitive resources, interfere with external processes, make changes to global system

state, or perform any other operation in violation of our security model. The ad-

versary’s goal is simple: to escape confinement. This goal of escaping confinement

(tantamount to privilege escalation) can be a subgoal used to achieve some other

purpose, such as spoofing, tampering, information disclosure, or persistence.

3.7. Summary

This chapter has presented a novel framing of the confinement problem as it per-

tains to Linux and Linux containers. In particular, we reexamine the differences

between virtual machines and containers and argue that the former need not be

more secure than the latter, we identify three distinct problems with modern Linux

confinement, and we examine how containers apply existing confinement primitives.

This re-framing of the confinement problem both serves as a motivation for the cre-

94

Chapter 3. The Confinement Problem

ation of BPFBox and BPFContain and informs the design goals behind these

two research systems. Finally, we present a high-level threat model for BPFBox

and BPFContain, providing a scoping definition for what it means to confine an

adversary. The next two chapters, Chapter 4 and Chapter 5, present the design and

implementation of BPFBox an BPFContain in detail and outline the intellectual

journey from a prototype sandboxing mechanism to a container-specific confinement

solution.

95

Chapter 4.

❇P❋❇♦①: A Prototype Process

Confinement Mechanism

This chapter presents the design and implementation of BPFBox, an initial research

prototype of an eBPF-based confinement framework. BPFBox is the first full-

fledged confinement framework to leverage KRSI’s LSM programs to enforce high-

level policy. Using eBPF, it combines various behavioural aspects of the sandboxed

application from both userspace and kernelspace to enforce a simple, yet fine-grained

policy defined in a domain-specific policy language. Portions of this chapter were

part of a previously published paper at CCSW’2020, co-authored with Anil Somayaji

and David Barrera [58].

96

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

4.1. ❇P❋❇♦① Overview

At a high level, BPFBox is a confinement mechanism based on eBPF. As outlined

in Section 3.4 of Chapter 3, our primary design goals are simplicity, flexibility, and

suitability for containerized applications1. With this in mind, BPFBox attempts to

be as lightweight as possible, with a simple policy language that supports optional

granularity. Perhaps the most important goal of BPFBox may be derived from the

aforementioned goals: to make per-application security policy accessible to end users.

To achieve these goals, we leverage eBPF for BPFBox’s kernelspace implementation

and rely on a number of its intrinsic properties.

In particular, we take advantage of multiple program and map types (outlined in

Section 4.2.1). This design enables us to trace multiple aspects of system behaviour,

including userspace and kernel function calls, and combine these with LSM-layer

enforcement, thanks to the KRSI extension that enables BPF programs to be at-

tached to LSM hooks. By sharing data across program types in this way, we enable

BPFBox to define extremely fine-grained LSM policy at the per-function-call level,

something which no existing process confinement mechanism can do.

Since eBPF programs may be loaded dynamically into a vanilla kernel and provide

implicit safety guarantees thanks to the verifier, we ensure that BPFBox is both

lightweight and more adoptable than conventional solutions based in static LSMs like

SELinux or AppArmor. Since all of BPFBox’s kernelspace code is pre-verified, it is

also significantly less likely to adversely affect a production kernel than an alternative

solution implemented as a kernel patch or kernel module.

1While BPFBox marks a step toward achieving this goal, BPFContain (Chapter 5) is far better
suited to container-level confinement.

97

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

Whereas the kernelspace components are implemented using eBPF programs writ-

ten in C, BPFBox’s userspace components are implemented in Python3. In par-

ticular, this consists of a privileged daemon loads BPFBox’s eBPF programs and

maps into the kernel, manages their lifecycle, and logs policy enforcement actions for

later examination.

4.1.1. Policy Enforcement at a High Level

To confine an application, a user first authors a high-level policy written in BPF-

Box’s domain-specific policy language2 (outlined in Section 4.3). The policy lan-

guage is designed in such a way as to permit the authorship of simple confinement

policies while offering the ability to augment them with specific context. Thus,

the user has full control over the balance between policy expressiveness and policy

simplicity. We expect that application authors may wish to take advantage of BPF-

Box’s full expressiveness, whereas end users may wish to overlook advanced features

in favour of simple, lightweight confinement policy.

Once a policy has been written, the user places it in a pre-determined policy

directory and loads bpfboxd, the BPFBox daemon. The daemon compiles and

loads its BPF programs and maps into the kernel, then parses the user-supplied

policy and encodes it into policy maps. When a user launches the target application,

BPFBox begins tracing the lifecycle of the corresponding processes and associates

them with the correct policy. As the application runs, BPFBox continually updates

2Subsequent iterations on BPFBox experimented with a TOML-based policy language, before
the transition to BPFContain. We document the original domain-specific language here, and
leave alternative policy languages to BPFContain (c.f. Chapter 5).

98

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

4.2. ❇P❋❇♦① Implementation

This section presents the implementation details and full architecture of BPFBox.

In particular, we provide an architectural overview and discuss BPFBox’s policy

enforcement implementation, along with how it tracks and manages the state and

lifecycle of sandboxed processes. We focus specifically on implementation details

here, leaving policy language design and documentation to Section 4.3.

4.2.1. Architectural Overview

In userspace, BPFBox runs as a privileged daemon (bpfboxd), implemented in

Python3 using the bcc [73] userspace library for eBPF. The daemon uses the LLVM

toolchain [91] to compile eBPF programs which are then loaded into the kernel us-

ing bcc-provided wrappers around the bpf(2) system call. The daemon provides a

userspace front-end to BPFBox, managing the lifecycle of its BPF programs and

maps and logging security-sensitive events as they occur. To load policy into the

kernel, bpfboxd implements a full parser and lexer for BPFBox’s custom policy

language. After parsing policy, bpfboxd encodes it into a format that can be subse-

quently loaded into kernelspace through BPF maps.

BPFBox’s kernelspace components are implemented in eBPF and based on sev-

eral BPF program and map types, summarized as follows. Maps are outlined in

green and programs are outlined in purple. The reader is encouraged to revisit

Sections 2.6.2 and 2.6.3 in Chapter 2, where necessary, for clarification on specific

program and map types.

100

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

Maps:

• BPFBox uses Hashmaps to store runtime state, share state between its

BPF programs, and communicate with the userspace daemon. In particular,

BPFBox maintains a set of hashmaps to store per-process state and a set of

hashmaps to store policy. We call these state maps and policy maps respec-

tively. At runtime, BPFBox’s LSM programs query these state maps and

policy maps to make enforcement decisions.

• Ringbufs provide BPFBox’s BPF programs with a canonical data store to

push per-event audit data to userspace. In the kernel, the ringbuf map is

implemented as a circular buffer that is efficiently shared across all CPUs.

In userspace, the BPFBox daemon maps the ring buffer into memory and

continually polls for new events over a fixed interval.

Programs:

• Tracepoints enable BPFBox to track the state of a process from the point

where it forks or executes a new binary to when it exits. BPFBox stores

per-process state from its tracepoints in state maps for later use.

• LSM Probes enforce policy by attaching to LSM hooks in the kernel. These

hooks are called by kernel functions such as system call implementations and

trigger the corresponding BPF program, which then enforces a policy decision

on the target application. To enforce policy, BPFBox’s LSM probes query

policy maps and state maps.

101

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

• Kprobes and Uprobes are used to enforce stateful policy, according to what

function calls a process has made, in kernelspace and userspace respectively. A

BPFBox policy file may outline that certain rules should only apply within

the context of a specific function call; when a process runs some code that

results in such a function call, the corresponding kprobe or uprobe will make

an update to the process’ state map to indicate this. BPFBox then considers

this state when making later enforcement decisions.

• USDT Probes form the backbone of libbpfbox, providing a kernel-side imple-

mentation for various “commands”. Commands are implemented in userspace

as stub USDT functions that trap to a kernelspace USDT program. These

are used to load policy into the kernel and perform various other interactions

between the daemon and its BPF programs and maps.

4.2.2. ❇P❋❇♦① Policy Enforcement

BPFBox policies are written using a custom policy language. BPFBox’s policy

language supports three distinct policy decisions for a given rule; the operation may

be allowed, audited (logged), and/or tainted. Any unspecified operations are denied

by default. Tainting is similar in spirit to Perl’s classic taint mode [71], however,

rather than marking data, it marks the entire process. Tainting allows for more

restrictive policies to be enforced once a process has engaged in specific unsafe op-

erations, say by reading from a network socket. We present the design and syntax

of the BPFBox policy language in Section 4.3; here we discuss the functionality it

provides and how it is implemented.

102

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

BPFBox policies are per-executable and are stored in an exclusively root-

controlled directory (by default, /var/lib/bpfbox/), written in BPFBox’s policy

language (c.f. Section 4.3). When an executable is loaded, BPFBox loads the

corresponding policy file (if it exists) and translates it into a series of function calls

to USDT stub functions. These function calls trigger the corresponding eBPF code,

thus recording the policy in the policy maps as a set of policy structures. A policy

structure consists of three distinct access vectors: one to define tainting operations,

one to define allowed operations, and one to define audited operations.

In order to enforce policy, BPFBox leverages the KRSI patch by KP Singh [40,

129] which was upstreamed in Linux 5.7. This patch provides the necessary tools to

implement MAC policies in eBPF by instrumenting probes on LSM hooks provided

by the kernel. The eBPF program can then audit the event and optionally enforce

policy by returning a negative error value. BPFBox instruments several LSM probes

covering filesystem access, IPC, network sockets, ptrace(2), and even bpf(2) itself.

When these hooks are called in the kernel, they trigger the execution of the associated

eBPF program which is, in general, composed of the following six steps:

1. Look up the current process state. If no state is found, the process is not being

traced, so grant access.

2. Determine the policy key by taking the executable’s inode number and filesystem

device number together as a struct.

3. Look up the policy corresponding to the policy key calculated in step (2). If the

process is tainted and no such policy exists, deny access.

103

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

4. If the process is not tainted and the current access corresponds to a taint rule,

taint the process and grant access.

5. If the current access matches an allow rule, grant access. Otherwise deny

access.

6. If the current access matches an audit rule or access is denied, submit an audit

event to userspace.

When a sandboxed application requests access, a corresponding LSM hook is called

which in turn traps to one or more of BPFBox’s LSM probes. The probe queries

the state of the currently running process along with the policy corresponding to the

requested access and takes these factors together to come to a policy decision.

The ability to combine various aspects of system behaviour, both in kernelspace

and in userspace, is a key advantage of an eBPF-based solution over traditional

techniques. BPFBox uses this capability to optionally augment the information

provided by the LSM hooks themselves with additional context obtained by instru-

menting other aspects of process behaviour. For instance, profiles may optionally

define function contexts which determine the validity of specified rules; a rule could

specify that a certain filesystem access must occur within a call to the function foo()

or that it must be audited within a call to the function bar(). This allows for the

creation of extremely fine-grained policies at the discretion of the policy author. The

mechanisms by which this is accomplished are discussed further in Section 4.2.3.

Due to BPFBox’s strict resolution of filesystem objects at policy load time, a

problem arises when dealing with applications that read or write temporary files on

104

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

disk or create new files at runtime. In order to circumvent this issue, BPFBox

treats the creation of new files as a special case. In order for a new file to be created,

the process must have write access to the directory in which the files will be created.

Supposing, for instance, the temporary file would be written to /tmp, this means that,

at a minimum, the policy in question must specify that /tmp is writable. When the

sandboxed application creates a new child inode of /tmp, BPFBox dynamically

creates a temporary rule that grants the application full read, write, link, and unlink

capabilities on the created file. This rule is keyed using a combination of the standard

filesystem policy key and the PID (process ID) of the sandboxed process. This rule is

then automatically cleaned up when the process exits or transitions to a new profile.

Another important detail to consider is the possibility of other applications using

the bpf(2) system call to interfere with BPFBox’s mediation of sandboxed appli-

cations. For instance, another application might attempt to unload an LSM probe

program or make changes to the policy or process state maps. To prevent this, BPF-

Box instruments an additional LSM probe to mediate access to bpf. It uses this

probe to deny all calls to bpf that attempt to modify BPFBox’s programs or maps

that do not directly come from BPFBox itself. Further, all sandboxed applications

are strictly prohibited from making any calls to bpf—a sandboxed application has no

business performing the kind of powerful system introspection that eBPF provides.

Similarly to mandatory access control systems like SELinux [130] and App-

Armor [42], BPFBox supports the ability to run in either a permissive mode or

enforcing mode. When running in permissive mode, BPFBox continues to audit

denied operations, but allows them to continue unobstructed. This enables the user

to debug policies before putting them into effect and also introduces the possibility

105

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

of creating new policy based on the generated audit logs.

4.2.3. Managing Process State

In order for BPFBox to know what policy to apply to a given process, it must

track the lifecycle of processes through the instrumentation of key events within

the kernel. For this, BPFBox uses three tracepoints exposed by the scheduler:

sched:process fork, sched:process exec, and sched:process exit. Figure 4.2

shows the events that BPFBox instruments in order to track process state, along

with their corresponding probe types. These tracepoints are used to create, update,

and delete per-task entries in a global hashmap of process states. Each entry in the

map is keyed by TID (Thread ID). The entries themselves consist of a data structure

that tracks policy key association and a 64-bit vector representing the state of the

running process. This state vector is used to track whether the process is currently

tainted and what important function calls are currently in progress.

Instrumenting a tracepoint on sched:process fork allows BPFBox to detect

when a new task is created via the fork(2), vfork(2), or clone(2) system calls.

This tracepoint creates an entry in the process states hashmap and initializes it

according to the state of the parent process; if the parent process is associated with

a BPFBox profile, its key is copied to the child until such time as the child makes

an execve(2) call.

The sched:process exec tracepoint is triggered whenever a task calls execve to

load a new program. BPFBox uses this tracepoint to manage the association of

policy keys to a particular process state. BPFBox policy may optionally specify

106

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

whether a transition from one profile to another may occur in a given call to execve;

this transition is disallowed by default.

Finally, the sched:process exit tracepoint allows BPFBox to detect when a

task exits. This tracepoint deletes the corresponding entry in the process states

map.

4.2.4. Context-Aware Policy

If the policy for a given executable defines specific function call contexts for partic-

ular rules, BPFBox instruments these function calls using uprobes (for userspace

functions) and kprobes (for kernelspace functions). Each instrumented function call

is associated with a unique bit in the process’ state bitmask. A probe is triggered

on entry that causes BPFBox to flip the corresponding bit to a 1, and again on

return, flipping the corresponding bit back to a 0. Figure 4.3 depicts how BPFBox

instruments userspace and kernelspace function calls for policy enforcement.

This approach is subject to a few inherent limitations. Firstly, compile-time op-

timizations such as function inlining can invalidate the probe by removing the cor-

responding symbol in the target object file. Secondly, a recursive call that is not

tail-optimized will break enforcement by prematurely signalling to BPFBox that

a process has exited a given function context. The first limitation may be triv-

ially worked around by hinting to the compiler that a given function should not be

inlined; although this sacrifices some application transparency and incurs a slight

performance penalty, the potential security benefits from such a fine-grained policy

are arguably worth the trade-off. The second limitation could be worked around

108

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

by maintaining a reference counter for each function call rather than a flat vector.

BPFBox currently does not do this, since it would incur a larger memory overhead

for each active process, but it would be possible to extend a future version of BPF-

Box with this workaround. In case working around these limitations is impractical,

the policy author would simply fall back to specifying ordinary rules rather than

context-specific ones.

4.2.5. Collecting and Logging Audit Data

When an operation is denied or matches with an audit rule, BPFBox submits an

event to userspace for logging. To accomplish this, we leverage the new ringbuf

map type added in Linux 5.8. The eBPF ringbuf map implements an efficient ring

buffer that is shared across all CPUs. This new map type comes with a number

of optimizations for fast reads and writes and in-order guarantees for asynchronous

events across multiple CPUs, allowing per-event data to be efficiently shared with

userspace in near real time.

In userspace, the BPFBox daemon uses mmap(2) to map the corresponding mem-

ory region and polls for new data at regular intervals. As events are consumed in

userspace they are removed from the ring buffer to make room for new events. Since

the ringbuf map provides strong order guarantees and high performance under con-

tention, we can ensure that BPFBox always provides highly reliable and performant

per-event auditing.

110

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

4.3. ❇P❋❇♦① Policy Language

BPFBox policies are a series of rules and accompanying decorators. A decorator

may annotate either individual rules or blocks of rules denoted by braces and is used

to specify additional context or policy actions. The first line in a BPFBox policy

is always a special “profile decorator”, written as ★✦❬♣r♦❢✐❧❡ "/path/to/exe"❪,

which marks the executable to which the policy should be associated. Other than the

profile decorator, all others take the form of ★❬❞❡❝♦r❛t♦r❪ { r✉❧❡() }. Multiple

decorators may be specified before a set of rules, meaning that all decorators apply

to each rule.

Profile assignment occurs when a process makes an execve(2) call that results

in loading the specified executable. Once a process has been assigned a profile, this

profile cannot change again, unless an execve(2) occurs which has been explicitly

marked with the ★❬tr❛♥s✐t✐♦♥❪ decorator. This ensures that policy transitions

only occur when expected and prevents malicious execve(2) calls from changing

BPFBox’s treatment of a process.

The sections that follow describe the rule categories supported by BPFBox (Sec-

tions 4.3.1 to 4.3.4) and the decorators that may optionally be used to augment them

(Sections 4.3.5 to 4.3.6). Listing 4.1 depicts a simple example BPFBox policy.

4.3.1. Filesystem Rules

Filesystem rules in BPFBox govern what operations a process may perform on

filesystem objects such as files and directories. They are written as ❢s("pathname",

❛❝❝❡ss) where "pathname" is a string containing the pathname of the file and

111

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

Listing 4.1: An example BPFBox policy for a simple remote login program. This

example offers a fairly complete idea of the BPFBox policy language’s various fea-

tures.

1 /* This policy applies to the /usr/bin/mylogin

2 * executable */

3 ★✦❬♣r♦❢✐❧❡ "/usr/bin/mylogin"❪

4

5 /* Taint process state upon binding to

6 * any IPv4/IPv6 network socket */

7 ★❬t❛✐♥t❪ {

8 ♥❡t(✐♥❡t, ❜✐♥❞)

9 ♥❡t(✐♥❡t✻, ❜✐♥❞)

10 }

11

12 /* Allow network connections/operations */

13 ★❬❛❧❧♦✇❪ {

14 ♥❡t(✐♥❡t, ❛❝❝❡♣t|❧✐st❡♥|s❡♥❞|r❡❝✈)

15 ♥❡t(✐♥❡t✻, ❛❝❝❡♣t|❧✐st❡♥|s❡♥❞|r❡❝✈)

16 }

17

18 /* Allow the check_login function to read

19 * /etc/passwd and /etc/shadow */

20 ★❬❢✉♥❝ "check_login"❪ {

21 ❢s("/etc/passwd", r❡❛❞)

22 ❢s("/etc/shadow", r❡❛❞)

23 }

24

25 /* Allow the add_user function to read

26 * and append to /etc/passwd, but log such

27 * events to the audit logs */

28 ★❬❢✉♥❝ "add_user"❪

29 ★❬❛✉❞✐t❪ {

30 ❢s("/etc/passwd", r❡❛❞|❛♣♣❡♥❞)

31 }

32

33 /* Read and append to any immediate child

34 * of the /var/log/mylogin/ directory */

35 ❢s("/var/log/mylogin/*", r❡❛❞|❛♣♣❡♥❞)

36

37 /* Allow the execution of /bin/bash, transitioning

38 * profiles to bash’s profile after the execve(2)

39 * and untainting the process */

40 ★❬tr❛♥s✐t✐♦♥❪

41 ★❬✉♥t❛✐♥t❪ {

42 ❢s("/bin/bash", r❡❛❞|❡①❡❝)

43 }

112

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

❛❝❝❡ss is a list of one or more file access permissions joined by the vertical bar sym-

bol. For instance, to represent read and append permissions on /var/log/my log,

the corresponding BPFBox rule would be ❢s("/var/log/my_log", r❡❛❞|❛♣♣❡♥❞).

In total, BPFBox supports nine distinct filesystem access flags as shown in Ta-

ble 4.1.

Table 4.1: The filesystem access flags supported in BPFBox.

Flag Meaning

read The subject may read the object.

write The subject may write to the object.

append The subject may append to the object.

exec The subject may execute the object.

setattr The subject may change the object’s filesystem attributes.

getattr The subject may read the object’s filesystem attributes.

rm The subject may remove the object’s inode.

link The subject may create a link to the object’s inode.

ioctl The subject may perform an ioctl call on the object.

BPFBox supports a limited globbing syntax when defining pathnames, allowing

multiple rules matching similar files to be combined into one. Although filesystem

rules are specified using pathnames, BPFBox internally uses inode and device num-

bers rather than the pathnames themselves. When loading policies, BPFBox auto-

matically resolves the provided pathnames into their respective inode-device number

pairs. This information is then used to look up the correct policy whenever a sand-

boxed application attempts to access an inode. Since BPFBox does not check the

113

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

pathnames themselves when referring to files, it is able to defeat TOCTTOU (Time

of Check to Time of Use) attacks, where an attacker quickly swaps out one file with a

link to another in an attempt to circumvent access control restrictions in a privileged

(most often setuid) binary [15]. In such a situation, BPFBox would simply see a

different inode and deny access.

In addition to regular filesystem rules, BPFBox provides a special rule type

for /proc/pid entries in the procfs virtual filesystem. procfs rules, written as

♣r♦❝("exe", ❛❝❝❡ss) where "exe" is a string containing the pathname of an-

other executable and ❛❝❝❡ss is the desired access. For example, read-only access

to the procfs entries of executables running /usr/bin/ls may be specified with

♣r♦❝("/usr/bin/ls", r❡❛❞). Access to any procfs entry may be specified using

the special keyword ❛♥②.

4.3.2. Network Rules

BPFBox implements networking policy at the socket level, covering both Inter-

net sockets as well as Unix domain sockets. Networking rules are specified using

♥❡t(♣r♦t♦❝♦❧, ❛❝❝❡ss), where ♣r♦t♦❝♦❧ is a networking protocol like inet,

inet6, or unix and ❛❝❝❡ss is a list of socket operations (Table 4.2) separated by

vertical bars. For example, a rule targeting bind, accept, and connect operations on

an inet6 socket would look like ♥❡t(✐♥❡t✻, ❜✐♥❞|❝♦♥♥❡❝t|❛❝❝❡♣t), while a rule

targeting create operations on a unix socket would look like ♥❡t(✉♥✐①, ❝r❡❛t❡).

114

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

Table 4.2: The socket operation flags supported in BPFBox.

Flag Meaning

connect Subject may connect a socket to a remote address.

bind Subject may bind a socket to a local address.

accept Subject may accept an incoming socket connection.

listen Subject may listen for incoming socket connections.

send Subject may send messages over a socket.

recv Subject may receive messages over a socket.

create Subject may create new sockets.

shutdown Subject may shut down a socket connection.

4.3.3. Signal Rules

Specifying signal behaviour in BPFBox is done using the s✐❣♥❛❧("exe", ❛❝❝❡ss)

where "exe" is the pathname of another executable and ❛❝❝❡ss is a list of signals

allowed to be sent, separated by vertical bars. Normally, only processes running the

executable "exe" are allowed to be signalled, but the special keyword ❛♥② may be

used instead to specify the ability to signal any process on the system. Two addi-

tional keywords, ♣❛r❡♥t and ❝❤✐❧❞, allow parent and child processes to be signalled

instead. The ❛❝❝❡ss argument supports any Linux signal, in addition to a few helper

keywords that can be used to specify broad categories, such as ❢❛t❛❧ for fatal sig-

nals and ♥♦❤❛♥❞❧❡ for signals that cannot be handled. For example, to specify the

ability to send fatal signals to any process running /usr/bin/ls, the correspond-

ing BPFBox rule would be s✐❣♥❛❧("/usr/bin/ls", ❢❛t❛❧). To narrow permis-

sions such that only SIGTERM and SIGINT are allowed, s✐❣♥❛❧("/usr/bin/ls",

115

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

s✐❣t❡r♠|s✐❣✐♥t) could be used instead.

4.3.4. Ptrace Rules

Just like with signals, ptrace access is specified as ♣tr❛❝❡("exe", ❛❝❝❡ss), where

❛❝❝❡ss is a list of allowed ptrace modes separated by vertical bars. The ❝❤✐❧❞ key-

word is also available for ptrace rules to allow tracing of any child process, regardless

of the child’s current profile. For instance, a rule that allows a process to read and

attach to a child process would be written as ♣tr❛❝❡(❝❤✐❧❞, r❡❛❞|❛tt❛❝❤), while

a rule that allows only read access to processes running /usr/bin/ls would be writ-

ten as ♣tr❛❝❡("/usr/bin/ls", r❡❛❞). Note that currently ptrace rules do not

override other ptrace restrictions, such as those imposed by Yama [35].

4.3.5. Allow, Taint, and Audit Decorators

BPFBox supports three distinct decorators for defining actions that should be taken

when a given access matches a rule. The ★❬❛❧❧♦✇❪ decorator causes BPFBox to

allow the access; however, it is not typically necessary to explicitly specify this as

undecorated rules are assumed to be allowed by default. Regardless, it may be

desirable to decorate such rules with ★❬❛❧❧♦✇❪ to improve the clarity of the policy.

★❬t❛✐♥t❪ is used to mark a rule as a taint rule, which causes the process to enter

a tainted state when matched. These rules can be thought of as gateways into the

rest of the policy. Once a process is tainted, this cannot be reversed unless it makes

an execve(2) call explicitly marked with ★❬✉♥t❛✐♥t❪. Finally, ★❬❛✉❞✐t❪ may be

combined with ★❬❛❧❧♦✇❪ to cause BPFBox to log the matching operation to its

116

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

audit logs. This can be useful for marking rare behaviour that should be investigated

or for determining how often a given rule is matched in practice.

4.3.6. Func and Kfunc Decorators

One of the key features of BPFBox is the ability to specify specific application-level

and kernel-level context for rules. In the policy language, this is done by decorating

rules with the ★❬❢✉♥❝ "fn_name" ✭"filename"✮❪ and ★❬❦❢✉♥❝ "fn_name"❪ dec-

orators for userspace and kernelspace instrumentation respectively. Here, "fn_name"

refers to the name of the function to be instrumented and "filename" refers to the

filename where the function symbol should be looked up — this parameter is op-

tional and allows for the instrumentation of shared libraries. These decorators pro-

vide powerful tools for defining extremely fine-grained, sub-application level policy.

For instance, to declare that read access to the file /etc/shadow should only occur

during a call to the function check password(), the corresponding BPFBox rule

would look like:

1 ★❬❢✉♥❝ "check_password"❪

2 ❢s("/etc/shadow", r❡❛❞)

A process that is sandboxed using this policy would be unable to access /etc/shadow

except within a call to the specified function.

117

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

4.4. State of the ❇P❋❇♦① Implementation

This chapter has presented BPFBox as it was originally designed. However, some

aspects of the BPFBox policy language were never fully realized, despite being

implemented on the eBPF side. In particular, decorators to transition profiles and

untaint a process when making an execve call are currently unimplemented. Other

aspects of the policy language, such as the formulation of ptrace rules, also differ

from the current implementation. Before a full implementation could be completed,

the transition toward BPFContain (c.f. Chapter 5) had already begun; in our view,

BPFContain is a successor toBPFBox, and thus deprecates the originalBPFBox

implementation. As a result, many of the unimplemented aspects of BPFBox’s

policy language are reflected in the BPFContain implementation, either through

its policy language schema (Section 5.4), or through its default policy enforcement

(Section 5.3.4).

4.5. Summary

This chapter has presented the design and implementation of BPFBox, a prototype

process confinement mechanism leveraging eBPF for dynamically loadable policies

that balance simplicity and flexibility. In particular, we outline BPFBox’s architec-

ture, the implementation details of its eBPF-based policy enforcement mechanism,

and the design of its custom policy language. Through a combination of eBPF-based

enforcement and a lightweight yet fine-grained policy language, BPFBox represents

a step towards the container-specific design outlined in Section 3.4. In the next chap-

118

Chapter 4. BPFBox: A Prototype Process Confinement Mechanism

ter, we outline BPFContain, an iteration of BPFBox that addresses a few of its

fundamental limitations and makes a transition toward container-specific policies.

119

Chapter 5.

❇P❋❈♦♥t❛✐♥: Extending ❇P❋❇♦①

to Model Containers

In this chapter, we present BPFContain, an iteration on the original BPFBox

system presented in Chapter 4. BPFContain is a superset of BPFBox. In par-

ticular, it is a streamlined re-implementation that focuses on container-specific con-

finement policy, low dependency overhead, and maximizing adoptability. Portions of

this chapter are taken from an upcoming paper, co-authored with David Barrera and

Anil Somayaji, and planned for submission at USENIX Security 2022. A draft of this

paper is currently available [57], although significant portions of this chapter differ

from the publicly available archive due to subsequent updates to BPFContain.

120

Chapter 5. BPFContain: Extending BPFBox to Model Containers

5.1. ❇P❋❇♦①’s Limitations and the Transition

Toward ❇P❋❈♦♥t❛✐♥

The previous chapter presented BPFBox, a prototype process confinement mecha-

nism and precursor to BPFContain. While BPFBox certainly offers a new per-

spective on confinement and improves the status quo, the extent to which it achieves

the design goals outlined in Section 3.4 of Chapter 3 is arguably hampered by a few

inherent limitations. We enumerate and describe these limitations as follows. The

goal is to examine these limitations as an early motivating factor for the development

of BPFContain, which will inform later comparisons between these two systems

(c.f. Section 5.5).

1. Dependency Overhead and Runtime Overhead. Due to its userspace imple-

mentation using bcc, BPFBox has a high dependency overhead. This overhead

is the combined result of a number of requirements imposed on the host system

by the bcc toolchain. On the userspace side, bcc depends on Python as well as

the entire LLVM toolchain for program compilation. Both of these are rather

hefty requirements on their own. Python requires an entire language runtime,

and a full LLVM toolchain can introduce hundreds of megabytes of additional

code (approximately 587MiB when installing LLVM version 12.0 on Arch Linux).

Furthermore, Python and bcc incur significant runtime overhead. Python is

an interpreted language with a much heavier runtime than compiled systems lan-

guages like C or Rust. This runtime incurs additional performance disadvantages

due to safety features like the global object lock, which impede concurrency. Since

121

Chapter 5. BPFContain: Extending BPFBox to Model Containers

bcc compiles eBPF programs at runtime, we incur additional compilation over-

head for each program, sometimes resulting in significant startup delays depending

on the complexity of the application. The runtime compilation of eBPF programs

also necessitates the availability of kernel headers as a compilation dependency in

the target environment, adding further storage overhead (approximately 129MiB

for Linux 5.12 on a stock Arch kernel).

2. Lack of Container Semantics. Although BPFBox exposes a lightweight pol-

icy language with high-level semantics to the user, it fails to consider container

semantics, as outlined in design goal 2 in Section 3.4. While this marks an im-

provement over existing confinement solutions by offering a terse yet expressive

policy language, it fails to fully address the container-specific use case; in other

words, BPFBox is more suitable to generic, ad-hoc application sandboxing than

to container-specific applications. In improving how the BPFBox model han-

dles containers, we can simultaneously simplify policies and improve security by

defining a clear protection boundary around a container.

3. Policy Language Improvements. In addition to adding container semantics,

other aspects of the BPFBox policy language can also be improved and simpli-

fied. For instance, BPFBox implements policy in a domain-specific policy lan-

guage, designed specifically with BPFBox’s enforcement engine in mind. While

effective, this approach is tightly-coupled with policy enforcement and introduces

additional cognitive overhead when making extensions to or modifying the policy

language design. Furthermore, learning the syntax of a custom policy language

122

Chapter 5. BPFContain: Extending BPFBox to Model Containers

can introduce an additional barrier-to-entry for new policy authors, to the detri-

ment of BPFBox’s original goal of making policy authorship available to end

users.

5.1.1. Motivating ❇P❋❈♦♥t❛✐♥

The key insight behind BPFContain is that BPFBox approached the confinement

problem (c.f. Chapter 3) from a per-process perspective. When dealing with contain-

ers, we should instead approach the confinement problem from a per-process-group

perspective. That is, we expand the unit of confinement from an individual process

to a collection of related processes. Specifically, our goal is to define a clear boundary

between the container and the outside world, while minimizing the friction between

two subjects that operate within this boundary.

Under BPFBox, policies applied to individual applications, inheriting policy

across forks, and selectively transitioning across execves. While this model is ef-

fective for application-level confinement, it fails to meet the needs of a container-

specific deployment. Conversely, BPFContain expands this model to incorporate

container semantics, grouping processes into a container and enforcing a protection

boundary around the container. Implementing confinement in this way requires some

fundamental changes to both the underlying policy language and policy enforcement

mechanism. In particular, we alter the policy language to work with higher level

semantics that support container-level confinement. Moreover, BPFContain’s en-

forcement engine employs a more nuanced default policy that considers the relation-

ship between processes and resources that exist within the context of a container.

123

Chapter 5. BPFContain: Extending BPFBox to Model Containers

These changes from a policy and enforcement perspective enable BPFContain to

enforce simple container-level policies while reusing the initial ideas from BPFBox:

namely, dynamic, lightweight enforcement based on eBPF.

While implementing BPFContain, opportunities arose to improve how it handles

dependencies and manages the lifecycle of its BPF programs and maps. Specifically,

we architect BPFContain based on Rust, libbpf-rs [154], and BPF CO-RE [102].

These changes totally eliminate the runtime overhead introduced by BPF program

compilation and the dependency overhead from LLVM and kernel headers. Further,

CO-RE enables BPFContain to work seamlessly across multiple kernel versions and

configurations. These changes improve the adoptability of BPFContain, particu-

larly in containerized environments, wherein heavyweight dependencies can critically

impact deployments.

Table 5.1 offers a high-level comparison between the properties and features of

BPFBox and BPFContain. This comparison provides a high-level overview of

the major differences and motivating properties in each design. The sections that

follow will discuss each of these items in detail.

Table 5.1: Comparing BPFBox and BPFContain by their properties and how

well each satisfies the design goals outlined in Section 3.4.

Property/Goal BPFBox BPFContain

Userspace Implementation Python + bcc Rust + libbpf-rs

Kernelspace Implementation bcc + LLVM BPF CO-RE

Dependencies > 800MiB < 5MiB

State Management Process-Level Container-Level

124

Chapter 5. BPFContain: Extending BPFBox to Model Containers

Default Policy Default-Deny Container Boundary†

Policy Language Custom DSL YAML/JSON/TOML

Simple/Flexible Policies? Yes Yes

Suitable for Containers? No Yes

High Adoptability? Somewhat‡ Yes

†BPFContain’s policy defaults are more nuanced than BPFBox. We en-
force a default-allow policy on resources within the container, and a default-
deny policy on resources outside of the container. See Section 5.3.4 for
details.

‡While BPFBox has a more adoptability than an out-of-tree LSM (due to
eBPF), its practical adoption is hampered by heavy runtime dependencies
and incompatibility with the container model.

5.2. ❇P❋❈♦♥t❛✐♥ Overview

BPFContain is a container security daemon for Linux with an emphasis on simple,

high-level confinement policies for container deployments. Although it is expressly

designed to work with container semantics in mind, BPFContain implements a

superset of BPFBox’s capabilities (c.f. Chapter 4) and works for confining ordinary

applications as well as containers. To achieve confinement, BPFContain leverages

eBPF programs attached to LSM hooks in the kernel for security enforcement.

As a container-specific confinement solution, BPFContain has a number of im-

portant design goals, some of which are shared with BPFBox. First, we seek to

design a simple yet flexible policy language that supports ad-hoc confinement use

cases, enabling an end user to write a custom confinement policy to suit their needs.

We extend this goal by seeking to make the policy language and enforcement en-

gine container specific. This means that BPFContain policies should conform to

125

Chapter 5. BPFContain: Extending BPFBox to Model Containers

container semantics and work in tandem with container virtualization primitives to

improve policy enforcement and further simplify the underlying policies. An implicit

sub-goal of container-specific policy is to improve the level of confinement afforded

to container deployments, bringing security more in line with that of alternative

isolation techniques, such as virtual machines. Finally, BPFContain should be

readily adoptable in production use cases and should be useful for confining existing

container workloads.

At the surface level, BPFContain’s architecture is similar to that of BPFBox,

albeit with significant differences in implementation and design details. In a nutshell,

BPFContain is implemented as a privileged userspace daemon that loads eBPF

programs and maps into the kernel, which then enforce policy. Section 5.2.1 provides

a high-level overview of how BPFContain enforces policy, whereas Section 5.3

covers BPFContain’s architecture and implementation details in full.

5.2.1. Policy Enforcement at a High Level

BPFContain enforces confinement policy using eBPF programs attached to LSM

hooks in the kernel. Like BPFBox, BPFContain leverages the KRSI [129] LSM

programs introduced in Linux 5.7 for this purpose. Unlike BPFBox, BPFContain

generates BPF bytecode at compile time rather than at runtime. The bytecode is

then embedded directly in BPFContain’s binary object file, where it can subse-

quently be loaded into the kernel at runtime. This has the benefit of eliminating

initial compile-time overhead and supporting cross-architecture deployments using

BPF CO-RE.

126

Chapter 5. BPFContain: Extending BPFBox to Model Containers

To confine a container, an administrator authors a high-level confinement policy

that specifies which operating system interfaces and resources should be exposed to

the container. Thanks to a modular approach to encoding and decoding policies,

BPFContain policies may be written in a number of user-facing data serialization

languages, including YAML [55], TOML [113], and JSON [20]. (For the rest of this

thesis, we assume the YAML format for simplicity.) At a minimum, BPFContain

policies include a policy name, along with a few tunable parameters. From there, the

administrator may specify zero or more policy rules over three distinct categories:

allow, deny, and taint. We cover BPFContain policy in more detail in Section 5.4.

The BPFContain daemon runs as a privileged process, parsing and loading user

policy by encoding it into a series of BPF maps. The user then launches their

container using an unprivileged wrapper program, bpfcontain-run. The sole task

of this wrapper application is to invoke a stub function which does nothing more

than pass the desired policy ID as an argument. BPFContain traces this function

call and uses it to confine the container with the correct policy. Unlike BPFBox,

this technique enables the user to associate any container with any policy, rather

than a fixed one-to-one mapping.

At runtime, BPFContain’s BPF programs trace the behaviour of processes run-

ning under the container and confine it according to a mixture of default policy and

policy rules specified by the user. Like BPFBox, enforcement is accomplished pri-

marily through BPF programs attached to LSM hooks in the kernel. The precise

implementation details of these programs vary significantly, and are covered in detail

in Section 5.3. Figure 5.1 illustrates a high-level overview of the policy enforcement

process described here.

127

Chapter 5. BPFContain: Extending BPFBox to Model Containers

5.3. ❇P❋❈♦♥t❛✐♥ Implementation

This section presents the implementation details and architecture of BPFContain’s

policy enforcement mechanism. Specifically, we provide an initial overview of BPF-

Contain’s userspace and kernelspace components, then examine how BPFContain

enforces policy in the kernel using eBPF. Whereas this section focuses specifically

on policy enforcement, Section 5.4 outlines and documents the details of BPFCon-

tain’s policy language.

5.3.1. Architectural Overview

Like BPFBox, BPFContain is implemented as privileged daemon that runs in

userspace and loads eBPF code into the kernel for policy enforcement. However, the

precise architecture and implementation details of this daemon are quite different. In

particular, the daemon is implemented in Rust and leverages the libbpf-rs crate1 [154]

to load its eBPF programs and maps into the kernel. This results in a number of

advantages, which we discuss in more detail in the following section.

BPFContain’s kernelspace eBPF programs trace container lifecycle and enforce

policy, while eBPF maps store policy and pass intermediary state between program

invocations. This architecture is similar in spirit to the design of BPFBox, but with

a few fundamental differences. Rather than using the LLVM toolchain to compile

programs at runtime, BPFContain pre-compiles and embeds the BPF object code

into its binary object file. Using BPF CO-RE [102], these programs can then be

1A crate is a Rust package that can be added as a dependency to a project. For the purposes of
this thesis, we can consider the terms “crate” and “library” to be equivalent.

129

Chapter 5. BPFContain: Extending BPFBox to Model Containers

dynamically loaded into any supported kernel, regardless of the underlying configu-

ration or architectural details.

BPFContain leverages several BPF program and map types to implement con-

tainer tracing and confinement. While many of the major program types are shared

with BPFBox, there are a few distinct differences (c.f. Section 4.2.1). We enumerate

these differences as follows. Map types are outlined in green and program types are

outlined in purple.

Maps:

• BPFContain replaces many of BPFBox’s Hash Maps, particularly those

used to track process state, with equivalent Local Storage Maps. Local

storage is a new eBPF map type supported in the latest kernels (Linux 5.11

and onwards). Local storage maps tether the underlying value to a kernel data

structure, such as a task or inode, used as a key into the map. The result

is a dynamically-allocated and garbage-collected per-structure storage blob.

BPFContain leverages these for more memory-efficient storage of per-task

and per-inode state.

Programs:

• BPFContain replaces the use of scheduler Tracepoints with equivalent

LSM Probes that expose the same information. This reduces potential over-

head from multiple BPF program invocations on the same code path, most

notably over fork(2) and clone(2) family system calls.

130

Chapter 5. BPFContain: Extending BPFBox to Model Containers

• BPFContain uses Fentry and Fexit probes in place of Kprobes. These

use a more efficient trampoline technique for program entry and use BTF in-

formation exposed by the kernel for direct memory access, making them far

more efficient than kprobes2.

Aside from the aforementioned differences, BPFContain uses the same BPF pro-

gram and map types as BPFBox. However, the underlying implementation details

of each BPF program will be quite different from BPFBox, as BPFContain is

dealing with container semantics, new policy rules, and more nuanced policy de-

faults. We examine the most important implementation details in the subsections

that follow.

5.3.2. Policy Deserialization and Loading

When designing the BPFContain policy language, we made a conscious design

decision to avoid constraining the user to one specific language syntax. In particular,

we wanted to avoid another domain-specific language, as learning the policy language

could be a barrier to entry for new users. A domain-specific policy language also

presents issues when making changes to or adding new features to the policy language

specification, as the parser and lexer must both be modified, along with underlying

rule representation and enforcement engine. Instead, we elected to decouple the

policy language from the policy specification, using Serde [145], a data serialization

and deserialization crate for Rust.

2However, the majority of BPFBox and BPFContain’s eBPF programs are LSM probes rather
than kprobes or fentry probes. As a result, this design change has little consequence on overall
performance overhead.

131

Chapter 5. BPFContain: Extending BPFBox to Model Containers

Serde leverages Rust’s powerful type system and procedural macros to derive se-

rialization and deserialization logic for vanilla Rust structs and enums. Rust crates

that consume Serde’s API can then use the automatically generated logic for serial-

ization and deserialization. This design enables a plug-and-play relationship between

a data schema, defined as a Rust data structure, and any data serialization language

supported through the Rust crates ecosystem. BPFContain uses Serde to auto-

matically generate the accompanying deserialization logic for a Policy struct and

several Rule structs, one for each supported rule type. Listing 5.1 depicts a simplified

example of how this works.

Listing 5.1: A simplified example of BPFContain’s policy deserialization logic.

Policy rules are specified declaratively using Rust structs and the corresponding

deserialization logic is automatically generated by the Serde crate using a simple

decorator macro.

1 ✉s❡ serde::Deserialize;

2

3 /// The policy data structure

4 ★❬❞❡r✐✈❡✭❉❡s❡r✐❛❧✐③❡✮❪

5 ♣✉❜ str✉❝t Policy {

6 name: ❙tr✐♥❣,

7 /* Other policy metadata would go here... */

8 allow: ❱❡❝<Rule>,

9 deny: ❱❡❝<Rule>,

10 taint: ❱❡❝<Rule>,

11 }

12

13 /// An enum encompassing all rule types

14 ★❬❞❡r✐✈❡✭❉❡s❡r✐❛❧✐③❡✮❪

15 ♣✉❜ ❡♥✉♠ Rule {

16 FileRule(FileRule),

17 /* Other rule types would go here... */

18 }

19

20 /// A "file access" rule

21 ★❬❞❡r✐✈❡✭❉❡s❡r✐❛❧✐③❡✮❪

132

Chapter 5. BPFContain: Extending BPFBox to Model Containers

22 ♣✉❜ str✉❝t FileRule {

23 pathname: ❙tr✐♥❣,

24 access: ❙tr✐♥❣,

25 }

26

27 /* Other rule types would go here... */

To enable the daemon to encode policy as an eBPF map, each rule type implements

the LoadableRule trait. The daemon uses this logic to convert a policy rule into

a canonical format that can be represented in the kernel and thus used to enforce

security policy. Implementing this trait is as simple as writing a load() function

that makes a series of map updates to load the rule into the kernel; we leverage

libbpf-rs [154] for this purpose. When loading a policy into the kernel, the daemon

simply invokes this load() function for each policy rule.

Implementing policy deserialization and loading logic in this way has a number

of advantages. Since the policy schema is simply encoded declaratively in vanilla

Rust, it is easy for a developer (even a new contributor to BPFContain) to im-

plement a new rule type and add it to BPFContain. Adding a new rule type is

as simple as defining a new Rust data type to represent the rule and implementing

the LoadableRule trait, enabling the daemon to encode the rule as an eBPF map.

Due to Serde’s modular design, supporting a new serialization language for BPF-

Contain policies is trivial; we simply pull in the corresponding consuming crate

as a dependency. Currently, BPFContain supports YAML, JSON, and TOML as

policy language encodings, but this can easily be extended in future versions.

While these conveniences may add some modest performance overhead, this over-

head is incurred at policy load time and has no impact on any of BPFContain’s

133

Chapter 5. BPFContain: Extending BPFBox to Model Containers

kernelspace code paths. Therefore, we expect the overall impact of this design choice

on system performance to be minimal.

5.3.3. Policy Enforcement

Policy enforcement under BPFContain can be thought of as a combination of ex-

plicit policy (the rules defined in the policy file) and a nuanced default policy (the

set of sensible defaults that BPFContain enforces to define a boundary around the

container). In particular, default access to resources is determined based on whether

that resource exists within the context of a container. Resources within the con-

tainer, such as IPC handles into container processes or filesystems belonging to the

container’s user namespace mount are considered default allow. Conversely, resources

outside of the container, such as external files or processes, are considered default

deny. Similarly, access is also denied to any operating system interfaces that could

affect global system state, such as character devices, kernel modules, eBPF, and some

special filesystems. Exceptions to these defaults may be explicitly defined in the pol-

icy file as required. BPFContain currently uses ad-hoc information gathered at

runtime to enforce its default policy; future integration with container runtimes (dis-

cussed in Section 8.3) could significantly improve container-specific policy defaults

in the future. Section 5.3.4 examines the implementation of BPFContain’s default

policy in more detail.

Like BPFBox, BPFContain maintains its policy files in a root-controlled direc-

tory (/var/lib/bpfcontain/policy by default). These policy files may be written

in any policy language supported by BPFContain’s policy deserializer, as docu-

134

Chapter 5. BPFContain: Extending BPFBox to Model Containers

mented in Section 5.3.2. The BPFContain daemon watches the policy directory

for updates to policy files and triggers a reload of the corresponding policy when a

file changes. To load a policy, the daemon deserializes the policy file into a Rust

data structure consisting of a series of policy rules and accompanying metadata. It

then encodes this policy structure into a series of resource IDs and access vectors

and loads these into the correct policy maps in the kernel using the bpf(2) system

call. Once a policy has been loaded into the kernel, BPFContain’s eBPF programs

can begin enforcing it.

To start confinement, a user invokes an unprivileged application, bpfcontain-run,

which wraps the target executable. This wrapper’s only purpose is to enable BPF-

Contain’s eBPF programs to associate its process group with the correct policy in

the kernel. This is done by invoking a stub function, traced by a USDT probe. When

the probe fires, it reads the policy ID, passed as an argument to the stub, along with

other information such as the task’s PID and namespace membership taken from

its task struct in the kernel. The probe then updates a global process state map

with this information. Subsequent eBPF programs use this information when mak-

ing enforcement decisions and when managing the container’s state. Section 5.3.5

describes state management in more detail.

BPFContain enforces most policy rules using KRSI [129], which enables it to

attach eBPF programs to LSM hooks in the kernel. In cases where LSM hooks alone

are insufficient or no LSM hook is exposed to guard the target operation, BPFCon-

tain falls back to an fentry probe, hooking the underlying kernel functions directly.

In total, BPFContain instruments 46 LSM probes, covering filesystem, network

socket, IPC, and capability-level access, in addition to miscellaneous privileged oper-

135

Chapter 5. BPFContain: Extending BPFBox to Model Containers

ations like loading a kernel module or updating an eBPF program or map. One fentry

probe is used to prevent a container from modifying its namespace membership after

starting confinement.

BPFContain supports four distinct policy decisions for security-sensitive opera-

tions: allow, deny, taint, or forcequit. A decision of allow causes the access to

be allowed, as normal. A decision of deny results in the access being denied, and the

corresponding system call returning -EACCES to the user. A decision of taint causes

BPFContain to taint the container, a process that is similar in spirit to tainting

under BPFBox (c.f. Section 4.2.2 of Chapter 4). When a container is tainted, it

transitions into a stricter default-deny policy. Finally, a decision of forcequit causes

the kernel to terminate the offending process by delivering an uncatchable SIGKILL3.

This decision is reserved for aggressive violations of BPFContain’s default policy,

such as a process attempting to load code into the kernel (c.f. Section 5.3.4).

When enforcing policy, BPFContain employs a simple heuristic to judge what

the resulting policy decision should be. If any rule matches a deny decision, the

operation is denied. If any rule matches a taint decision, the container is tainted.

Finally, if no rule matches a deny decision and any rule matches an allow decision,

the operation is allowed. In the case where no rule matches are found, BPFContain

falls through to its default policy (Section 5.3.4). This process is depicted in full in

Figure 5.2 on page 138.

3SIGKILL is a POSIX signal that causes a process to immediately force quit. Unlike most signals,
this signal cannot be ignored or handled by the process.

136

Chapter 5. BPFContain: Extending BPFBox to Model Containers

5.3.4. Default Policy

Since BPFContain is designed to confine containers, it is able to achieve some

nuanced policy defaults by leveraging container-level semantics. This marks a signif-

icant improvement over both conventional LSMs such as SELinux and AppArmor,

and the original BPFBox system, which each require the user to either explicitly

mark each desired access or to over-generalize access in favour of simpler policies.

By taking container semantics into account, BPFContain policies can be simulta-

neously expressive and secure yet offer a simple path to achieving strong protection

defaults. Figure 5.2 depicts BPFContain’s default enforcement strategy.

BPFContain’s default policy depends largely on the type of access that a con-

tainer is requesting. If the requested access is to a regular file, BPFContain checks

to see if this file exists under the container’s user namespace, provided that this

namespace is non-global. This covers, for example, a temporary or overlay filesys-

tem mounted within a non-global user namespace. Similarly, default IPC access is

gated by whether or not the processes on either end of the IPC handle belong to the

same container. If they do, access is granted; otherwise, access is denied. Ptrace is

similarly restricted; a process may only ptrace another if both processes exist in the

same container. In this way, we preserve the semantics of the container: resources

that exist within a container are accessible by processes within the same container,

but resources that exist without are not be accessible by default.

Special files such as character or block devices are treated separately from regular

files. Since these provide direct interfaces into the kernel, it does not make sense to

treat them with the same semantics. Instead, access to special files is always denied,

137

Chapter 5. BPFContain: Extending BPFBox to Model Containers

User-Defined
Policy?

Allow Rule

Deny Rule

Taint Rule

Yes

No

Deny Operation

Allow Operation

Taint Container

Default Policy

Special
Filesystem?

Special File?

Procfs?

Other Security-
Sensitive?

Deny Operation

File Belongs to
Container Process?

Allow Operation
Yes

No

Deny Operation

Deny Operation

Changing
Namespace? Kill Process

Loading Kernel
Module? Kill Process

Using eBPF?

Regular File?

File Belongs to
Container Process?

Allow Operation

Kill Process

Performing IPC?
Allow Operation

Process Belongs
to Container?

Anything Else

Container is
Tainted?

Deny Operation

Allow Operation

Mounting
Filesystem? Kill Process

Allow Operation
Yes

No
File in Container User
Namespace Mount?

Yes

No

Yes

No

No

Yes

Using Capability?

Affects Other
Global State? Deny Operation

Start

Ptrace?

Both Processes
Belong to Container?

Allow Operation

Deny Operation
No

Yes

Figure 5.2: The policy enforcement strategy under BPFContain, expressed as a

flowchart. Using container semantics, BPFContain achieves rich policy defaults,

denying access to global resources and operations which can affect global system

state while preserving intra-container access. This greatly simplifies the resulting

confinement policy and enables the user to focus on specific exceptions to default

protection.

138

Chapter 5. BPFContain: Extending BPFBox to Model Containers

unless they are covered by an explicit allow rule. Similar protections are applied to

security-sensitive special filesystems such as procfs, sysfs, securityfs, and others.

These filesystems are responsible for exposing direct interfaces into the kernel, often

with the ability to manipulate behavioural parameters. For these special filesystems,

BPFContain also always assumes a default-deny policy, except in cases that are

explicitly covered by an allow rule. The only major exception to this policy is in the

case of per-process entries exposed by procfs; in this case, BPFContain assumes

default allow provided that the corresponding process is a member of the container.

An implicit assumption underlying BPFContain’s default enforcement strategy

is that a container is unable to mutate its namespace membership or manipulate its

view of the filesystem in any way. To ensure this, BPFContain strictly prohibits

a container from altering its namespace membership using an Fentry probe on the

kernel’s switch task namespaces() function. Similarly, BPFContain prohibits a

container from ever mounting a new filesystem after starting confinement. In both

cases, violating this policy results in immediate delivery of SIGKILL to the offending

process.

Another underlying assumption is that a container cannot interfere with BPF-

Contain’s normal operation. Without this assumption, BPFContain would be

unable to enforce any security guarantees whatsoever, as an attacker could trivially

bypass or disable it. To enforce this, BPFContain prohibits a container from ever

loading code into the kernel or interacting with eBPF. This design choice makes

practical sense from a container security perspective, as a confined container should

not be able to load code into the kernel to begin with—otherwise, escaping confine-

ment would be trivial, as an adversary could simply bypass the protection mechanism

139

Chapter 5. BPFContain: Extending BPFBox to Model Containers

enforced by the kernel. As with namespace and mount policy, violating these restric-

tions results in the immediate delivery of an uncatchable SIGKILL.

Some eBPF-based monitoring suites (e.g. Cilium [28] and Tracee [8]) are delivered

as containers. Since BPFContain currently prohibits eBPF usage by a container,

it would be a poor choice for confining these suites. Future iterations on BPFCon-

tain may support confining containers with access to eBPF, although this would

require BPFContain to protect its own programs and maps using finer-grained

policy defaults for the bpf(2) code path.

Aside from the aforementioned defaults, BPFContain also denies other mis-

cellaneous operations that can affect global state, including rebooting the system,

attempting to modify global system time, access to the kernel keyring, and access to

the kernel’s perf events subsystem. Using a capability that has not been expressly

marked with an allow rule is considered default-deny. Any other access is considered

default-deny, if the container has been tainted.

Future Improvements to Default Policy

Presently, a major limitation of BPFContain’s approach to default filesystem pol-

icy is that it relies on a container being in its own user namespace in order for

default-allow access to be considered. If a filesystem exists in the container’s mount

namespace but does not belong to its user namespace, BPFContain must assume

default-deny. However, most container management systems, including Docker [49],

do not run containers under a new user namespace by default, meaning that BPF-

Contain would be left unable to use its default filesystem policy to grant access.

While it is possible to force Docker to run a container in a new user namespace, it

140

Chapter 5. BPFContain: Extending BPFBox to Model Containers

would be beneficial if BPFContain’s default policy would work regardless of user

namespace membership.

There are a few technical challenges surrounding this idea, but it should be possible

to achieve in the future once BPFContain has been more integrated with Docker

(c.f. Section 8.3.2 in Chapter 8). In particular, we can use eBPF uprobes and kfunc

probes to trace Docker’s containerd shim as it switches namespaces and mounts

the appropriate filesystems. We could then incorporate these filesystems directly

into BPFContain’s default policy without relying on user namespace information

provided by the kernel. Exploring this option is left as future work.

Another major technical issue underlying BPFContain’s default filesystem policy

is that the Linux overlay filesystem currently performs permission checks on the

underlying inode (from the original filesystem), rather than the overlayfs inode. This

currently makes it impossible to enforce BPFContain’s default filesystem policy

on overlay filesystems, which are generally used to implement the majority of a

container’s filesystem layout. To rectify this, we can leverage more eBPF programs

to trace the underlying overlay filesystem operations and temporarily manipulate

BPFContain’s state model to account for this. This may add modest overhead to

overlayfs operations. Like Docker integration, we leave this for future work.

5.3.5. Managing Container State

Like BPFBox, BPFContain tracks the association of processes with policy pro-

files, along with other state. However, under BPFContain, this state-tracking

happens at the level of individual containers rather than individual processes—we

141

Chapter 5. BPFContain: Extending BPFBox to Model Containers

are concerned with groups of processes, associated by a shared sense of virtualization

and confinement. Tracking state at the level of containers rather than individual pro-

cesses is a major enabling factor behind BPFContain’s nuanced policy defaults, as

described in Section 5.3.4.

To start tracing a container, BPFContain relies on the bpfcontain-run shim

to provide its kernelspace programs with basic information about which confinement

policy to associate with the container. Specifically, we care about the desired policy

ID, a unique 64-bit integer associated with each BPFContain policy. In addition

to a policy ID, BPFContain generates a unique container ID for the container, a

combination of a 32-bit random integer and the 32-bit process ID of the container’s

init process. BPFContain maintains a hash map, mapping a container ID to a

policy ID, to track the association of a container with a confinement policy.

In addition to policy association, BPFContain tracks other metadata about the

container, including namespace membership, a reference count of how many processes

are running under the container, whether the container has been tainted, and whether

the container is running in complaining mode4. These metadata are associated with

using an eBPF hash map with a simple data structure as a map value and the

container ID as the key. Namespace membership is determined at runtime by taking

the namespace IDs associated with the container’s init process’ task struct.

To manage container membership, BPFContain maintains a security blob in

each containerized task5 using a task local storage map. Each task is associated

4Recall that complaining mode causes BPFContain to log would-be denials without actually
denying the operation.

5A task is a Linux kernel data structure that represents a unit of scheduling (i.e. a process or a
thread). BPFContain tracks processes and threads individually at the per-task level.

142

Chapter 5. BPFContain: Extending BPFBox to Model Containers

with a given container ID. When a task makes a request to a sensitive resource,

BPFContain makes a chain of map lookups, querying the task’s container ID from

the local storage map, then using this container ID to query the associated policy

ID. When a task forks itself, BPFContain looks up its container membership and

applies the same membership to the child task, incrementing the container’s reference

count. When a task exits, BPFContain simply decrements the container’s reference

count, cleaning up the container when its reference count reaches zero. Any task-

specific metadata is automatically cleaned up by the local storage map.

5.3.6. Collecting and Logging Audit Data

While BPFContain does not expressly define audit rules, it still uses logging to

record any policy decisions to a file for subsequent analysis. To achieve this, BPF-

Contain uses the same strategy as BPFBox, relying on a ring buffer map to pass

events to userspace for further treatment. Using this ring buffer, BPFContain

achieves efficient, in-order event logging across all CPUs. Like BPFBox, BPF-

Contain supports placing a container into a complaining mode, enabling it so log

denials that would have happened while still granting access. This enables a pol-

icy author to test their policy before running it in production and may be used to

accommodate log-based policy generation in the future.

5.4. ❇P❋❈♦♥t❛✐♥ Policy Language

This section presents the BPFContain policy language in detail. In particular, we

document the policy language schema and offer some insight into how rules can be

143

Chapter 5. BPFContain: Extending BPFBox to Model Containers

used to define exceptions to BPFContain’s default enforcement. Due to the mod-

ular design of BPFContain’s policy deserializer, it supports a number of different

serialization formats to encode policy. In particular, YAML, TOML, and JSON are

currently supported, with the possibility to add others in the future. For the purposes

of this section, we assume the YAML format for consistency and readability.

BPFContain policies are stored in a central, root-controlled directory. At run-

time, the daemon watches policy files for changes and parses and loads the policy into

the kernel when updates occur. At a minimum, each BPFContain policy contains

some metadata, including the policy name and a few tunable parameters. Tunables

include the ability to mark a container as pre-tainted and the ability to specify a

command to use as the default entry point for bpfcontain-run. A pre-tainted con-

tainer spawns tainted rather than untainted, falling back to stricter defaults when

no rule matches the requested access (c.f. Figure 5.2 on page 138).

Aside from policy metadata, the policy is divided into three sections: allow, deny,

and taint. Each of these sections specifies the corresponding policy decision for any

rules declared within. When the BPFContain enforcement engine matches on a

rule, it takes the rule’s policy decision as an enforcement action. In turn, policy rules

are divided into several categories based on the type of access that they specify. The

subsections that follow examine and document each supported rule category.

Note that, unlike BPFBox, BPFContain does not currently support the ability

to define function-level policy. The rationale for this design choice is that hyper-fine-

grained policy makes little sense in the context of a container, particularly considering

BPFContain’s highly-nuanced policy defaults. Future work may involve examining

this design choice, along with other aspects of the BPFContain policy language

144

Chapter 5. BPFContain: Extending BPFBox to Model Containers

design, in the context of a user study (see the discussion in Chapter 8). Listing 5.2

depicts an example BPFContain policy for a simple remote login program.

5.4.1. File and Filesystem Rules

For specifying access to regular files, BPFContain supports two major rule types.

File rules specify access at the granularity of individual files while filesystem rules

specify access at the granularity of a filesystem. These may be combined to grant

or restrict coarse-grained access to entire filesystems and define fine-grained excep-

tions to this coarse-grained access for specific files. These rules are necessary since

not every BPFContain policy targets an application running in a container, and

containers often access files directly from the host filesystem (e.g. through a Docker

volume mount). Each file and filesystem rule consists of a pathname and an access

pattern. In the case of filesystem rules, the given pathname must be the mountpoint

of the filesystem. BPFContain supports several access flags for fine-grained control

over file access. Table 5.2 describes each flag and its corresponding effect.

When loading a file rule into the kernel, BPFContain translates the pathname

into a list of tuples uniquely describing the file. Each tuple contains the file’s inode

number along with the unique device ID associated with the filesystem on which

the inode resides. These two numbers taken together can uniquely identify any

file on the system. BPFContain’s file rules similarly take the device ID of the

filesystem root, ignoring the inode. An implicit side effect of this technique is that

files are immutably resolved at policy load time, meaning that BPFContain can

achieve pathname resolution without becoming vulnerable to TOCTTOU attacks.

145

Chapter 5. BPFContain: Extending BPFBox to Model Containers

Listing 5.2: An example BPFContain policy for a simple remote login program,

written in YAML. This example offers a fairly complete idea of the BPFContain

policy language’s various features. The reader is encouraged to compare this policy

with the policy depicted in Listing 4.1 on page 112.

1 ★ ◆❛♠❡ ♦❢ t❤❡ ♣♦❧✐❝②

2 ♥❛♠❡✿ mylogin

3 ★ ❈♦♥t❛✐♥❡r ❡♥tr②♣♦✐♥t

4 ❝♠❞✿ /usr/bin/mylogin

5 ★ ❙♣❛✇♥ ❝♦♥t❛✐♥❡r ✉♥t❛✐♥t❡❞

6 ❞❡❢❛✉❧t❚❛✐♥t✿ ❢❛❧s❡

7

8 ❛❧❧♦✇✿

9 ★ P❡r❢♦r♠ s❡♥❞✴r❡❝✈ ♦♣❡r❛t✐♦♥s ❛s ❛ ❝❧✐❡♥t

10 - net✿ [client, send, recv]

11 ★ ●r❛♥t r❡❛❞ ❛♥❞ ❛♣♣❡♥❞ ❛❝❝❡ss t♦ ✴❡t❝✴♣❛ss✇❞

12 - file✿ {pathname✿ /etc/passwd, access✿ ra}

13 ★ ●r❛♥t r❡❛❞✲♦♥❧② ❛❝❝❡ss t♦ ✴❡t❝✴s❤❛❞♦✇

14 - file✿ {pathname✿ /etc/shadow, access✿ r}

15 ★ ●r❛♥t r❡❛❞ ❛♥❞ ❛♣♣❡♥❞ ❛❝❝❡ss t♦ ❛♥② ✐♠♠❡❞✐❛t❡ ❝❤✐❧❞ ♦❢

✴✈❛r✴❧♦❣✴♠②❧♦❣✐♥

16 - file✿ {pathname✿ /var/log/mylogin/*, access✿ ra}

17 ★ ●r❛♥t r❡❛❞ ❛♥❞ ❡①❡❝✉t❡ ❛❝❝❡ss t♦ ❜❛s❤

18 - file✿ {pathname✿ /bin/bash, access✿ rx}

19 ★ ●r❛♥t r❡❛❞✴✇r✐t❡ ❛❝❝❡ss t♦ t❤❡ ❚❚❨

20 - dev✿ terminal

21

22 t❛✐♥t✿

23 ★ ❚❛✐♥t ❛❢t❡r ♣❡r❢♦r♠✐♥❣ ❛♥② ♥❡t✇♦r❦ ♦♣❡r❛t✐♦♥

24 - net✿ any

146

Chapter 5. BPFContain: Extending BPFBox to Model Containers

Table 5.2: File access flags in BPFContain.

Pattern Access

r Read (read(2), getattr(2), etc.)

w Write (write(2), setattr(2), etc.)

a Append (write(2) with append-only flag set)

x Execute (execve(2))

m Map executable memory (mmap(2))

c Modify Unix DAC (chmod(2)/chown(2))

d Unlink/delete a file

l Create a hard link to a file

i Make an ioctl(2) call on a device

Like BPFBox, BPFContain deals with newly-created files by associating them

with the task that created them, granting default access to these files for the owning

task—this resolves the use case where a task requires access to a file created after

its policy has already been loaded.

5.4.2. Device Rules

Unlike BPFBox, BPFContain takes great care to avoid conflating regular files and

special files. The key insight underlying this design choice is that the semantics of

regular files and special files are quite different, despite supporting fundamentally the

same operations. Provisioning over-permissive access to the wrong special file (e.g.

/dev/mem, which provides access to the system memory map) can have devastating

security consequences. For this reason, access to a special file must be specified via a

147

Chapter 5. BPFContain: Extending BPFBox to Model Containers

device rule using the ❞❡✈ keyword, rather than the ❢✐❧❡ or ❢✐❧❡s②st❡♠ keywords.

BPFContain supports several major classes of character device, each with a de-

fault access pattern according to the device’s semantics. For instance ❞❡✈✿ terminal

enables read and write access on /dev/tty to support standard input and output to

the terminal. Likewise, ❞❡✈✿ random grants read only access to /dev/random and

/dev/urandom. When loading a device rule into the kernel, BPFContain resolves

the device’s major and minor number pair and maps it to the corresponding access

pattern.

More nuanced device access patterns may be specified using a numbered de-

vice rule, specified as ♥✉♠❜❡r❡❞❉❡✈✿ {major✿ major, minor✿ minor, access✿

access} where major and minor are the device’s major and minor number, and

access is an access flag pattern. This access pattern uses the same file access flags as

outlined in Table 5.2. The minor number is optional and may be omitted to match

any device of the specified major number. Note that modern kernels dynamically

allocate their major and minor number, meaning that it is possible for BPFCon-

tain to lose track of the association between these numbers and the underlying

device driver. We acknowledge this limitation in Section 6.2 and describe how the

BPFContain prototype can be trivially modified to address it.

5.4.3. Network Rules

BPFContain simplifies BPFBox’s network policy by categorizing network accesses

into high-level use cases rather than the underlying socket operations themselves.

This approach is informed by the insight that specific applications tend use specific

148

Chapter 5. BPFContain: Extending BPFBox to Model Containers

sets of socket operations, depending on if the application is designed as a client,

a server, or some combination of the two (e.g. a peer-to-peer model). Specifically,

a server would require the ability to create sockets, bind them to an IP address,

listen for and accept incoming connections, and shut down existing connections.

Conversely, a client generally needs to connect to an existing bound socket. We

further partition access by provisioning send and receive access separately. Table 5.3

provides an overview of these access categories.

Table 5.3: Network access categories in BPFContain. By combining the client

or server keywords with the send and recv keywords, a policy can specify the

correct level of access to required TCP socket operations.

Category Access

server Create, bind, listen, accept, and shut down socket connections

client Connect to a bound socket

send Send data over the socket

recv Receive data over the socket

BPFContain’s network policy covers IPv4 and IPv6 sockets. Netlink and raw

packet sockets are prohibited by default, and Unix domain sockets are relegated to

IPC rules rather than network rules (c.f. Section 5.4.4).

5.4.4. IPC Rules

In general, container IPC policy is handled by BPFContain’s default enforcement,

which permits IPC between two processes provided that they belong to the same

container. All other instances of IPC are denied by default. In cases where inter-

149

Chapter 5. BPFContain: Extending BPFBox to Model Containers

container IPC is required, BPFContain provisions IPC rules which are defined

as ✐♣❝✿ name where name is the name of another BPFContain policy. In order

for inter-container IPC to be allowed, both policies must mutually grant each other

IPC access. This ensures that any communication between containers is mutually

authorized, preventing attackers from bypassing the security assumptions of a policy.

BPFContain’s IPC rules cover all canonical forms6 of IPC available on the system,

including signals, System V IPC objects, and Unix domain sockets.

5.4.5. Capability Rules

Since container execution models can be (and often are) privileged by default, BPF-

Contain takes great care to be distrustful of any POSIX capabilities assigned to the

container. Specifically, BPFContain denies the use of any POSIX capabilities as

part of its default policy. While this is a simple and highly effective strategy for lim-

iting the privileges of containers running under root’s UID, some container use cases

require additional privileges to correctly function. To accommodate these use cases,

BPFContain provisions a capability rule which can be used to specify allowed ca-

pabilities. The capability rule is specified using ❝❛♣❛❜✐❧✐t②✿ [capabilities...]

where capabilities is a list of POSIX capabilities.

Note that capability rules do not grant additional capabilities to a container; rather

they are a mask over the set of all capabilities that a container can ever possess. In

particular, this means that a container must already have the corresponding capa-

bility under the traditional POSIX capabilities model in order to be able to use it.

6However, BPFContain does not currently support fine-grained access control over TCP/IP
sockets. This is left as future work (see Section 8.3).

150

Chapter 5. BPFContain: Extending BPFBox to Model Containers

Thus, capability rules merely add an extra level of protection on top of the existing

model, preventing overprivilege by restricting the bounding capability set.

5.5. Improvements Over ❇P❋❇♦①

As a successor to BPFBox, BPFContain makes several fundamental improve-

ments in terms of dependency overhead, policy language simplification, and container-

specific extensions. This section summarizes some of these improvements in light of

the implementation details discussed earlier in this chapter.

5.5.1. Minimizing Runtime Dependencies

BPFContain solves BPFBox’s dependency and runtime overhead issues by lever-

aging Rust and libbpf CO-RE [102] rather than Python and bcc. Unlike bcc, libbpf

CO-RE enables BPF programs to be compiled once and run anywhere, thanks to

BTF information provided by the kernel and load-time symbol relocation. Program

bytecode can then be embedded directly into the compiled object file, meaning the

single pre-compiled BPFContain binary can be deployed on any target kernel that

meets a minimal set of requirements. As a side effect, BPFContain requires neither

a full LLVM toolchain nor kernel headers to be available in the target deployment.

Moreover, implementing the BPFContain daemon in Rust allows BPFContain

to take advantage of a myriad of benefits offered by the Rust language. In particu-

lar, Rust enables BPFContain’s userspace components to be safe, secure, and fast.

Thread and memory safety guarantees provided by Rust ownership model eliminate

many common security bugs including memory corruption vulnerabilities and race

151

Chapter 5. BPFContain: Extending BPFBox to Model Containers

conditions between threads. These safety guarantees provide critical security advan-

tages, particularly given the fact that the BPFContain daemon is a long-running,

privileged process—a ripe target for attacker exploitation. Thanks to an emphasis

on speed and zero-cost abstractions, Rust can provide these benefits at virtually zero

overhead, in line with traditional systems programming languages like C and with

significantly smaller overhead than interpreted languages such as Python.

5.5.2. Improved Policy Language

BPFContain greatly simplifies the original BPFBox policy language. Rather than

defining a specific policy language syntax, BPFContain defines a schema that can

be encoded in multiple different data serialization languages. This simultaneously

enables BPFContain to support a policy language that users are already familiar

with (e.g. YAML) and provides a clear path for extending BPFContain to sup-

port additional policy languages in the future. Further, this approach presents an

opportunity for integrating BPFContain policy with existing specifications, such

as the OCI (Open Container Initiative) specification or the rego [109] policy frame-

work, both of which are encoded in JSON. Integrating with the OCI specification

will enable BPFContain policies to be specified directly within container mani-

fests. Integrating with rego would enable BPFContain policies to interact with the

Open Policy Agent, widely used to implement policy in the Kubernetes container

orchestration framework.

Further simplifications to the BPFContain policy language are afforded by its

goal of container-specific confinement. By focusing on container-specific use cases,

152

Chapter 5. BPFContain: Extending BPFBox to Model Containers

BPFContain’s default policy enforcement can be far more nuanced than a tradi-

tional sandboxing framework. This property enables the user to focus on defining

specific exceptions to a well-defined security boundary rather than enumerating every

single possible resource that a container can access. Along with the simplifications

afforded by BPFContain’s sensible policy defaults, we make additional changes to

the policy language that help decouple it from the underlying details of the operat-

ing system, such as higher-level network policy and semantically-guided device driver

access defaults.

Moreover, BPFContain improves upon the original BPFBox policy language

design by introducing new rule types to cover weaknesses in the original design. It

also fully implements many aspects of BPFBox that were left unfinished in the

current implementation, providing a more fully realized prototype. For these rea-

sons, BPFContain deprecates BPFBox by implementing a superset of its original

functionality and improving upon flaws in the original BPFBox design.

5.5.3. Container-Specific Extensions

Perhaps the most significant improvement over the original BPFBox design is that

BPFContain implements container-specific confinement. Whereas BPFBox is

well suited to fine grained, process level confinement, BPFContain extends this

design to model containers. In particular, BPFContain tracks namespace mem-

bership as well as the association between processes and containers, enabling access

to resources within a container and restricting access to the outside world. This ap-

proach is similar in spirit to FreeBSD Jails [78]. Unlike Jails, however, the BPFCon-

153

Chapter 5. BPFContain: Extending BPFBox to Model Containers

tain implementation applies such container specific defaults without any changes to

the upstream kernel.

BPFContain’s container-specific extensions enable BPFContain to enforce

container-level policy with a well-defined security boundary around the container,

simultaneously improving security and greatly simplifying the resulting policies.

Rather than focusing on each and every resource associated with the container,

security policies can instead focus on defining exceptions in BPFContain’s secu-

rity boundary, resulting in policies that closely mirror the exposed interface to the

outside world.

5.6. Summary

This chapter has presented the design and implementation of BPFContain, an

extension on top of the original BPFBox design that promotes container-specific

confinement and uses container semantics to simplify policies while providing strong

security guarantees. Using eBPF, BPFContain supports container-level semantics

in a kernel-level enforcement engine without sacrificing adoptability or tying the ker-

nel down to a specific definition of a container. BPFContain uses these container-

level semantics to define a clear protection boundary around containers and provides

a simple policy language for defining exceptions to this protection boundary.

154

Chapter 6.

Evaluation

This chapter presents an evaluation of BPFBox and BPFContain in terms of

their performance and security. Section 6.1 presents the methodology and results

of a performance evaluation involving micro- and macro-benchmarking of BPFBox

and BPFContain. Results are compared with AppArmor [42], a popular LSM

framework for MAC security policy. Finally, Section 6.2 presents a security analysis

of BPFBox and BPFContain under the threat model outlined in Section 3.6.

6.1. Performance Evaluation

This section presents a performance evaluation of BPFBox and BPFContain,

measuring their performance overhead using a variety of micro- and macro-benchmarking

tests. In particular, we use the Phoronix Test Suite [83] to measure overhead across

a variety of computational tasks, workloads, and kernel interfaces. Each of these

benchmarks exercises a different subset of BPFBox and BPFContain’s enforce-

155

Chapter 6. Evaluation

ment engine, providing an approximation of their impact on the overall system. We

also measure the performance of the base system as a control and the performance

overhead of AppArmor as a basis for direct comparison. The subsections that follow

provide an overview of our testing methodology and present the benchmark results.

6.1.1. Methodology

As a test environment, we utilize a bare-metal system running Arch Linux with

a stock 5.12.14-arch-1-1 kernel. The choice of a bare-metal system (rather than a

virtual machine, for instance) reduces the risk of introducing additional sources of

variance into the benchmarks. Table 6.1 provides a detailed account of the test

system configuration.

Table 6.1: System configuration for benchmarking tests.

Item Description / Configuration

CPU Intel i7-10875H; 8 cores, 16 threads at 2.3GHz; 16MB cache

GPU Nvidia RTX 2060 with 6GB GDDR6 VRAM

RAM 2×16GB DDR4 at 3.2GHz

Disk 1TiB Samsung NVME M.2 SSD

Motherboard System76 oryp6

OS Arch Linux (Rolling)

Kernel Linux v5.12.14-arch-1-1

Libc glibc v2.33-5

Phoronix v10.4.0-1

To simulate the Docker container use case, we run all tests in a privileged Docker

container, using Docker volumes to mount the host filesystem in the benchmarking

156

Chapter 6. Evaluation

directory. To improve benchmarking accuracy, we also perform the following setup

before each test. (1) We disable SMT hyperthreading by turning off each logical CPU

core pair, leaving only the physical cores active; (2) We disable turbo boost, capping

the CPU at its stock speed of 2.3GHz; (3) We set the CPU frequency scaling governor

to “performance” to limit the impact of thermal throttling and power saving features;

and (4) We globally disable ASLR by setting the appropriate kernel parameter. These

settings, consistent with best practices, improve benchmark accuracy by making the

environment more consistent and eliminating as many external factors as possible.

Table 6.2: A list of the benchmarking suites used to test performance overhead,

and what each measures.

Test Suite Test Measures

OSBench Create Files Time to create and delete files

Create Threads Time to create new threads

Launch Programs Time to fork + execve

Create Processes Time to create new processes

Memory Allocations Memory allocation throughput

Kernel Compilation — Time to compile Linux Kernel

Apache Web Server — Apache HTTP request throughput

To measure the performance overhead of BPFBox and BPFContain (compared

with the base system and with AppArmor) we use the Phoronix Test Suite [83], a

popular cross-platform benchmarking framework that has seen wide use for mea-

suring system performance. The Phoronix framework comprises a number of open

source test suites, each targeting a different aspect of system behaviour. For the

purposes of this thesis, we select three separate test suites, measuring a variety of

157

Chapter 6. Evaluation

OS-level functionality and exercising multiple LSM hooks. In particular, we select

the OSBench suite, the Kernel Compilation suite, and the Apache suite. Table 6.2

describes each test suite and what it measures.

Passive

Allow

Complaining

Base

B
PF
B
ox

B
PF
C
on
ta
in

A
pp
A
rm
or

1

2

3

4 7

6

5

10

9

8 Measures passive
system overhead

Measures overhead
of full code path

Measures worst-case
overhead / logging
overhead

Measures base
performance of
the system

Figure 6.1: The various system configurations used in the benchmarking tests. Each

numbered cell constitutes one configuration, for a total of ten.

We consider ten system configurations in total (Figure 6.1). The Base configu-

ration is the base system without any LSMs or other confinement primitives active

or loaded in the kernel. The ❇P❋❇♦①, ❇P❋❈♦♥t❛✐♥, and AppArmor configu-

rations measure the performance overhead of BPFBox, BPFContain, and App-

Armor, respectively. We then divide each of these three configurations into three

distinct test cases each. The Passive case measures global system overhead without

158

Chapter 6. Evaluation

any active enforcement. The Allow case measures active enforcement, allowing all

security-sensitive operations. Finally, the Complaining case measures the worst-

case overhead for each system, exercising the full code path of each LSM hook and

logging every attempted access.

To calculate percent overhead for each test configuration, we take the mean of all

test results for a given configuration and calculate the percent change from the base

configuration. This is done using the following formula:

Percent Overhead =
(x̄test − x̄base)

|x̄base|
× 100

To increase the accuracy of results, we run each test for a total of eleven runs. We

discard the first run of each test to control for initial I/O transients (e.g. file caching),

leaving ten valid runs in total for each test. This same strategy is repeated for each

experimental configuration, as shown in Figure 6.1. For reproducibility, we make the

benchmarking repository publicly available1, including all results and scripts.

6.1.2. Results

This section presents the results of the OSBench micro-benchmarks (Figure 6.2 and

Tables 6.3 to 6.7), the kernel compilation (Figure 6.3 and Table 6.8) and Apache web

server (Figure 6.4 and Table 6.9) macro-benchmarks. We find that BPFBox and

BPFContain incur modest overhead in many common use cases cases, with BPF-

Contain experiencing performance degradations in some cases. Also, we discuss

how future optimizations to BPFContain and the KRSI framework could greatly

1Benchmarking tests are available: https://github.com/willfindlay/bpfcontain-benchmarks

159

Chapter 6. Evaluation

improve its performance overhead in practice.

OSBench File Creation

The file creation benchmark (Table 6.3 and Figure 6.2) indicates that BPFBox

and BPFContain have significantly higher overhead than AppArmor in the Pas-

sive and Allow cases. BPFContain, in particular, performs the worst out of the

three systems in these two cases. It is perhaps unsurprising that BPFContain

performed worse on this test, since it performs complex analysis on filesystem oper-

ations to come to a policy decision. We made no deliberate optimization attempts

in this research prototype, but expect that future performance improvements are

possible. Conversely, AppArmor is a well-established security mechanism which has

undergone significant performance optimizations over time. Future optimizations on

BPFContain could likely improve its performance overhead in practice. Despite a

seemingly high performance overhead in the Passive and Allow cases, BPFBox

and BPFContain incur a performance penalty of under 12µs each. The kernel

compilation macro-benchmarks, presented later in this section (c.f. Figure 6.3 and

Table 6.8) indicate that this slowdown has very little effect on even moderately com-

plex workloads. Moreover, in the Complaining case, BPFBox and BPFContain

significantly outperform AppArmor. This result can be attributed to implementation

differences in their event-logging mechanisms.

In the Passive case, BPFBox and BPFContain’s high performance overhead

can be attributed to the fact that they each invoke multiple BPF programs over

multiple LSM hooks on the open(2), write(2), and unlink(2) code paths. Unlike

AppArmor, BPFBox and BPFContain invoke a new eBPF program on every LSM

160

Chapter 6. Evaluation

Table 6.3: Results of the Create Files benchmark. Units are µs per event. Lower is

better. Percent overhead is compared to the baseline result.

Mean Std Overhead

Test Case System

Base — 42.21 1.22 —

Passive

BPFBox 49.09 0.40 16.31%

BPFContain 48.16 0.36 14.11%

AppArmor 43.87 0.95 3.93%

Allow

BPFBox 49.41 0.39 17.08%

BPFContain 53.43 1.01 26.60%

AppArmor 47.07 1.15 11.52%

Complaining

BPFBox 50.34 0.54 19.27%

BPFContain 55.67 0.75 31.89%

AppArmor 111.66 0.75 164.55%

hook along this code path and then perform a map lookup to determine whether

the process is being actively traced. The overhead associated with this many BPF

program invocations is non-trivial compared with the overhead of simply calling into

an LSM hook. Future improvements to the KRSI framework may also be able to

reduce the performance overhead of BPF LSM programs.

In the Allow case, BPFBox is more in line with AppArmor, while BPFContain

is shown to exhibit a slightly higher overhead. We can attribute the additional

overhead shown by BPFContain to the nuances associated with its code path for

file and filesystem policies. For each file operation, BPFContain performs multiple

map queries and reads information from multiple kernel data structures to enforce

its default policy. Future iterations of BPFContain may improve this overhead by

162

Chapter 6. Evaluation

caching policy decisions for filesystem objects and/or resolving inefficiencies in how

BPFContain reads information from kernel data structures.

In the Complaining case, BPFBox and BPFContain significantly outperform

AppArmor, a fact which can be attributed to inefficiencies in AppArmor’s logging

mechanism, which relies on the kernel’s audit framework. The ring buffer maps

used by BPFBox and BPFContain are known to exhibit comparatively less over-

head [103, 157, 158]. Additional overhead may also arise due to differences in how

AppArmor translates files and access patterns to log messages.

OSBench Process Creation

The results of the process creation benchmark (Table 6.4 and Figure 6.2) indicate that

BPFBox and BPFContain introduce modest overhead on top of the fork(2) sys-

tem call. Comparatively, AppArmor introduces very little overhead, well within the

margin of error for measurements. The additional overhead introduced by BPFBox

and BPFContain can be explained by the additional per-process and per-thread

accounting performed by each system. BPFContain, in particular, handles a signif-

icant amount of per-process and per-thread metadata, which must be populated each

time a fork(2) or clone(2) occurs and cleaned up each time a process exits. How-

ever, it should be noted that both BPFBox and BPFContain introduce less than

10% overhead along this code path (within 1–2µs), which should be imperceptible in

practice.

163

Chapter 6. Evaluation

Table 6.4: Results of the Create Processes benchmark. Units are µs per event.

Lower is better. Percent overhead is compared to the baseline result.

Mean Std Overhead

Test Case System

Base — 38.65 0.36 —

Passive

BPFBox 38.81 0.44 0.40%

BPFContain 40.17 0.39 3.93%

AppArmor 39.04 0.74 1.01%

Allow

BPFBox 39.28 0.41 1.63%

BPFContain 41.27 0.63 6.77%

AppArmor 38.94 0.34 0.74%

Complaining

BPFBox 39.51 0.33 2.22%

BPFContain 41.49 0.76 7.33%

AppArmor 38.68 0.56 0.07%

OSBench Thread Creation

The thread creation results (Table 6.5 and Figure 6.2) are directly related to the

process creation results, insofar as both operations exercise the same BPF programs

in BPFBox and BPFContain. Since thread creation is faster then process cre-

ation, the percentage overhead of BPFBox and BPFContain appear compara-

tively higher, but the underlying delta is the same, at roughly 1–2µs per event.

Despite these differences in thread and process creation speeds, the resulting per-

centage overhead of BPFBox and BPFContain is still under 10%.

164

Chapter 6. Evaluation

Table 6.5: Results of the Create Threads benchmark. Units are µs per event. Lower

is better. Percent overhead is compared to the baseline result.

Mean Std Overhead

Test Case System

Base — 20.18 0.19 —

Passive

BPFBox 21.06 0.25 4.37%

BPFContain 21.21 0.30 5.08%

AppArmor 20.32 0.25 0.71%

Allow

BPFBox 21.56 0.37 6.84%

BPFContain 22.11 0.22 9.53%

AppArmor 20.29 0.18 0.54%

Complaining

BPFBox 21.57 0.25 6.90%

BPFContain 21.96 0.24 8.80%

AppArmor 20.32 0.16 0.70%

OSBench Program Launching

The launch programs benchmark (Table 6.6 and Figure 6.2) is essentially the same

as the process creation benchmark (c.f. Table 6.4), with one major difference: the

addition of an execve(2) call after the clone(2) system call. This execve(2) call

adds a constant overhead of about 20µs on top of the original process creation results,

as well as additional LSM hook invocations along the execve(2) code path. These

factors contribute to BPFBox and BPFContain performing slightly worse than

AppArmor in the Passive and Allow cases and significantly better than AppArmor

in the Complaining case.

The additional LSM hook invocations caused by the execve(2) severely impact

AppArmor’s performance in the Complaining case for the same reasons as dis-

165

Chapter 6. Evaluation

cussed in the file creation results (c.f. Table 6.3). BPFBox and BPFContain

exhibit comparatively little overhead despite the execve(2) call. This result can be

explained by the fact that execve(2)’s code path invokes significantly fewer LSM

hooks than the file creation and deletion code paths we examined earlier. In all test

cases, BPFBox and BPFContain are able to achieve under 7% overhead in the

worst case and under 3% in the majority of cases.

Table 6.6: Results of the Launch Programs benchmark. Units are µs per event.

Lower is better. Percent overhead is compared to the baseline result.

Mean Std Overhead

Test Case System

Base — 61.67 0.20 —

Passive

BPFBox 63.30 0.28 2.64%

BPFContain 63.12 0.28 2.34%

AppArmor 62.84 0.25 1.89%

Allow

BPFBox 63.44 0.40 2.86%

BPFContain 65.05 0.38 5.47%

AppArmor 63.17 0.21 2.43%

Complaining

BPFBox 65.22 0.48 5.75%

BPFContain 65.66 0.30 6.47%

AppArmor 90.56 1.97 46.83%

OSBench Memory Allocations

The memory allocation benchmark (Table 6.7 and Figure 6.2) indicates that none of

the systems had any significant affect on memory allocation. In some cases, percent

overhead falsely appears to indicate a minor performance improvement, which we

166

Chapter 6. Evaluation

attribute to measurement error rather than any indication of increased performance;

all results from this trial were well within the margin of error. In fact, there is prece-

dent for such results in the literature, for example in the original LSM paper [153].

This result is consistent with expectations since memory allocation does not directly

interact with any LSM hooks in the kernel, and neither BPFBox nor BPFContain

instruments any BPF programs on the page allocation code path.

Table 6.7: Results of the Memory Allocations benchmark. Units are ns per event.

Lower is better. Percent overhead is compared to the baseline result.

Mean Std Overhead

Test Case System

Base — 117.17 0.67 —

Passive

BPFBox 116.87 0.18 -0.26%

BPFContain 120.05 1.27 2.46%

AppArmor 117.24 0.97 0.06%

Allow

BPFBox 117.41 0.71 0.21%

BPFContain 116.42 0.62 -0.64%

AppArmor 117.49 0.81 0.28%

Complaining

BPFBox 117.62 0.75 0.38%

BPFContain 115.73 1.04 -1.22%

AppArmor 116.81 0.80 -0.31%

Kernel Compilation Results

The kernel compilation benchmark (Table 6.8 and Figure 6.3) provides a represen-

tative depiction of overhead for a computationally-heavy task that involves multiple

processes and significant amounts of file I/O. The results of this benchmark indicate

167

Chapter 6. Evaluation

that BPFBox and BPFContain exhibit performance overhead that is roughly con-

sistent with AppArmor in the average case. The Passive and Allow results indicate

that all three systems exhibit an acceptable performance overhead of under about

3%. The Complaining results indicate that BPFContain performs significantly

better than both BPFBox and AppArmor under a large event logging volume. This

result can be attributed to minor implementation details, including improvements in

how BPFContain handles event logging from multiple distinct sources.

Table 6.8: Results of the Kernel Compilation benchmark. Units are seconds. Lower

is better. Percent overhead is compared to the baseline result.

Mean Std Overhead

Test Case System

Base — 235.32 1.96 —

Passive

BPFBox 237.95 1.88 1.12%

BPFContain 237.63 2.08 0.98%

AppArmor 236.45 1.92 0.48%

Allow

BPFBox 238.23 2.19 1.24%

BPFContain 243.09 2.19 3.30%

AppArmor 237.59 2.04 0.97%

Complaining

BPFBox 269.64 1.98 14.59%

BPFContain 244.80 2.04 4.03%

AppArmor 288.54 2.11 22.62%

Apache Web Server Results

The Apache web server benchmark (Table 6.9 and Figure 6.4) indicates that, while

BPFBox and BPFContain do exhibit a higher performance overhead than App-

168

Chapter 6. Evaluation

Table 6.9: Results of the Apache benchmark. Units are requests per second. Higher

is better. Percent overhead is compared to the baseline result.

Mean Std Overhead

Test Case System

Base — 20576.49 281.94 —

Passive

BPFBox 19946.04 233.62 3.06%

BPFContain 19530.92 317.95 5.08%

AppArmor 20363.42 331.64 1.04%

Allow

BPFBox 19465.86 253.81 5.40%

BPFContain 18934.55 299.23 7.98%

AppArmor 20276.95 64.30 1.46%

Complaining

BPFBox 20139.10 101.59 2.13%

BPFContain 18293.09 160.00 11.10%

AppArmor 19827.05 298.27 3.64%

Armor, this overhead is still within an acceptable range at around 11% in the worst

case for BPFContain. This overhead should still be quite acceptable in practice,

and can be improved through further optimizations in BPFContain’s enforcement

engine, which is still in the prototype phase. The results from theComplaining case

appear to indicate a slight performance improvement for BPFBox over AppArmor;

this is likely due to variance in the measurements rather than a true performance

improvement, as the difference between the two systems falls within the margin of

error.

It is worth noting that, due to an intentional ABI (Application Binary Interface)

breakage in the upstream AppArmor module, AppArmor currently does not enforce

any network policy on a stock Linux kernel [77, 120]. These results were confirmed

170

Chapter 6. Evaluation

experimentally when inspecting the AppArmor logs for the Apache Complaining

test case. This means that the performance results for AppArmor in the Apache test

were at least significantly biased in favour of AppArmor. Future experimentation is

required with a patched version of the Linux kernel to determine AppArmor’s real

overhead in this test case. We hypothesize that AppArmor’s true overhead will more

closely match BPFContain’s.

6.1.3. Discussion of Performance Results

The results of the benchmarking tests show that both BPFBox and BPFContain

incur acceptable performance overhead in practice. In many cases, overhead is com-

petitive with AppArmor. In other cases, the performance overhead of BPFBox and

BPFContain is higher than that of AppArmor, but still within a modest range,

such that the slowdown should be either imperceptible or acceptable in many use

cases. As BPFBox and BPFContain are both research prototypes, they have not

yet been optimized to the extent that AppArmor has. This lack of optimization is

particularly evident in the results for BPFContain, and may account for significant

differences in performance in the file I/O and Apache web server tests.

Despite under-performing in the Passive and Allow cases, both BPFBox and

BPFContain significantly outperform AppArmor in the Complaining test case,

due to a more efficient event logging mechanism. Taking the geometric mean (Ta-

ble 6.10) of normalized test results provides an indication of overall performance

across all test cases. Results from the geometric mean indicate that BPFBox and

BPFContain incur under 9% overhead in all test cases, while AppArmor exhibits

171

Chapter 6. Evaluation

Table 6.10: Geometric means of all Phoronix test results. The geometric means

provide an aggregate summary of normalized results across all tests. Higher values

are better. Percent overhead is given in relation to the base result.

Geom. Mean Overhead (%)

Test Case System

Base 6.238 —

Passive BPFBox 6.007 3.70%

BPFContain 5.951 4.60%

AppArmor 6.158 1.28%

Allow BPFBox 5.944 4.71%

BPFContain 5.763 7.61%

AppArmor 6.086 2.35%

Complaining BPFBox 5.823 6.65%

BPFContain 5.693 8.74%

AppArmor 4.962 20.46%

over 20% overhead in the Complaining case.

Although the results presented in this section indicate a comparative performance

with AppArmor, many other widely-adopted LSMs can perform significantly worse

than AppArmor in some cases. For instance, Zhang et al. [158] found that SELinux,

perhaps the most widely-used Linux MAC implementation, exhibits significant per-

formance overhead, many times worse than AppArmor in some cases. These results

could indicate that BPFBox and BPFContain might perform favourably com-

pared to alternative LSMs like SELinux, although further investigation is needed in

order to establish a direct comparison.

172

Chapter 6. Evaluation

Performance Degradation from ❇P❋❇♦① to ❇P❋❈♦♥t❛✐♥ Many of the

benchmarks presented in this section indicate that BPFContain performs worse

than BPFBox. The reasons for this performance degradation are manifold. While

BPFContain’s Rust userspace implementation may be more efficient than BPF-

Box, the vast majority of performance overhead occurs in the kernelspace code

paths. In the kernel, total overhead is a function of the number of eBPF programs

instrumented on a given code path and the time complexity of these programs. In

general, BPFContain instruments more eBPF programs than BPFBox. More-

over, BPFBox is a thin wrapper on top of LSM hooks, whereas BPFContain deals

in higher-level confinement semantics. This additional layer of abstraction greatly

increases the complexity of the underlying eBPF code, which in turn increases the

likelihood of performance-critical programming errors. We hypothesize that it may

be possible to optimize BPFContain such that its overhead is more in line with

BPFBox.

Comparing Overhead With Other Academic Proposals While the results

presented in this section provide a basis for comparing the performance of BPF-

Box and BPFContain with AppArmor, this comparison is not strictly fair in the

sense that AppArmor is already a well-established security mechanism that has been

heavily optimized for production. To better understand the overall performance over-

head of BPFBox and BPFContain, this section presents an informal comparison

between the results presented in this thesis and existing academic proposals.

Janus [63, 151] by Wagner et al. was among the first research prototypes to actively

consider high-level confinement policy for Unix processes. Rather than interposing

173

Chapter 6. Evaluation

on read(2) and write(2) system calls, Janus instead enforced access control on

the open(2) system call, permitting all reads and writes. Although they reported

that this optimization was able to minimize file I/O overhead, Wagner et al. only

studied Janus’ overhead on CPU-intensive applications that made minimal system

calls. BPFContain may be able to make similar performance optimizations to

Janus, but this would require some modifications to BPFContain’s inode resolution

strategy (see Section 8.2 and Section 8.3).

Jain and Sekar [76] reported as much as 35% overhead for their ptrace-based

confinement implementation when confining the httpd web server. This figure is

significantly higher than either BPFBox or BPFContain under comparable work-

loads. Kim and Zeldovich evaluated the performance of MBox [79], a sandboxing

framework based on ptrace and seccomp-bpf. They acknowledge significant perfor-

mance overhead under heavy file I/O workloads, on the order of 12–20.9%. These

results are roughly consistent with the performance of BPFBox and BPFContain,

particularly considering that MBox does not interpose on every system call [79].

Provos’ Systrace [115] exhibits as much as 31% overhead in kernel compilation

macro-benchmarks, significantly worse than BPFBox and BPFContain. In micro-

benchmarks, depending on the system call, Systrace can add anywhere from 7% to

31% overhead to system call execution time. These results are roughly consistent

with the micro-benchmark results for BPFBox and BPFContain.

It is difficult to directly compare BPFContain with existing container security

proposals, as they generally involve some form of policy generation that compiles

down to a corresponding AppArmor and/or seccomp-bpf policy2 [62, 85, 93]. The

2Thus, we would actually be comparing BPFContain with AppArmor or seccomp-bpf.

174

Chapter 6. Evaluation

Tracee project [8] is perhaps the best candidate for a direct comparison, particularly

as it also uses eBPF to trace container execution. However, Tracee currently does

not provide any relevant benchmarking data for direct comparison. Examining the

performance overhead of Tracee on system call execution may be a promising topic

for future work.

6.2. Security Analysis

We now turn our attention to the security of BPFBox and BPFContain. Specifi-

cally, we conduct an informal security analysis on both systems, evaluating how well

they are able to confine an attacker under the threat model presented in Section 3.6.

In particular, we examine the various policy rule categories provided by both BPF-

Box and BPFContain as well as how their respective enforcement engines enforce

policy at runtime. We characterize an adversary’s ability to escape confinement based

on whether the adversary is able to violate the security assumptions of BPFBox

and BPFContain under a policy designed to prevent such violations.

6.2.1. Threat Model Revisited

Under our threat model (see Section 3.6), we assign significant capabilities to the

adversary. Aside from the restrictions imposed by our confinement policy, we assume

that they have root-level access to the system, including the ability to load code

into the kernel, bypass discretionary access controls, read or modify any persistent

resource, and establish persistent access to the system. Thus, an attacker that is

able to escape or bypass confinement has effectively compromised the entire system.

175

Chapter 6. Evaluation

Further, our enforcement engine must take steps to protect itself, preventing the

attacker from simply loading or modifying code in the kernel, which would result in

the ability to tamper with or bypass the enforcement engine.

In the subsections that follow, we consider four broad access categories and describe

how BPFBox and BPFContain’s confinement policy and enforcement engine pre-

vent attacks related to these access categories. In some cases, the original BPF-

Box policy specification (as presented in this thesis) provided insufficient protection

against specific access patterns. In these instances, we describe how BPFContain

improves upon the original BPFBox design.

6.2.2. Files, Filesystems, and Kernel Interfaces

Correct mediation of file and filesystem accesses is critical to ensure that an adversary

is confined. Files define the canonical persistent data store in modern COTS (Com-

mercial Off-The-Shelf) operating systems, including Linux. Depending on the nature

of the file, the information stored within may be confidential, security sensitive, or

otherwise critical to normal system operation. Attacker modification of persistent

files is often the first step in mounting a Confused Deputy attack [69] for privilege

escalation, along with other classes of attack such as data corruption, information

disclosure, and memory safety attacks.

Under the Unix model, special files and filesystems define an entry point into

kernel interfaces, many of which are security sensitive. For example, character de-

vices expose an interface into device drivers, while special filesystems like sysfs and

securityfs expose behavioural parameters and export sensitive information such

176

Chapter 6. Evaluation

as the system memory map. Limiting access to these files is of paramount impor-

tance, since unrestricted access could enable an attacker to change the behaviour of

the kernel, read sensitive information, modify global system parameters, or interfere

with arbitrary user processes.

In order to restrict access to files (and special files), our enforcement engine must

have complete mediation over the set of all file operations exposed by the OS kernel

and our policy language must be expressive enough such that it can express the set

of all allowed operations on a specific filesystem object (e.g. an inode).

❇P❋❇♦①

To confine a process’s access to the filesystem, BPFBox supports “file” rules (c.f.

Section 4.3.1), which take a pathname and corresponding access vector. This access

vector encodes the specific file operations that a process can perform on the file.

Since BPFBox policies are default deny, an adversary running under a BPFBox

confinement policy should be unable to perform an operation Opi on any file Fj

unless this operation is explicitly covered under a file rule. For the purposes of

confinement, BPFBox treats all files equally, regardless of whether the file is a

special file or belongs to a special filesystem. Thus, any access to any file on the

system is governed by the same set of file rules. The only exception to this is a

special “proc” rule which enables a policy to define access to per-pid procfs entries

belonging to another process.

To enforce its file policy, the BPFBox enforcement engine instruments eBPF

programs on several LSM hooks, including inode-based, file-based, and path-based

177

Chapter 6. Evaluation

hooks. Taken together, these hooks provide mediation3 over the set of all file op-

erations, by instrumenting access at the VFS (Virtual Filesystem) layer. BPFBox

encodes its file policy using an eBPF map, taking the inode and device numbers

associated with a file and its filesystem as a key. When a process requests access to a

file, BPFBox computes a key for that file and makes a query against its policy map.

This technique has a natural side effect of eliminating TOCTTOU race conditions

on a file’s pathname, since inodes are resolved at policy load time.

Despite being able to uniquely identify a file, BPFBox’s inode resolution strategy

is subject to a few fundamental limitations. Since inode’s are resolved at policy load

time, BPFBox traces the confined process, granting implicit access to any files that

the process creates during its lifecycle. An attack against this model would consist

of unlinking and re-creating a file after a policy has been loaded, causing BPFBox

to see it as a different file when enforcing access control. In the worst case, this is

effectively a denial of service against the confined process, since BPFBox enforces

a default-deny policy on unrecognized files. However, this attack would also require

the adversary to be unconfined or to be operating under a confinement policy that

permitted the necessary operations on the file.

❇P❋❈♦♥t❛✐♥

Like BPFBox, BPFContain supports file rules that specify a target pathname and

corresponding access vector. In addition to file rules, BPFContain also supports

filesystem rules for defining per-filesystem policy. A filesystem rule can be thought

3This mediation is complete insofar as the LSM hook placement is correct. While this has not
been formally verified, LSM hook placement is the basis for security guarantees of all LSMs.

178

Chapter 6. Evaluation

of as a coarser-grained version of a file rule, specifying access at the per-filesystem

rather than the per-file level. In order to ensure mediation over explicit denials,

BPFContain always prioritizes fine-grained file rules over coarse-grained filesystem

rules. This prevents a policy from inadvertently obviating its own file rules with a

careless filesystem rule.

Due to current limitations of eBPF, BPFContain currently uses the same inode

resolution strategy as BPFBox. The strengths and weaknesses of this technique

are the same as in BPFBox, with no major differences. However, future versions

of BPFContain may move to runtime path-based resolution, once the kernel offers

better support for string helpers and unbounded loops.

Unlike BPFBox, BPFContain treats regular files differently from special files

and special filesystems. This improves security, as not only do special files and

filesystems have different semantics from regular files, but they also directly expose

interfaces into (potentially untrusted) kernel code. Rather than resolving special

files by inode and filesystem number, BPFContain looks at their major and minor

number pair. Taken together, these two numbers always uniquely identify a special

file, regardless of when it was created or whether it exists in multiple places at

once. This resolution strategy is not vulnerable to the same attack as the inode

resolution strategy, since the adversary cannot control a device’s major and minor

number. However, since modern systems dynamically allocate device numbers, this

could cause inconsistencies between the policy and the system, potentially resulting

in spurious policy decisions on device access. To fix this problem, a future version of

BPFContain will resolve device numbers using a pathname at runtime.

Rather than being outright default deny, BPFContain uses heuristics to deter-

179

Chapter 6. Evaluation

mine the appropriate default policy action on system objects. In the case of regular

files, BPFContain checks to see whether the filesystem superblock is a part of the

container’s user namespace (provided that namespace is not the global namespace).

If it is, the filesystem was mounted within the context of the container, and so it

is safe to allow access. Otherwise, access is denied. Since special files and filesys-

tems can be significantly more dangerous, BPFContain assumes a default-deny

policy instead. This strategy allows BPFContain to (under certain conditions)

relax requirements on policy authors without sacrificing security.

6.2.3. POSIX Capabilities and Privileged System Calls

Under Linux, POSIX capabilities [24] define a process’ ability to override discre-

tionary access controls and access certain privileged kernel interfaces. Although

these cannot be used to override mandatory access controls (such as those enforced

by BPFBox and BPFContain), they still provide a means of limiting the power of

the root user. This becomes particularly evident in the case of privileged kernel in-

terfaces which can affect global system state or enable an attacker to load untrusted

code into the kernel.

❇P❋❇♦①

The BPFBox prototype presented in this thesis does not directly interact with

POSIX capabilities in any way. Instead, BPFBox denies access to system resources

using its LSM hooks directly. To prevent the adversary from interfering with BPF-

Box’s eBPF programs or maps, BPFBox always denies the bpf(2) system call

180

Chapter 6. Evaluation

from a confined process, as well as any system calls that could load code into the

kernel (e.g. load a kernel module).

The current version of BPFBox does not perform any access validation on mount-

ing filesystems, which could potentially allow an attacker to modify the global filesys-

tem hierarchy or interfere with the operation of other processes. This weakness was

fixed in BPFContain with the additional instrumentation of the sb mount LSM

hook.

❇P❋❈♦♥t❛✐♥

Unlike BPFBox, BPFContain provisions policy authors with a way to limit the

POSIX capabilities that a container can access. This is done using a “capability”

rule, which takes a list of capabilities. When a containerized process wishes to

use a capability, it must already possess the capability, pass existing checks in the

kernel, and pass BPFContain’s capability rule checks. This improves security by

introducing an additional layer of control over a process’ bounding capability set.

Like BPFBox, BPFContain places restrictions on the bpf(2) system call, en-

suring that a confined process can never interfere with its eBPF programs or maps.

This ensures that an adversary cannot trivially escape confinement by passing the en-

forcement engine. Further, BPFContain instruments the locked down LSM hook

which mediates kernel features that could potentially enable arbitrary code execution

in kernelspace. We explicitly deny any such action, ensuring that a confined process

cannot directly interfere with BPFContain or other aspects of the kernel.

In addition to limiting bpf(2) and kernel modules, BPFContain places similar

restrictions on the perf events subsystem (a debugging feature supported by the

181

Chapter 6. Evaluation

kernel that enables tracing the CPU and system calls). BPFContain also blocks

operations that could impact the global system state, such as accessing the kernel

keyring, rebooting the system, modifying system network policy, or changing the

system time.

To prevent a confined process from manipulating the layout of the filesystem or

subverting BPFContain’s default policy at runtime, BPFContain prohibits a con-

fined process from mounting or unmounting any filesystems using the sb mount LSM

hook. BPFContain also prevents a confined process from changing its namespace

by instrumenting an fentry program on the site task namespaces kernel function.

This provides improved security over traditional LSM-based approaches, as no LSM

hook currently guards changing namespaces.

6.2.4. Networking

Access to the kernel’s networking stack enables an adversary to connect to remote

hosts, potentially enabling the exfiltration of sensitive data or providing an entry

point for additional attacks. A network socket could also be used by an attacker

to bypass inter-process communication checks (i.e. two processes could communicate

over the network instead of using canonical IPC mechanisms provided by the ker-

nel). Thus, securing the kernel’s networking stack is critically important for ensuring

confinement.

182

Chapter 6. Evaluation

❇P❋❇♦①

BPFBox secures the network stack at the socket layer, defining “network” rules that

map address families to a set of allowed socket operations. Since BPFBox is default

deny, a policy without any network rules will implicitly cause any socket operations

to be denied by default, thus preventing the process from accessing the network

stack. Using a network operation as a taint rule enables BPFBox to start enforcing

a stricter policy once a process has started communicating with the outside world,

improving security in the case where a remote adversary wants to interact with a

process or exfiltrate sensitive information.

The BPFBox prototype presented in this thesis does not support defining more

advanced network policy at the protocol level (e.g. filtering network traffic by IP

addresses and port numbers). This means that BPFBox cannot discriminate be-

tween network traffic according to its source and destination, potentially enabling

network-based attacks for software that requires a network connection to function.

❇P❋❈♦♥t❛✐♥

Like BPFBox, BPFContain defines network policy at the socket layer, through

its own “network” rules. However, BPFContain greatly simplifies the BPFBox

model by restricting network rules to the IPv4 and IPv6 address families. Other

families are either covered under IPC rules (c.f. the next subsection) or are outright

denied by default. Future versions of BPFContain may define additional rules for

interacting with other address families like netlink.

As with BPFBox, BPFContain does not currently support defining network

183

Chapter 6. Evaluation

policy at the protocol-level. This opens a BPFContain container up to the same

class of network-based attacks as BPFBox, so long as the container already has

access to the networking stack through its BPFContain policy. Network firewalls

like iptables can be used to provide additional network security, but future ver-

sions of BPFContain will support such policy natively, obviating the need to use

iptables.

6.2.5. IPC

Inter-process communication mechanisms enable processes to communicate with each

other, sending data back and forth, sending signals to each other, or sharing resources

such as open file descriptors. Without a secure IPC policy, an adversary may be

able to trivially escape confinement by establishing a communication channel with

an unconfined process or sharing information or resources between two processes

running under a different confinement policy. Thus, securing IPC communication is

essential to ensuring that confinement guarantees hold.

❇P❋❇♦①

BPFBox provisions three rules for IPC access: “ptrace” rules, “signal” rules, and

“network” rules using the AF UNIX address family. These rules cover ptrace, signal,

and Unix socket access respectively. Ptrace rules can be used to control whether a

confined process can ptrace other processes and whether another process can ptrace a

confined process, providing two-way protection. Signal rules control the ability for a

confined process to send specific categories of signals to another process. Signals are

184

Chapter 6. Evaluation

categorized based on their implications, with fatal and uncatchable signals belonging

to their own category due to their increased severity. A network rule with the address

family of Unix controls a process’ ability to interact with Unix domain sockets.

Named pipes are covered under BPFBox’s file policy.

The BPFBox prototype presented in this thesis does not provide a way to con-

trol which process is at the other end of a Unix socket, resulting in potential security

vulnerabilities when a confined process is able to establish a socket connection with

an unconfined process. Another weakness in BPFBox’s current IPC policy is that

it does not provision rules for restricting access to System V IPC objects. BPF-

Contain addresses these shortcomings as explained below.

❇P❋❈♦♥t❛✐♥

Rather than defining multiple rule categories for IPC, BPFContain defines a single

“IPC” rule, which takes as an argument the name of another BPFContain policy.

This rule can be used to grant mutual IPC access between two containers running

under a different policy. If either policy does not include an IPC rule granting

access to the other, access is denied. This ensures that both policies mutually agree

that they should be able to communicate, eliminating the problem of an adversary

stealthily infiltrating or exfiltrating data into or out of a confined container.

IPC rules under BPFContain cover all categories of IPC under Linux, including

Unix sockets, System V IPC, pipes, and signals. The justification for this is that

one IPC technique is more or less equivalent to another, and thus allowing one

category of IPC but not another does not provide any additional security. Due to

BPFContain’s container-specific default policy, processes within the same container

185

Chapter 6. Evaluation

are allowed to communicate with each other without defining any IPC rules. This is

acceptable since we treat the container as a unit of security.

Ptrace access is also covered under BPFContain’s default policy. A process may

ptrace another if and only if the two processes exist in the same container. Otherwise,

access is denied. Since ptrace is an extremely powerful interface (effectively giving

the tracer total control over the tracee), BPFContain defines no policy rules to

make exceptions to its default ptrace enforcement.

6.2.6. Breaking ❇P❋❇♦① and ❇P❋❈♦♥t❛✐♥

The confinement guarantees provided by BPFBox and BPFContain are only use-

ful to the extent that they can reliably confine an adversary under our threat model.

Thus, we must carefully consider how an adversary could potentially modify, bypass,

or otherwise break our confinement mechanism. To that end, this section enumerates

a few ways in which an adversary could potentially try to invalidate BPFBox and

BPFContain’s confinement.

Killing the Privileged Daemon Both BPFBox and BPFContain rely on a

privileged userspace daemon to manage their eBPF programs and maps and to log

security events in userspace. The most obvious way to interfere with the daemon is

to simply force it to exit, for instance by delivering an uncatchable SIGKILL signal

via the kill(2) system call. Recall that our threat model (presented in Section 3.6)

provisions the adversary with root privileges under the Unix DAC model, meaning

that the delivery of such a signal would succeed under normal circumstances.

BPFBox and BPFContain mitigate this threat in a few ways. First, they pin

186

Chapter 6. Evaluation

their LSM programs and maps in the kernel, incrementing their reference count and

preventing them from being unloaded when the daemon erroneously exits. As a

further mitigation, both BPFBox and BPFContain instrument LSM programs

on signal delivery, preventing a confined process from delivering any signals to the

daemon (or any other unauthorized recipient).

Tampering with Programs and Maps Recall that BPFBox and BPFCon-

tain enforce confinement policy using a combination of eBPF programs to make

policy decisions and eBPF maps to store confinement policy and system state. These

eBPF objects thus present a clear target for an adversary who wishes to tamper with

our confinement mechanism. To mitigate this threat, BPFBox and BPFContain

prevent an adversary from loading, modifying, or unloading any eBPF programs or

maps. This is done using an LSM hook on the bpf(2) system call.

Crafted System Call Inputs System calls define the canonical interface between

userspace and the kernel, enabling a userspace process to request that the kernel

perform some operation on its behalf, such as accessing a system resource, communi-

cating with a hardware device, or allocating heap memory. Since many system calls

accept parameters, they are often the first step in mounting code execution or priv-

ilege escalation attacks against the kernel. An adversary could attempt to use such

an attack to escape confinement under BPFBox or BPFContain, for example by

modifying or entirely bypassing their eBPF programs.

Recall that BPFBox and BPFContain enforce confinement at the LSM layer.

In practice, this means that any exploitation must occur in one of three places: (1)

187

Chapter 6. Evaluation

before an instrumented LSM hook can be invoked; (2) within the LSM hook itself, or;

(3) after an LSM hook has permitted the associated operation. Currently, neither

BPFBox nor BPFContain handles case (1), since enforcement only occurs at the

LSM layer. However, future versions of BPFBox and BPFContain could instru-

ment eBPF programs at system call entrypoints to perform basic input validation or

enforce system call denylists.

Unlike traditional LSMs, BPFBox and BPFContain are hardened against case

(2) due to the safety guarantees enforced by the eBPF verifier. In particular, the

verifier makes it far less likely that a given eBPF program contains a memory safety

vulnerability4. Case (3) is partially handled by the fact that the adversary’s crafted

input must pass any checks in BPFBox and BPFContain’s LSM programs. This

significantly reduces the probability of an exploit payload successfully reaching this

part of the system call code path. Also note that any future mitigations applied to

case (1) would also implicitly apply to case (2) and case (3).

6.3. Summary

In this chapter, we have evaluated the performance and security of the BPFBox

and BPFContain research prototypes. We conduct a series of benchmarking tests

to evaluate performance in comparison to the base system and AppArmor, a widely-

used LSM that has been upstreamed in the Linux kernel. We find that BPFBox and

BPFContain exhibit modest percent overhead over AppArmor in the majority of

tests, and that they can outperform AppArmor under specific circumstances. While

4See Section 2.6 for a detailed description of the how the verifier enforces safety guarantees.

188

Chapter 6. Evaluation

BPFContain introduces additional performance overhead on top of the original

BPFBox design, this comes with additional flexibility, improved security, and a

more nuanced default policy. Since BPFBox and BPFContain are kernel agnostic,

we can update them without updating the host kernel, enabling bugs to be fixed

like userspace programs. Further, we argue that BPFContain can be significantly

optimized in the future, enabling future iterations on the design to perform more

competitively with existing LSMs.

An informal security analysis reveals that BPFBox and BPFContain found lim-

itations in BPFBox that were later addressed in BPFContain, such as a lack of

support for capability-level policy and limited support for restricting access to IPC

objects. BPFContain resolves the majority of BPFBox’s limitations while simul-

taneously simplifying the policy language. While BPFContain also has limitations

with respect to device-level policy and coarse-grained network policy, these can be

addressed in future work (see Chapter 8).

189

Chapter 7.

Case Studies

In this chapter, we examine specific case studies, where we apply BPFBox and

BPFContain policies to solve realistic problems. We examine how BPFBox and

BPFContain can be used to confine a webserver and database and how they can

implement the default Docker confinement policy. We also discuss how future ex-

tensions to BPFContain could enable it to confine an untrusted container with a

minimal policy file. To offer a basis for comparison, we contrast presented policies

with some available equivalents and discuss how the semantics of the policy language

and enforcement engine can impact the resulting policy file.

7.1. Confining a Web Server and Database

We first examine a practical use case: confining a simple web server and database

deployment. In particular, we focus on the Apache httpd web server and the MySQL

database management system. These two pieces of software are often used together

190

Chapter 7. Case Studies

(e.g. as part of the LAMP stack [72]) and provide a good example of how we can

define specific policy exceptions to allow two processes or containers to communicate

with each other and with the outside world. In this example, we assume that httpd

and mysqld communicate with each other using a shared Unix domain socket created

by mysqld. We synthesize policies through a combination of running the programs

under strace, finding library dependencies with ldd, and running the programs

under BPFContain’s complaining mode. We use the output of these tools along

with BPFContain’s log output to write the security policies by hand.

❇P❋❇♦①

In BPFBox, we define two profiles: one for httpd, and one for mysqld. Listing 7.1

depicts the httpd policy while Listing 7.2 depicts the mysqld policy. These policies

are simplified examples but provide a representative idea of what it’s like to confine

a complex application down to its basest functionality.

The httpd policy (Listing 7.1) defines allow and taint rules for three categories of

socket access: inet, inet6, and unix. These categories cover IPv4 and IPv6 network

access as well as IPC over a Unix domain socket. This Unix domain socket is what

httpd will use to communicate with the database. By defining these network rules as

both allow and taint, we indicate that default-deny enforcement should begin only

after the Apache daemon has begun interacting with the outside world. Using this

technique, the BPFBox policy may be greatly simplified by eliminating the need to

define any policy corresponding to the setup phase of httpd.

The bulk of the BPFBox policy is made up of filesystem rules, enabling access to a

variety of configuration files that httpd needs to read at runtime, a few informational

191

Chapter 7. Case Studies

files exposed by the kernel under procfs, shared libraries that may be loaded at

runtime, the mysqld Unix socket, and the directory that httpd will use to serve web

content. We also define a rule allowing httpd to run suexec, a helper application used

to launch CGI (Common Gateway Interface) scripts. We indicate that launching

suexec should untaint the process and transition to a suexec profile. This profile

would then define the access control policy for suexec (e.g. which scripts it is allowed

to run).

Listing 7.1: A BPFBox policy for Apache httpd.

1 ★✦❬♣r♦❢✐❧❡ "/bin/httpd"❪

2

3 /* Allow IP and Unix socket operations, and taint when

4 * sending or receiving */

5 ★❬❛❧❧♦✇❪ {

6 ♥❡t(✐♥❡t, ❛♥②)

7 ♥❡t(✐♥❡t✻, ❛♥②)

8 ♥❡t(✉♥✐①, ❛♥②)

9 }

10 ★❬t❛✐♥t❪ {

11 ♥❡t(✐♥❡t, s❡♥❞|r❡❝✈)

12 ♥❡t(✐♥❡t✻, s❡♥❞|r❡❝✈)

13 ♥❡t(✉♥✐①, s❡♥❞|r❡❝✈)

14 }

15

16 ★❬❛❧❧♦✇❪ {

17 /* Allows kill(2) to check for process existence

18 * and to send fatal signals */

19 s✐❣♥❛❧("/bin/httpd", ❝❤❡❝❦|❢❛t❛❧)

20

21 /* Write to logs */

22 ❢s("/var/log/httpd/*log", ❣❡t❛ttr|r❡❛❞|❛♣♣❡♥❞)

23 ❢s("/var/log/httpd", ❣❡t❛ttr|r❡❛❞|✇r✐t❡)

24

25 /* Create PID file */

26 ❢s("/run/httpd/", ✇r✐t❡)

27 /* Delete or modify an existing PID file if necessary */

28 ❢s("/run/httpd/httpd.pid", ❣❡t❛ttr|r♠|✇r✐t❡)

29

30 /* Serve files from /srv/html/ and all subdirectories */

192

Chapter 7. Case Studies

31 ❢s("/srv", r❡❛❞|❣❡t❛ttr)

32 ❢s("/srv/html", r❡❛❞|❣❡t❛ttr)

33 ❢s("/srv/html/**", r❡❛❞|❣❡t❛ttr)

34

35 /* Access to mysqld socket */

36 ❢s("/run/mysqld", ❣❡t❛ttr|r❡❛❞)

37 ❢s("/run/mysqld/mysqld.sock", ❣❡t❛ttr|r❡❛❞|✇r✐t❡)

38

39 /* Read configuration */

40 ❢s("/usr/share/httpd/**", r❡❛❞|❣❡t❛ttr)

41 ❢s("/etc/httpd/", ❣❡t❛ttr)

42 ❢s("/etc/httpd/conf/**", r❡❛❞|❣❡t❛ttr)

43 ❢s("/usr/share/zoneinfo/**", r❡❛❞|❣❡t❛ttr)

44

45 /* Read hostname information */

46 ❢s("/etc/resolv.conf", r❡❛❞|❣❡t❛ttr)

47 ❢s("/etc/host*", r❡❛❞|❣❡t❛ttr)

48

49 /* Read-only access to required kernel info */

50 ❢s("/proc/sys/kernel/random/boot_id", r❡❛❞)

51 ❢s("/proc/sys/kernel/ngroups_max", r❡❛❞)

52

53 /* Shared libraries loaded at runtime */

54 ❢s("/usr/lib/httpd/modules/*.so", ❣❡t❛ttr|r❡❛❞|❡①❡❝)

55 ❢s("/usr/lib/libnss*.so.*", ❣❡t❛ttr|r❡❛❞|❡①❡❝)

56 ❢s("/usr/lib/libgcc_s.so.*", ❣❡t❛ttr|r❡❛❞|❡①❡❝)

57 }

58

59 /* Transition to a separate suexec policy */

60 ★❬tr❛♥s✐t✐♦♥❪ {

61 ❢s("/usr/bin/suexec", ❣❡t❛ttr|r❡❛❞|❡①❡❝)

62 }

The BPFBox policy for mysqld works in much the same way as the policy for

httpd. Major differences include disabling all socket access except to Unix domain

sockets. This ensures that the database is not exposed to the outside world but

still enables is to communicate with httpd over its Unix socket. Like with httpd, we

define specific rules enabling mysqld to read important configuration files, log events,

create and modify its PID file and Unix socket, and load some shared libraries at

193

Chapter 7. Case Studies

runtime. The entire setup phase for mysqld occurs while the process is untainted,

thus allowing us to eliminate rules for any shared libraries loaded before the process

becomes tainted.

Listing 7.2: A BPFBox policy for MySQL.

1 ★✦❬♣r♦❢✐❧❡ "/bin/mysqld"❪

2

3 /* Allow Unix socket operations, and taint when

4 * sending or receiving. Also allow creating and

5 * binding inet and inet6 sockets (necessary to

6 * pass assertion checks) */

7 ★❬❛❧❧♦✇❪ {

8 ♥❡t(✉♥✐①, ❛♥②)

9 ♥❡t(✐♥❡t, ❝r❡❛t❡|❜✐♥❞)

10 ♥❡t(✐♥❡t✻, ❝r❡❛t❡|❜✐♥❞)

11 }

12 ★❬t❛✐♥t❪

13 ♥❡t(✉♥✐①, s❡♥❞|r❡❝✈)

14

15 ★❬❛❧❧♦✇❪ {

16 /* Allows kill(2) to check for process existence

17 * and to send fatal signals */

18 s✐❣♥❛❧("/bin/mysqld", ❝❤❡❝❦|❢❛t❛❧)

19

20 /* /dev/null and /dev/urandom */

21 ❢s("/dev/null", ❣❡t❛ttr|r❡❛❞|✇r✐t❡)

22 ❢s("/dev/urandom", ❣❡t❛ttr|r❡❛❞)

23

24 /* Write to logs */

25 ❢s("/var/log/mysqld/*log", ❣❡t❛ttr|r❡❛❞|❛♣♣❡♥❞)

26 ❢s("/var/log/mysqld", ❣❡t❛ttr|r❡❛❞|✇r✐t❡)

27

28 /* Access to /var/lib/mysql */

29 ❢s("/var/lib/mysql", r❡❛❞|✇r✐t❡|❣❡t❛ttr)

30 ❢s("/var/lib/mysql/**", r❡❛❞|✇r✐t❡|❣❡t❛ttr|r♠)

31

32 /* Create PID file and socket */

33 ❢s("/run/mysqld", ❣❡t❛ttr|r❡❛❞|✇r✐t❡)

34 ❢s("/run/mysqld/**", ❣❡t❛ttr|r❡❛❞|✇r✐t❡|r♠)

35

36 /* Read configuration */

37 ❢s("/etc/mysql", r❡❛❞|❣❡t❛ttr)

38 ❢s("/etc/mysql/**", r❡❛❞|❣❡t❛ttr)

194

Chapter 7. Case Studies

39 ❢s("/usr/share/zoneinfo", r❡❛❞|❣❡t❛ttr)

40 ❢s("/usr/share/zoneinfo/**", r❡❛❞|❣❡t❛ttr)

41

42 /* Shared libraries loaded at runtime */

43 ❢s("/var/lib/mysql/plugin/*.so", ❣❡t❛ttr|r❡❛❞|❡①❡❝)

44 ❢s("/usr/lib/libnss_files-*.*.so", ❣❡t❛ttr|r❡❛❞|❡①❡❝)

45 }

❇P❋❈♦♥t❛✐♥

In BPFContain we once again define a policy for httpd and a policy for mysqld.

These policies are depicted in Listing 7.3 and Listing 7.4 respectively. These policies

are largely similar to the BPFBox policies, with a few minor differences that can

be attributed to BPFContain’s nuanced policy defaults and its updated policy

language.

Like BPFBox, the majority of the BPFContain httpd policy (Listing 7.3) fo-

cuses on specifying filesystem access for httpd. Since BPFContain also supports

tainting semantics, we leverage these to eliminate the need to define rules for opera-

tions preceding the taint. Specifically, we taint container once it has performed any

networking operations or any IPC with mysqld. Unlike BPFBox, however, BPF-

Contain does not support untainting a process. This is a natural extension of the

fact that BPFContain deals in container semantics rather than process-level con-

finement— it does not make sense to untaint and transition profiles in the context of

a container, since a single security policy applies to the entire container. This means

that we must still specify access to shared libraries that will be loaded by suexec

(along with whatever applications suexec will run, such as Python).

Aside from the aforementioned differences, the per-file policy is more or less the

195

Chapter 7. Case Studies

same as BPFBox. To enable IPC between the httpd and mysql, we define an IPC

allow rule that lists the mysqld policy. We also enable socket networking using a

network allow rule and enable signalling of existing instances of httpd with a signal

rule. Finally, we use a capability rule to grant access to the CAP NET BIND SERVICE

capability, allowing httpd to bind to privileged ports. Since BPFBox does not

support capability rules, there is no equivalent to this rule in the BPFBox policy,

meaning that POSIX capabilities would effectively be unrestricted.

Listing 7.3: A BPFContain policy for Apache httpd.

1 ♥❛♠❡✿ httpd

2 ❞❡❢❛✉❧t❚❛✐♥t✿ ❢❛❧s❡

3

4 ❛❧❧♦✇✿

5 ★ ✴❞❡✈✴✉r❛♥❞♦♠✱ ✴❞❡✈✴r❛♥❞♦♠✱ ✴❞❡✈✴♥✉❧❧

6 - dev✿ random

7 - dev✿ ♥✉❧❧

8

9 ★ ❆❝❝❡ss t♦ ❧♦❣ ❢✐❧❡s

10 - file✿ {pathname✿ /var/log/httpd, access✿ rw}

11 - file✿ {pathname✿ /var/log/httpd/*log, access✿ ra}

12

13 ★ ❈r❡❛t❡ ♣✐❞❢✐❧❡✱ ❞❡❧❡t❡ ♦r ♠♦❞✐❢② ❛♥ ❡①✐st✐♥❣ ♣✐❞ ❢✐❧❡ ✐❢ ♥❡❝❡ss❛r②

14 - file✿ {pathname✿ /run/httpd, access✿ rw}

15 - file✿ {pathname✿ /run/httpd/**/*, access✿ rwd}

16

17 ★ ❘❡❛❞ ❝♦♥❢✐❣✉r❛t✐♦♥

18 - file✿ {pathname✿ /usr/share/httpd/**/*, access✿ r}

19 - file✿ {pathname✿ /etc/httpd, access✿ r}

20 - file✿ {pathname✿ /etc/httpd/conf/**/*, access✿ r}

21 - file✿ {pathname✿ /usr/share/zoneinfo/**/*, access✿ r}

22

23 ★ ❙❡r✈❡ ❢✐❧❡s

24 - file✿ {pathname✿ /srv, access✿ r}

25 - file✿ {pathname✿ /srv/html, access✿ r}

26 - file✿ {pathname✿ /srv/html/**, access✿ r}

27

28 ★ ❘❡❛❞ ❤♦st♥❛♠❡ ✐♥❢♦r♠❛t✐♦♥

29 - file✿ {pathname✿ /etc/resolv.conf, access✿ r}

30 - file✿ {pathname✿ /etc/host*, access✿ r}

196

Chapter 7. Case Studies

31

32 ★ ❙❤❛r❡❞ ❧✐❜r❛r✐❡s ❧♦❛❞❡❞ ❛t r✉♥t✐♠❡

33 - file✿ {pathname✿ /usr/lib/httpd/modules/*.so, access✿ mr}

34 - file✿ {pathname✿ /usr/lib/libnss*.so.*, access✿ mr}

35 - file✿ {pathname✿ /usr/lib/libgcc_s.so.*, access✿ mr}

36

37 ★ ❊①❡❝✉t❡ s✉❡①❡❝ ❛♥❞ ♣②t❤♦♥

38 - file✿ {pathname✿ /usr/bin/suexec, access✿ rx}

39 - file✿ {pathname✿ /usr/bin/python, access✿ rx}

40

41 ★ ❙❤❛r❡❞ ❧✐❜r❛r✐❡s r❡q✉✐r❡❞ ❢♦r s✉❡①❡❝ ❛♥❞ ♣②t❤♦♥

42 ★ ❚❤✐s ✐s ✉♥❢♦rt✉♥❛t❡❧② r❡q✉✐r❡❞ s✐♥❝❡ ❇P❋❈♦♥t❛✐♥ ❝✉rr❡♥t❧②

43 ★ ❤❛s ♥♦ ♥♦t✐♦♥ ♦❢ ✉♥t❛✐♥t✐♥❣ ❧✐❦❡ ❇P❋❇♦①

44 - file✿ {pathname✿ /usr/lib/libpython*.so.*, access✿ mr}

45 - file✿ {pathname✿ /usr/lib/libc.so.*, access✿ mr}

46 - file✿ {pathname✿ /usr/lib/libpthread.so.*, access✿ mr}

47 - file✿ {pathname✿ /usr/lib/libdl.so.*, access✿ mr}

48 - file✿ {pathname✿ /usr/lib/libutil.so.*, access✿ mr}

49 - file✿ {pathname✿ /usr/lib/libm.so.*, access✿ mr}

50 - file✿ {pathname✿ /usr/lib64/ld-linux-x86-64.so.*, access✿ mr}

51

52 ★ ❆❧❧♦✇ ✐♣❝ ✇✐t❤ ♠②sq❧

53 - ipc✿ mysqld

54

55 ★ ❆❧❧♦✇ s❡♥❞✐♥❣ s✐❣♥❛❧s t♦ ❡①✐st✐♥❣ ❤tt♣❞ ✐♥st❛♥❝❡s

56 - ipc✿ httpd

57

58 ★ ❇✐♥❞ t♦ ♣r✐✈✐❧❡❣❡❞ ♣♦rts✱ ❝❤❛♥❣❡ ✉✐❞ ❛♥❞ ❣✐❞

59 - capability✿ [netbindservice, setuid, setgid]

60

61 ★ ❯s❡ ♥❡t✇♦r❦✐♥❣

62 - net✿ [server, send, recv]

63

64 t❛✐♥t✿

65 ★ ❚❛✐♥t ✇❤❡♥ ♣❡r❢♦r♠✐♥❣ ❛♥② ✐♣❝ ♦r ♥❡t✇♦r❦✐♥❣

66 - net✿ [send, recv]

67 - ipc✿ mysqld

The mysqld policy for BPFContain (Listing 7.4) also shares many similarities

with the BPFBox version. In particular, we define equivalent file access rules to

enable the mysqld to access all of the files it requires for normal operation. We define

an IPC rule, granting mutual IPC access to the httpd policy, and enabling the two

197

Chapter 7. Case Studies

to communicate with each other. We taint the container once it has performed any

IPC with httpd. We enable the creation of new network sockets in order to pass

assertion checks, but otherwise explicitly deny any network access.

Listing 7.4: A BPFContain policy for MySQL.

1 ♥❛♠❡✿ mysqld

2 ❞❡❢❛✉❧t❚❛✐♥t✿ ❢❛❧s❡

3

4 ❛❧❧♦✇✿

5 ★ ❆❝❝❡ss t♦ ❧♦❣ ❢✐❧❡s

6 - file✿ {pathname✿ /var/log/mysqld, access✿ rw}

7 - file✿ {pathname✿ /var/log/mysqld/*log, access✿ ra}

8

9 ★ ❆❝❝❡ss t♦ ✴✈❛r✴❧✐❜✴♠②sq❧

10 - file✿ {pathname✿ /var/lib/mysql, access✿ rw}

11 - file✿ {pathname✿ /var/lib/mysql/**/*, access✿ rwd}

12

13 ★ ❈r❡❛t❡ ♣✐❞❢✐❧❡ ❛♥❞ s♦❝❦❡t

14 - file✿ {pathname✿ /run/mysqld, access✿ rw}

15 - file✿ {pathname✿ /run/mysqld/**/*, access✿ rwd}

16

17 ★ ❘❡❛❞ ❝♦♥❢✐❣✉r❛t✐♦♥

18 - file✿ {pathname✿ /etc/mysql, access✿ r}

19 - file✿ {pathname✿ /etc/mysql/**/*, access✿ r}

20 - file✿ {pathname✿ /usr/share/zoneinfo, access✿ r}

21 - file✿ {pathname✿ /usr/share/zoneinfo/**/*, access✿ r}

22

23 ★ ❙❤❛r❡❞ ❧✐❜r❛r✐❡s ❧♦❛❞❡❞ ❛t r✉♥t✐♠❡

24 - file✿ {pathname✿ /var/lib/mysql/plugin/*.so, access✿ mr}

25 - file✿ {pathname✿ /usr/lib/libnss_files-*.*.so, access✿ mr}

26

27 ★ ❆❧❧♦✇ ✐♣❝ ✇✐t❤ ❤tt♣❞

28 - ipc✿ httpd

29

30 ★ ❆❧❧♦✇ s❡♥❞✐♥❣ s✐❣♥❛❧s t♦ ❡①✐st✐♥❣ ♠②sq❧❞ ✐♥st❛♥❝❡s

31 - ipc✿ mysqld

32

33 ★ ❆❧❧♦✇ ♠②sq❧❞ t♦ ❝r❡❛t❡ ❛ ♥❡✇ ♥❡t✇♦r❦ s♦❝❦❡t

34 ★ ✭◆❡❝❡ss❛r② t♦ ♣❛ss ❛ss❡rt✐♦♥s✮

35 - net✿ server

36

37 t❛✐♥t✿

38 ★ ❚❛✐♥t ✇❤❡♥ ♣❡r❢♦r♠✐♥❣ ✐♣❝ ✇✐t❤ ❤tt♣❞

198

Chapter 7. Case Studies

39 - ipc✿ httpd

40 ★ ❚❛✐♥t ✇❤❡♥ s❡♥❞✐♥❣ ♦r r❡❝❡✐✈✐♥❣ ❛♥② ♥❡t✇♦r❦ tr❛❢❢✐❝

41 - net✿ [send, recv]

42

43 ❞❡♥②✿

44 ★ ❊①♣❧✐❝✐t❧② ❞❡♥② s❡♥❞✐♥❣ ♦r r❡❝❡✐✈✐♥❣ ❛♥② ♥❡t✇♦r❦ tr❛❢❢✐❝

45 - net✿ [send, recv]

Simplifying the ❇P❋❈♦♥t❛✐♥ Example

Once BPFContain has been fully integrated with Docker support, it may become

possible to greatly simplify the above policy examples, leveraging default filesystem

policy to grant access to all of the required files, without the need to explicitly

specify rules for each file. We leverage a shared /tmp filesystem, mounted on the

host, to allow both mysqld and httpd to access the same Unix socket. The result

is an extremely simple policy that can express all the required interfaces in just a

few lines. Listing 7.5 and Listing 7.6 give example policies for httpd and mysqld

respectively.

Listing 7.5: A simplifiedBPFContain policy for Apache httpd running in a Docker

container, leveraging future support for automatic filesystem policy.

1 ♥❛♠❡✿ httpd-container

2 ❞❡❢❛✉❧t❚❛✐♥t✿ tr✉❡

3

4 ❛❧❧♦✇✿

5 ★ ●r❛♥t ❛❝❝❡ss t♦ ❣❧♦❜❛❧ ✴t♠♣ ❢✐❧❡s②st❡♠✱ ♠♦✉♥t❡❞ ❛s ❛ ❉♦❝❦❡r ✈♦❧✉♠❡

6 ★ ❚❤✐s ✐s ✇❤❡r❡ t❤❡ ♠②sq❧❞ ❯♥✐① s♦❝❦❡t ✇✐❧❧ ❣♦

7 - fs✿ {pathname✿ /tmp, access✿ r}

8 ★ ✴❞❡✈✴✉r❛♥❞♦♠✱ ✴❞❡✈✴r❛♥❞♦♠✱ ✴❞❡✈✴♥✉❧❧

9 - dev✿ random

10 - dev✿ ♥✉❧❧

11 ★ ❆❧❧♦✇ ♥❡t✇♦r❦ ❛❝❝❡ss

12 - net✿ [server, send, recv]

13 ★ ❆❧❧♦✇ ✐♣❝ ❛❝❝❡ss ✇✐t❤ ♠②sq❧❞

199

Chapter 7. Case Studies

14 - ipc✿ mysqld-container

15 ★ ❇✐♥❞ t♦ ♣r✐✈✐❧❡❣❡❞ ♣♦rts✱ ❝❤❛♥❣❡ ✉✐❞ ❛♥❞ ❣✐❞

16 - capability✿ [netbindservice, setuid, setgid]

Listing 7.6: A simplified BPFContain policy for MySQL running in a Docker

container, leveraging future support for automatic filesystem policy.

1 ♥❛♠❡✿ mysqld-container

2 ❞❡❢❛✉❧t❚❛✐♥t✿ tr✉❡

3

4 ❛❧❧♦✇✿

5 ★ ●r❛♥t ❛❝❝❡ss t♦ ❣❧♦❜❛❧ ✴t♠♣ ❢✐❧❡s②st❡♠✱ ♠♦✉♥t❡❞ ❛s ❛ ❉♦❝❦❡r ✈♦❧✉♠❡

6 ★ ❚❤✐s ✐s ✇❤❡r❡ t❤❡ ♠②sq❧❞ ❯♥✐① s♦❝❦❡t ✇✐❧❧ ❣♦

7 - fs✿ {pathname✿ /tmp, access✿ rw}

8 ★ ❆❧❧♦✇ ♠②sq❧❞ t♦ ❝r❡❛t❡ ❛ ♥❡✇ ♥❡t✇♦r❦ s♦❝❦❡t

9 ★ ✭◆❡❝❡ss❛r② t♦ ♣❛ss ❛ss❡rt✐♦♥s✮

10 - net✿ server

11 ★ ❆❧❧♦✇ ✐♣❝ ❛❝❝❡ss ✇✐t❤ ❤tt♣❞

12 - ipc✿ httpd-container

13 ❞❡♥②✿

14 ★ ❊①♣❧✐❝✐t❧② ❞❡♥② s❡♥❞✐♥❣ ♦r r❡❝❡✐✈✐♥❣ ❛♥② ♥❡t✇♦r❦ tr❛❢❢✐❝

15 - net✿ [send, recv]

7.2. The Default Docker Policy

Docker [49] applies a coarse-grained default confinement policy to all containers using

a combination of Linux confinement primitives. On supported systems1, this includes

a default AppArmor policy template [48, 50], a default Seccomp-bpf profile, and a

set of POSIX capabilities which are dropped at runtime [49].

Docker’s policy defaults are highly coarse grained, with an emphasis on practical

security while ensuring that the vast majority of container configurations will “just

1Recall that not all Linux distributions support AppArmor or Seccomp-bpf to begin with. In such
cases, Docker simply discards its default confinement policy altogether.

200

Chapter 7. Case Studies

work,” out of the box. This affords a practical opportunity to examine how BPFBox

and BPFContain policies compare with the default Docker policy. Table 7.1 sum-

marizes the key aspects of Docker’s confinement policy, highlighting default access

levels enforced by various Linux confinement primitives. Listing 7.7 depicts Docker’s

default AppArmor template, taken directly from the Docker sources on GitHub [50].

Table 7.1: A summary of Docker’s default confinement policy [48, 49, 50]. Policy

is enforced using a number of Linux confinement primitives, including AppArmor,

Seccomp-bpf, and dropped POSIX capabilities at runtime. Docker generates and

loads AppArmor policy at container runtime using a pre-determined, coarse-grained

AppArmor template file (c.f. Listing 7.7).

Access Category Default Docker Implementation

Files Allow access to all files except
specific procfs and sysfs entries.

AppArmor Template

Filesystem Mounts Deny all filesystem mounts. AppArmor Template

POSIX Capabilities All capabilities enabled in App-
Armor. Drop specific capabilities
at runtime.

AppArmor Template and
Dropped Capabilities

Ptrace Allowed within container. AppArmor Template

Signals Allowed within container. AppArmor Template

Network Allow all network access. AppArmor Template

IPC Allow all IPC access. AppArmor Template

System Calls Deny about 60 obsolete/danger-
ous system calls.

Seccomp-bpf

❇P❋❇♦①

We begin by examining a mostly equivalent policy in BPFBox, given in Listing 7.8.

Re-implementing Docker’s default confinement policy in BPFBox is surprisingly

201

Chapter 7. Case Studies

Listing 7.7: Docker’s default AppArmor template [50], at the time of writing this

thesis. Docker uses Go’s string templating syntax to modify the AppArmor profile

according to the current Docker version and container metadata.

1 {{range $value := .Imports}}

2 {{$value}}

3 {{end}}

4 profile {{.Name}} flags=(attach_disconnected,mediate_deleted) {

5 {{range $value := .InnerImports}}

6 {{$value}}

7 {{end}}

8 network,

9 capability,

10 file,

11 umount,

12 {{if ge .Version 208096}}

13 # Host (privileged) processes may send signals to container processes.

14 signal (receive) peer=unconfined,

15 # dockerd may send signals to container processes (for "docker kill").

16 signal (receive) peer={{.DaemonProfile}},

17 # Container processes may send signals amongst themselves.

18 signal (send,receive) peer={{.Name}},

19 {{end}}

20 # deny write for all files directly in /proc (not in a subdir)

21 deny @{PROC}/* w,

22 # deny write to files not in /proc/<number>/** or /proc/sys/**

23 deny @{PROC}/{[^1-9],[^1-9][^0-9],

24 [^1-9s][^0-9y][^0-9s],[^1-9][^0-9][^0-9][^0-9]*}/** w,

25 # deny /proc/sys except /proc/sys/k* (effectively /proc/sys/kernel)

26 deny @{PROC}/sys/[^k]** w,

27 # deny everything except shm* in /proc/sys/kernel/

28 deny @{PROC}/sys/kernel/{?,??,[^s][^h][^m]**} w,

29 deny @{PROC}/sysrq-trigger rwklx,

30 deny @{PROC}/kcore rwklx,

31 deny mount,

32 deny /sys/[^f]*/** wklx,

33 deny /sys/f[^s]*/** wklx,

34 deny /sys/fs/[^c]*/** wklx,

35 deny /sys/fs/c[^g]*/** wklx,

36 deny /sys/fs/cg[^r]*/** wklx,

37 deny /sys/firmware/** rwklx,

38 deny /sys/kernel/security/** rwklx,

39 {{if ge .Version 208095}}

40 # suppress ptrace denials when using ’docker ps’ or using ’ps’ inside a

container

41 ptrace (trace,read,tracedby,readby) peer={{.Name}},

42 {{end}}

43 }

202

Chapter 7. Case Studies

challenging. BPFBox is not designed to implement coarse-grained confinement

policy, and so specifying things like global access to all files is impossible. We com-

promise by granting recursive access to all files within a given filesystem, repeating

the process for each filesystem as required. This is not the intended use case for

BPFBox file rules, but it is required to match the over-permissive filesystem access

provisioned by Docker. Aside from filesystem-specific policy, most of Docker’s de-

fault policy can be implemented relatively easily and cleanly in BPFBox’s policy

language.

Listing 7.8: Implementing the default Docker policy in BPFBox.

1 ★✦❬♣r♦❢✐❧❡ "/path/to/init/program"❪

2

3 ★❬❛❧❧♦✇❪ {

4 /* Allow essentially global access to a filesystem */

5 ❢s("/path/to/filesystem/**", r❡❛❞|✇r✐t❡|s❡t❛ttr|❣❡t❛ttr|r♠|❧✐♥❦|✐♦❝t❧)

6 /* Repeat for others... */

7

8 /* Allow access to /proc/sys/kernel/shm* */

9 ❢s("/proc/sys/kernel/shm*", r❡❛❞|✇r✐t❡|s❡t❛ttr|❣❡t❛ttr)

10

11 /* Sensible default access for procfs per-pid entries */

12 ♣r♦❝(s❡❧❢, r❡❛❞|✇r✐t❡)

13 ♣r♦❝(❝❤✐❧❞, r❡❛❞|✇r✐t❡)

14 }

15

16 ★❬❛❧❧♦✇❪

17 ★❬t❛✐♥t❪

18 {

19 /* Access to network families */

20 ♥❡t(✐♥❡t, ❛♥②)

21 ♥❡t(✐♥❡t✻, ❛♥②)

22 ♥❡t(✉♥✐①, ❛♥②)

23

24 /* Ptrace child processes */

25 ♣tr❛❝❡(❝❤✐❧❞, r❡❛❞|✇r✐t❡|❛tt❛❝❤)

26

27 /* Send sigchld up to parent processes, any signal to children */

28 s✐❣♥❛❧(♣❛r❡♥t, sigchld)

203

Chapter 7. Case Studies

29 s✐❣♥❛❧(❝❤✐❧❞, ❛♥②)

30 }

31

32 ★❬tr❛♥s✐t✐♦♥❪

33 ★❬✉♥t❛✐♥t❪

34 {

35 /* Allow execve calls to allowed executables,

36 * tainting and transitioning profiles when doing so */

37 ❢s("/path/to/allowed/executable", r❡❛❞|❡①❡❝)

38 /* Repeat for others... */

39 }

Like Docker’s AppArmor policy, our BPFBox policy enables access to per-pid

entries in procfs and uses BPFBox’s default-deny enforcement to restrict all others.

Similar logic applies to the /proc/sys/kernel/shm* entries under procfs. We also

grant full networking stack access, ptrace access for child processes, and full signal ac-

cess for child processes running under the container. Since these operations have the

potential to introduce vulnerabilities from outside sources, we mark them as tainting

the corresponding process. Leveraging taintedness, the BPFBox policy eliminates

the need to specify access to shared library dependencies and other artifacts of the

C runtime.

For more complex container deployments that include more than a single binary,

the BPFBox policy may need to specify access to alternative executables under

the container. We do so using an individual file rule for each executable, optionally

specifying that the process should untaint itself and/or transition to a new profile.

Notably, the version of BPFBox presented in this thesis does not include capability-

level policy, and so it is not included here2. However, the default Docker confine-

ment policy does not implement capability-level filtering anyway, instead relying on

2BPFContain later rectified this gap in BPFBox’s policy language.

204

Chapter 7. Case Studies

dropped capabilities at runtime.

Although the BPFBox policy depicted in Listing 7.8 does not fully map to the

precise Docker default policy, it gets very close in most respects, aside from filesystem

policy. Under BPFBox, filesystem policy is necessarily finer-grained, as it does not

support the ability to specify coarse-grained access to all files on the system. Despite

these challenges, the end result is a functional (and, in some aspects, more secure)

alternative to the default Docker policy.

❇P❋❈♦♥t❛✐♥

Having examined how BPFBox can be used to implement an approximate version

of Docker’s default confinement policy, we now turn our attention to BPFContain.

Listing 7.9 shows the full BPFContain policy. Note that many aspects of Docker’s

default policy are covered by BPFContain’s default container-boundary enforce-

ment. Using this to its advantage, the BPFContain policy is significantly simpler

than both the AppArmor and BPFBox versions while maintaining the same level

of expressiveness.

Listing 7.9: Implementing the default Docker policy in BPFContain.

1 ♥❛♠❡✿ default-docker

2 ❞❡❢❛✉❧t❚❛✐♥t✿ tr✉❡

3

4 ❛❧❧♦✇✿

5 ★ ●r❛♥t ❛❝❝❡ss t♦ t❤❡ ❡♥t✐r❡ r♦♦t ❢✐❧❡s②st❡♠

6 - fs✿ {pathname✿ /, access✿ any}

7 ★ ●r❛♥t ❛❝❝❡ss t♦ t❡♠♣❢s

8 - fs✿ {pathname✿ /tmp, access✿ any}

9 ★ ●r❛♥t r❡❛❞✴✇r✐t❡ ❛❝❝❡ss t♦ ✴♣r♦❝✴s②s✴❦❡r♥❡❧✴s❤♠✯

10 - file✿ {pathname✿ /proc/sys/kernel/shm*, access✿ rw}

11

12 ★ ●r❛♥t ❛❝❝❡ss t♦ t❤❡ t❡r♠✐♥❛❧✱ ✴❞❡✈✴♥✉❧❧✱ ✴❞❡✈✴r❛♥❞♦♠✱ ❛♥❞ ✴❞❡✈✴✉r❛♥❞♦♠

205

Chapter 7. Case Studies

13 - device✿ terminal

14 - device✿ ♥✉❧❧

15 - device✿ random

16

17 ★ ●r❛♥t ❛❝❝❡ss t♦ t❤❡ ❡♥t✐r❡ ♥❡t✇♦r❦✐♥❣ st❛❝❦

18 - net✿ any

19

20 ★ ❊♥❛❜❧❡ ❉♦❝❦❡r ❞❡❢❛✉❧t ❝❛♣❛❜✐❧✐t✐❡s

21 ★ ❆❧❧ ♦t❤❡r ❝❛♣❛❜✐❧✐t✐❡s ❛r❡ ❞❡♥✐❡❞

22 - capability✿

23 - chown

24 - dacoverride

25 - fsetid

26 - fowner

27 - mknod

28 - netraw

29 - setgid

30 - setuid

31 - setfcap

32 - setpcap

33 - netbindservice

34 - syschroot

35 - kill

36 - auditwrite

Compared with BPFBox, the BPFContain version of Docker’s default policy

is significantly simpler and fits more cleanly with Docker’s AppArmor policy. This

improvement is a direct result of a number of critical differences between BPFBox

and BPFContain. Whereas BPFBox was designed for fine grained process-level

confinement, BPFContain was directly designed with containers in mind. Since

BPFContain policies are designed to be container specific, they are far more ap-

propriate for a use case centered around the confinement of containers. In particular,

BPFContain incorporates container semantics into its default policy enforcement,

greatly simplifying the resulting policy. Further, changes to BPFContain’s policy

language, including the introduction of a coarser-grained filesystem rule and capa-

206

Chapter 7. Case Studies

bility rules enables the resulting policy to more closely match the original Docker

AppArmor policy.

To match Docker’s default allow policy on filesystem access, the BPFContain

policy includes a rule to enable any file operation on files within the root filesystem

and tempfs. As with BPFBox, the point here is to match Docker’s default policy

without considering the security implications of granting full access to the entire

root filesystem. We include another rule to enable similar access on the temporary

filesystem. Despite the coarse granularity of these filesystem rules, BPFContain

maintains a critical advantage over BPFBox and the original Docker policy. Due to

its container-specific policy defaults, we can achieve Docker’s fine-grained protection

over procfs and sysfs without the need to specify it in the security policy.

As with the procfs and sysfs policy, BPFContain also includes sensible defaults

for IPC and ptrace access. In particular, processes running within the same container

are free to perform IPC with one another and ptrace one another, so long as the

basic Unix access rights are satisfied (e.g. the process possesses CAP PTRACE or is

the direct ancestor of the tracee). In the case of signals and ptrace, these defaults

directly match the Docker policy (c.f. Table 7.1). In other cases, these defaults are

more secure than the Docker policy, while permits all other forms of IPC regardless

of container membership.

To prevent a container from escaping confinement or interfering with the host,

BPFContain prohibits the container from mounting filesystems, loading kernel

modules, using eBPF, changing the system time, rebooting the system, or perform-

ing a number of other privileged operations. These defaults also match or exceed

Docker’s default policy, and thus may also be omitted from the BPFContain policy.

207

Chapter 7. Case Studies

While many aspects of BPFContain’s default enforcement closely match the de-

fault Docker policy, BPFContain’s defaults remain strictly less permissive. For

instance, the default Docker policy mandates that /proc/sys/kernel/shm* be ac-

cessible to containers, but BPFContain denies access to all procfs entries that do

not belong to a container process. We define an exception to BPFContain’s default

procfs policy by adding an explicit allow rule on this pathname. Similarly, BPFCon-

tain’s default policy forbids network access by default, and so we must explicitly

grant the container permission to use the networking stack. Unlike Docker, BPF-

Contain prohibits the use of any POSIX capability that is not directly specified

in the policy file. Thus, we include an additional allow rule that mirrors the set of

capabilities dropped by Docker at runtime.

The resulting BPFContain policy implements a strict superset of Docker’s de-

fault confinement policy, despite being significantly simpler, and more centralized.

SinceBPFContain directly models the relationship between containerized processes

and their resources, we can achieve significant portions of Docker’s default policy for

free. In many cases, this default enforcement is actually finer grained than the Docker

defaults. In order to achieve the same coarse granularity as the Docker policy, we ad-

just the BPFContain policy by incorporating a few additional allow rules, granting

access to specific filesystems, the networking stack, and POSIX capabilities.

7.3. Confining an Untrusted Container

We now examine perhaps the most obvious and practical use case for BPFContain:

confining an untrusted container. For instance, consider a new container image,

208

Chapter 7. Case Studies

freshly downloaded from Docker Hub, to be used during application development or

testing. We assume that the system administrator does not trust this container image

and wishes to confine the resulting container, preventing it from damaging the rest of

the system, leaking information, or performing other potentially unwanted actions.

For this purpose, we leverage an extremely simple BPFContain policy (essentially

the canonical “Hello World” example) and demonstrate how it can be customized to

match the container’s specific needs. Listing 7.10 depicts the BPFContain policy.

Here, we assume that this policy is applied to a future version of BPFContain

with full Docker integration and automatic filesystem policy. (Section 5.3.4 of Chap-

ter 5 explains how this will be done.) Without these extensions, the policy author

would need to manually grant access to files underlying the container’s overlay filesys-

tem, either using a filesystem allow rule or per-file allow rules. While this shouldn’t

add much additional complexity to the policy, the specific file rules would largely

depend on the container’s configuration, and so we omit the details of such a policy

here. For a similar reason, we omit the corresponding BPFBox policy as well, since

BPFBox does not deal in container-level semantics as BPFContain does.

Listing 7.10: Confining an untrusted container with BPFContain. Note that this

policy requires some extensions on top of the existing BPFContain model, such as

instrumenting the Docker container runtime.

1 ♥❛♠❡✿ untrusted-container

2 ❞❡❢❛✉❧t❚❛✐♥t✿ tr✉❡

3

4 ❛❧❧♦✇✿

5 ★ ❙♣❡❝✐❢② ❢✉❧❧ ♣❛t❤ ❛♥❞ ❛❝❝❡ss ❢♦r ✈♦❧✉♠❡ ♠♦✉♥ts ❢r♦♠ t❤❡ ❤♦st

6 - file✿ {pathname✿ /path/to/volume/mount, access✿ rw}

7 ★ ❘❡♣❡❛t ❢♦r ♦t❤❡r ✈♦❧✉♠❡ ♠♦✉♥ts ❛s r❡q✉✐r❡❞✳✳✳

8

9 ★ ■❢ t❤❡ ❝♦♥t❛✐♥❡r r❡q✉✐r❡s ♥❡t✇♦r❦✐♥❣

209

Chapter 7. Case Studies

10 ★ ❲❡ ❝♦✉❧❞ ❛❧s♦ ❞❡❢✐♥❡ ❢✐♥❡r✲❣r❛✐♥❡❞ ❛❝❝❡ss ❜② r❡♣❧❛❝✐♥❣ t❤❡ ✧❛♥②✧

11 ★ ❦❡②✇♦r❞ ✇✐t❤ s♣❡❝✐❢✐❝ s♦❝❦❡t ♦♣❡r❛t✐♦♥s

12 - net✿ any

13

14 ★ ■❢ t❤❡ ❝♦♥t❛✐♥❡r r❡q✉✐r❡s ❛♥② ❝❛♣❛❜✐❧✐t✐❡s

15 - capability✿ [dacoverride, dacreadsearch, netbindservice] # etc.

16

17 ★ ❋✉rt❤❡r ❡①t❡♥s✐♦♥s t♦ t❤❡ ♣♦❧✐❝② ❛s r❡q✉✐r❡❞✳✳✳

We define a default-tainted BPFContain policy called “untrusted-container”.

Just this policy alone should be enough to confine a simple container. BPFCon-

tain’s default policy would prohibit network access, the use of any POSIX capa-

bilities, access to any files outside of the container’s overlay filesystem, and any

operations that can impact the system as a whole. This default policy prevents en-

tire classes of attacks, prohibiting the container from leaking outside information,

changing global system parameters, loading code into the kernel, or forming unau-

thorized network connections. The reader is encouraged to revisit Figure 5.2 on page

138 of Chapter 5 for a depiction of how BPFContain’s default enforcement works.

While the BPFContain default policy should be sufficient for simple use cases,

more advanced container images may require some slight modification, introducing

a few allow rules to define exceptions in BPFContain’s protection boundary. For

instance, suppose the container image requires a docker volume to be mounted at

runtime. To support this use case, we define a file rule specifying the system path

to the volume mount and the corresponding access pattern, such as rw for read and

write access. All other accesses to the host filesystem remain denied. If the container

requires access to the networking stack, we similarly define a net rule. Capability

rules can be used to allow the container to use a selected subset of POSIX capa-

210

Chapter 7. Case Studies

bilities, assuming it already possesses these capabilities at runtime. For example,

we may wish to grant the container the DAC OVERRIDE and DAC READ SEARCH capa-

bilities to allow it to interact with the Docker volume we specified earlier, or the

NET BIND SERVICE capability to allow it to bind to privileged ports.

7.4. Summary

This chapter has presented and compared BPFBox and BPFContain policies for

various use cases. In particular, we examine how BPFBox and BPFContain can

confine a simple web server and database deployment, how each system can be used

to implement a policy resembling the Docker default policy, and how a future ver-

sion of BPFContain can be used to confine an untrusted container with minimal

effort. We find that each confinement mechanism has its respective strengths and

weaknesses. BPFContain supports more access categories and combines seman-

tically related accesses into the same rule types, simplifying policies and providing

increased expressiveness. However, BPFBox’s tainting and untainting semantics

prove advantageous for complex deployments on the host system. Future iterations

on BPFContain’s default policy can greatly simplify existing container-specific pol-

icy semantics, shortening long and complex policies down to just a few lines.

211

Chapter 8.

Discussion and Concluding

Remarks

This chapter discusses the relevance of BPFBox and BPFContain, positioning

them as novel extensions to the existing confinement literature. We also exam-

ine limitations of both research systems and present opportunities for future work.

Namely, we propose ways to address current limitations, improve the eBPF ecosys-

tem for confinement use cases, add features to BPFBox and BPFContain, and

conduct further research on the usability of both systems.

8.1. Research Questions Revisited

In Section 1.1, we proposed three research questions for this thesis. In this section, we

revisit these research questions and discuss how the various chapters in this document

answer them.

212

Chapter 8. Discussion and Concluding Remarks

8.1.1. Answering RQ1

Research Question RQ1 asks what difficulties exist in the current state of Linux

confinement that might give rise to semantic gaps between security policies and the

entities they are designed to lock down. It also asks what design goals a novel

confinement mechanism would need to satisfy in order to rectify these difficulties.

In Chapter 3, we present a novel framing of the confinement problem, illustrating

that semantic gaps arise due to inherent complexities and inter-dependence relation-

ships that form between disparate confinement primitives. In light of this charac-

terization, we identify a particular gap in container-level confinement that could be

filled by a novel confinement mechanism that focuses on container semantics. We

use the insights outlined in this chapter to inform a threat model and a set of design

goals for a novel confinement mechanism.

8.1.2. Answering RQ2

Research Question RQ2 asks how eBPF might be used to implement a novel confine-

ment framework, what such a confinement framework would like, and how it might

be made to model container semantics.

In Chapter 4 and Chapter 5, we answer this research question by presenting the

design and implementation of two confinement mechanisms based on eBPF, BPF-

Box and BPFContain. The former is designed to sandbox user processes while

the latter is designed to confine containers by accounting for container semantics in

its policy enforcement engine. We present a design pattern for encoding a security

policy into eBPF maps and show that this policy can be augmented with information

213

Chapter 8. Discussion and Concluding Remarks

about system state gathered by eBPF programs at runtime.

We find that eBPF offers numerous advantages when designing a novel confine-

ment mechanism. In particular, eBPF programs used for enforcement can be safely

and dynamically loaded into a running kernel, enabling us to iterate on and debug

BPFBox and BPFContain as we would a userspace application. eBPF’s safety

guarantees and wide adoption in industry position BPFBox and BPFContain

as adoptable alternatives to traditional LSMs. Using multiple eBPF program and

map types, we can develop a rich confinement model that incorporates process- and

container-level semantics into its policy decisions.

8.1.3. Answering RQ3

Research Question RQ3 asks how an eBPF-based confinement solution might com-

pare with existing confinement mechanisms, in terms of its performance and security.

It also asks what improvements to the eBPF ecosystem might be needed to improve

upon a proposed solution based on eBPF.

In Chapter 6, we present the results of several micro- and macro-benchmarks that

compare the performance overhead of BPFBox and BPFContain with AppArmor.

We find that, while BPFBox and BPFContain perform comparatively worse in

some micro-benchmarks, their worst-case overhead is significantly lower than that of

AppArmor. Moreover, the results of the macro-benchmarks indicate that this ad-

ditional overhead is far more modest for computationally complex workloads. Fur-

thermore, we hypothesize that it may be possible to optimize BPFContain in the

future.

214

Chapter 8. Discussion and Concluding Remarks

Chapter 6 also presents an informal security analysis which indicates that BPF-

Box and BPFContain provide practical security guarantees in the context of

process- and container-level confinement, although there are opportunities to fur-

ther develop their respective policy languages and enforcement engines. Chapter 7

presents example confinement policies for three distinct use cases, examining how

BPFBox and BPFContain policies could be used to achieve realistic confinement

goals.

Finally, we identify some key limitations of eBPF that could be addressed to further

strengthen an eBPF-based confinement mechanism. Namely, we highlight the need

for new eBPF helper functions to deal with pathname semantics in security policies.

We also address the need for a formal evaluation of BPFBox, BPFContain, and

eBPF itself in terms of their security and tamper resistance. We leave such an

evaluation as a promising topic for future work (c.f. Section 8.2.4).

8.2. Limitations

In this section, we discuss some limitations of the BPFBox and BPFContain pro-

totypes. While some limitations arise due to a lack of support for the correct primi-

tives in the current eBPF ecosystem, others arise due to the prototypical nature of

BPFBox and BPFContain as research systems. In both cases, we discuss how

future iterations of BPFBox and BPFContain could address these limitations,

either through extensions to the policy enforcement mechanism or future improve-

ments to the eBPF ecosystem.

215

Chapter 8. Discussion and Concluding Remarks

8.2.1. Semantic Issues in the Policy Language

It is challenging to refer to files from eBPF. In the kernel, files are generally uniquely

described by an inode structure, which in turn maps to one or more pathnames via a

file structure. Each inode belongs to a distinct filesystem and is uniquely enumerated

within that filesystem by an inode number. In BPFBox and BPFContain, we

uniquely identify inodes using a combination of their inode number and the unique

device identifier of the filesystem on which the inode resides. While this is an effective

technique for runtime monitoring, things begin to fall apart when dealing with a

user-facing data store, such as a policy map.

While the kernel refers to files by their inodes within a filesystem, users do not. For

the most part, userspace does not deal in inode-level semantics— instead, we deal in

pathnames, a string that describes the path required to move from the filesystem root

to a given file. Indeed, the BPFBox and BPFContain policy languages use path-

names rather than inodes to refer to files. Unfortunately, this creates an undesired

dichotomy between the user-facing components of BPFBox and BPFContain and

the kernelspace implementation. To resolve this dichotomy, we translate the path-

names into inode and device pairs at policy load-time. This is a workaround and is

subject to several fundamental limitations. In particular, referring to a pathname

that doesn’t yet exist becomes difficult, as inode numbers do not yet exist; inodes

that are deleted or freshly created at runtime must be treated as special cases, dy-

namically updating the policy as required; finally, globbing pathnames can result in

an explosion in the size of maps storing file rules, as each globbed file is translated

into a unique inode-device pair.

216

Chapter 8. Discussion and Concluding Remarks

To resolve these issues, it would be ideal if we could refer to pathnames directly

from BPF programs. In particular, a design using this capability might resolve path-

names within eBPF programs and define a finite state machine to match globbing

rules over the pathname. Unfortunately, current support for pathname resolution in

eBPF is primitive. Difficulties arise due to a few fundamental limitations imposed

by the verifier and the eBPF runtime:

1. The verifier imposes a hard limit of 512 bytes of stack space for each BPF program.

This makes it unrealistic to store strings on the stack, instead requiring that a

buffer be allocated in the heap. In the context of BPF, this can only be done

using a dummy map as a scratch buffer.

2. The verifier also imposes restrictions on how eBPF programs can loop and how

these loops can access map data. Specifically, loops must provably terminate and

any array access within a loop must be appropriately bounded by a fixed constant

(to ensure no buffer overflows or similar issues). In practice, enforcing these

restrictions is difficult, and the verifier errs on the side caution when reasoning

about a loop is unclear. This can result in safe programs that manipulate long

strings being erroneously rejected.

3. While helper functions can get around such restrictions, the current ecosystem for

string manipulation helpers in eBPF is immature. For instance, Linux 5.10 added

a bpf d path() helper [106] to extract pathnames from a kernel directory entry.

However, this helper is only available for sleepable BPF programs, since allocating

a buffer for the string can result in a page fault. Support for sleepable BPF is

217

Chapter 8. Discussion and Concluding Remarks

very new and has not had a chance to mature; currently, sleepable programs are

restricted to a small subset of LSM programs. Aside from pathname resolution,

no other string helpers currently exist, although they have been on the radar of

eBPF developers for some time.

Although the current state of the eBPF ecosystem makes it impossible for BPF-

Box and BPFContain to directly use pathname-based enforcement in the kernel,

this will not necessarily be the case in the future. eBPF is in active development, and

each subsequent kernel version adds new features and capabilities. For instance, the

kernel community is currently working on a generic solution for sleepable BPF that

will greatly expand the number of programs that can handle page faults. When this

support arrives, it is likely that working with strings will become much easier. Thus,

future versions of BPFBox and BPFContain will likely be able to incorporate

pathname-based policy enforcement in their kernelspace implementations.

8.2.2. Fixed-Size Policy Maps

Currently, policy maps under BPFBox and BPFContain are of a fixed size, deter-

mined at policy load time. This is due to a fundamental limitation of eBPF: maps

must be allocated at a fixed size and may not be directly resized at runtime. To get

around this limitation, BPFBox and BPFContain tailor policy map size to the

number of rules that will be loaded into the kernel. While this approach is effective,

it would be better to have the ability to dynamically grow policy maps at runtime.

This would enable BPFBox and BPFContain to support loading arbitrary length

policies at runtime, and even runtime policy generation, without excessively large

218

Chapter 8. Discussion and Concluding Remarks

map sizes.

As with string helpers in the previous section, the primary bottleneck preventing

dynamically-sized maps is the adoption of sleepable BPF. Alexei Starovoitov expects

that subsequent versions of the kernel will support dynamically allocated maps as the

number of sleepable BPF programs increases. When support for this lands, BPFBox

and BPFContain will be able to leverage this new functionality to greatly improve

the memory efficiency of policy maps and support runtime policy generation from

the eBPF side.

8.2.3. Performance Overhead

The performance results presented in Chapter 6 indicate that BPFBox and BPF-

Contain have higher overhead than AppArmor in the OSBench micro-benchmarks.

However, this is not indicative of their performance in the general case. In fact,

BPFBox and BPFContain perform competitively with AppArmor in the kernel

compilation macro-benchmarks, with similar overhead in the Passive and Allow

test cases and significantly better overhead in the Complaining case. This sug-

gests that the overhead of individual system calls is outweighed by the computational

complexity of an instrumented application and the synchronous delays introduced by

blocking system calls on I/O. These findings are further reflected when comparing

the geometric means of each test configuration. While AppArmor performs better in

the Apache web server benchmark, this is likely due to the fact that it does not prop-

erly enforce its network policy on modern Linux kernels (see Section 6.1). Moreover,

neither BPFBox nor BPFContain has been deliberately optimized, suggesting

219

Chapter 8. Discussion and Concluding Remarks

that there may be opportunities to improve performance in the future.

In addition to considering potential improvements to their base overhead, we must

also consider the additional flexibility provided by an eBPF-based confinement mech-

anism. Using BPF CO-RE, BPFContain can be run on any supported kernel with-

out the need to recompile or patch either the kernel of BPFContain itself. The

dynamic nature of eBPF means that software bugs or vulnerabilities in the enforce-

ment engine can be fixed without the need to update the kernel or even reboot the

system. Moreover, eBPF programs are verified for safety, meaning that they are far

less likely to expose additional attack surfaces in the kernel than a kernel patch or

loadable kernel module.

8.2.4. Security Guarantees

In Chapter 6, we presented a detailed security analysis of the BPFBox and BPF-

Contain designs. However, this informal analysis is weak evidence for the actual

security guarantees of these research prototypes. In the future, we could conduct

a formal security evaluation of BPFContain, measuring its ability to confine a

container using a dedicated security test suite. Such a test suite would involve a

combination of existing (vulnerable) container images and accompanying CVEs. We

would then attach a BPFContain policy to the resulting container and determine

its ability to (1) accommodate the basic functionality of the container; and (2) pre-

vent the exploitation of any related CVEs. These tests would then enable us to

establish BPFContain as a useful security mechanism for confining containers.

While others [8, 28] have examined eBPF’s utility for security use cases, this thesis

220

Chapter 8. Discussion and Concluding Remarks

presents the earliest research into defining security policies using eBPF maps. Cur-

rently, BPFBox and BPFContain protect themselves from a confined adversary

by instrumenting eBPF programs on the bpf(2) system call code path. However, in

order to present a rigorous security argument, we must also formally verify the secu-

rity of BPFContain’s eBPF programs and maps to show that a confined adversary

cannot tamper with them.

Another important aspect underpinning the security of solutions like BPFBox

and BPFContain is the security of eBPF itself as well as the KRSI LSM programs

and the underlying LSM hooks themselves. To date, no formal analysis exists to

verify any of these components. It may not be possible to formally verify that LSM

hooks provide complete mediation due to the complexity of the Linux kernel [75].

However, due to the simplicity of eBPF and KRSI, it could be feasible to formally

verify their security guarantees within the context of an unverified kernel. We leave

such formal analysis to future work.

8.3. Future Work and Research Directions

This section discusses opportunities for future work and potential research direc-

tions. We specifically examine opportunities to further evaluate the effectiveness

of BPFBox and BPFContain as well as potential extensions that can improve

BPFContain’s container-specific policies. We also consider potential avenues for

implementing automatic policy generation in BPFContain.

221

Chapter 8. Discussion and Concluding Remarks

8.3.1. The Need for a User Study

While the BPFBox and BPFContain policy languages are designed to be sim-

ple, the usability argument behind their design is as of yet untested. In particular,

both prototypes could benefit from a user study. A user study could offer numer-

ous insights into how users interact with the policy languages, whether the resulting

enforcement actions meet expectations, and how each system compares with equiv-

alents like SELinux or AppArmor from a usability perspective. Such insights could

be used to inform design directions for future iterations of the policy language or

to establish a stronger basis for comparison between BPFBox, BPFContain, and

alternative confinement mechanisms.

User studies have proven useful for gleaning insights about prior work in the con-

finement space. Schreuders et al. [125] conducted a user study examining the us-

ability of their FBAC-LSM security module, AppArmor, and SELinux, to establish

a basis for comparison between alternative policy schemes. Their work revealed

insights into how users manage expectations when writing security policy and the

semantic gap between existing policy languages and user expectations. As systems

that incorporate their own policy language design, BPFBox and BPFContain

could greatly benefit from a similar user study.

8.3.2. OCI Specification and Docker Integration

As a container-specific confinement solution, integration with the OCI specification

and Docker container runtime are a natural path forward for BPFContain. The

OCI specification is an open, platform-agnostic standard for defining a container

222

Chapter 8. Discussion and Concluding Remarks

image using JSON [89]. Container runtimes like Docker generate and parse an OCI

specification for a container image before running it. Integrating BPFContain with

the OCI specification would enable BPFContain policies to be expressed directly

within an image’s OCI representation and enable BPFContain to infer certain

aspects of its policy from existing OCI data.

Another potential avenue for extending BPFContain is to use eBPF programs

to trace the container runtime (e.g. Docker’s containerd and moby), mediating the

setup phase to enforce policy on specific aspects of container construction. This ap-

proach could also be used to infer policy, for example by interposing on the filesystem

mounts created by the container runtime to infer filesystem policy or observing the

creation of the Docker network interface to inform network policy. Using uprobes,

BPFContain could also associate a Docker container with a given container image,

enabling it to automatically apply policy when a specific container image starts.

8.3.3. Fine-Grained Network Policy

Currently, BPFBox and BPFContain both expose a highly coarse-grained net-

work policy. In particular, network policy only operates at the socket level, and does

not consider more nuanced access controls, such as filtering by IP address. This

means that specifying access to a network resource essentially gives a process of con-

tainer global access to network resources, so long as any requested access conforms

to a subset of specified operations. While this is not strictly problematic for appli-

cations that do not require network access, it quickly becomes an overprivilege issue

for applications that do.

223

Chapter 8. Discussion and Concluding Remarks

Under the current implementation, provisioning a fine-grained network policy

would require a netfilter-based firewall such as iptables. While this is not strictly

an issue, one of the main goals of BPFBox and BPFContain is to eliminate the

need to recombine existing policy mechanisms. Therefore, it would be best if we

could incorporate finer-grained network policy into future iterations. Such a network

policy is possible to enforce using eBPF; rather than LSM probes, we would leverage

another program type, TC CLSACT, that enables finer-grained network filtering on

individual packets.

The TC CLSACT (short for Traffic Control, Classifier and Action) program type is

a socket filter that can discriminate between network traffic at the protocol-level by

parsing packet headers. In addition to classifying traffic, this program type can make

filtering decisions, deciding whether a packet should move on in the kernel’s network-

ing stack or be dropped. Using this program type to enforce network policy would

enable BPFContain to discriminate between source and destination addresses and

ports when making network policy decisions on ingress and egress traffic. The policy

language could then be extended to specify specific address patterns that should be

matched in order for a network connection to be allowed. Extending the BPFCon-

tain policy in this way would mark a significant improvement in BPFContain’s

network security guarantees.

8.3.4. ❇P❋❈♦♥t❛✐♥ Policy Generation

The version of BPFContain presented in this thesis requires a policy author to

write security policies by hand. Future iterations of BPFContain should support

224

Chapter 8. Discussion and Concluding Remarks

automatic or at least semi-automatic policy generation to ease the burden on users

and facilitate security policy authorship. This can be accomplished in one of two

ways. We discuss each in turn.

1. We could extend BPFContain’s eBPF programs with the ability to automati-

cally generate policy in real time. This approach is similar to anomaly detection,

establishing a normal behavioural profile for a container during a training phase

and enforcing security policy once a normal profile has been established. Imple-

menting such profile generation would require minimal changes toBPFContain’s

existing enforcement mechanisms, although further investigation is required to de-

termine the correct approach for minimizing false positives and false negatives in

policy generation.

2. We could implement policy generation from audit logs, similar in spirit to

SELinux’s audit2allow [131] or AppArmor’s aa-logprof [6]. Accomplishing

this would require a few changes to BPFContain’s log generation. In partic-

ular, we would need a way to map inode and filesystem number pairs back to

the underlying host pathnames so that they can be correctly logged in userspace.

The alternative is translating or caching these pairs in userspace, which may

prove to be too expensive in practice. In order to support pathname translation

in BPFContain, additional upstream work in the eBPF subsystem is required

to enable pathname resolution in more LSM hooks, as outlined in Section 8.2.1.

225

Chapter 8. Discussion and Concluding Remarks

8.4. Improving the Status Quo

In this section, we discuss how BPFBox and BPFContain improve upon the sta-

tus quo in confinement, with a particular emphasis on how their unique properties

encourage application- and container-specific confinement, and promote local policy

variation. We also examine how their implementation as eBPF-based security solu-

tions positions them as highly adoptable alternatives to traditional kernel security

mechanisms with the potential to drive further innovation going forward.

8.4.1. Application-Specific and Container-Specific Policies

Due to their simplicity and flexibility, BPFBox and BPFContain encourage a

different kind of confinement compared with existing LSM-based solutions. Rather

than focusing on global, system-wide MAC policy enforcement like SELinux [130]

or AppArmor [42], BPFBox and BPFContain focus on application-specific and

container-specific confinement respectively. The former enables lightweight, ad-hoc

confinement of individual Linux processes, while the latter extends this model to work

with container semantics. This represents a stark contrast over existing work in the

confinement space which generally focuses on reusing existing primitives designed

for global enforcement. Rather than outright simple policies, these confinement

frameworks compile down into hundreds or even thousands of lines of policy for the

underlying confinement primitive.

The application-specific approach of BPFBox takes a different path—a BPF-

Box policy directly applies to the BPFBox enforcement engine, without relying on

existing primitives like SELinux, AppArmor, or Seccomp-bpf. The result is policies

226

Chapter 8. Discussion and Concluding Remarks

that are far simpler without being too coarse-grained or abstracted beyond the point

of auditability. Further, application-specific policies afford a great deal of flexibility

to the end user; rather than authoring complex policies that cover the entire system,

instead they may focus on the specific behaviours that they want their applications

to exhibit. In turn, this flexibility means that different types of users can leverage

BPFBox in different ways. Application developers can write fine-grained policies

that enforce behaviours at the function-call-level. Conversely, end users can deploy

custom BPFBox policies to restrict specific behaviours, such as access to the home

directory.

BPFContain extends the BPFBox model to be container specific. Like BPF-

Box, much of the implicit strength inherent in this model is that it does not rely

on existing primitives and does not attempt to enforce policy over the entire system.

Instead, we focus on individual containers, identifying the specific OS interfaces

needed for the container to function. This approach introduces additional advan-

tages specific to the container use case, on top of the advantages already present in

the BPFBox design. By including container semantics as part of its internal model

of the system, BPFContain can enforce highly nuanced policy defaults, defining

an enforcement boundary around the container. This boundary, in turn, simplifies

resulting policies by allowing the policy author to focus on which external interfaces

the container needs, without worrying about specifying access to internal resources.

In this way, BPFContain policies mirror the process of provisioning resources in a

virtual machine.

227

Chapter 8. Discussion and Concluding Remarks

8.4.2. Encouraging Local Policy Variation

An implicit advantage of simple yet flexible confinement policies is that they encour-

age policy variation. In computer security, diversity is an area that has seen some

exploration in the past [97, 105, 111, 135]. The idea is deceptively simple, inspired by

biological sources of diversity found in nature. Attackers rely on similarities between

system for widespread exploitation; for instance, consider a set of deployed systems

all running the same vulnerable version of a piece of a software with similar con-

figurations. Since each of these systems have the same vulnerability, exploiting one

system is much like exploiting the others; thus, the knowledge and effort required to

exploit each system will be roughly equivalent to exploiting just one. The point of in-

troducing diversity into software deployments and configurations is to confound this

basic assumption. On a macroscopic scale, increased diversity improves the security

of the entire population.

Classically, computer diversity has primarily been explored through source- or

binary-level variations [105, 111, 135]. Solutions recombine existing software in new

ways, such that each deployment has a unique code footprint. However, a primary

limiting factor to the adoption of such security solutions is that they fly in the

face of the traditional approach to computing. Namely, we want our software to

be as predictable, reliable, and effective as possible. The same input into a piece

of software should produce the same (or at least predictable) output, regardless

of the underlying system configuration. Source- or binary-level software diversity

invalidates this assumption, by introducing potential variations in common code

paths.

228

Chapter 8. Discussion and Concluding Remarks

Unlike traditional sources of diversity in computing, policy-level diversity has the

potential to be quite effective while maintaining the underlying assumption that

software should “just work”. Security policies may be tailored to some locally-desired

use case, only invalidating code paths that would never be taken to begin with. For

example, consider an Apache web server configuration. In one deployment, it may

be necessary to support the execution of CGI helper scripts, whereas another may

only need to serve static webpages. Each configuration could use a different security

policy, based on the needs of the local deployment. A natural diversity arises as

an emergent property of this model when scaled up over thousands of deployments

across thousands of applications. Since BPFBox and BPFContain policies are

so simple yet so flexible, they naturally encourage precisely the sort of local policy

variations required to achieve policy-level diversity at scale.

8.4.3. eBPF, Adoptability, and Future Innovation

A third improvement over the status quo in confinement lies in BPFBox and BPF-

Contain’s novelty as eBPF-based confinement implementations. Whereas existing

kernel security mechanisms are based on kernel patches or loadable kernel modules,

BPFBox and BPFContain leverage eBPF for dynamic runtime security moni-

toring, verified for safety and correctness before being loaded into the kernel. An

eBPF-based implementation affords BPFBox and BPFContain a number of ad-

vantages over traditional security solutions.

1. eBPF is already widely used in production Linux environments. At the

time of writing this thesis, major software companies like Facebook, Netflix, and

229

Chapter 8. Discussion and Concluding Remarks

Google [64] already use eBPF in production servers for performance and security

monitoring, the implementation of L4 routing and load balancing algorithms, and

other various use cases. In fact, the KRSI patch that provides the LSM probes

used by BPFBox and BPFContain was initially developed at Google for dy-

namic security monitoring use cases [129]. As time goes on, eBPF-based kernel

code is seeing increasing deployment across multidisciplinary areas of industry.

This widespread deployment is a key incentive toward the adoption of security

mechanisms like BPFBox and BPFContain. Not only is this widespread adop-

tion an emergent phenomenon from eBPF’s safety and flexibility properties, but

it is also a valuable case study in how eBPF is reshaping the way we think about

kernel observability in practice.

2. The barrier to entry for running new eBPF code on a production system

is much lower than a new kernel module or kernel patch. Since eBPF

programs and maps can be dynamically loaded into the kernel and are checked

for safety and correctness before they are allowed to run, the barrier to entry for

running a new eBPF-based implementation in production is far lower than that

of a kernel module or kernel patch. eBPF programs are far less likely to contain

memory safety errors or other software bugs that plague kernel code in practice.

Due to new technologies like BPF CO-RE [102], eBPF-based solutions are also far

more portable across different kernel versions and configurations. These factors

combined make BPFBox and particularly BPFContain far more adoptable

as novel kernel security mechanisms. Future security implementations based on

eBPF can also enjoy these advantages.

230

Chapter 8. Discussion and Concluding Remarks

3. eBPF enables rapid prototyping and deployment of kernel security

mechanisms. Due to its dynamic nature, safety, and portability across ker-

nels, it is far easier to rapidly prototype, test, and deploy novel security solutions

based on eBPF. In the case of BPFBox and BPFContain, this enables rapid

prototyping of the policy language and enforcement engine, and makes it easy

to incorporate novel extensions on top of these research systems, redefining key

aspects of policy enforcement and adding new data sources from the kernel and

userspace programs. In the future, we will likely see eBPF positioned as a key

enabling factor behind the rapid development of novel kernel security extensions,

further combining system observability with dynamic policy enforcement.

8.5. Conclusion

This thesis has presented the design, implementation, and motivation behind BPF-

Box and BPFContain, two novel confinement mechanisms for the Linux kernel,

with an emphasis on simple yet precise policies, application- and container-specific

confinement, and high adoptability. We analyze the performance of these research

systems and find that they are competitive with existing confinement implementa-

tions while providing superior flexibility for local confinement. While undoubtedly

useful on their own, perhaps the greatest value provided by these research systems is

as a proof of concept, demonstrating the value of eBPF-based confinement solutions.

A myriad of potential extensions on top of BPFBox and BPFContain can

provide increased security and flexibility. Future optimizations in the BPFBox and

BPFContain enforcement engines can further improve their performance, making

231

Chapter 8. Discussion and Concluding Remarks

them more competitive with existing confinement solutions. Extensions on top of

the existing BPF ecosystem can help to position it as the dominant framework for

implementing future kernel-based security solutions. Such extensions can help to

improve BPFBox and BPFContain as well as promote the adoption of other

security mechanisms based on eBPF.

In the future, a security solution based on eBPF may comprise a generic frame-

work, capable of loading and managing multiple BPF program types to hook into

any aspect of system behaviour. Such a solution would encompass the capabilities

of BPFBox and BPFContain and potentially expand them to include intrusion

detection, network filtering, software hot patches, and beyond. In the short term,

improvements on top of the eBPF ecosystem as well as BPFBox and BPFContain

can make incremental progress towards realizing this goal.

232

Bibliography

[1] Amith Raj MP, A. Kumar, et al., “Enhancing Security of Docker Using Linux

Hardening Techniques,” in 2016 2nd International Conference on Applied

and Theoretical Computing and Communication Technology (iCATccT), 2016,

pp. 94–99. doi: 10.1109/ICATCCT.2016.7911971.

[2] J. P. Anderson, “Computer Security Technology Planning Study (Vol. I and II,

”Anderson Report”),” Box 42, Fort Washington, PA, 19034 USA, Tech. Rep.,

1972. [Online]. Available: https://apps.dtic.mil/sti/citations/AD0758206.

[3] Jonathan Anderson, “A Comparison of Unix Sandboxing Techniques,”

FreeBSD Journal, 2017. [Online]. Available: http : / /www . engr .mun . ca /

∼anderson/publications/2017/sandbox-comparison.pdf.

[4] AppArmor, aa-easyprof(8), Linux user’s manual. [Online]. Available: https:

//manpages.ubuntu.com/manpages/precise/man8/aa-easyprof.8.html.

[5] AppArmor, aa-genprof(8), Linux user’s manual. [Online]. Available: https :

//manpages.ubuntu.com/manpages/precise/man8/aa-genprof.8.html.

[6] AppArmor, aa-logprof(8), Linux user’s manual. [Online]. Available: https :

//manpages.ubuntu.com/manpages/precise/man8/aa-logprof.8.html.

233

Bibliography

[7] Aqua Security, libbpfgo, GitHub repository. [Online]. Available: https : / /

github.com/aquasecurity/libbpfgo (visited on 06/07/2021).

[8] Aqua Security, Tracee, Github repository. [Online]. Available: https://github.

com/aquasecurity/tracee (visited on 06/29/2021).

[9] M Ali Babar and Ben Ramsey, “Understanding Container Isolation Mech-

anisms for Building Security-Sensitive Private Cloud,” CREST, The Uni-

versity of Adelaide, Australia, Tech. Rep., 2017. [Online]. Available: https:

//malibabar.files.wordpress.com/2017/04/container isolation secure cloud

2017.pdf.

[10] David Barrera, Jeremy Clark, et al., “Understanding and Improving App In-

stallation Security Mechanisms Through Empirical Analysis of Android,” in

SPSM’12, Proceedings of the Workshop on Security and Privacy in Smart-

phones and Mobile Devices, Co-located with CCS 2012, October 19, 2012,

Raleigh, NC, USA, Ting Yu, William Enck, and Xuxian Jiang, Eds., ACM,

2012, pp. 81–92. doi: 10.1145/2381934.2381949.

[11] Maxime Bélair, Sylvie Laniepce, and Jean-Marc Menaud, “Leveraging Kernel

Security Mechanisms to Improve Container Security: a Survey,” in Proceedings

of the 14th International Conference on Availability, Reliability and Security,

ARES 2019, Canterbury, UK, August 26-29, 2019, ACM, 2019, 76:1–76:6.

doi: 10.1145/3339252.3340502.

234

Bibliography

[12] David Elliott Bell, “Looking Back at the Bell-La Padula Model,” in 21st

Annual Computer Security Applications Conference (ACSAC 2005), 5-9 De-

cember 2005, Tucson, AZ, USA, IEEE Computer Society, 2005, pp. 337–351.

doi: 10.1109/CSAC.2005.37.

[13] Luciano Bello and Alejandro Russo, “Towards a Taint Mode for Cloud Com-

puting Web Applications,” in Proceedings of the 2012 Workshop on Program-

ming Languages and Analysis for Security, PLAS 2012, Beijing, China, 15

June, 2012, Sergio Maffeis and Tamara Rezk, Eds., ACM, 2012, p. 7. doi:

10.1145/2336717.2336724.

[14] Eric W Biederman, “Multiple Instances of the Global Linux Namespaces,” in

Proceedings of the Linux Symposium, vol. 1, Linux Symposium, 2006, pp. 101–

112. [Online]. Available: https://www.kernel.org/doc/ols/2006/ols2006v1-

pages-101-112.pdf.

[15] Matt Bishop and Michael Dilger, “Checking for Race Conditions in File Ac-

cesses,” Computing Systems, vol. 9, no. 2, pp. 131–152, 1996. [Online]. Avail-

able: https://static.usenix.org/publications/compsystems/1996/spr bishop.

pdf.

[16] bpf(2), Linux Programmer’s Manual. [Online]. Available: https://www.man7.

org/linux/man-pages/man2/bpf.2.html (visited on 06/08/2021).

[17] bpf(4), Device Drivers Manual. [Online]. Available: https://man.openbsd.org/

bpf (visited on 06/08/2021).

235

Bibliography

[18] bpf(4), BSD Kernel Interfaces Manual. [Online]. Available: https://www.unix.

com/man-page/FreeBSD/4/bpf (visited on 06/08/2021).

[19] Kelly Brady, Seung Moon, et al., “Docker Container Security in Cloud Com-

puting,” in 10th Annual Computing and Communication Workshop and Con-

ference, IEEE, 2020, pp. 975–980. doi: 10.1109/CCWC47524.2020.9031195.

[20] T. Bray, Ed., The JavaScript Object Notation (JSON) Data Interchange For-

mat, RFC, 2017. [Online]. Available: https://datatracker.ietf.org/doc/html/

rfc7159 (visited on 07/16/2021).

[21] Neil Brown, Overlay Filesystem. [Online]. Available: https://www.kernel.org/

doc/html/latest/filesystems/overlayfs.html (visited on 06/29/2021).

[22] Thanh Bui, “Analysis of Docker Security,” CoRR, vol. abs/1501.02967, 2015.

arXiv: 1501.02967. [Online]. Available: http://arxiv.org/abs/1501.02967.

[23] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal, “Dynamic

Instrumentation of Production Systems,” in Proceedings of the Annual Con-

ference on USENIX Annual Technical Conference, ser. ATEC ’04, Boston,

MA: USENIX Association, 2004, pp. 2–2. [Online]. Available: https://www.

usenix.org/legacy/publications/library/proceedings/usenix04/tech/general/

full papers/cantrill/cantrill.pdf.

[24] capabilities(7), Linux user’s manual. [Online]. Available: https://linux.die.

net/man/7/capabilities.

236

Bibliography

[25] Hao Chen, David A. Wagner, and Drew Dean, “Setuid Demystified,” in Pro-

ceedings of the 11th USENIX Security Symposium, San Francisco, CA, USA,

August 5-9, 2002, Dan Boneh, Ed., USENIX, 2002, pp. 171–190. [Online].

Available: http://www.usenix.org/publications/library/proceedings/sec02/

chen.html.

[26] Winnie Cheng, Qin Zhao, et al., “TaintTrace: Efficient Flow Tracing with

Dynamic Binary Rewriting,” in Proceedings of the 11th IEEE Symposium on

Computers and Communications (ISCC 2006), 26-29 June 2006, Cagliari,

Sardinia, Italy, Paolo Bellavista, Chi-Ming Chen, et al., Eds., IEEE Computer

Society, 2006, pp. 749–754. doi: 10.1109/ISCC.2006.158.

[27] Erika Chin and David A. Wagner, “Efficient Character-Level Taint Tracking

for Java,” in Proceedings of the 6th ACM Workshop On Secure Web Services,

SWS 2009, Chicago, Illinois, USA, November 13, 2009, Ernesto Damiani,

Seth Proctor, and Anoop Singhal, Eds., ACM, 2009, pp. 3–12. doi: 10.1145/

1655121.1655125.

[28] Cilium, Cilium, Github repository. [Online]. Available: https://github.com/

cilium/cilium (visited on 06/29/2021).

[29] Cilium and Cloudflare, ebpf, GitHub repository. [Online]. Available: https :

//github.com/cilium/ebpf (visited on 06/07/2021).

237

Bibliography

[30] James A. Clause, Wanchun Li, and Alessandro Orso, “Dytan: A Generic Dy-

namic Taint Analysis Framework,” in Proceedings of the ACM/SIGSOFT In-

ternational Symposium on Software Testing and Analysis, ISSTA 2007, Lon-

don, UK, July 9-12, 2007, David S. Rosenblum and Sebastian G. Elbaum,

Eds., ACM, 2007, pp. 196–206. doi: 10.1145/1273463.1273490.

[31] Samuel Clay, How a Docker Footgun Led to a Vandal Deleting NewsBlur’s

MongoDB Database, NewsBlur company blog, 2021. [Online]. Available:

https://blog.newsblur.com/2021/06/28/story- of- a- hacking/ (visited on

07/04/2021).

[32] Théo Combe, Antony Martin, and Roberto Di Pietro, “To Docker or Not to

Docker: A Security Perspective,” IEEE Cloud Comput., vol. 3, no. 5, pp. 54–

62, 2016. doi: 10.1109/MCC.2016.100.

[33] Juan José Conti and Alejandro Russo, “A Taint Mode for Python via a Li-

brary,” in Information Security Technology for Applications - 15th Nordic

Conference on Secure IT Systems, NordSec 2010, Espoo, Finland, October 27-

29, 2010, Revised Selected Papers, Tuomas Aura, Kimmo Järvinen, and Kaisa

Nyberg, Eds., ser. Lecture Notes in Computer Science, vol. 7127, Springer,

2010, pp. 210–222. doi: 10.1007/978-3-642-27937-9 15.

[34] Control Group v2, Linux Kernel Documentation. [Online]. Available: https:

//www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html (visited on

06/26/2021).

[35] Kees Cook, [PATCH] security: Yama LSM, Jun. 2010. [Online]. Available:

https://lkml.org/lkml/2010/6/21/407 (visited on 07/12/2021).

238

Bibliography

[36] Fernando J. Corbató and Victor A. Vyssotsky, “Introduction and Overview of

the Multics System,” in Proceedings of the 1965 fall joint computer conference,

part I, AFIPS 1965 (Fall, part I), Las Vegas, Nevada, USA, November 30 -

December 1, 1965, Robert W. Rector, Ed., ACM, 1965, pp. 185–196. doi:

10.1145/1463891.1463912.

[37] Jonathan Corbet, “A bid to resurrect Linux capabilities,” LWN, 2006. [On-

line]. Available: https://lwn.net/Articles/199004/.

[38] Jonathan Corbet, “File-based capabilities,” LWN, 2006. [Online]. Available:

https://lwn.net/Articles/211883/.

[39] Jonathan Corbet, “OpenBSD’s unveil(),” LWN.net, Dec. 2018. [Online].

Available: https://lwn.net/Articles/767137/.

[40] Jonathan Corbet, “KRSI — The Other BPF Security Module,” LWN.net,

Dec. 2019. [Online]. Available: https://lwn.net/Articles/808048/.

[41] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux Device

Drivers, 3rd. O’Reilly, 1998. [Online]. Available: https://lwn.net/Kernel/

LDD3/.

[42] Crispin Cowan, Steve Beattie, et al., “SubDomain: Parsimonious Server Se-

curity,” in Proceedings of the 14st Large Installation Systems Administration

Conference (LISA), New Orleans, LA, United States: USENIX Association,

2000. [Online]. Available: https://www.usenix.org/legacy/event/lisa2000/

full papers/cowan/cowan.pdf.

239

Bibliography

[43] Alessandro Decina, “BPF target support,” Patch, Jun. 2021. [Online]. Avail-

able: https://github.com/rust-lang/rust/pull/79608.

[44] Peter J. Denning, “Virtual Memory,” ACM Comput. Surv., vol. 2, no. 3,

pp. 153–189, 1970. doi: 10.1145/356571.356573.

[45] Jack B. Dennis and Earl C. Van Horn, “Programming Semantics for Mul-

tiprogrammed Computations,” Commun. ACM, vol. 9, no. 3, pp. 143–155,

1966. doi: 10.1145/365230.365252.

[46] Mark S. Dittmer and Mahesh V. Tripunitara, “The UNIX Process Iden-

tity Crisis: A Standards-Driven Approach to Setuid,” in Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security,

Scottsdale, AZ, USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and

Ninghui Li, Eds., ACM, 2014, pp. 1391–1402. doi: 10.1145/2660267.2660333.

[47] Docker, Docker Hub. [Online]. Available: https://hub.docker.com/ (visited

on 06/29/2021).

[48] Docker Developers, AppArmor security profiles for Docker, Developer docu-

menation. [Online]. Available: https ://docs .docker .com/engine/security/

apparmor/ (visited on 05/29/2021).

[49] Docker Developers, Docker Security, Developer documenation. [Online].

Available: https://docs.docker.com/engine/security/ (visited on 06/29/2021).

[50] Docker Developers, profiles/apparmor/template.go, Github repository. [On-

line]. Available: https ://github .com/moby/moby/blob/master/profiles/

apparmor/template.go (visited on 05/29/2021).

240

Bibliography

[51] Stephen Dranger, Robert H. Sloan, and Jon A. Solworth, “The Complexity

of Discretionary Access Control,” in Advances in Information and Computer

Security, First International Workshop on Security, IWSEC 2006, Kyoto,

Japan, October 23-24, 2006, Proceedings, Hiroshi Yoshiura, Kouichi Sakurai,

et al., Eds., ser. Lecture Notes in Computer Science, vol. 4266, Springer, 2006,

pp. 405–420. doi: 10.1007/11908739 29.

[52] Michael Eder, “Hypervisor- vs. Container-Based Virtualization,” Future In-

ternet (FI) and Innovative Internet Technologies and Mobile Communications

(IITM), vol. 1, 2016. doi: 10.2313/NET-2016-07-1 01.

[53] Jake Edge, “A Seccomp Overview,” LWN.net, 2015. [Online]. Available: https:

//lwn.net/Articles/656307/.

[54] Andrey Ermolinskiy, Sachin Katti, et al., “Towards Practical Taint Tracking,”

UC Berkeley, Tech. Rep. UCB/EECS-2010-92, 2010. [Online]. Available: http:

//www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-92.html.

[55] Clark Evans, Ingy döt Net, and Oren Ben-Kiki, YAML: YAML Ain’t Markup

Language, version 1.2, Official specification, 2021. [Online]. Available: http:

//yaml.org/spec/1.2/spec.html (visited on 07/16/2021).

[56] William Findlay, “Host-Based Anomaly Detection with Extended BPF,” Hon-

ours Thesis, Carleton University, 2020. [Online]. Available: https://www.cisl.

carleton.ca/∼will/written/coursework/undergrad-ebpH-thesis.pdf.

241

Bibliography

[57] William Findlay, David Barrera, and Anil Somayaji, “BPFContain: Fixing

the Soft Underbelly of Container Security,” CoRR, vol. abs/2102.06972, 2021.

arXiv: 2102.06972. [Online]. Available: https://arxiv.org/abs/2102.06972.

[58] William Findlay, Anil Somayaji, and David Barrera, “BPFBox: Simple Precise

Process Confinement with eBPF,” in Proceedings of the 2020 ACM SIGSAC

Conference on Cloud Computing Security Workshop, ser. CCSW’20, Virtual

Event, USA: Association for Computing Machinery, 2020, pp. 91–103. doi:

10.1145/3411495.3421358.

[59] Flatpak, Sandbox Permissions, 2020. [Online]. Available: https://docs.flatpak.

org/en/latest/sandbox-permissions.html (visited on 07/02/2021).

[60] Vinod Ganapathy, Trent Jaeger, and Somesh Jha, “Automatic Placement of

Authorization Hooks in the Linux Security Modules Framework,” in Proceed-

ings of the 12th ACM Conference on Computer and Communications Secu-

rity, CCS 2005, Alexandria, VA, USA, November 7-11, 2005, Vijay Atluri,

Catherine A. Meadows, and Ari Juels, Eds., ACM, 2005, pp. 330–339. doi:

10.1145/1102120.1102164.

[61] Xing Gao, Zhongshu Gu, et al., “Houdini’s Escape: Breaking the Resource

Rein of Linux Control Groups,” in Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, CCS 2019, London,

UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, et al., Eds.,

ACM, 2019, pp. 1073–1086. doi: 10.1145/3319535.3354227.

242

Bibliography

[62] Seyedhamed Ghavamnia, Tapti Palit, et al., “Confine: Automated System Call

Policy Generation for Container Attack Surface Reduction,” in 23rd Interna-

tional Symposium on Research in Attacks, Intrusions and Defenses, RAID

2020, San Sebastian, Spain, October 14-15, 2020, Manuel Egele and Leyla

Bilge, Eds., USENIX Association, 2020, pp. 443–458. [Online]. Available:

https://www.usenix.org/conference/raid2020/presentation/ghavanmnia.

[63] Ian Goldberg, David Wagner, et al., “A Secure Environment for Untrusted

Helper Applications (Confining the Wily Hacker),” in Proceedings of the Sixth

USENIX UNIX Security Symposium, The USENIX Association, 1996. [On-

line]. Available: https : / / www . usenix . org / legacy / publications / library /

proceedings/sec96/full papers/goldberg/goldberg.pdf.

[64] Brendan Gregg, BPF Performance Tools. Addison-Wesley Professional, 2019,

isbn: 0-13-655482-2.

[65] Brendan Gregg, BPF binaries: BTF, CO-RE, and the future of BPF perf

tools, Blog post, Nov. 2020. [Online]. Available: http://www.brendangregg.

com/blog/2020-11-04/bpf-co-re-btf-libbpf.html (visited on 06/07/2021).

[66] Brendan Gregg and Jim Mauro, DTrace: Dynamic Tracing in Oracle Solaris,

Mac OS X, and FreeBSD, 1st. Prentice Hall, 2011.

[67] Grsecurity, Memory Corruption Defenses, Official website, 2021. [Online].

Available: https://grsecurity.net/featureset/memory corruption (visited on

07/08/2021).

243

Bibliography

[68] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka, “Task Oriented Man-

agement Obviates Your Onus on Linux,” Jan. 2004.

[69] Norman Hardy, “The Confused Deputy (or why capabilities might have been

invented),” ACM SIGOPS Oper. Syst. Rev., vol. 22, no. 4, pp. 36–38, 1988.

doi: 10.1145/54289.871709.

[70] Lihui Hu, Jean Mayo, and Charles Wallace, “An Empirical Study of Three

Access Control Systems,” in The 6th International Conference on Security

of Information and Networks, SIN ’13, Aksaray, Turkey, November 26-28,

2013, Atilla Elçi, Manoj Singh Gaur, et al., Eds., ACM, 2013, pp. 287–291.

doi: 10.1145/2523514.2523550.

[71] Andrew Hurst, Analysis of Perl’s Taint Mode, 2004. [Online]. Available: http:

//hurstdog.org/papers/hurst04taint.pdf.

[72] IBM Cloud Education, LAMP Stack Explained, IBM Cloud Education arc-

ticle, 2019. [Online]. Available: https://www.ibm.com/cloud/learn/lamp-

stack-explained (visited on 07/31/2021).

[73] IOVisor, bcc, GitHub repository. [Online]. Available: https://github.com/

iovisor/bcc (visited on 06/07/2021).

[74] IOVisor, gobpf, GitHub repository. [Online]. Available: https://github.com/

iovisor/gobpf (visited on 06/07/2021).

[75] Trent Jaeger, Operating System Security, Ravi Sandhu, Ed. Morgan & Clay-

pool Publishers, 2008, isbn: 978-1598292121.

244

Bibliography

[76] K. Jain and R. Sekar, “User-Level Infrastructure for System Call Interposition:

A Platform for Intrusion Detection and Confinement,” in Proceedings of the

Network and Distributed System Security Symposium, NDSS 2000, San Diego,

California, USA, The Internet Society, 2000. [Online]. Available: https ://

www.ndss-symposium.org/ndss2000/user- level- infrastructure-system-call-

interposition-platform-intrusion-detection-and-confinement/.

[77] John Johansen, “[PATCH] AppArmor: Patch to Provide Compatibility with

v2.x Net Rules,” Kernel patch, Jun. 2018. [Online]. Available: https://raw.

githubusercontent . com / openSUSE / kernel - source /master / patches . suse /

apparmor-compatibility-with-v2.x-net.patch.

[78] Poul-Henning Kamp and Robert NM Watson, “Jails: Confining the Omnipo-

tent Root,” in Proceedings of the 2nd International SANE Conference, vol. 43,

2000, p. 116. [Online]. Available: https://ivanlef0u.fr/repo/madchat/sysadm/

bsd/kamp.pdf.

[79] Taesoo Kim and Nickolai Zeldovich, “Practical and Effective Sandboxing for

Non-root Users,” in 2013 USENIX Annual Technical Conference, USENIX

Association, 2013, pp. 139–144. [Online]. Available: https://www.usenix.org/

conference/atc13/technical-sessions/presentation/kim.

[80] Kubernetes, Kubernetes, Official website, 2021. [Online]. Available: https://

kubernetes.io/ (visited on 07/30/2021).

[81] Soonhong Kwon and Jong-Hyouk Lee, “DIVDS: docker image vulnerability

diagnostic system,” IEEE Access, vol. 8, pp. 42 666–42 673, 2020. doi: 10 .

1109/ACCESS.2020.2976874.

245

Bibliography

[82] Butler W. Lampson, “A Note on the Confinement Problem,” Communications

of the ACM, vol. 16, no. 10, pp. 613–615, 1973, issn: 0001-0782. doi: 10.1145/

362375.362389.

[83] Michael Larabel and Matthew Tippett, Phoronix Test Suite, 2011. [Online].

Available: http://www.phoronix-test-suite.com (visited on 12/23/2020).

[84] Hojoon Lee, Chihyun Song, and Brent ByungHoon Kang, “Lord of the x86

Rings: A Portable User Mode Privilege Separation Architecture on x86,” in

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-

munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,

David Lie, Mohammad Mannan, et al., Eds., ACM, 2018, pp. 1441–1454. doi:

10.1145/3243734.3243748.

[85] Lingguang Lei, Jianhua Sun, et al., “SPEAKER: Split-Phase Execution of

Application Containers,” in Detection of Intrusions and Malware, and Vul-

nerability Assessment - 14th International Conference, ser. Lecture Notes in

Computer Science, vol. 10327, Springer, 2017, pp. 230–251. doi: 10.1007/978-

3-319-60876-1 11.

[86] libbpf, GitHub repository. [Online]. Available: https://github.com/libbpf/

libbpf (visited on 12/13/2020).

[87] libseccomp. [Online]. Available: https : / / github . com/ seccomp/ libseccomp

(visited on 06/22/2021).

246

Bibliography

[88] Xin Lin, Lingguang Lei, et al., “A Measurement Study on Linux Container

Security: Attacks and Countermeasures,” in Proceedings of the 34th Annual

Computer Security Applications Conference, ser. ACSAC ’18, San Juan,

PR, USA: Association for Computing Machinery, 2018, pp. 418–429, isbn:

9781450365697. doi: 10.1145/3274694.3274720.

[89] Linux Foundation, Open Container Initiative, 2020. [Online]. Available: https:

//opencontainers.org (visited on 12/20/2020).

[90] Benjamin Livshits, “Dynamic Taint Tracking in Managed Runtimes,” Mi-

crosoft Research, Tech. Rep. MSR-TR-2012-114, 2012. [Online]. Available:

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/

tr-6.pdf.

[91] LLVM, BPF Directory Reference, Developer documenation. [Online]. Avail-

able: https://llvm.org/doxygen/dir b9f4b12c13768d2acd91c9fc79be9cbf.html

(visited on 12/13/2020).

[92] Peter Loscocco and Stephen Smalley, “Integrating Flexible Support for Se-

curity Policies into the Linux Operating System,” in Proceedings of the

FREENIX Track: 2001 USENIX Annual Technical Conference, June 25-

30, 2001, Boston, Massachusetts, USA, Clem Cole, Ed., USENIX, 2001,

pp. 29–42. [Online]. Available: http://www.usenix.org/publications/library/

proceedings/usenix01/freenix01/loscocco.html.

247

Bibliography

[93] Fotis Loukidis-Andreou, Ioannis Giannakopoulos, et al., “Docker-Sec: A Fully

Automated Container Security Enhancement Mechanism,” in 38th IEEE In-

ternational Conference on Distributed Computing Systems, IEEE Computer

Society, 2018, pp. 1561–1564. doi: 10.1109/ICDCS.2018.00169.

[94] LXC Developers, LXC Security, Developer documenation. [Online]. Available:

https://linuxcontainers.org/lxc/security/ (visited on 07/02/2021).

[95] Karl MacMillan, “Madison: A New Approach to Policy Generation,” in

SELinux Symposium, 2007. [Online]. Available: http : // selinuxsymposium.

org/2007/papers/08-polgen.pdf.

[96] Ziqing Mao, Ninghui Li, et al., “Trojan Horse Resistant Discretionary Ac-

cess Control,” in 14th ACM Symposium on Access Control Models and Tech-

nologies, SACMAT 2009, Stresa, Italy, June 3-5, 2009, Proceedings, Barbara

Carminati and James Joshi, Eds., ACM, 2009, pp. 237–246. doi: 10.1145/

1542207.1542244.

[97] Ashraf Matrawy, Paul C Van Oorschot, and Anil Somayaji, “Mitigating

Network Denial-of-Service Through Diversity-Based Traffic Management,”

in International Conference on Applied Cryptography and Network Security,

Springer, 2005, pp. 104–121.

[98] Steven McCanne and Van Jacobson, “The BSD Packet Filter: A New Ar-

chitecture for User-level Packet Capture,” USENIX Winter, vol. 93, 1993.

[Online]. Available: https://www.tcpdump.org/papers/bpf-usenix93.pdf.

248

Bibliography

[99] Lee D. McFearin, “Chroot Jail,” in Encyclopedia of Cryptography and Secu-

rity, 2nd Ed, Henk C. A. van Tilborg and Sushil Jajodia, Eds., Springer, 2011,

pp. 206–207. doi: 10.1007/978-1-4419-5906-5 778.

[100] Pual McKenney, “What is RCU, Fundamentally?” LWN.net, Dec. 2007. [On-

line]. Available: https://lwn.net/Articles/262464/.

[101] Samuel P. Mullinix, Erikton Konomi, et al., “On Security Measures for Con-

tainerized Applications Imaged with Docker,” CoRR, vol. abs/2008.04814,

2020. [Online]. Available: https://arxiv.org/abs/2008.04814.

[102] Andrii Nakryiko, BPF Portability and CO-RE, Blog post, Feb. 2020. [Online].

Available: https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-

portability-and-co-re.html (visited on 06/07/2021).

[103] Andrii Nakryiko, “bpf: add BPF ringbuf and perf buffer benchmarks,” Kernel

patch, May 2020. [Online]. Available: https://patchwork.ozlabs.org/project/

netdev/patch/20200529075424.3139988-5-andriin%5C@fb.com/.

[104] namespaces(7), Linux Programmer’s Manual. [Online]. Available: https :

/ / man7 . org / linux / man - pages / man7 / namespaces . 7 . html (visited on

06/26/2021).

[105] Saran Neti, Anil Somayaji, and Michael E Locasto, “Software Diversity: Se-

curity, Entropy and Game Theory,” in HotSec, 2012.

[106] Jiri Olsa, “bpf: Add d path helper,” Kernel patch, Aug. 2020. [Online]. Avail-

able: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

commit/?id=6e22ab9da79343532cd3cde39df25e5a5478c692.

249

Bibliography

[107] Paul C. van Oorschot, Computer Security and the Internet - Tools and Jewels,

ser. Information Security and Cryptography. Springer, 2020, isbn: 978-3-030-

33648-6. doi: 10.1007/978-3-030-33649-3.

[108] Pradeep Padala, “Playing with ptrace, Part I,” Linux Journal, vol. 2002,

no. 103, p. 5, 2002. [Online]. Available: https : / /www . linuxjournal . com/

article/6100.

[109] Daniel Paulus, The Rego Language, Blog post, 2020. [Online]. Available: https:

//danielpaulus.com/the-rego-language/ (visited on 07/19/2021).

[110] Christopher J. PeBenito, Frank Mayer, and Karl MacMillan, “Reference Pol-

icy for Security Enhanced Linux,” in SELinux Symposium, 2006. [Online].

Available: http://selinuxsymposium.org/2006/papers/05-refpol.pdf.

[111] Bheesham Persaud, Borke Obada-Obieh, et al., “Frankenssl: Recombining

Cryptographic Libraries for Software Diversity,” in Proceedings of the 11th

Annual Symposium On Information Assurance. NYS Cyber Security Confer-

ence, 2016, pp. 19–25.

[112] pledge(2), OpenBSD system calls manual, Jul. 2020. [Online]. Available: https:

//man.openbsd.org/pledge (visited on 06/21/2021).

[113] Tom Preston-Werner, TOML: Tom’s Obvious Minimal Language, version 1.0.0,

Official specification, 2021. [Online]. Available: https://toml.io/en/v1.0.0

(visited on 07/16/2021).

250

Bibliography

[114] Daniel Price and Andrew Tucker, “Solaris Zones: Operating System Support

for Consolidating Commercial Workloads,” in Proceedings of the 18th Con-

ference on Systems Administration (LISA 2004), Atlanta, USA, November

14-19, 2004, Lee Damon, Ed., USENIX, 2004, pp. 241–254. [Online]. Avail-

able: http://www.usenix.org/publications/library/proceedings/lisa04/tech/

price.html.

[115] Niels Provos, “Improving Host Security with System Call Policies,” in Pro-

ceedings of the 12th USENIX Security Symposium, Washington, D.C., USA,

August 4-8, 2003, USENIX Association, 2003. [Online]. Available: https://

www.usenix.org/conference/12th- usenix- security- symposium/improving-

host-security-system-call-policies.

[116] ptctl(2), Linux user’s manual. [Online]. Available: https://linux.die.net/man/

2/prctl.

[117] ptrace(2), Linux user’s manual. [Online]. Available: https://linux.die.net/

man/2/ptrace.

[118] Redbpf Authors, redbpf, GitHub repository. [Online]. Available: https : / /

github.com/foniod/redbpf (visited on 06/07/2021).

[119] Dennis Ritchie and Ken Thompson, “The UNIX Time-Sharing System,” Com-

mun. ACM, vol. 17, no. 7, pp. 365–375, 1974. doi: 10.1145/361011.361061.

251

Bibliography

[120] Goldwyn Rodrigues, “[PATCH] AppArmor: Fix Unnecessary Creation of

Net-Compat,” Kernel patch, Jun. 2018. [Online]. Available: https : / / raw .

githubusercontent.com/openSUSE/kernel-source/master/patches.suse/0001-

apparmor-fix-unnecessary-creation-of-net-compat.patch.

[121] Mickael Salaun, “Landlock LSM: Toward Unprivileged Sandboxing,” Kernel

patch RFC, 2017. [Online]. Available: https://lkml.org/lkml/2017/8/20/192

(visited on 12/17/2020).

[122] Mickael Salaun, landlock.io, 2020. [Online]. Available: https : // landlock . io

(visited on 12/17/2020).

[123] Casey Schaufler, “The Simplified Mandatory Access Control Kernel, Smack

White Paper,” Whitepaper. [Online]. Available: http://schaufler- ca.com/

yahoo site admin/assets/docs/SmackWhitePaper.257153003.pdf (visited on

06/18/2021).

[124] Fred B. Schneider, “Least Privilege and More,” IEEE Secur. Priv., vol. 1,

no. 5, pp. 55–59, 2003. doi: 10.1109/MSECP.2003.1236236.

[125] Z. Cliffe Schreuders, Tanya Jane McGill, and Christian Payne, “Towards Us-

able Application-Oriented Access Controls,” in International Journal of In-

formation Security and Privacy, vol. 6, 2012, pp. 57–76. doi: 10.4018/jisp.

2012010104.

[126] seccomp(2), Linux user’s manual. [Online]. Available: https : / /man7 . org /

linux/man-pages/man2/seccomp.2.html.

252

Bibliography

[127] Rui Shu, Xiaohui Gu, and William Enck, “A Study of Security Vulnerabilities

on Docker Hub,” in Proceedings of the Seventh ACM Conference on Data and

Application Security and Privacy, ACM, 2017, pp. 269–280. doi: 10.1145/

3029806.3029832.

[128] Rui Shu, Peipei Wang, et al., “A Study of Security Isolation Techniques,”

ACM Computing Surveys, vol. 49, no. 3, pp. 1–37, 2016. doi: 10.1145/2988545.

(visited on 07/27/2020).

[129] KP Singh, “MAC and Audit Policy Using eBPF (KRSI),” Kernel patch, 2019.

[Online]. Available: https://lwn.net/ml/linux-kernel/20191220154208.15895-

1-kpsingh@chromium.org/.

[130] Stephen Smalley, Chris Vance, and Wayne Salamon, “Implementing SELinux

as a Linux security module,” 43, vol. 1, 2001, p. 139. [Online]. Available:

https://www.cs.unibo.it/∼sacerdot/doc/so/slm/selinux-module.pdf.

[131] Justin R. Smith, Yuichi Nakamura, and Dan Walsh, audit2allow(1), Linux

user’s manual. [Online]. Available: http://linux.die.net/man/1/audit2allow.

[132] Snapcraft, Security Policy and Sandboxing, 2020. [Online]. Available: https:

//snapcraft.io/docs/security-sandboxing (visited on 07/02/2021).

[133] Brian T. Sniffen, David R. Harris, and John D. Ramsdell, “Guided Policy

Generation for Application Authors,” in SELinux Symposium, 2006. [Online].

Available: http://gelit.ch/td/SELinux/Publications/Mitre Tools.pdf.

253

Bibliography

[134] Jon A. Solworth and Robert H. Sloan, “A Layered Design of Discretionary

Access Controls with Decidable Safety Properties,” in 2004 IEEE Symposium

on Security and Privacy (S&P 2004), 9-12 May 2004, Berkeley, CA, USA,

IEEE Computer Society, 2004, p. 56. doi: 10.1109/SECPRI.2004.1301315.

[135] Anil Somayaji, “Immunology, Diversity, and Homeostasis: The Past and Fu-

ture of Biologically Inspired Computer Defenses,” Information Security Tech-

nical Report, vol. 12, no. 4, pp. 228–234, 2007.

[136] Anil Somayaji and Stephanie Forrest, “Automated Response Using System-

Call Delay,” in 9th USENIX Security Symposium, Denver, Colorado, USA,

August 14-17, 2000, Steven M. Bellovin and Greg Rose, Eds., USENIX As-

sociation, 2000. [Online]. Available: https://www.usenix.org/conference/9th-

usenix-security-symposium/automated-response-using-system-call-delay.

[137] Ray Spencer, Stephen Smalley, et al., “The Flask Security Architecture: Sys-

tem Support for Diverse Security Policies,” in Proceedings of the 8th USENIX

Security Symposium, Washington, DC, USA, August 23-26, 1999, G. Win-

field Treese, Ed., USENIX Association, 1999. [Online]. Available: https ://

www.usenix.org/conference/8th-usenix-security-symposium/flask-security-

architecture-system-support-diverse-security.

[138] Alexei Starovoitov, “Merge branch ’bpf-sleepable’,” Kernel patch, Aug. 2020.

[Online]. Available: https : / / git . kernel . org / pub / scm/ linux / kernel / git /

torvalds/linux.git/commit/?id=10496f261ed30592c6a7f8315f6b5ec055db624a.

254

Bibliography

[139] Alexei Starovoitov and Daniel Borkmann, “Rework/optimize internal BPF

interpreter’s instruction set,” Kernel patch, Mar. 2014. [Online]. Available:

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/

?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8.

[140] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou, “Container Security: Issues,

Challenges, and the Road Ahead,” IEEE Access, vol. 7, pp. 52 976–52 996,

2019. doi: 10.1109/ACCESS.2019.2911732.

[141] Yuqiong Sun, David Safford, et al., “Security Namespace: Making Linux Se-

curity Frameworks Available to Containers,” in 27th USENIX Security Sym-

posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,

William Enck and Adrienne Porter Felt, Eds., USENIX Association, 2018,

pp. 1423–1439. [Online]. Available: https : //www.usenix . org/ conference/

usenixsecurity18/presentation/sun.

[142] Robert Swiecki, Promises and Pitfalls of Sandboxes, Presentation slides, 2017.

[Online]. Available: http://www.swiecki.net/resources/Promises%20and%

20pitfalls%20of%20sandboxes.pdf (visited on 06/22/2021).

[143] Tcpdump Authors, Tcpdump. [Online]. Available: https ://www.tcpdump.

org/ (visited on 06/07/2020).

[144] Alexander Tereshkin and Rafal Wojtczuk, “Introducing Ring-3 Rootkits,” in

Black Hat USA, Presentation slides, 2009. [Online]. Available: https://www.

blackhat.com/presentations/bh-usa-09/TERESHKIN/BHUSA09-Tereshkin-

Ring3Rootkit-SLIDES.pdf (visited on 07/08/2021).

255

Bibliography

[145] Erick Tryzelaar, David Tolnay, and Serde Contributors, Serde, Official

documentation, 2021. [Online]. Available: https : / / serde . rs/ (visited on

07/16/2021).

[146] Dan Tsafrir, Dilma Da Silva, and David A. Wagner, “The murky issue of

changing process identity: Revising ”setuid demystified”,” login Usenix Mag.,

vol. 33, no. 3, 2008. [Online]. Available: https://www.usenix.org/publications/

login / june - 2008 - volume - 33 - number - 3 /murky - issue - changing - process -

identity-revising.

[147] uapi/linux/capability.h, Linux Kernel sources. [Online]. Available: https://git.

kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/include/uapi/

linux/capability.h?h=v5.12 (visited on 06/15/2021).

[148] unveil(2), OpenBSD system calls manual, Apr. 2020. [Online]. Available:

https://man.openbsd.org/unveil (visited on 06/21/2021).

[149] US Department of Defense, “Trusted Computer System Evaluation Criteria,”

DOD Standard DOD 5200.58-STD, 1983.

[150] Victor A. Vyssotsky, Fernando J. Corbató, and Robert M. Graham, “Struc-

ture of the Multics Supervisor,” in Proceedings of the 1965 fall joint com-

puter conference, part I, AFIPS 1965 (Fall, part I), Las Vegas, Nevada,

USA, November 30 - December 1, 1965, Robert W. Rector, Ed., ACM, 1965,

pp. 203–212. doi: 10.1145/1463891.1463914.

256

Bibliography

[151] David A. Wagner, “Janus: An Approach for Confinement of Untrusted Appli-

cations,” M.S. thesis, University of California, Berkeley, 1999. [Online]. Avail-

able: https : / /www2 . eecs . berkeley. edu/Pubs/TechRpts / 1999/CSD- 99 -

1056.pdf.

[152] Robert N. M. Watson, Jonathan Anderson, et al., “Capsicum: Practical Ca-

pabilities for UNIX,” in 19th USENIX Security Symposium, Washington, DC,

USA, August 11-13, 2010, Proceedings, USENIX Association, 2010, pp. 29–

46. [Online]. Available: https://www.usenix.org/legacy/event/sec10/tech/

full papers/Watson.pdf.

[153] Chris Wright, Crispin Cowan, et al., “Linux Security Modules: General Secu-

rity Support for the Linux Kernel,” in Proceedings of the 11th USENIX Se-

curity Symposium, San Francisco, CA, USA, August 5-9, 2002, Dan Boneh,

Ed., USENIX, 2002, pp. 17–31. [Online]. Available: http://www.usenix.org/

publications/library/proceedings/sec02/wright.html.

[154] Daniel Xu, libbpf-rs, GitHub repository. [Online]. Available: https://github.

com/libbpf/libbpf-rs (visited on 05/28/2021).

[155] Heng Yin, Dawn Xiaodong Song, et al., “Panorama: Capturing System-Wide

Information Flow for Malware Detection and Analysis,” in Proceedings of

the 2007 ACM Conference on Computer and Communications Security, CCS

2007, Alexandria, Virginia, USA, October 28-31, 2007, Peng Ning, Sabrina

De Capitani di Vimercati, and Paul F. Syverson, Eds., ACM, 2007, pp. 116–

127. doi: 10.1145/1315245.1315261.

257

Bibliography

[156] Angeliki Zavou, Georgios Portokalidis, and Angelos D. Keromytis, “Taint-

Exchange: A Generic System for Cross-Process and Cross-Host Taint Track-

ing,” in Advances in Information and Computer Security - 6th International

Workshop, IWSEC 2011, Tokyo, Japan, November 8-10, 2011. Proceedings,

Tetsu Iwata and Masakatsu Nishigaki, Eds., ser. Lecture Notes in Computer

Science, vol. 7038, Springer, 2011, pp. 113–128. doi: 10 .1007/978- 3- 642-

25141-2 8.

[157] Lei Zeng, Yang Xiao, and Hui Chen, “Auditing Overhead, Auditing Adapta-

tion, and Benchmark Evaluation in Linux,” Secur. Commun. Networks, vol. 8,

no. 18, pp. 3523–3534, 2015. doi: 10.1002/sec.1277.

[158] Wenhui Zhang, Peng Liu, and Trent Jaeger, “Analyzing the Overhead of File

Protection by Linux Security Modules,” in ASIA CCS ’21: ACM Asia Confer-

ence on Computer and Communications Security, Virtual Event, Hong Kong,

June 7-11, 2021, Jiannong Cao, Man Ho Au, et al., Eds., ACM, 2021, pp. 393–

406. doi: 10.1145/3433210.3453078.

[159] David (Yu) Zhu, Jaeyeon Jung, et al., “TaintEraser: Protecting Sensitive Data

Leaks Using Application-Level Taint Tracking,” ACM SIGOPS Oper. Syst.

Rev., vol. 45, no. 1, pp. 142–154, 2011. doi: 10.1145/1945023.1945039.

[160] Jörg Zinke, “System Call Tracing Overhead,” in The International Linux Sys-

tem Technology Conference (Linux Kongress), Presentation slides, 2009. [On-

line]. Available: http://www.linux- kongress .org/2009/slides/system call

tracing overhead joerg zinke.pdf (visited on 06/22/2021).

258

Appendix A.

List of Acronyms

ABI Application Binary Interface. 170

ACL Access Control List. 23, 25, 30, 31

API Application Programming Interface. 28, 29, 42, 67, 72, 73, 78, 132, 262

ASLR Address Space Layout Randomization. 19, 157

BPF Berkeley Packet Filter. 42, 50, 59–69, 71, 72, 74, 75, 82, 92, 97–102, 124,

126–131, 151, 160, 162, 164, 167, 217–220, 230, 232

BTF BPF Type Format. 72, 131, 151

cBPF Classic BPF. 42, 59, 60

CGI Common Gateway Interface. 192, 229

CO-RE Compile Once, Run Everywhere. 72, 73, 92, 124, 126, 129, 151, 220, 230

259

List of Acronyms

COTS Commercial Off-The-Shelf. 176

CPU Central Processing Unit. 19, 20, 48, 60, 87, 101, 110, 143, 182

DAC Discretionary Access Control. 7, 23, 24, 26–29, 31, 36, 54, 82–84, 147, 186

eBPF Extended BPF. v, 3, 4, 8–11, 37, 40, 58, 59, 62–76, 85, 89, 91, 93, 96–100,

103–105, 110, 118, 122, 124–126, 128–131, 133–136, 139–142, 154, 160, 173,

175, 177–181, 186–188, 207, 212–221, 223–226, 229–232, 262

EGID Effective Group ID. 24

EUID Effective User ID. 24, 27

GID Group ID. 22, 26, 28, 49

IP Internet Protocol. 35, 149, 183, 223

IPC Inter-Process Communication. 35, 48, 54, 103, 134, 135, 137, 149, 150, 182–186,

189, 191, 195–198, 201, 207

ISA Instruction Set Architecture. 19

JIT Just-In-Time. 63

KASLR Kernel ASLR. 20

KRSI Kernel Runtime Security Instrumentation. 68, 96, 97, 126, 135, 159, 162, 221

260

List of Acronyms

LSM Linux Security Modules. 7, 32–38, 48, 54, 55, 57, 67–70, 82–84, 89, 93, 96, 97,

101, 103–105, 125–127, 130, 131, 135, 137, 155, 158–160, 162, 165–167, 172,

173, 177, 178, 180–182, 187–189, 214, 218, 221, 224–226, 230

LXC Linux Containers. 2, 54

MAC Mandatory Access Control. 31, 32, 50, 54, 57, 82, 83, 91, 155, 172, 226

MLS Multi-Level Security. 31, 33

MMU Memory Management Unit. 19

OCI Open Container Initiative. 152, 222, 223

OS Operating System. 15, 17, 19, 20, 50, 51, 79, 80, 156, 158, 177, 227

PID Process ID. 43, 49, 54, 87, 135, 193

TCB Trusted Computing Base. 27

TID Thread ID. 106

TLB Translation Lookaside Buffer. 19

TOCTTOU Time of Check to Time of Use. 42, 145, 178

UID User ID. 22, 24, 26, 28, 29, 49, 84, 150

USDT User Statically Defined Tracepoints. 67, 102, 103, 135

UTS Unix Timesharing System. 54

VFS Virtual Filesystem. 178

261

Appendix B.

License Attribution

The eBPF logo used in this thesis is licensed under the Creative Commons Attribu-

tion 4.0 International License and is the intellectual property of Cilium and ebpf.io.

The logo has been used in this thesis with permission.

Many components of BPFBox and BPFContain use Linux kernel APIs that

are licensed under the GNU GPL 2.0 license. BPFBox and BPFContain are ac-

cordingly licensed under and obey the terms of the GNU GPL 2.0 license. BPFBox

and BPFContain are free and open source software.

262

	Abstract
	Acknowledgements
	Prior Publication
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Research Questions
	Motivation
	Contextualizing the Problem
	Why Design a New Confinement Framework?
	Why eBPF?

	Contributions
	Outline

	Background and Related Work
	Confinement in Operating Systems
	Classic Unix Process Security Model
	The Reference Monitor
	Virtual Memory and Memory Protection
	Discretionary Access Control

	Extensions to the Unix Security Model
	POSIX Capabilities
	Mandatory Access Control
	System Call Filtering and Capabilities
	Taint Tracking

	Process-Level Virtualization
	Containers and Virtual Machines
	Container Security

	Extended BPF
	Origins of BPF: Efficient Packet Filtering and Beyond
	eBPF Programs
	eBPF Maps
	Userspace Front Ends
	Comparing eBPF with Loadable Kernel Modules

	The Confinement Problem
	Rethinking the Virtualization Narrative
	Fundamental Issues with Linux Confinement
	How Containers Apply Confinement Primitives
	Design Goals
	Why Two Implementations?
	The BPFBox and BPFContain Threat Model
	Differences Between BPFBox and BPFContain
	The Adversary and Attack Vectors

	Summary

	BPFBox: A Prototype Process Confinement Mechanism
	BPFBox Overview
	Policy Enforcement at a High Level

	BPFBox Implementation
	Architectural Overview
	BPFBox Policy Enforcement
	Managing Process State
	Context-Aware Policy
	Collecting and Logging Audit Data

	BPFBox Policy Language
	Filesystem Rules
	Network Rules
	Signal Rules
	Ptrace Rules
	Allow, Taint, and Audit Decorators
	Func and Kfunc Decorators

	State of the BPFBox Implementation
	Summary

	BPFContain: Extending BPFBox to Model Containers
	BPFBox's Limitations and the Transition Toward BPFContain
	Motivating BPFContain

	BPFContain Overview
	Policy Enforcement at a High Level

	BPFContain Implementation
	Architectural Overview
	Policy Deserialization and Loading
	Policy Enforcement
	Default Policy
	Managing Container State
	Collecting and Logging Audit Data

	BPFContain Policy Language
	File and Filesystem Rules
	Device Rules
	Network Rules
	IPC Rules
	Capability Rules

	Improvements Over BPFBox
	Minimizing Runtime Dependencies
	Improved Policy Language
	Container-Specific Extensions

	Summary

	Evaluation
	Performance Evaluation
	Methodology
	Results
	Discussion of Performance Results

	Security Analysis
	Threat Model Revisited
	Files, Filesystems, and Kernel Interfaces
	POSIX Capabilities and Privileged System Calls
	Networking
	IPC
	Breaking BPFBox and BPFContain

	Summary

	Case Studies
	Confining a Web Server and Database
	The Default Docker Policy
	Confining an Untrusted Container
	Summary

	Discussion and Concluding Remarks
	Research Questions Revisited
	Answering RQ1
	Answering RQ2
	Answering RQ3

	Limitations
	Semantic Issues in the Policy Language
	Fixed-Size Policy Maps
	Performance Overhead
	Security Guarantees

	Future Work and Research Directions
	The Need for a User Study
	OCI Specification and Docker Integration
	Fine-Grained Network Policy
	BPFContain Policy Generation

	Improving the Status Quo
	Application-Specific and Container-Specific Policies
	Encouraging Local Policy Variation
	eBPF, Adoptability, and Future Innovation

	Conclusion

	Bibliography
	List of Acronyms
	License Attribution

