
Toward Email Archive Intrusion Detection

By

Yiru Li

A thesis submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science

School of Computer Science

Carleton University

Ottawa, Ontario, Canada

December 2005

c©Copyright

Yiru Li, 2005

The undersigned hereby recommend to

the Faculty of Graduate Studies and Research

acceptance of the thesis,

Toward Email Archive Intrusion Detection

submitted by

Yiru Li

Dr. Douglas Howe

(Director, School of Computer Science)

Dr. Anil Somayaji

(Thesis Supervisor)

Carleton University

December 2005

Abstract

Online email archives can store years worth of sensitive personal and business informa-

tion. However, the standard authentication mechanism used by most email archives,

reusable text passwords, is weak and can easily be compromised. To protect such

archives, I propose a novel user-specific design for an anomaly-based email archive

intrusion detection system. The design contains two parts—user-tailored modelling

and user-involved alarm response. As a first step towards building such a system,

I have developed a simple probabilistic model of user email behavior that correlates

email senders and users’ dispositions of email messages. In tests using data gathered

from three months of observed user behavior and synthetic models of attacker behav-

ior, this model exhibits a low rate of false positives (generally one false alarm every

few weeks) while still detecting most attacks. These results suggest that anomaly

detection is a feasible strategy for securing email archives, one that does not require

changes in user authentication or access patterns.

i

Acknowledgements

I gratefully acknowledge the insightful feedback, constructive suggestions, corrections,

patience and encouragement given by my supervisor Anil Somayaji. As well, I would

like to thank Hajime Inoue for his suggestions and corrections and Glenn Wurster,

and Julie Thorpe for their support on data collection. I also would like to thank

Carlisle Adams and Paul Van Oorschot for serving on my committee and Tony White

for chairing my defense. I also would like to thank MITACS and NSERC for funding

this work. Finally, I would like to thank my parents and sister for their endless

pushing and love. I guess that my mom would say ”my god, finally...” when I tell her

that my master’s study is finished.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Internet Email Service System . 1

1.2 Email Archive And Inside Attacker 3

1.3 Contributions . 6

1.4 Overview . 7

2 Related Work and Background 8

2.1 Background of Email System Framework 8

2.2 Overview of Email Security Issues . 11

2.3 Overview of IDSs . 14

2.4 User Behavior-Level Anomaly IDSs 17

2.5 Summary . 21

3 Design of An Email Archive IDS 23

3.1 Characteristics of the Email Archive Domain 23

3.2 The User-Specific Design . 25

3.3 The Architecture . 26

3.3.1 Overall Architecture . 26

iii

CONTENTS iv

3.3.2 Requirements and Challenges. 31

3.4 The User-Specific Design and My Implementation Work 34

4 Modelling Email User Behavior 36

4.1 Intuition, Observation and Feature Selection 36

4.2 The Model . 38

4.2.1 Message Variation M . 39

4.2.2 Sender Confidence C . 44

4.2.3 Window Variation W . 44

4.2.4 Detection Threshold Setup . 45

4.3 Simulated Attack Behaviors . 46

5 Implementation 52

5.1 Data Collection . 52

5.2 Data Analysis . 56

6 Empirical Results 58

6.1 Data Source . 58

6.2 Experiment Setup . 59

6.2.1 Sliding Window . 59

6.2.2 Parameters . 61

6.2.3 Experimental Methods and Types 61

6.3 Attack Model Analysis . 64

6.4 User Model Analysis . 66

6.4.1 User Model Feasibility . 67

6.4.2 Profile Updates . 72

6.4.3 Mixed Behaviors . 75

6.5 Parameter Analysis . 76

CONTENTS v

6.5.1 Short-Term Window Size psw 77

6.5.2 Long-term Window Size plw 78

6.5.3 Sender Confidence pC . 78

6.5.4 Calculation Method of Message Variation pv 79

6.5.5 Conclusion about Parameter Analysis 80

7 Discussion 81

7.1 Limitations . 81

7.2 Implications . 84

7.2.1 Experimental Methodology . 84

7.2.2 Modelling . 87

7.2.3 The User-Specific Design . 88

Chapter 1

Introduction

Email is a very popular Internet based communication service which millions use

every day. However, email has many security issues, one of which is that centrally-

managed email message stores (called email archives) are illegitimately accessed by

masqueraders. Two kinds of approaches can be used to avoid such attacks: authen-

tication and intrusion detection systems. The main authentication method used by

email—reusable text passwords—can be easily compromised by many means such as

shoulder surfing and users’ negligence. This thesis examines whether intrusion de-

tection technology can be used to compensate for authentication limitations without

requiring additional hardware or user interface changes. Before I present how I use

intrusion detection technology to secure email archives, I first introduce the email

system.

1.1 Internet Email Service System

Email is one of the most important Internet applications. Like the world wide web,

it has a client/server architecture. Email clients communicate with email servers on

behalf of users to send and retrieve messages. Email servers then transport and store

1

1.1. Internet Email Service System 2

email.

Email is convenient, easy to use and asynchronous. Email is convenient because

email users can access their email messages from any Internet-connected computer.

In addition, the email system is easy to use for most users, requiring no special skills

or knowledge. All users need to know is how to click buttons in mail clients to select

operations such as sending, receiving and composing email messages. Finally, like

the post office system, email service is asynchronous. Instead of waiting for replies

from receivers about whether messages have successfully arrived, email users just send

messages and leave. Email servers are responsible for delivering the messages to final

destinations. It is these three features that have made email a popular communication

medium.

Email is in use by millions every day. Virtually every ISP provides email services,

and many companies offer free email services. The most famous free email service

providers, such as Hotmail [42] and Gmail [24], offer not only large free storage space

but also other services like spam filtering and virus scanning. According to email

marketing report released by eMarketer [23], email message volume in the United

States is projected to nearly double between 2003 and 2007; in the US alone, 88% of

adult Internet users have personal email accounts; further, 46% of them have email

access at work. Email has become a familiar part of our daily routine.

However, email has many security issues. Email servers and clients are attacked

by viruses and worms due to software vulnerabilities. Email messages are intercepted

in transmission due to the open nature of the Internet. Received email messages are

illegitimately accessed by malicious software (e.g., viruses) or by attackers due to the

weakness of authentication and storage mechanisms. Email messages are sent in the

name of other senders due to lack of sender authentication (spoofing and phishing).

Unsolicited commercial email (spam) floods to user mailboxes.

As discussed in Chapter 2, many of these email security issues have corresponding

1.2. Email Archive And Inside Attacker 3

practical solutions. However, existing protections do not address the problem of inside

attacks to email archives.

1.2 Email Archive And Inside Attacker

A user’s received email messages can be stored either locally in her own computer or

centrally in a server-based mail store. The centralized message storage has advantages

over locally stored email. The key ones are that users can access centrally-stored mes-

sages (both old and new messages) from any Internet-connected computer and do not

need to remember which machine a message has been downloaded to. Therefore, cen-

tralized storage has become very popular and is used by many email service providers

such as Yahoo, Google and Microsoft. In my work, I refer to these collections of email

messages which are centrally stored on the server side as email archives.

Email archives are becoming tempting targets of attackers. The key motives of

email attackers are to obtain sensitive user information such as credit card numbers

and business correspondence. A user’s email archive can contain years worth of valu-

able messages which are sorted and filtered by users. In contrast to network-captured

messages which may contain a large amount of junk mail (spam), a significant por-

tion of the information in email archives is important for users, and thus are also

valuable for attackers. In addition, in email archives, attackers can access email from

the past, from before the time the attackers decided to target the users. Therefore,

attackers can learn about users quickly and completely from email archives. Further,

compared with other means of obtaining email messages (e.g., intercepting messages

from networks), it requires much less technical knowledge for attackers to access a

user’s email archive. Once attackers obtain the passwords of target users, attackers

can read, modify and delete email as easily as legitimate users. In terms of risk,

attackers remotely accessing users’ email archives from Internet-connected computers

1.2. Email Archive And Inside Attacker 4

are much safer than those directly accessing the users’ local machines. Therefore, it

is attractive for attackers to break into users’ email archives.

Normally there are two approaches which may be used by an attacker to obtain

messages in a user’s email archive—one is that the attacker exploits vulnerabilities of

software associated with email archives (e.g., the IMAP server); the other is that he

compromises the user’s authentication credentials.

The latter type is one kind of insider attack1 and the corresponding attackers are

defined as “inside attackers” in my work. I am mainly concerned about the kind

of insider attacker who knows the user and makes use of specific knowledge of the

user to compromise the user’s authentication credentials. The attacker might be the

user’s friend, colleague, business competitor or family member. If he is the user’s

competitor, he might want to know something about the user’s business. If he is

the user’s spouse, he might want to know whether the user is having an affair. As

the attacker probably wants to monitor the user over the long term, he might act

carefully to avoid being noticed, e.g., by erasing any evidence of his activities. As a

result, it will be hard for the user herself to discover the insider attacker.

Such insider attacks primarily result from authentication failures. Unfortunately,

the most commonly used authentication credentials in the email archive domain,

reusable text passwords, are extremely vulnerable due to common patterns of user be-

haviors. Many users choose simple passwords that are easy to remember; many such

passwords, however, can be compromised by online and offline dictionary attacks.

Users enter passwords on untrusted machines that may be infected with viruses, spy-

ware, or other malicious software. Such malware can be used to capture passwords.

Also, users often share passwords across domains and applications, allowing one weak

application (e.g., one that sends passwords in the clear) to result in the compromise

1Misuse of legitimate credentials is the other kind of inside attack, where legitimate users do
something inappropriate with their privileges. The two are indistinguishable from computers’ point
of view.

1.2. Email Archive And Inside Attacker 5

of other, more secure systems. Additionally, users often reveal passwords to friends,

family members, and co-workers—sometimes inadvertently, but sometimes to facili-

tate the sharing of information or resources. Those very same “insiders,” however,

often have motive for compromising a user’s privacy.

Besides reusable text passwords, there exist other novel authentication methods

such as smart cards [9], biometric identification [47] and graphical passwords [32].

Compared with reusable text passwords, these novel authentication methods are more

difficult to compromise by attackers. However, they either require extra hardware, or

are computationally expensive, or offer unfamiliar, less user-friendly interfaces. These

disadvantages make these authentication methods impractical for email service, which

has millions of users. This large installed base makes a new authentication method

difficult to adopt.

However, fortunately, we have another potential technology, intrusion detection,

which can be used to detect insider attacks2 as a complement to the authentication

method of text passwords. Intrusion detection systems can have the same goal as au-

thentication systems: to verify that a user is the one that she claims to be. However,

these two kinds of systems work at different stages: authentication systems working

when attackers request access, and IDSs working after the attackers have obtained

access. In terms of recognition methods, authentication systems verify a user by

checking her credentials while IDSs verify by checking her behavior patterns. From

the point of view of users, IDSs are much less visible to users than authentication

systems which directly interface with users. Therefore, an IDS with acceptable com-

putation cost for machines and acceptable effectiveness for users can supplement an

authentication system in terms of verifying users.

2Besides insider attacks, intrusion detection systems (IDSs) can also be used to detect other kinds
of attacks such as viruses, worms and back door trojans.

1.3. Contributions 6

1.3 Contributions

My work makes several concrete contributions.

First, based on the characteristics of the email archive domain, I describe my

proposal for a user-specific email archive IDS. The design includes two parts: user-

tailored modelling and user-involved alarm response. With the design, the system

would customize a model to a user according to the user’s behavior patterns and

security needs. In addition, instead of sending alarms to administrators or security

officers, the system would send alarms to the corresponding users to verify whether

the alarms are true or false. So long as the data acquisition and analysis requirements

of such a system are sufficiently small, such an architecture could potentially scale

up to the largest email sites—even with a fixed per-user rate of false positives. False

positives are defined as the rates that systems reject legitimate users.

Second, as a first step towards a user-specific email archive IDS, I develop and

test a simple statistical model of user email behaviors based upon the relationship

between dispositions of new received messages and the senders of these messages.

Based on the design of user-tailored modelling, a user’s behavior model is customized

at the parameter level. After training for approximately one month, the system

can distinguish between variations in user behaviors over the next two months and

simulated attacker behaviors with a low rate of false positives—as low as one alarm

per month, but generally not higher than one per week.

Third, I emphasize the importance of systematically designing an attack behav-

ior model, which is used for assessment of my user model. Rather than randomly

choosing a type of attack behavior, I systematically design fourteen attack behav-

ior models, and based upon experiments and domain-specific knowledge I choose the

most appropriate one from the fourteen attack models. Because of the method I use

to simulate attack behaviors, the experimental results of my user model can be more

1.4. Overview 7

trustworthy in terms of false positives and true positives than those anomaly IDSs

which are tested using carelessly simulated attack behaviors3.

Fourth, I test how different values of each parameter affect each user’s model. I

demonstrate that parameter values can influence effectiveness of models, and therefore

the parameters of every user’s model should be dynamically adjusted.

1.4 Overview

The rest of this thesis proceeds as follows. Chapter 2 presents background information

and related work. Chapter 3 describes the user-specific design of an email archive

IDS. Chapter 4 discusses my choice of observables and modelling strategy. Chapter

5 presents the implementation of data collection and data processing. Experimental

results are discussed in Chapter 6. This thesis ends in Chapter 7 with a discussion of

limitations, implications, and plans for future work.

3For example, some user-behavior anomaly IDSs use other users’ data as attack data to test a
user’s model such as [37].

Chapter 2

Related Work and Background

My work can be characterized as detecting email archive insider attacks by modelling

user behaviors. Therefore, I first introduce the background knowledge about the

email framework and email security issues respectively in Section 2.1 and 2.2. Then

I give a brief overview of the intrusion detection research field in Section 2.3. Later,

I describe in detail about user behavior-level anomaly IDSs in Section 2.4. Finally,

I summarize the related research work and explain the key differences between my

work and that of others.

2.1 Background of Email System Framework

The email system has the same asynchronous structure as the traditional mail system

(post office system)—storing and forwarding.

In the traditional mail system, a customer writes a letter, puts it in an envelope

with a destination address, and brings it to a post office nearby. The letter is stored

there for a short while and then it is forwarded to other intermediate post offices.

Finally, the letter arrives at the post office closest to the destination. Either the

letter is directly sent from there to the destination or the receiver goes to the post

8

2.1. Background of Email System Framework 9

Internet

sending
MTA

local network local network

mailclient

receiving
 MTA

sender

mailclient

message
 store

receiver

MDA

Figure 2.1: Internet Mail Service Framework.

office to pick it up herself with her identification.

The email system (as shown in Figure 2.1) primarily consists of mail user agents

(MUAs), mail transport agents (MTAs), mail delivery agents (MDAs) and mail stores.

A MUA (e.g., Microsoft Outlook [41], Mozilla Thunderbird [4]) is used to commu-

nicate with the email system on behalf of users. A MUA can send a new message

upstream to a MTA and retrieve a message from a mail store. Using transportation

protocols (e.g., SMTP), a MTA (e.g., Sendmail [8]) routes a message to destination,

giving it to other intermediate MTAs if and when necessary. A MDA (e.g., procmail

[7]) is passed a newly received message from the destination domain MTA and puts

the message in a mail store. A mail store is used to temporarily or permanently store

users’ email archives.

The architecture of the email system is very similar to the traditional mail system.

An email user composes a new message in a MUA. Then the MUA places the message

2.1. Background of Email System Framework 10

within an “envelope” with the destination email address provided by the user and

sends it to a MTA in the local network to which the user belongs. The MTA forwards

the message to other intermediate MTAs. Finally, the email message arrives at the

local network to which the email receiver belongs and is stored in the receiver’s mail

box located in a message store. When the receiver accesses her mail box, she will find

it.

Email messages can be retrieved either locally (such as directly opening a file

in /var/mail) or remotely. There are two standard mail access protocols used for

remote email access: Internet Mail Access Protocol (IMAP [18]) and Post Office

Protocol (POP [43]).

POP is a rather simple protocol. It does not keep track of message states, and it

does not even facilitate the storing of messages in a number of folders. It does one

thing and only one thing: it makes the messages available to the user to download to

her local machine.

IMAP is not only a way to retrieve messages from a central mail store, but also a

way to manage messages centrally. The messages can remain in the mail store all the

time without ever having to download to local machines. You can see the advantages

of IMAP very clearly if you work from several computers. With IMAP, you don’t

have to wonder which computer you were on when you downloaded and read a given

message; you know it is still in the mail store. Figure 2.2 is an example about how

an IMAP server, an IMAP client (part of a MUA) and a user communicate with

each other. The user selects operations (e.g., reading a message, deleting a message,

creating a folder), the IMAP client sends the corresponding IMAP request commands

to the IMAP server, and the IMAP server performs actual operations on the user’s

email archive. My work is to protect email messages in the mail store from being

illegitimately accessed by monitoring IMAP commands in the IMAP server.

Alternatively, an email user can access her email archive through a web mail server,

2.2. Overview of Email Security Issues 11

Mail Server

IMAP

Server

IMAP

Client

User Workstation

Mailstore

Figure 2.2: IMAP server and IMAP client.

in which a web browser is used as an interface instead of a stand-alone mail client

program. Besides the advantages of a friendly, user-familiar interface when compared

with an email client program, web mail is also accessible on any computer with no

configuration and special software. Web mail is extremely popular and is offered by

service providers including Yahoo, Google and Microsoft.

2.2 Overview of Email Security Issues

Email is easy to use, convenient and popular, but it is very insecure. There are two

common email security issues: unwanted email, and email messages being illegiti-

mately read and modified.

Unwanted email. Unwanted email includes spam, phishing and email viruses.

Email spam is a general term for unwanted junk email. It typically includes advertise-

ments (unsolicited commercial email or UCE) or other messages sent in bulk to many

recipients (unsolicited bulk email or UBE). Email phishing is the act of attempting

to fraudulently acquire sensitive information, such as passwords and credit cards,

2.2. Overview of Email Security Issues 12

by imitating legitimate email. Email viruses are the kind of viruses which generally

propagate via email attachments or something equivalent to a HTML page in the text

body.

In terms of threat, spam is less destructive than phishing and email viruses. How-

ever, all of them can use the same techniques to obtain recipients’ email addresses

such as guessing addresses by dictionary attack or using spyware to steal addresses

from victims’ machines. In order to avoid being discovered, they send these unwanted

emails via “throwaway” accounts, through open email relays, or via their own mail

servers.

There exists a number of technologies to stop these threats. Spam is normally

prevented either by means of blocking known spam sources (e.g., checking lists of

offending DNS names and IP address ranges), such as Spamhaus [10], or through

filtering content such as SpamAssassin [12]. There are several major sender authen-

tication proposals which can be used to detect phishing and the kind of spam which

uses forged addresses. Sender Policy Framework (SPF) [60] is IP-based authentication

which validates the channel transporting messages. DomainKeys [19] uses a form of

public key cryptography to authenticate email senders’ domains. DomainKeys Iden-

tified Mail (DKIM) [22] is an e-mail authentication proposal that merges Yahoo’s

DomainKeys and Cisco’s Internet Identified Mail [17] e-mail verification technologies.

Email virus scanners, such as Norton AntiVirus [6], use extracted virus signatures

to detect and stop email viruses, either on server or client systems. However, like

other virus scanners, they have difficulty in stopping novel unknown ones. To address

this limitation, some researchers work on building email anomaly intrusion detection

systems against unknown email viruses. Gupta et al. [25] detect email viruses by

looking for increases in email traffic from email clients to servers. Stolfo et al. [53]

use behaviors of email flows and email account usage to detect unknown email viruses.

Based upon the observation of DNS MX queries within an enterprize network, Whyte

2.2. Overview of Email Security Issues 13

et al. [59] present a technique for detecting and containing SMTP-engine based mass-

mailing activity.

Email being illegitimately read and modified. This kind of security issue is

referred to as message confidentiality exposure and message integrity compromise. It

can happen when a message is in transmission or when a message is stored on a host

(e.g., a sending site, a receiving site or an intermediate site).

Because of the open nature of the Internet, attackers can intercept a message in

transit through packet sniffers. Attackers can also steal (directly or indirectly) a mes-

sage by accessing the site where the message is stored temporarily or permanently

(e.g., MTAs, mail stores). Indirectly, they can send malicious software to the site to

compromise email software (e.g., mail clients, SMTP servers, IMAP servers) and make

the software expose or modify information for them. Alternatively, they can directly

(locally or remotely) access the site themselves by compromising authentication cre-

dentials. Because a computer can not determine who is misusing the authentication

credentials, these latter attacks are a kind of insider attack.

In order to protect the confidentiality and integrity of an email message even when

the message is intercepted by attackers, encryption and digital signature technologies

are applied. Attackers can not obtain useful information from an encrypted mes-

sage, and the receiver herself can find out that a message is modified by checking its

signature. The most notable standards, OpenPGP [61] and S/MIME [46], both use

encryption and digital signature to provide a solution for end-to-end integrity and

confidentiality. TLS (transport layer security)/SSL (secure socket layer) [20] using

public and private key technology, is applied for site-to-site protection such as web

mail between web servers and browsers and IMAP messages between user computers

and IMAP servers.

In order to stop insider attacks, two kinds of techniques are typically used: au-

thentication and intrusion detection. The former works when an attacker requests

2.3. Overview of IDSs 14

access, while the latter works after the attacker has obtained access. In the email do-

main, the most commonly used authentication mechanisms are based on reusable text

passwords. However, passwords may be easily compromised by malicious software,

social engineering, or by user negligence. While there exist other technologies that

could be used to authenticate email users in a more secure fashion (e.g., smart cards

[9]), virtually all of them would require significant changes in how users access their

email. Compared with those novel authentication technologies, intrusion detection

technologies normally do not require any change on user interface while enhancing

security. I discuss them in Sections 2.3 and 2.4.

2.3 Overview of IDSs

An intrusion detection system or IDS is a tool used to detect unauthorized access

to a computer system or network. In terms of detection approaches, intrusion de-

tection systems can be broadly divided into two categories—attack knowledge-based

and normal behavior-based systems. Attack knowledge-based IDSs apply knowledge

accumulated about past attacks to detect future ones. One advantage of attack

knowledge-based approaches is that they have the potential for very low false posi-

tives. Drawbacks, however, include the difficulty of gathering the required information

on known attacks and keeping up with new attacks. Normal behavior-based IDSs de-

tect attacks by observing deviations from normal behavior of systems or users. If a

deviation is observed, an alarm is raised. A key advantage of normal behavior-based

IDSs is that they can detect new, previously unknown attacks. However, a high false

alarm rate, due to complex ever-changing normal behavior, is a typical drawback of

most normal behavior-based IDSs.

Based on different data sources, IDSs can also be classified into two groups—

network-based and host-based. Network-based IDSs, located at choke points (e.g.,

2.3. Overview of IDSs 15

routers, gateways) in the network to be monitored, capture and analyze network

packets for malicious traffic. Host-based IDSs are used to monitor hosts or programs.

Recently, a new category of IDS—application-specific, is coming up, which is designed

for a particular application (e.g., web application, database). As its data source comes

from an application which is part of a host, I categorize it as host-based IDS.

In the following, I will present an overview of the intrusion detection field accord-

ing to the two detection approaches—attack knowledge-based and normal behavior-

based, because I think this classification is more basic and better to reflect the perspec-

tives of researchers on intrusion detection than the data source based classification.

Attack Knowledge-Based Intrusion Detection.

Attack knowledge-based IDSs can be divided into signature-based and rule-based.

Signature-based systems analyze data streams for specific patterns (e.g., network

packets for substrings correlated with attacks). Rule-based systems compare data to

pre-specified rules (e.g., access policy to a specific file).

Signature-based intrusion detection techniques allow for very efficient implemen-

tation, and are therefore applied in commercial intrusion detection products [31, 58].

The techniques are also used by most virus and worm scanners. However, conven-

tional signature extraction for novel viruses and worms is an expensive, slow, manual

procedure that can take hours or even days to complete. Some researchers propose

automatic generation of signature of unknown worms without human intervention.

EarlyBird [50, 49], Autograph [33], and Honeycomb [35] all make use of worm prop-

agation characteristics to automatically generate signatures that can then be used

to filter or moderate the spread of worms elsewhere in the network. EarlyBird is

based on two key worm behavior characteristics—highly repetitive packet content

and increasing traffic volume. Autograph detects worms that propagate by randomly

scanning IP addresses. Honeycomb extracts signatures from suspicious traffic caught

in honeypots [2].

2.3. Overview of IDSs 16

For the majority of current intrusion detection systems used to detect human

inside attackers, rule-based detection plays an important role. That is because the

inherent variation of human behavior makes it much harder to extract signatures of

inside attacker behaviors compared with those of malicious codes (e.g., viruses). In

addition, the other approach—normal behavior-based detection technique, typically

has high false alarm rates. Rule-based approaches, in contrast, have the potential

to produce low false alarm rates. However, they have difficulty in defining rules

which can cover whole attack behaviors because of the diversity of attack behaviors.

But with knowledge of a specific domain, it is possible to define rules covering a

large majority of attack behaviors in that domain. Therefore, rule-based IDSs are

appropriate for those domains which have very clear, critical security requirements

such as military, government and finance. In the work of Wisdom & Sense [56], NIDES

[11], Haystack [51] and Emerald [45], intrusive behavior rules play an important role

in detection. The rules defined in Haystack are tied to characteristics and security

requirements of the domain (Air Force defense).

Normal Behavior-Based Intrusion Detection.

Normal behavior-based intrusion detection systems (also called anomaly intrusion

detection systems) rely on models of the “normal” behavior of computer systems,

users, applications or network usage to detect intruders. Behavior profiles can be

built by performing a statistical analysis of historical data or by using rule-based

approaches to specify behavior patterns. Anomaly IDSs can be classified from the

two data sources—network packet data and host data. The corresponding IDSs are

respectively called network anomaly IDSs and host anomaly IDSs.

For network anomaly IDSs, different parts of packets are selected as features to

build models. NSM [27] uses a four dimensional matrix of which the axes are: source,

destination, service, and connection ID (a unique identifier for a specific connection).

LISYS [29] is an immunological model of distributed detection which was similar

2.4. User Behavior-Level Anomaly IDSs 17

to NSM except that its architecture permits the set of normal network flows to be

distributed across a set of hosts. PHAD [39] extracts a total of 34 attributes from the

packet header fields of Ethernet, IP, TCP, UDP and ICMP. Similar to PHAD, NATE

[55] treats each of the first 48 bytes as a statistical feature, the first 40 bytes of which

are in the header part and the latter 8 bytes of which are in the payload part. The

work of Krugel et al. [36] and PAYL [57] present service-specific intrusion detection

systems that combine the service type, length and payload distribution of the request

as features. Instead of directly using packet data, some systems like EMERALD [45]

reconstruct the network packets and extract features from semantic level data.

Host-based anomaly IDSs use two basic strategies: one is to model program be-

havior, which is mainly used for detecting viruses and worms; the other is to model

user behavior, which is mainly used for insider attacks. In order to model program be-

havior, a number of researchers have studied system calls (see, for example, [34, 52]).

One of noteworthy work is pH [52], which detects changes in program behavior by

observing changes in short sequences of system calls. pH can detect buffer overflows,

Trojan code and kernel security exploits; however, it has very limited ability to detect

masqueraders. Higher-level system behavior has also been studied. For example, In-

oue [30] uses the fundamental units (methods) in Java byte code to construct profiles

for applications running in the Java virtual machine in order to stop back doors and

viruses.

In the next section, I present in detail work on user behavior modelling.

2.4 User Behavior-Level Anomaly IDSs

Some researchers think that user behaviors might be more easily modelled for a spe-

cific domain or application. My work is related with both user behavior modelling and

a specific domain (email domain). Therefore, in this section, I discuss user behavior-

2.4. User Behavior-Level Anomaly IDSs 18

level anomaly IDSs from two perspectives—general host-based and domain-focused.

The data collected by a general host-based IDS represents how users generally behave

in a host, while the data collected by a domain-focused IDS is about user behaviors

with respect to a particular set of applications.

General Host-Based. Owing to the inherent variation of human behavior, the

biggest challenge in user-level anomaly IDSs is decreasing false positives while main-

taining the ability to capture attackers.

A number of researchers focus on using different methods to model users via

patterns of UNIX commands. DuMouchel [21] uses Bayesian statistics to model

command sequences. Schonlau et al. [48] investigate and evaluate six statistical

approaches for detecting masqueraders. Oka et al. [44] propose a novel method, called

Eigen co-occurrence matrix (ECM) to model UNIX commands. As an extension

of Schnlau’s work, Maxion et al. [40] propose a new classification algorithm with

improvement on detection rates and false alarm rates.

Like the above researchers, Lane [37] also uses UNIX command sequences as fea-

tures to model user behaviors. Along with computer security issues (storage, speed),

he also adopts machine learning techniques to address these problems in modelling—

high noise environment, concept drift, skewed class distribution, and variable mis-

classification costs.

One noteworthy user behavior-level intrusion detection system is NIDES [11],

which consists of both rule-based and anomaly-based detection approaches. In the

anomaly detection part, NIDES creates a set of statistics components to model be-

havior for individual subjects: users, groups, remote hosts, and the overall system.

Parameters of models are dynamically adjusted and specific to each subject. Audited

activities are described by a vector of intrusion detection measures. As each audit

record arrives, the relevant profiles are retrieved from the knowledge base and com-

pared with the vector of intrusion detection measures. Thus, NIDES evaluates the

2.4. User Behavior-Level Anomaly IDSs 19

total usage pattern, not just how the subject behaves with respect to each measure

considered singly. Distinguishing features of NIDES are that multiple measures and

dynamic adjusted parameters are considered. However, like other user behavior based

anomaly IDSs, NIDES has high false positives.

In terms of feature selection, my work is more similar to the work using UNIX

commands, because both use users’ actual, direct operations rather than those indirect

behaviors such as computer memory usage. In terms of modelling methods, my work

has more similarity with NIDES, since both use statistical methods.

Haystack [51] also consists of both rule-based and anomaly-based detection ap-

proaches. In the anomaly detection part, two concepts are combined: per user models

of how users have behaved in the past, and pre-specified generic user group models

that specify generally acceptable behavior for a particular group of users.

Wisdom & Sense [56] studies historic audit data to produce a forest of rules which

describe normal behavior. These rules are then fed to an expert system that evalu-

ates recent audit data and alerts security officers when the rules indicate anomalous

behavior. The majority of raw information were obtained from computer audit data

(e.g., locations, object types, days of the week, person names).

Domain-Focused. In the computer world, a domain can be considered as one

kind of computer application such as web application, database, or email application.

In this section, I explain IDSs in four domains—database, credit card, wireless, and

web application.

DEMIDS [16] is an IDS tailored to relational database systems. The essential

approach is that users are associated with working scopes which comprise sets of

attributes referenced with some values accessed by the users. A user’s profile is built

based on his working scope. When a user’s behavior exceeds his working scope, his

behavior is considered as anomalous. In this work, domain knowledge such as the data

structure and semantics encoded in a given database schema is considered. DEMIDS

2.4. User Behavior-Level Anomaly IDSs 20

can be used for misuse detection, in particular insider abuse. In my work, I view email

archive as a kind of database. The key difference between my work and DEMIDS is

that one email archive belongs to only one user and is accessed by the user while one

database can be shared and accessed by thousands of users.

Chan and his colleagues [15] use data mining technology to detect credit card

fraud. They devised a multi-classifier meta-learning1approach to address three issues

related with credit card fraud detection—the number of fraudulent transactions being

small compared with legitimate ones, the non-uniform cost of error, and the large

volume of transactions per day. Their classifiers depend on both fraudulent and

legitimate transactions. In most other user-level intrusion detection fields, it is hard

to get fraudulent behavior data for modelling; for credit card companies, fraud data

is easy to obtain. Therefore, the modelling methods used in their work can not be

used for my work.

Other domains have been studied; for example, the use of different profiles for

wireless intrusion detection. The profiles can be divided into two kinds. One is a

device profile constructed through exploiting the unique hardware signature of wire-

less interfaces, operating systems, and other characteristics of wireless devices. The

other is user behavior profiles. Hall and her colleagues [26] incorporate radio fre-

quency fingerprinting (RFF) into a wireless intrusion detection system. Boukerche

and his colleagues [13] use calling patterns of users for fraud detection in cellular

network commercial systems, namely the Fraud Management System by Hewlett-

Packard(FMS-HP) [28]. Work in [14, 54] makes use of sequences of cells traversed by

users as a feature of the profile.

1Meta-learning is a technique recently developed that deals with the problem of computing a
“global” classifier from large and inherently distributed databases. Meta-learning aims to compute a
number of independent classifiers (concepts or models) by applying learning programs to a collection
of independent and distributed databases in parallel.

2.5. Summary 21

2.5 Summary

My work is used to protect email archives from insider attacks. Because insider

attacks consist of “authorized” accesses and manipulations of data, access control

and authentication mechanisms are not sufficient to prevent them. Therefore, I use

intrusion detection technologies to prevent them. There are two kinds of intrusion

detection technologies—attack knowledge-based and anomaly-based. In the attack

knowledge-based technologies, there are two types—signature-based and rule-based.

Signature-based IDSs are normally used for detecting worms and viruses through

extracting signatures of the malicious code. The characteristic of worms—copying

themselves to propagate—makes this method work well. However, this method is

not appropriate for insider attacks, because inside attackers are independent human

beings who behave differently from one another. It is extremely hard to extract a

common behavior signature from different individuals. Rule-based IDSs can be used

for detecting inside attackers, but they are normally used for those applications which

have clear, specific security requirements such as finance and military. Email is of

more personal use and it is hard to define a set of uniform security policies for all email

users. Therefore, I use anomaly technology by modelling legitimate users’ behaviors

to detect inside attackers.

However, most anomaly IDSs have a common problem—high false positives. With

insider-focused anomaly IDSs, which model users’ behaviors, it is difficult to obtain

an acceptable false positive rate while allowing legitimate accesses. In order to re-

duce false positives or mitigate the influence of false positives, researchers work from

two perspectives—modelling methods and response systems. Some researchers work-

ing on user behavior models have noticed differences between individual users, and

therefore customize models for each user to some degree. NIDES, for example, dy-

namically determines parameter values for each user’s model. Some researchers work

2.5. Summary 22

on response systems in order to mitigate the influence of false positives. However,

none of them analyzes characteristics of human being behavior and takes advantage

of these characteristics. The key difference between my work and others’ is that I

always consider characteristics of human being behavior as a basis for my system

design and architecture.

On this basis, I make user-specific design the focus of my system. My design is

presented in the next chapter.

Chapter 3

Design of An Email Archive IDS

The key challenge that a designer of an email archive IDS faces is how to control

false alarm rates at an acceptable level while maintaining detection ability. To meet

this challenge, I propose a user-specific design for the system, which makes use of

characteristics of both human beings and the email domain. This design includes two

parts: modelling and response. In Section 3.1, I first describe the characteristics of

the email domain which form the basis of my user-specific design. In Sections 3.2

and 3.3, I present my user-specific design and system architecture. Finally, I explain

how this design has a significant impact on my implementation work described in the

subsequent chapters in terms of modelling strategy and experimental methods.

3.1 Characteristics of the Email Archive Domain

A practical email archive IDS needs to meet two basic requirements: low computa-

tional cost and high effectiveness (acceptable false alarm rates and acceptable detec-

tion rates). An email system can have thousands of users, so even a moderate com-

putational cost for each user can result in unbearable computational burden for the

system. Therefore, the computational cost per user should be very low. In addition,

23

3.1. Characteristics of the Email Archive Domain 24

false positives (or false alarm rates) must not be more than what the administrator

or users can bear while maintaining detection ability. Otherwise, the administrators

or the users will feel annoyed and ignore the alarms.

However, in general, there is a conflict between low computational cost and effec-

tiveness. Normally, compared with a simple modelling method, a complex modelling

method is more effective. However, the more complex a modelling method is, the

more costly the computation.

It is much harder for user behavior-level anomaly IDSs to build effective models

with simple modelling methods because the inherent variation of human beings makes

their behavior hard to model. A person can frequently change his behavior for no

apparent reason. Some changes result from status changes such as job change, while

some of them are from emotional changes. A group of persons can have very different

behavior patterns in terms of email access. Some persons might regularly login from

the same machines, while some might often change login machines as they often travel.

These two factors in human behaviors—the inherent variation of a single person and

the variety of patterns of a group—make it difficult to effectively model human beings’

behaviors. However, there still exist some practical off-line applications which predict

events directly or indirectly related to human behaviors, such as stock predictions and

the USA presidential selections. However, complex modelling methods (e.g., neural

networks) are normally applied in these off-line applications, because they can afford

much larger computational cost and data storage. Such complex modelling methods

are not suited for the email domain because of the large number of users.

Therefore, it will be hard to make a general user behavior-level anomaly IDS which

meets both of the requirements—effectiveness and low computational cost. However,

for an anomaly IDS which is used for a specific domain, it is possible to take advantage

of characteristics of that domain and design a domain-specific intrusion detection

system in order to meet the two requirements.

3.2. The User-Specific Design 25

Characteristics of The Email Archive Domain. One key feature of the

email archive domain is that email is for per user use—each email archive belongs to

only one user. The per-user characteristic manifests itself in four ways. First, every

user can manage his email archive in his own way, for example by creating folders

and setting up automatic filters. Second, users have different security requirements.

People who use email for business might be more concerned with security than those

whose email messages are for personal, casual use. Third, the behavior patterns of

each user can be different. For example, some users always login at the same time

or at the same places, while others always use the same mail clients. Finally, no one

knows more about an email archive than the user himself. Thus, a knowledgeable

user is able to notice many kinds of tampering. For example, he will notice that a

new email has been read by someone else because of the obvious having-been-read

mark on the email. He might suspect that something is wrong when the amount of

newly received email in one day is much less than normal. On the other hand, he

might not notice if the amount is a little less than normal. Therefore, users can serve

as a limited monitoring function. Owing to these characteristics, I have designed my

email archive IDS to be user-specific.

3.2 The User-Specific Design

Instead of designing a uniform IDS for all users, a user-specific system builds an IDS

for each individual user according to his behavior pattern and security needs.

This user-specific design contains two basic parts—user-tailored modelling and

user-involved alarm response. With user-tailored modelling, every user is assigned

a model (or an IDS instance) according to his behavior pattern. For user-involved

alarms, an alarm is sent to the corresponding user instead of administrators or security

officers and the user gives the system a response indicating whether the alarm is a

3.3. The Architecture 26

real security violation or not.

As users can have variable behavior patterns (which have been discussed in the

last section), it is difficult for one simple model to apply equally well to all users. To

overcome this problem and to maximize the effectiveness of a user’s model, the user

should have a unique model based on his behavior pattern.

In conventional IDSs, security officers or administrators are responsible for han-

dling alarms (false or true) for all users and therefore, it is the administrators who

tolerate false positives (false alarms). In this way, the presence of false positives in-

herently limits the scalability of intrusion detection systems. For example, a system

that would only produce one false alarm per week for 50 users would, without modi-

fication, produce around 14 alarms per day for 5000 users. Inherent in the design of

any IDS, then, are assumptions about the size of the observed population relative to

that of the monitors (system administrators or security officers). With my design, we

have a logical IDS for each user and it is users who manage their own false positives.

Therefore, the system is inherently scalable—more users means that there are more

people monitoring the IDS and thus, as a whole, the system can tolerate a higher rate

of false positives. In addition, because a user understands his own behavior, he is

best equipped to determine whether or not a given alarm reflects a genuine security

violation.

3.3 The Architecture

3.3.1 Overall Architecture

Based on these two parts (user-tailored modelling and user-involved response) of

the user-specific design, an email archive IDS should consist of four components—a

template store, a user-specific analysis system, an IDS instance store, and an alarm

response system. They cooperate to achieve two tasks—generating a unique IDS

3.3. The Architecture 27

instance for a user and monitoring the user’s behavior.

Components. The template store contains a number of sub-models and rule

sets which are used for building an IDS instance. The key idea behind this is that

user behavior patterns are variable, and therefore, multiple observables are needed.

Observables are actually features used for modelling. The observables can be login

times, login places, the first few commands and so on. A sub-model in this design is

built based on an observable. For example, based on the observable of login time, a

sub-model is built and referred to as the login-time sub-model. Normally, in many

IDSs, one single observable is used to model all users’ behavior. In my design, multi-

ple observables are used to build multiple sub-models. The terminology “sub-model”

in my architecture is equivalent to the terminology “model” used in those IDSs which

use only one observable. Figure 3.1 is an example of a template store. In the template

store, each sub-model is associated with one behavior observable. Each parameter in

a sub-model is assigned a default range rather than a fixed default value. The idea

behind parameter ranges is that parameter values should be dynamically determined

by user behaviors rather than being derived solely from the experience of designers.

The rule sets include a selection rule set for selecting sub-models for a user, a combi-

nation rule set for combining the selected sub-models of the user, and a performance

rule set for assessing effectiveness of the user’s model. The rules determining how to

select, combine and assess will be explained later in this section.

The user-specific analysis system collects a user’s behavior data, and then with the

template store builds an IDS instance for the user according to his behavior pattern

and security needs.

The IDS instance store contains users’ IDS instances generated by the template

store and the user-specific analysis system. Figure 3.2 shows components in an IDS

instance for a user. In the IDS instance, there are m sub-profiles respectively equiv-

alent to the m sub-models, the subset of n sub-models in the template store. Each

3.3. The Architecture 28

sub−model store

 template store

rule store

system

sub−model2

sub−model3

sub−model1

sub−modeln

{{p11}...{p1k}}

{{p21}...{p2k}}

{{p31}...{p3k}}

{{pn1}...{pnk}}

user−specific analysis

...

observable−n

selection rule set for single sub−model selection

combination rule set for sub−models’ combination

performance rule set for model performance assessment

login time

login place

reading speed

Figure 3.1: Template store and user-specific analysis system.

sub-profile (namely, sub-model) has a set of parameter values. Each sub-profile is

associated with one observable, as discussed above. How should we combine different

kinds of sub-profiles (or observables) of a user to make them cooperate to monitor the

user’s behavior? I use the vector measure method, which is used in NIDES [11]. In

my architecture, I use one vector to represent one sub-profile of a user, and therefore

there is a total of m vectors for the user in Figure 3.2. The m-vector measure is used

to measure the difference between the user’s profile composed of the m sub-profiles

and his current behavior. If the difference exceeds the threshold, an alarm is raised.

The alarm response system directly interacts with a user when an alarm is raised

by the user’s IDS instance, without involvement of administrators or security officers.

An IDS instance and the alarm response systems form a complete intrusion detection

system for the user with functions of monitoring and alarm response.

Detection. Suppose that a user has an IDS instance built. Figure 3.3 shows

3.3. The Architecture 29

21

sub−profile1 (sub−model1), {p p }

sub−profile2 (sub−model2), {p p }

sub−profilem (sub−modelm), {p p }
m1 mk

....................................

threshold

1k

2k

11

m−vector measure

Figure 3.2: An IDS instance for a user.

how Alice’s IDS instance (IDS-Alice) collaborates with the alarm response system

to monitor Alice’s behavior. There are six steps in the figure. 1) The IDS instance

(IDS-Alice) monitors Alice’s behavior. 2) The IDS instance (IDS-Alice) notices that

Alice’s behavior is unusual and then sends an alarm to the alarm response system. 3)

Over an independent channel or an alternative account (which will be talked later),

the alarm response system sends Alice an alarm message to verify whether the alarm

is false or not. 4) If the alarm is real, Alice might take action herself such as changing

her password. If the alarm is false, Alice indicates this to the alarm response system.

5) With a false alarm, the alarm response system will report to the user-specific

analysis system about this event. 6) The user-specific analysis system will update (or

adjust) Alice’s IDS instance (IDS-Alice) immediately or later.

Generation of An IDS Instance. Figure 3.4 shows how an IDS instance is gen-

erated for a user. There are five steps. 1) When the system gets a request from a user

for an intrusion detection system, the user-specific analysis system starts to collect

the user’s behavior data. 2) The user-specific analysis system retrieves the relevant

template parts (sub-models and rules) from the template store. 3) The user-specific

analysis system presents the user in an easy-to-understand way the effectiveness of

several (e.g., 10) best choices of intrusion detection systems. According to his security

needs, the user chooses the IDS he prefers. 4) Based upon the choice, the user-specific

3.3. The Architecture 30

IDS instance store

............

data
current behavior

alarm response

system

user−centric

analysis system
template store

(1)

monitor

(2)

alarm

(3)

verify

false alarm

(4.1)

(4.2) true alarm

(6) update

(5) relay

IDS−Alice

IDS−Bob

IDS−Tom

Alice

indicate

Alice’s

Figure 3.3: How an IDS instance works with the alarm response system.

analysis system finalizes an IDS instance for the user. 5) The IDS instance is stored

in the IDS instance store.

Details about how the user-specific analysis system interacts with the template

store are as follows. First, the user-specific analysis system selects appropriate sub-

models from the template store for the user based on the selection rule set and the

user’s data. Second, the user-specific analysis system combines the chosen sub-models

into a rough model based on the combination rule set. The M-vector measure (part

of the IDS instance) is formed in the process of combining those selected sub-models.

Third, the user-specific analysis system refines the rough model by adjusting parame-

ters. This refining process is equivalent to assigning a set of optimal parameter values

for each sub-profile based on the performance rule set.

3.3. The Architecture 31

template store
user−centric analysis

system

IDS instance

store

user behavior

data

instance
an IDS

(2)

(3)

(4) (5)

(1)

user

Figure 3.4: Generation of an IDS instance for a user.

3.3.2 Requirements and Challenges.

There are a number of requirements and challenges involved in implementing such a

system. First, as users get involved in the processes of generating IDS instances and

responding to alarms produced by the system, the interaction between the system and

users must be easy to understand for the users. Second, the interaction should occur

over a secure channel. Even if the channel used for the email archive access has been

compromised, the interaction between a user and his IDS still can be safely processed.

Third, though the generation of an IDS instance is processed off-line, computation

and storage costs still need to be modest if the system is to scale. Fourth, it is a big

challenge to build a template store. The challenge can be divided into how to define

observables, how to build a sub-model based on the defined observables, how to define

a value range for each parameter in a sub-model, and how to define the three types of

rules (selection rules, combination rules and performance rules). Finally, it is another

security question about how the template store and IDS instance store are secured so

that the attacker doesn’t simply modify them before attempting to impersonate the

user.

In the following, I discuss what the problems are and my proposed solutions.

Easy-To-Understand Interaction. As email is used for many kinds of persons,

3.3. The Architecture 32

including those who are not computer literate, the interaction between users and

IDSs must be designed to at least as easy to use as the email interfaces. Users are not

necessarily intelligent on IDSs. However, the users need to have some basic knowledge

on IDSs as they have of virus scanners. Suppose that the user-specific analysis system

provides a user with two choices of intrusion detection systems. According to her

security needs, the user will tell the user-specific analysis system which one she prefers.

The following is an example about how the system could present the available IDSs

to a user.

“Dear user, Based on your email access behaviors, you have two recommended

intrusion detection systems. You can choose one of them.

Option 1: You will be bothered approximately three times each week by false alarms.

The probability that an attacker can be detected on first intrusion is 80%.

Option 2: You will be bothered approximately one time every two weeks by false

alarms. The probability that an attacker can be detected on first intrusion is 50%.”

Secure Channel. Because the user-involved response system interacts directly

with the protected user, it needs a secure path of communications with that user;

however, by assumption the protected user’s password(s) may be compromised, so

we cannot create such a trusted path by using a password. While this might seem

like a fatal flaw, in practice there are many potential solutions. For example, the IDS

could use an independent communication channel to transmit alarms such as instant

messaging, mobile phone text messaging via Internet gateways; or an alternative

email account with a different password is used for storing the user’s alarm messages1.

Another, potentially simpler alternative would be a clear alert in the mail reading

client or web browser that cannot be removed by the user; instead, it would persist

1With this approach, attackers might attempt to compromise both of the user’s email accounts
together—the email message account and the alarm message account.

3.3. The Architecture 33

on-screen for a fixed period of time (e.g., a few days) and then be automatically

removed by the system. The persistence might be annoying for legitimate users. The

most appropriate design for such a system would depend upon the deployed system

and the security requirements of the specific users; what is important is that attackers

should not be able to stop alarm messages, while false alarms should not create too

much of a burden on the protected user.

Building the template store. A number of useful observables need to be first

studied and defined based upon knowledge of the email domain and observation of

user behaviors. Email access observables are numerous, including events such as login

time, login place, the first few sent IMAP commands, mail client types, and sequence

of reading email messages. Compared with building sub-models and defining value

ranges of parameters, I feel that definition of the three types of rules (selection rules,

combination rules and performance assessment rules) are much more complicated. It

is a big question how to define the rules so that sub-models can be combined well.

Computational Cost. The computational cost mainly lies in the generation of

an IDS instance for a user. The generation process can be roughly divided into two

steps—generating a rough model and generating a number of refined models. The

rough model is generated through selecting single sub-models and combining these

single sub-models via combination rules. A number of refined models are generated by

adjusting parameter values of the rough model and then choosing a couple of refined

models according to the performance rules. The chosen refined models will be sent

to the user for final selection.

The generation of refined models can cost much more computation time than

that of the rough model. To see why, consider the following example about how

a number of refined models are generated from a rough model using an exhaustive

search algorithm. Suppose a user has had a rough model which is composed of

two sub-models, s1 and s2. As described above, each sub-model has a number of

3.4. The User-Specific Design and My Implementation Work 34

parameters and each parameter in a sub-model has a parameter range. Suppose the

sub-model s1 has two parameters—p11 with 2 value choices and p12 with 3 value

choices. The sub-model s2 has three parameters—p21 with 2 value choices, p22 with

3 value choices and p23 with 4 value choices. According to the exhaustive search

algorithm, the total number of combinations of parameters is 2 ∗ 3 ∗ 2 ∗ 3 ∗ 4 = 144.

With each combination, a refined model is generated with false and true positives,

which are then used for performance assessment. Therefore, the overall computation

will be 144 times the computation of a single set of parameters. More specifically, with

96 combination sets of parameters, my experimental program spent around 60 seconds

on the user Faculty’s three months of data. Both the total number of parameters and

the value range of each parameter are very small in the above example; therefore, we

can imagine how large the computational cost will be in a practical environment with

the exhaustive search algorithm. However, if we choose a more efficient algorithm

(e.g., a genetic algorithm [3]), the computational cost might significantly be reduced.

3.4 The User-Specific Design and My Implemen-

tation Work

In order to explore the feasibility of the user-specific design, I have implemented

in the next chapters part of the design using only one observable—the correlation

between user dispositions of newly received email messages and the corresponding

mail senders. Based upon the observable, a sub-model (hereafter called the model)

is built. This work is presented in detail in Chapter 4.

According to my previous discussion about the user-tailored modelling, there are

two major steps for building a model for a user—combining multiple sub-models

into a rough model and refining the rough model by adjusting parameters. Because

currently I only have one sub-model, I have only implemented the model refinement

3.4. The User-Specific Design and My Implementation Work 35

part. I establish a value range for each parameter of the model and then choose the

optimal set of parameter values for each user according to false and true positives.

The model, with an optimal set of parameter values, is thus customized to a user.

As my current work mainly focuses on the feasibility of the design and the user-

involved response system is more an issue of deployment, I have not developed the

response system. However, my experiments are designed using the presented archi-

tecture as a base. The idea is that alarms will be sent to the corresponding users

without involvement of administrators. It therefore makes more sense to count the

alarm rates per user instead of for all users in the email domain. Therefore, my ex-

periments are per user, and the program respectively calculates false positives (false

alarm rates) and true positives for each user.

In the next chapter, I explain how the chosen observable is used to build a model

of user behavior.

Chapter 4

Modelling Email User Behavior

In this chapter, I present a model of user email archive access behavior based on

the correlation between user dispositions of newly received email messages and the

corresponding email senders. Section 4.1 explains the intuitions and feature selections

that underly my model. Section 4.2 describes the model itself. To evaluate this model,

I need attacker behavior data in addition to normal user behavior. Section 4.3 explains

my approach to simulating attacker behaviors.

4.1 Intuition, Observation and Feature Selection

There are many possible observables in user email access, such as the time of day

of archive accesses, the amount of data transferred, and the program used to access

the archive. It seems that every observable has the potential to be a feature that

can be modelled. I have chosen one that I feel from my intuition and knowledge of

daily life is more consistent than other observables. In daily life, behavior consistency

of a real person depends on two aspects—habits and stable internal factors. I take

eating as an example. A person might eat ice cream every day because ice cream

is his favorite food. It is a habit that causes him consistently to eat ice cream. He

36

4.1. Intuition, Observation and Feature Selection 37

also eats celery every day, because he has high-blood pressure and celery can help

mitigate the condition. The condition is the stable internal factor which causes his

regular consumption of celery. In social lives, every one has social relationships such

as family (relation between wives and husbands, between brothers and sisters), and

business (relation between students and professors, co-workers). And when facing

other persons, how a person talks and behaves normally depends on the relationships

with those persons. For example, in front of family members (e.g., parents, spouse),

he behaves casually. However, in front of bosses, he normally behaves and talks

carefully. Therefore, social relationships are one of the internal factors which can

influence a person’s external behavior. As one social relationship can exist for a long

time, the external behavior associated with the relationship can be consistent for a

long time too. In the email domain, a social relationship exists between a user and

his email sender. How a user disposes of email messages from an email sender (e.g.,

reading, deleting, forwarding it) can reflect the relationship between the user and

the email sender, causing the disposition behavior to be consistent to some degree.

For example, in many cases a user would read and then archive email messages from

his boss. For email messages from an announcement mail list, the user might delete

them directly without reading. In addition, disposition behavior can also reflect a

user’s habits such as filing habits. Thus, I choose this observable for my model of

user behavior.

Note that there is a fundamental difference between how users approach newly

arrived email and already received email. User accesses to old email are dictated by

the specific semantics of individual messages and the tasks the user is engaged in;

new email messages, however, are frequently read, deleted, or responded to soon after

they have arrived. Because of this observation, I have focused on user disposition

behavior on newly received email messages rather than old email messages.

There are a number of user dispositions related with new email messages, such as

4.2. The Model 38

reading, deleting, copying, moving, forwarding, replying, marking unread and so on.

Rather than building a model that incorporates all of these possibilities, I have instead

chosen to focus on the following six common operations: doing nothing, reading,

deleting, copying, moving, and marking a message unread, because I believe that

these six operations can reflect a user’s habits or relationships to email senders better

than others. The two operations, copying and moving, can reflect a user’s filing habits.

Another three operations, doing nothing, reading and deleting, reflect relationships

between the user and mail senders. Some email originating from an announcement

email list might be read and deleted or deleted directly; email from an important

colleague, though, would typically be read and archived. The operation, marking a

message unread, can reflect a user’s habit a little, but can more reflect an attacker’s

actions. In order to hide himself, an attacker might choose to mark unread a message

which he has read.

Therefore, for each newly received email message for a given user, I record the

sender of the email (from the “From:” line of the message) along with which of the

selected disposition options was performed. In order to simplify my model, I ignore

the parameters of these operations, e.g., the destination folder for a move operation.

Note that in reality whether a user does the five dispositions or not is mainly

driven by contents of email. But mail senders have high correlation with contents.

4.2 The Model

To test my idea about correlations between disposition operations and email senders,

I have developed a model using this feature. In the model, each user has a profile

consisting of two parts—long-term (e.g., one month) data which contains frequencies

of each disposition operation along with the corresponding email senders; a set of

parameter values. After a profile has been trained on a sufficient amount of user

4.2. The Model 39

data, it is then used to measure significant changes in that user’s recent short-term

(e.g., one day) behavior. When those changes exceed a fixed threshold, that short-

term behavior is considered to be anomalous.

The long-term data reflects the behavior patterns of a user. It is symbolized

as {l}, with each l representing the record of dispositions of messages sent from one

address. The short-term data represents recent monitored behavior and is symbolized

as {s}, with each s representing a message as well as its disposition operations. The

sizes of both the short-term data and the long-term data are related with statistical

requirements and a user’s actual situation. If the sizes are too small, they will not

provide a sufficiently large sample. If the sizes are too big, they will bring difficulties

to the IDS on storage and computation. How the two sizes are set up is presented in

detail in Chapter 6.

To test my model in Chapter 6, a sliding window is used to select messages rep-

resenting respectively the long-term data and the short-term data. To be consistent

with the sliding window concept, the long-term data is also referred to as a long-term

data window and short-term data a short-term data window in this and the following

chapters. Details about the windows are presented in Section 6.2.

To measure the difference between short-term data and long-term data, I have de-

fined three specific measures—message variation M , sender confidence C, and window

variation W . They are defined as follows.

4.2.1 Message Variation M

The message variation M is the distance between the dispositions of a given message

in recent short-term data and the average dispositions of past messages in long-term

data from the same sender as the given message.

In order to compute the distance, dispositions are placed within a five dimensional

space, with each dimension corresponding to a particular type of message disposition:

4.2. The Model 40

reading (r), deleting (d), moving (m), copying (c), marking unread (u). A single

recent message s in short-term data is represented in this space as:

s = [sender#, [sr, sd, sm, sc, su]]

The value of sender# is the number of the mail sender who sends this message. The

first time that a mail sender sends a message to the user, the program assigns a number

to the mail sender by increasing the value of the largest sender#. For example, a user

has had five email senders’ messages and therefore, the largest sender# is 5. When

a new mail sender sends a message to the user for the first time and program can

not find the corresponding sender# for the mail sender, the program will assign 6

as sender# to that mail sender. The values of sr, sd, sm, sc and su, either 1 or 0,

represent a user’s actual operations on the five types of dispositions. Value 1 means

that the user does the corresponding disposition operation and value 0 means that

the user does not do that. Based upon the three users’ dataset, I have observed that

during the period of the short-term (one day by default), most mail senders only send

one message to the user. Therefore, I normalize the frequencies as 1 and 0. Table 4.1

is an example of records in a user’s short-term data.

A record in long-term data is represented in the space as:

l = [sender#, [lr, ld, lm, lc, lu]]

The value of sender# is the number of a mail sender who has sent at least k messages

in the long-term period and is assigned in the same way as the sender# in s. The

values of lr, ld, lm, lc and lu respectively represent frequencies of each disposition of

the k messages sent by the sender in that period. Table 4.2 is an example of records

in a user’s long-term data.

4.2. The Model 41

sender sr sd sm sc su

1 1 1 0 0 0
2 1 0 0 0 0
4 0 0 0 0 0

Table 4.1: An example of short-term behavior data. This user has received 3 messages
from three distinct email senders (sender 1, sender 2, and sender 4) in a day. For the
email from sender 1, this user reads (sr = 1) and deletes (sd = 1) it. For the email
from sender 2, he only reads (sr = 1) it. For the email from sender 4, he does nothing
with it.

sender k lr ld lm lc lu
1 10 0.8 0.2 0.0 0.0 0.1
2 8 0.5 0.0 1.0 0.0 0.8
3 20 0.0 1.0 0.0 0.0 0.0

Table 4.2: An example of long-term data. This user has received 38 messages from
three distinct email senders. From the first email sender (sender 1), the user has
received a total of 10 messages. He has read 8 messages, deleted 2 messages, and
marked one message unread.(The numbers of each operation are not shown in the
table.) Therefore, for messages from sender 1, the frequencies of reading, deleting,
and marking unread are respectively 0.8, 0.2, and 0.1.

I have used Euclidean distance to compute the distance between two points, s and

l, which correlate with the same sender# in the five dimensional space. Euclidean

distance is the ordinary distance between the two points x = (x1, ..., xn) and y =

(y1, ..., yn) in n−space, which is defined as:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ... + (xn − yn)2

Based on the Euclidean Distance metric, the message variation M is defined as:

∆r = sr − lr

∆d = sd − ld

∆m = sm − lm

4.2. The Model 42

∆c = sc − lc

∆u = su − lu

M =
√

∆2
r + ∆2

d + ∆2
m + ∆2

c + ∆2
u

For example, assume that a user’s long term behavior profile is described in Table

4.2, and the user receives a new message from sender 1 which the user decides to read

and delete, as shown in the first line of Table 4.1. Then, the message variation M for

this message is:

∆ = 〈(1 − 0.8)r, (1 − 0.2)d, (0 − 0)m,

(0 − 0)c, (0 − 0.1)u〉

M =
√

0.22 + 0.82 + 02 + 02 + (−0.1)2

≈ 0.8307

Alternative Calculation of M . Among the five dispositions (reading, deleting,

moving, copying, making unread), frequencies of the first two dispositions (reading

and deleting) can represent how important a mail sender is for the user. Frequencies of

the next two dispositions (moving and copying) can reflect a user’s habits. But as for

the last disposition, marking unread, it does not reflect either relationships or habits.

According to my observations, whether a legitimate user marks a newly received

message unread depends on the actual situation. For example, when a user does not

have time to finish up reading a message, he might mark the message as unread to

reminds himself of that. Based on this observation, I have modified the Euclidean

Distance metric for the operation of marking unread. In my modified Euclidean

Distance, ∆s for other operations are the same as ones in the Euclidean Distance

metric except for this operation. In the modified method, I only care whether a user

ever did that operation (marking unread) rather than the frequency of the operation.

4.2. The Model 43

lu su ∆′

u

> 0.0 1 0
> 0.0 0 1
= 0.0 1 1
= 0.0 0 0

Table 4.3: Calculation of ∆′

u in my modified Euclidean Distance Metric.

If the user ever did that operation in his long-term data (lu more than 0.0) and he

also did that in short-term data, or if the user never did that operation (lu equal to

0.0) in long-term data and he did not do that operation either in short-term data,

∆′

u will be 0. Otherwise, ∆′

u will be 1. Therefore, the value of ∆′

u is either 1 or 0.

Calculation of ∆′

u is described in Table 4.3.

Based on my modified Euclidean distance metric, the alternative calculation of

message variation M ′ is defined as:

M ′ =
√

∆2
r + ∆2

d + ∆2
m + ∆2

c + ∆′

u
2

For example, assume that a user’s long term behavior data is described in Table 4.2,

and the user receives a new message from sender 1 which the user decides to read and

delete (as shown in Table 4.1). Then, the alternative calculation of message variation

M ′ for this message is:

∆ = 〈(1 − 0.8)r, (1 − 0.2)d, (0 − 0)m,

(0 − 0)c, (1.0)u〉

M ′ =
√

0.22 + 0.82 + 02 + 02 + (1.0)2

≈ 1.2961

Parameter pv refers to which calculation method of message variation M is used

in the model. When the parameter pv = 0, the normal Euclidean Distance based

4.2. The Model 44

method is used; when the parameter pv = 1, the alternative method based on my

modified Euclidean distance is used. By default, pv is set to 0.

4.2.2 Sender Confidence C

The number of messages from different mail senders is extremely variable in long-

term behavior data. A given user, in the period of one month, can receive dozens

of messages from one sender while only receiving one from another. Accurate mod-

elling requires an adequate number of samples; to determine whether I have seen a

sufficient number of messages for predictive purposes, I need a per-sender measure

of my confidence in the model. The measure, referred to as sender confidence (C) is

assigned to each mail sender in the long-term data profile according to the number

of messages the mail sender sent in the long-term period.

To measure this C, I divide the number of messages k received from an email

sender by a fixed threshold pC . I also, though, set the maximum possible C value to

be 1. In other words, I define C as:

C = min(
k

pC

, 1)

By default, pC = 10; thus, I am maximally confident in my model with respect to an

email sender once I have received ten or more messages from that sender.

4.2.3 Window Variation W

Window variation W measures the difference between short-term behavior data and

long-term behavior data. The smaller W is, the closer a user’s current behavior is

to his past behavior. It is defined in terms of the values of message variation M

of all messages within the short-term behavior data and their corresponding sender

4.2. The Model 45

confidence (C). Specifically, I define W as:

W =

∑

i CiMi
∑

i Ci

Here, i ranges over all messages in a user’s short-term data window whose corre-

sponding senders can be found in the long-term data window. Ci is confidence value

of the mail sender who sends the message i. For example, consider that a user’s long-

term data is as Table 4.2 and his short-term data is as Table 4.1. Then the window

variation W (with pv = 0 and pC = 10 by default) is calculated as :

M1 =
√

(1 − 0.8)2 + (1 − 0.2)2 + (0 − 0.0)2 + (0 − 0.0)2 + (0 − 0.1)2

≈ 0.8307

C1 = 1.0

M2 =
√

(1 − 0.5)2 + (0 − 0.0)2 + (0 − 1.0)2 + (0 − 0.0)2 + (0 − 0.8)2

≈ 1.3748

C2 = 0.8

W = M1 ∗ C1 + M2 ∗ C2
C1 + C2

= 0.8307 ∗ 1.0 + 1.3748 ∗ 0.8
1.0 + 0.8

≈ 1.0725

As sender 4 doesn’t have a corresponding record in the long-term data, the message

from sender 4 in the short-term data is not counted in the calculation of W .

4.2.4 Detection Threshold Setup

A detection threshold T is used to decide whether the window variation W of a user’s

short-term data is anomalous or not. Specifically, if W > T , then an anomaly is

signalled. A user’s detection threshold is set in terms of W , the average value of

4.3. Simulated Attack Behaviors 46

window variations in training data. The calculation of T is as follows:

W =
P

j Wj

j

T = pWW

Here, j ranges over all short-term data windows in the training data. pW is a pa-

rameter that by default is set to 2.0 according to my preliminary experiments and

knowledge on the user model.

4.3 Simulated Attack Behaviors

To assess the quality of a user’s model, we at least need two values—a false positive

rate and a detection rate (a true positive rate). False positive rates are calculated

using user data, while detection rates are calculated using attacker data. However, it

is extremely difficult to obtain real attack behavior data in the email archive domain.

Therefore, I need to simulate attack behaviors. As there is generally a trade-off

between false positives and true positives in anomaly intrusion detection systems, a

casually simulated attacker might bring about very good experimental results—very

low false positive rates and very high true positives. Therefore, the choice of an

attacker simulation method directly affects the trustworthiness of the experimental

results1.

Because there are too many kinds of attack behaviors, it is not possible to do

experiments for all of them. What we can do is to choose a type of attacker behav-

ior which has been verified to be harder to distinguish from normal user behavior,

compared with other types of attack behaviors. If the system can detect the tougher

attack behavior type, it should have no problem in detecting easier types. It is hard

1In terms of attack behavior models, the key difference from misuse IDSs is that I use attack
models to test my user model and misuse IDSs use attack models to detect attackers through
matching. In the email domain, attackers’ behaviors are very variable, and thus it is very hard to
detect email attackers only through misuse IDSs.

4.3. Simulated Attack Behaviors 47

to verify that a single type of attack behavior is tougher without comparison to other

types. Therefore, we need to systematically design a number of attack behavior mod-

els and choose one out of them.

How can we systematically design a number of attack behavior models? My

method is based on two concepts—attack space and attack scenarios. Their relation-

ships are shown in Figure 4.1. First, I define attack scenarios starting with relation-

ships between users and attackers. The relationships are divided into family relations,

friend relations, coworker relations and non-relations (where attackers do not know

users). Each relationship can reflect one kind of attack goal. Attackers having family

relationships with users are most likely interested in the users’ personal life. How-

ever, attackers having coworker relationships with users most likely want to know the

users’ business information. Well-defined attack scenarios should cover the majority

of the attack space. Then, based on different goals in each attack scenario, I define

attack behavior models covering as much of the space of attack scenarios as possible.

Finally, based on experimental analysis and my knowledge of the email domain, I

choose the most appropriate attack model from the defined attack models for fur-

ther testing of the user model. The criteria for choosing the most appropriate attack

model includes two parts—the system should have more difficulty in detecting this

attack model than others; users themselves should also have difficulty in detecting

actions of this simulated attacker. These criteria will be presented in detail in Section

6.3. In this section, I only focus on the first two steps—defining attack scenarios and

defining attack behavior models in each attack scenario.

Attack Scenario. Based on the four kinds of relationships between attackers

and users, I have designed five attack scenarios, as described below. In order to be

easily understood, I present the attack scenarios in the form of stories and also give

them story-like names.

1. Jealous Wife #1. A wife suspects that her husband is cheating on her. So, she

4.3. Simulated Attack Behaviors 48

scenario1 scenario2 scenario3 scenario4

 attack behavior model

Attack Space

Figure 4.1: Relation between attack space, attack scenario and attack behavior model.
Note that intersections between the scenarios can also exist.

checks her husband’s email to look for proof. Since she is not familiar with her

husband’s email correspondents, she reads every newly received email. Because

I think a spouse is the most likely potential attacker for a user in a family

relationship, I choose a spouse as an attacker representative of family relations.

This scenario can represent both the family and the friend relationships.

2. Jealous Wife #2. A wife suspects that that her husband has an inappropriate

relationship with a woman she knows. She obtains the woman’s email address

by checking contents of her husband’s email. After that, she only checks email

sent by that woman. This scenario can also represent both the family and the

friend relationships.

3. Co-workers. There is competition between two business men. One business

man illegitimately accesses the other’s email account in order to obtain his

business information. Therefore, the attacker is only interested in those email

messages from the few email senders related with the business. This scenario

4.3. Simulated Attack Behaviors 49

can represent the co-worker relationship.

4. Smart Attacker. An attacker knows the mechanism of intrusion detection sys-

tem somehow, and therefore he acts very carefully. So he only reads old messages

and does not touch new mail. This scenario can represent the family, the friend

and the co-worker relationships.

5. Random Vandals. The attackers do not know users. They get the users’ email

account information through dictionary attacks, spyware or other means. Most

of the information in the email archive does not make sense for them and they

do not care whether they will be discovered or not. So they act casually and

randomly. This scenario represents the non-relations.

Attack Behavior Models. Each scenario corresponds to a number of possible

attack behaviors. Based on the five scenarios, the 14 types of attack behavior models

are defined in Table 4.4.

When a simulated attacker must choose an operation between deleting or mark-

ing a message as unread (the attack models AUD, OUD and IUD), either of the

operations is chosen with probability 0.5. For the model RO, the five disposition

operations are independent of each other, each with probability 0.5 to be chosen.

In the first four models (AU , AD, AUD and AN), the hypothetical attacker is

assumed to read every message; in practice, however, it is likely that an attacker would

only be interested in messages from one or a few correspondents. To partially account

for this scenario, I divide email senders into two categories, important and non-

important. More specifically, I define important email senders as those correspondents

with whom a user has a significant social or work connection. I assume that users are

most likely to notice messages from important mail senders; further, in many attack

scenarios, these are the messages that are most likely to be targeted by an adversary.

Important messages are the set of messages that are sent by important mail senders.

4.3. Simulated Attack Behaviors 50

Note that these measures are inherently subjective; in my experiments, I determined

these sets after discussions with each monitored user. For the four models (OU , OD,

OUD and ON), from the important mail sender list of a user, I choose one as the

particular mail sender who has sent a relatively large number of messages.

Though for a particular user a real attacker might behave differently from the

above defined attack models, I believe that for most users the attack models have

covered a large portion of the possible attack space. Which attack model should

be selected to test user models? I discuss this issue further when I present the

experimental results of the attack behavior models in Section 6.3.

In addition, in the defined attack models there is a lack of automated attackers.

Automated attackers are malicious programs which could be used to search for sen-

sitive information in email archives such as credit card numbers. Because their email

access behaviors are distinct from normal users, they should be very easy for the

system to detect. Therefore, I do not include them in my attack model design.

4.3. Simulated Attack Behaviors 51

Attack Model Scenario Description
All-Unread (AU) Scenario 1 Read all new messages and then

mark them as unread.
All-Delete (AD) Scenario 1 Read all new messages and then

delete them.
All-Unread-or-Delete (AUD) Scenario 1 Read all new messages and either

delete or mark them unread.
All-Nothing (AN) Scenario 1 Read all new messages only,

no evasion.
One-Unread (OU) Scenario 2 Read only new messages from a

particular mail sender and
then mark them unread.

One-Delete (OD) Scenario 2 Read only new messages from a
particular mail sender and
then delete them.

One-Unread-or-Delete (OUD) Scenario 2 Read only new messages from a
particular mail sender and
then either delete or mark them
unread.

One-Nothing (ON) Scenario 2 Only read new messages from a
particular mail sender, no
evasion.

Important-Unread (IU) Scenario 3 Read only important messages
and then mark them unread.

Important-Delete (ID) Scenario 3 Read only important messages
and then delete them.

Important-Unread-or-Delete(IUD) Scenario 3 Read only important messages
and then either delete or mark
them as unread.

Important-Nothing (IN) Scenario 3 Read only important messages,
no evasion.

Nothing (NO) Scenario 4 No operation is done on new
messages.

Random-Operations (RO) Scenario 5 Randomly operate on new
messages.

Table 4.4: Description of the 14 attack behavior models. Note that the words“either”
and “randomly” are explained in the part of Attack Behavior Models in Section 4.3.

Chapter 5

Implementation

My implementation includes two parts—collecting data and then analyzing it. Cor-

responding to the two parts, my programs are divided into an online data collection

program and an off-line data analysis program. The data collection program is pre-

sented in Section 5.1. In Section 5.2, I discuss how the data is analyzed.

5.1 Data Collection

IMAP is an international email access protocol used by most mail clients (e.g., Out-

look, Netscape Mail, Mozilla Mail) and many mail servers (e.g., UW IMAP server,

Microsoft Exchange Server). Therefore, I collected IMAP request commands relative

to the five chosen email disposition operations (reading, deleting, coping, moving and

marking unread), which are sent by users from mail clients to IMAP servers. How-

ever, IMAP is not used by that very popular email access method—web mail. But

even so, my results can also apply to web mail, as explained later in Section 5.2.

Privacy Protection. There are fundamental privacy concerns that arise in any

situation where email activity is collected and analyzed. The collected data should not

expose any confidential information about users. In my collected data, only one kind

52

5.1. Data Collection 53

111

msg# sender#

25

67

12

11

dispositions

12523

12

12

12523114

113

112

login time: Mon Oct 25 15:12:19 2004

logout time: Mon Oct 25 20:32:19 2004

Figure 5.1: Sample of one-session records in the activity file of the Ph.D. Student.
Each row represents a new received message in that session. Each number in the
disposition column represents an IMAP request command as shown in Table 5.1. In
this sample, a disposition is actually represented by two or three IMAP requests sent
by mail clients based on the user’s actual operations. For example, the combination
of numbers, 12, represents the disposition—reading, and the combination of numbers,
523, represents the disposition—deleting (see details in Table 5.5).

of information is related with user privacy—email addresses of senders. Therefore,

email addresses of senders are hashed before they are output to hard disk. In a user’s

log file, an email address of a sender is represented in the form of a number. Later, I

present how email addresses are hashed.

Data Collection. Each user has two log files—an email activity file and an

email sender address file. The activity file includes email sender numbers of newly

received messages and the corresponding IMAP request commands relative to the five

dispositions. A user’s activity is recorded when an IMAP session gets closed. The

address file is used to store hashed addresses of all of the email senders who have ever

sent messages to the user. All hashed addresses have the same length of 160 bits. As

it is not convenient to repeatedly store such long numbers in a user’s activity file, I

use the position number of a hashed address in the address file as the sender’s number

in the activity file.

Samples of the two files of the Ph.D. Student user are shown as Figure 5.1 and

Figure 5.2.

5.1. Data Collection 54

463e9c98ddbb1215bea1b21b6bb177a233aa79b0

f16a2e32973ce83d9ff62097e8045d7dd4683e7a

7f7b738462d84c9c60a0eddb9fd3c904932cbf2e

6d233205804858c5424f62385caa9a4b81d6bc4b

a08fb7d3093af1c2fc7a3e7bf8e3f73558f4d4fa

Hashed addresses of email senders

81569c6ccf50b26e8f73461a157b06537122b3fd

Figure 5.2: Sample of records in the address file of the Ph.D. Student. Each row has
a 160-bit SHA-1 hash encoded as 40 hex characters and represents an email sender
address.

IMAP command Description Dispositions
1 fetch body content fetch body content of message read
2 UID store seen mark message as seen read, move, delete
3 UID store delete mark message as deleted move, delete
4 copy not trash copy message to a non-trash folder move, copy
5 copy trash copy message to trash folder delete
6 UID store unseen mark message as unseen mark unseen

Table 5.1: The mapping between IMAP numbers used in the activity file and IMAP
request commands.

Data Collection Codes. Data collection codes were embedded into the daemon

file imapd.c of the University of Washington’s IMAP server (version 2003.339) run-

ning in the Carleton Computer Security Laboratory (CCSL). The CCSL has 4 Linux

servers and 10 desktops (2 Windows and 7 Linux). There are around 15 users in the

CCSL. The data collection code starts to record a user’s activity when a session is

initiated and outputs the records to the file system when the session gets disconnected.

The data structures I added in the imapd.c file are described in Table 5.2. Table

5.3 shows the methods I added or modified for data collection.

5.1. Data Collection 55

Data Structure Type Description
yr data1 array to record a user’s disposition operations on new messages
login time array to store login time of a session
logout time array to store logout time of a session
yr dir array directory where records will be output

Table 5.2: The data structures added in the file imapd.c.

Function Status Function Description
convert new to convert character to number
yr getunseenmail new to get new received email from mail store
yr saveactions new to save disposition operations
mail fetchfromaddr new to get email address of an email sender
sha1 new to hash email address of an email sender
yr outputfile new to output records to disk
hupint modified to output record to disk
trmint modified to output record to disk
inerror modified to output record to disk
fetch work modified to get IMAP command—fetch content body
fetch body part binary modified to output
ptext modified to output
main modified to record activity

Table 5.3: The methods added or modified in the file imapd.c.

5.2. Data Analysis 56

5.2 Data Analysis

My data analysis program does three kinds of work—processing data, building models

for each user and testing the models. The last two kinds of work are presented in

Chapter 6. In the following, I discuss in detail why and how the data are processed

before they are used for building models.

Data Processing. I gathered the IMAP request commands that were sent from

a user’s email client to the IMAP server. But instead of directly modelling the IMAP

request commands, I model a user’s actual operations on messages such as reading and

deleting. As I have discussed in Section 2.1, a user’s actual operations (e.g., reading,

deleting) in his mail client are translated into IMAP request commands which are

sent to the IMAP server.

Even though IMAP is an international standard, mail clients still have slight

differences in what IMAP commands they send for the same user action. However,

according to my observation, users’ actual operations have much more impact on the

variability of IMAP request commands than mail clients. Therefore, I believe that

if pure user behavior (disposition operations) can be modelled, it should be easier

to model the IMAP request commands themselves. In addition, modelling only pure

user behavior actually makes the detection task harder, because with involvement of

email clients, an attacker could be detected if he used a different email client from

the targeted user’s. Finally, because the same basic user operations would also be

used when accessing an archive via a web interface or other access protocols, the

results potentially translate to these other systems in addition to IMAP-based email

archives.

Therefore, I extract the chosen five disposition operations from the IMAP com-

mand data such that variation in email client IMAP behavior was excluded. As mail

clients translate users’ operations slightly differently, I contacted each intended user

5.2. Data Analysis 57

user mail clients
Faculty Mozilla Thunderbird [4]
Ph.D. Student Evolution [1], Mutt [5]
Masters Student Mutt [5]

Table 5.4: Mail clients used by each user.

User Disposition IMAP command sequences
Faculty read 12, 2

delete 523, 53, 3
copy 4
move 423, 43
mark unread 6

Ph.D. Student read 12, 1, 2
delete 523, 53, 3
copy 4
move 423, 43
mark unread 6

Masters Student read 12, 1, 2
delete 53, 3
copy 4
move 423, 43
mark unread 6

Table 5.5: Translation table between each email disposition operation and IMAP
requests. As each user uses different mail clients, the translations might be different.

to ask what mail clients he uses. And then I tested each intended mail client and made

a translation table between each disposition operation and IMAP request commands

for each mail client. Table 5.4 shows the mail clients used by the three monitored

users (for details about the three users’ data, see Chapter 6). Table 5.5 is the trans-

lation between each disposition operation and IMAP requests for each user, based

on what mail clients the users use. Note that for the Ph.D. student, the translation

map comes from the two mail clients she uses. Because there is no mapping conflict

between the two mail clients, for example “1” meaning “unread” in one client but

meaning “read” in the other, I use one mapping for both clients.

Chapter 6

Empirical Results

In this chapter, I use experiments to verify the feasibility of my user model and the

parameters’ influence on the user model. I present results from testing attack models,

testing the feasibility of the user model, and testing parameters’ influence on each

user’s model. Before presenting experimental results, I first discuss data sources and

how experiments are set up in Section 6.1 and Section 6.2. In Section 6.3, I present

an experimental analysis of 14 attack behavior models, one of which is used in the

subsequent sections. User model feasibility is assessed in Section 6.4. The last section,

Section 6.5, analyzes how different values of each parameter impact the effectiveness

of each user’s model.

6.1 Data Source

In September 2004, there were a total of twelve users in the CCSL, but only six of

whom ever used their lab email accounts. Of the six users, three users regularly used

their email accounts. I logged three months worth of IMAP server activity for these

three users. The collected data sets are outlined in Table 6.1. The model was initially

developed and tested using the data from the Faculty user; it was then further tested

58

6.2. Experiment Setup 59

user email usage #days # msgs # senders
Faculty work & personal 85 3997 930
Ph.D. Student work 84 484 202
Master’s Student sysadmin & work 65 2340 73

Table 6.1: Description of the three users’ email account usage. # days: total number
of days of data collected; # msgs: total number of new email messages received in
the days; # senders: total number of distinct senders of email. “personal” means
that email account is for personal use, for example, email messages from friends and
family members. “work” means that email account is for work use, for example, email
messages between student and professor. “sysadmin” means email messages sent by
the systems in CCSL.

on the data sets from the two graduate students. While this user population is not

large or comprehensive, the volumes, backgrounds, and purposes of the email received

by these three individuals are all extremely varied, and as such this data has been

sufficient for an initial evaluation of my approach.

6.2 Experiment Setup

6.2.1 Sliding Window

A user’s message records are taken from his activity file and are put in a record stream.

A sliding window mechanism is used to retrieve the email message records from the

record stream. A record window slides sequentially along the record stream. Figure

6.1 shows how a window slides. A record window is divided into a long-term data

window and a short-term data window. As discussed in Section 4.2.1, the short-term

window represents a user’s current monitored behavior while the long-term window

represents a user’s past behavior. By default, the size of the short-term window (psw)

is set to be equal to one day’s worth of message records of the user, and the size of

the long-term window (plw) is set to be 20 days’ worth of message records. Each time,

a window slides past the number of message records in a user’s short-term window

6.2. Experiment Setup 60

After sliding....

Before sliding....

window1

window2

long−term window sw

long−term window sw

[M][M][M] [M] [M] [M]

[M] [M] [M] [M] [M][M][M][M]

...................................

...................................

[M]

[M]

......

......

[M]

: a message record.

[M][M] [M]

[M]

Figure 6.1: Window sliding mechanism. sw: short-term window; [M]: a message
record.

(e.g., 40). Anomalies are then detected by comparing the behavior on one day to the

user’s average behavior over the 20 immediately preceding days.

Both the short-term window and the long-term window are composed of message

records in the stream, as shown in Figure 6.1. Each message record contains two

kinds of information: one is who sent the message; the other is how the message was

disposed of by the user. A message record is presented as follows:

[M] = [sender#, [Or, Od, Oc, Om, Ou]]

The value of sender# represents the number of the email sender who sent the mes-

sage. Or,Od,Oc,Om and Ou respectively represent the user’s five actual operations—

reading, deleting, copying, moving and marking messages unread. Their values are

normalized either 1 or 0, which has been explained in Section 4.2. Value 1 means

that the user did the corresponding operation. Value 0 means that the user did not

do the corresponding operation.

6.2. Experiment Setup 61

Para Description
pv refer to which calculation method of message variation M is used
pC the least number of messages by a sender with full sender confidence C
pW associated with threshold setup
psw the number of messages in short-term window
plw the number of messages in long-term window

Table 6.2: Description of each parameter.

For each window, my analysis program does two things—it calculates the frequen-

cies of each disposition of message records from each mail sender in the long-term

data window; and it measures the window variation W (see Section 4.2.1) between

the short-term window and the long-term window. Note that I do not attempt to pre-

vent days with unusual behavior from being included in a user’s long-term behavior

data.

6.2.2 Parameters

There are a number of parameters employed by my user model and summarized in

Table 6.2. The default values of each parameter are set up in Table 6.3. I also

assign each parameter a value range as shown in Table 6.4 in order to adjust a set

of optimal parameter values for each user’s model. All these parameters have been

explained in detail in Chapter 4. Value ranges are set up based on my preliminary

experiments and knowledge of the model. The value ranges should be larger with

a large number of users being monitored, because the large number of users might

bring more variable behaviors. However, as I use three users’ data for the preliminary

experimental analysis, the value ranges are currently enough.

6.2.3 Experimental Methods and Types

In terms of experimental methods, the key difference from conventional IDS experi-

ments is that my experiments are per-user based. In my experiments, a pair of false

6.2. Experiment Setup 62

user pv pC pW psw plw

Faculty 0 10 2.0 40 80
Ph.D. Student 0 10 2.0 5 100
Master’s Student 0 10 2.0 30 600

Table 6.3: Default values of each parameter. The values of psw and plw are related
to the average number of new received messages of a user in one day; therefore, they
are different for each user. See Table 6.2 for each parameter’s description.

parameter value list
pv (all users) 0, 1
pC (all users) 1, 2, 10, 20
pW (all users) 1.5, 2.0, 2.5
psw (Faculty) 40
plw (Faculty) 200, 400, 600, 800
psw (Ph.D. Student) 5
plw (Ph.D. Student) 25, 50, 75, 100
psw (Master’s Student) 30
plw (Master’s Student) 150, 300, 450, 600

Table 6.4: Value sets defined for each parameter. The values of psw and plw are related
to the average number of new received email messages of a user in one day.

positive and true positive rates is calculated for each user. In the conventional IDS ex-

periments, false positives and true positives are reported based on data from all users.

The difference results from the different design of alarm response systems1. Conven-

tional IDSs send alarms to administrators. In my user-specific design, an alarm is

sent to the corresponding user, and therefore it makes more sense to calculate false

positives for each user.

Three types of experiments were performed. They were attack model experiments,

user model experiments and parameter experiments. Attack model experiments were

used to choose the most appropriate attack behavior model for use in the other two

types of experiments. User model experiments were used to test the feasibility of

each user’s model. Parameter experiments were used to test how distinct values of a

parameter affect a user’s model.

1Though I do not have a response system yet, I intend for my model to be used in this way.

6.2. Experiment Setup 63

I used two methods to evaluate these experimental results, one method directly

using values of window variation W (referred to as the window-variation method),

and the other using false positives and true positives (referred to as the conventional

method). As a conventional method to evaluate models in the intrusion detection

field, false positives and true positives are used to show the effectiveness of the whole

system. However, from the window-variation method, we can learn about unusual

events in more detail, such as on what exact dates the unusual events happened.

As a result, we are able to analyze causes of the events. Therefore, the window-

variation method can present the models at a lower level and in greater detail. These

two methods can complement each other, helping us view the models from different

perspectives.

In the window-variation method, the whole data set of a user is used to calculate

values of window variation W between the short-term window and the long-term

window in each sliding window. A number of window variations (W) are obtained

for the user. In the conventional method (using false positives and true positives), a

user’s data set is divided into two parts: the first third of the data (approximately one

month of data) are used to determine the value of the attack detection threshold (see

Section 4.2.4); the latter two-thirds of the data are then used to determine true and

false positive rates based on the mixed detection threshold. We refer to the former

part of data as training data and the latter part as testing data. Table 6.5 shows the

three experimental types as well as the evaluation methods used.

Note that the training data used to build my user model might include attacker

activity data. In this case, I assume that attacker activity is only minor part of the

training data, and can be considered as noise similar to user abnormal behavior.

6.3. Attack Model Analysis 64

Experiment Type Evaluation Method Data Division Parameter Setting
attack model window-variation no division default set
user model window-variation no division default set

false and true positives dividing 1/3 and 2/3 whole value list
parameter false and true positives dividing 1/3 and 2/3 -

Table 6.5: Experiment types as well as their experiment methods, data division meth-
ods, and parameter settings.

6.3 Attack Model Analysis

Before I analyze the feasibility of the user model, I first need to study the fourteen at-

tack behavior models (which have been presented in Section 4.3) through experiments

and then choose the most appropriate one as the attacker behavior for testing the user

model. There are two requirements for the most appropriate attack model—detection

difficulty for the system and detection difficulty for users. More specifically, the most

appropriate attack model should be the one that is more (or the most) difficult for

the system to distinguish from user behavior compared with other attack models. In

so doing, I assume that if the system can detect the most evasive simulated attacker,

it can also detect the others. Meanwhile, users themselves have difficulty in detecting

the real attackers who have the same behavior as the most appropriate attack model.

I assume that users are a sort of monitor function, as they are able to notice some

obviously unusual changes in status, such as a new mail being marked as read.

I evaluate the difficulty of system detection by comparing values of window vari-

ation difference ∆W caused by each of the fourteen attack models and each of the

three users. In each window, the calculation of ∆W is

∆W = Wa − Wu

where both Wa and Wu refer to W window variation defined in Section 4.2.3. Wa

is the window variation caused by an attack model and Wu is the window variation

6.3. Attack Model Analysis 65

of a user’s normal behavior. For both of the values, I use the same set of default

parameter values (see Table 6.3) and the same profiled behavior calculated by sliding

the long-term window across all available user data. To calculate Wu, I use user data

for the short-term windows; for Wa, though, the user’s short-term behavior is replaced

with attacker operations based upon the chosen model. The smaller the ∆W is, the

harder it is for the system to distinguish between the attack behavior model and user

behavior.

Figure 6.2 shows ∆W for the fourteen attack models and each user. From this

figure, we can see that the values of ∆W are smallest for the attack models AD, AUD,

and AN (for all attack models, refer to Table 4.4); thus, these attack models are the

hardest to distinguish from normal user behavior. According to these results, AD and

AN are closer to user behavior than AUD; these two attack models, however, are

of minimal concern, as they can be discovered by the users themselves. With attack

behaviors of the model AD, attackers read all new mail messages and then delete

them. The users should suspect that something is wrong when the number of newly

received mail messages is much less than normal. With attack behavior of the model

AN , attackers read new mail messages and then just leave them there. Virtually

all mail client programs have a function of marking as read to a message which has

been viewed. With the obvious mark, users can detect the attackers themselves and

therefore, I leave detection of this kind of attack to users. In contrast, it is harder

for users themselves to discover an attacker who is behaving like the model AUD

(reading all new mail messages and then either marking them unread or deleting

them). Because the attacker deletes only some new email messages, the difference in

the number of new messages is not significant and the user is less likely to notice that

change. As the attacker marks the other new messages unread which have been read

by him, those messages look like normal new messages. Because there is no obvious

unusual change left by the attacker, it is hard for the user herself to detect the

6.4. User Model Analysis 66

attacker. Thus, I chose the model AUD as the attack model for evaluating

the detection ability of my user model.

AU AD AUD AN OU OD OUD ON IU ID IUD IN NO RO
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

w
in

do
w

 v
ar

ia
tio

n
di

ff
er

en
ce

Faculty
Ph.D.
Master

Figure 6.2: Window variation difference ∆W between the fourteen attack models and
users. Each group of bars represents an attack model marked on the X axis. The
Y axis represents ∆W . In each group of bars, the three bars in order respectively
represent window variation difference ∆W between the attack model and each user
(the Faculty, the Ph.D. Student, the Master’s Student). With the attack model AD
(refer to Table 4.4), the negative bar of the Master’s Student means that window
variation caused by the attack model is less than one caused by the Master’s Student.

6.4 User Model Analysis

To evaluate my user model in this section, the experiments are divided into three

parts: the first part is used to test the feasibility of each user’s model based on the

default experiment setup; another two parts are used to assess my user model in a

6.4. User Model Analysis 67

more practical environment in order to complement the default experiment setup.

In the default experiment setup, I assume that the system updates a user’s profile

every day (seeing the long-term window sliding mechanism). I also assume that the

system measures a user’s behavior once a day (seeing the default size of the short-term

window). Therefore, the last two parts of the experiments are used to test how often

a user’s profile should be updated and whether the system is able to detect attackers

from the monitored data mixed with user and attack behaviors.

6.4.1 User Model Feasibility

In this part, I’ve focused on testing the feasibility of each user’s model using the

two evaluation methods—pairs of false positives and true positives, and the window

variation comparison method. The reasons for using the window variation method

are explained in Section 6.2.

In order for a model to be feasible, it must be able to detect a significant number

of attacks while also generating no more false positives than a regular user could be

expected to handle. What is the criteria for a feasible model in the email domain

in terms of false positives and true positives? Although email carries some sensitive

information (e.g., bank information) sometimes, in most cases messages are about

users’ work and daily life. Therefore, I think that it should be acceptable to most

users that the system can detect one intrusive access out of two (or a detection rate

50%). As for false alarm period, it should be acceptable for most of users to be

bothered by false alarms once a week. Of course, the real acceptable false alarm

period and detection rate for a specific user will depend on the user’s security needs.

ROC curves, False Positives And True Positives. Receiver operating char-

acteristic (ROC)2 curves are used to analyze the trade-off between false positives

2ROC analysis was originally developed in the field of signal detection. More recently, besides the
intrusion detection field, it has been used in fields as diverse as language and speaker identification
and medical risk prediction [38].

6.4. User Model Analysis 68

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
Po

si
tiv

e
R

at
e

Default Parameter
Optimal Parameter

ROC of the Faculty User

Figure 6.3: ROC plot for the Faculty.

and true positives for IDSs. ROC curves can indicate how detection rates change as

internal thresholds are varied to generate more or fewer false alarms.

Figure 6.3, Figure 6.4 and Figure 6.5 are ROC curves for each user based on 96

parameter sets, with one point per parameter set. These parameter sets are combi-

nations of the values listed in Table 6.4. With each parameter set, I use the user’s

training data to determine his detection threshold, and then use his testing data and

the detection threshold to calculate a false positive rate and a true positive rate. Each

point in the user’s ROC represents his false positive rate (X axis) and true positive

6.4. User Model Analysis 69

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
Po

si
tiv

e
R

at
e

Default Parameters
Optimal Parameters

ROC of the Ph.D. Student

Figure 6.4: ROC plot for the Ph.D. Student.

rate (Y axis) based on each parameter set.

For the Faculty and the Ph.D. Student, most of the points are located in the

upper left corner, with false positive rate less than 20% and true positive rates more

than 80%3. For the Master’s Student user, however, the points are spread much

more evenly across the range of false positives. These plots show that my model

is a relatively accurate representation of the behavior of the Faculty and the Ph.D.

3I think that the values, 20% and 80%, should be acceptable for most users. The false positive
rate, 20%, also means that the user will be bothered by false alarms once every five days. The
translation has been explained later.

6.4. User Model Analysis 70

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
Po

si
tiv

e
R

at
e

Default Parameters
Optimal Parameters

ROC of the Master’s Student

Figure 6.5: ROC plot for the Master’s Student.

student; the email dispositions of the Master’s Student, however, do not appear to

be significantly determined by the sender of the email message. This discrepancy

can be explained by the fact that this student receives a large number of automated

messages for systems administrative purposes, and these messages originate from a

small number of (non-human) email senders.

To further understand how these false positive rates (f.p.) would translate into

alarms that a user would have to assess, I also analyzed the false alarm period (f.a.).

The false alarm period (f.a.) represents the number of days that will pass on average

6.4. User Model Analysis 71

user psw plw pv pC pW f.p. f.a. t.p.
Faculty(dp) 40 800 0 10 2.0 0.11 9 1.0
Faculty(op) 40 800 0 20 2.5 0.04 25 0.96

Ph.D Student(dp) 5 100 0 10 2.0 0.16 6 0.91
Ph.D Student(op) 5 75 1 20 2.0 0.04 25 0.90

Master’s Student(dp) 30 600 0 10 2.0 0.13 8 0.55
Master’s Student(op) 30 300 0 10 2.5 0.1 10 1.0

Table 6.6: The three users’ results respectively based on default and optimal parame-
ter settings. dp: default parameter set; op: optimal parameter set; f.p.: false positive
rate; fa: false alarm period, the number of days that are passed on average when an
false alarms happens; t.p.: true positive rate. The parameters are described in Table
6.2.

between false alarms. As the size of short-term data is set to be the average number

of new messages received each day, the f.a. is equal to 1/f.p..

Table 6.6 shows every user’s false positive rate (f.p.), average false alarm period

(f.a.), and true positive rate (t.p.) for default and optimal parameter settings. I tested

all combinations of parameters in Table 6.4 for each user and chose the parameter set

which produced the best performance (low false positives and high true positives) as

the optimal parameter set. From this table we can see that for all users, false alarm

periods are relatively long, in that a user would only be bothered once a week at

most, and for the “better behaved” users, they would only be bothered roughly once

a month (on average). Yet, even with these settings, over half (and generally, almost

all) attacks would be detected.

Comparison of Window Variation. In this part, I further evaluate the feasi-

bility of the user model through a direct comparison of window variations caused by

users and the attack model AUD.

Figure 6.6 shows three pairs of window variation curves respectively caused by each

user and the attack model AUD. There is a pair of curves in each user’s figure—the

bottom one shows the values of window variation caused by the user; the upper one

shows the values of window variation caused by the attack model AUD. Each value

6.4. User Model Analysis 72

of the X axis represents a window containing a short-term window and a long-term

window. Each value in the X axis corresponds to two values in the Y axis: the round-

form one represents user window variation; the diamond-form one represents window

variation of the attack model AUD. All points are based on default parameters. The

greater the separation of the two curves, the easier for the detector to distinguish

between the user behavior and the attack behavior model AUD. In the Faculty’s

figure, the two curves are well separated, with only a short overlapping period. It has

been verified that in that short period, the Faculty was away for Christmas vacation

and he did not dispose of his email as usual. Curves in figures of the Ph.D. Student and

the Master’s Student are not as good as the Faculty’s, but overlapping is infrequent.

From the two types of analysis, we can conclude that the models of the two

graduate students are not as good as the Faculty’s, though they are still acceptable.

The results are associated with the way they used their email accounts. The Ph.D.

Student only used her email account for work, and she only received an average of five

new email messages per day. Therefore, the size of her short-term window is setup

to five-message behavior by default. The size 5 is too small for accurate statistics,

because only one message behavior variation can result in large window variation.

For the Master’s Student, though he received an average of 30 new mail messages

per day, most messages were automatically sent by the systems in the CCSL lab. As

most of those system email messages were not that important or urgent, he dealt

with them when convenient, instead of in a timely way. I believe that if the two

graduate students had used their email accounts as fully as the Faculty user, their

models would have been better.

6.4.2 Profile Updates

One question in intrusion detection systems is how often a profile should be updated.

Profile updates should be conservative to prevent attackers from slowly training the

6.4. User Model Analysis 73

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
window number

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

w
in

do
w

 v
ar

ia
tio

n

Faculty
attack model AUD

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
window number

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

w
in

do
w

 v
ar

ia
tio

n

Ph.D. Student
attack model AUD

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
window number

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

w
in

do
w

 v
ar

ia
tio

n

Master’s Student
attack model AUD

Figure 6.6: Window variation comparison between each user and the attack model
AUD. Top: the Faculty; Middle: the Ph.D. Student; Bottom: the Master’s Stu-
dent.

6.4. User Model Analysis 74

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
window number

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

w
in

do
w

 v
ar

ia
tio

n

Faculty
attack model AUD

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
window number

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

w
in

do
w

 v
ar

ia
tio

n

Faculty
attack model AUD

Figure 6.7: Testing profile update. Top: the default experiment setup—the profile
is updated every day. Bottom: the new experimental setup—the first month data
is profiled without further updates.

6.4. User Model Analysis 75

system. Updating a profile should only occur when a user’s disposition habits change.

In my default experiment setup, I assume that a profile is updated every day, and

therefore with the sliding window, it is updated each time the long-term window

slides past a user’s average number of newly received messages in one day (size of the

short-term window). In this part, using the Faculty user as a testing target, the first

month’s data is used as a permanent profile and his subsequent two-months’ worth

of data as monitored behavior data which are divided into a number of short-term

data windows. The short-term windows are each compared with the profile. Figure

6.7 shows pairs of window variation curves caused by the default experiment setup (a

user’s profile being updated every day) and by the new experiment setup (the profile

not being updated).

The figure shows that both experimental setups make the two curves (by user and

by the attack model AUD) separate very well. Therefore, I can conclude that at least

for some users, their profiles can be updated once every couple of months.

6.4.3 Mixed Behaviors

In my default experiment setup, I assume that the system does the detection task

once a day, and therefore the size of short-term window is by default the average

number of messages a user receives in one day. Because it is likely that attackers will

manipulate the archive on the same day as it is legitimately accessed, the monitored

data is likely mixed with behaviors of the user and the attacker. This experiment is

used to assess the detection ability of the system given that the monitored data is

the mixed behavior. I assume that the attacker accesses the archive and then leaves

before the legitimate user gets into work. Therefore, the first half of the messages in

a short-term window are assumed to be disposed by the attack model (AUD) and

the next half by a user.

Table 6.7 shows that detection rates of the system decrease by half compared

6.5. Parameter Analysis 76

user monitored behavior f.p. t.p.
Faculty default 0.11 1.00
Faculty mixed 0.11 0.59
Ph.D. Student default 0.16 0.91
Ph.D. Student mixed 0.16 0.51
Master’s Student default 0.13 0.55
Master’s Student mixed 0.13 0.13

Table 6.7: Testing detection ability of the models by using monitored data (short-term
data window) mixed with behaviors of users and the simulated attackers. “default”:
monitored data only with attack behavior of the attack model AUD; “mixed”: mon-
itored data mixed with behaviors of users and the attack model AUD.

with the default experiment setup. But for the Faculty and Ph.D. Student, the new

detection rates are still acceptable—0.59 and 0.51, which mean that attackers can be

expected to be detected after breaking in twice (two sessions). The system detects

once a day, because short-term is defined as one day. For example, an attacker accesses

a user’s email a couple of times respectively in the first and second day, and he will

be detected in the second day according to the detection rates. But for the Master’s

Student, the new detection rate is not acceptable. From this, I can conclude that the

models of the Faculty and the Ph.D. Student are more robust, because they can still

detect attackers even with mixed behavior data.

6.5 Parameter Analysis

My model consists of four parameters—the short-term window (psw), the long-term

window (plw), the calculation method of message variation (pv), and the sender con-

fidence (pC). Each parameter reflects part of my model. Conventionally, in the

intrusion detection field, people justify a model according to false positives and true

positives. Here, I consider whether we can observe a model from the parameter per-

spective. In this section, I test each parameter to see how different values affect false

positives and true positives of each user’s model.

6.5. Parameter Analysis 77

user psw f.p. t.p.
Faculty 40 (default) 0.11 1.00

30 0.16 0.98
20 0.11 0.98

Ph.D. Student 5 (default) 0.16 0.91
10 0.00 0.80
20 0.00 0.33

Master’s Student 30 (default) 0.13 0.55
20 0.13 0.64
10 0.12 0.68

Table 6.8: Influence of different sizes of short-term data window on each user’s model.
Other parameters are set to the default values.

6.5.1 Short-Term Window Size psw

What is the optimal size of the short-term window (monitored behavior data)? If

it is too small, it will be hard to measure in terms of statistics. If it is too big, the

data will easily get mixed with user behavior and attack behavior (which has been

discussed in Section 6.4.3). The mixed data will make the detection more difficult.

Table 6.8 shows the impact of different values of short-term window on false posi-

tives and true positives for each user’s model. The range of values for the short-term

window is set up based on actual email usage of each user (average amount of newly

received email messages in one day). For the Faculty user we can see that the three

sizes of short-term window (40, 30 and 20) do not make a big difference in false pos-

itives and true positives. So the size of short-term window can be set up as small

as 20. For the Ph.D. Student, the value 10 is best, as it produces good values for

both false positive and true positive. For the Master’s Student, the value 10 is best.

Therefore, I conclude that bigger values (e.g., 30, 40) do not necessarily produce

better performance. However, too small a value (e.g., 5) will result in higher false

positives.

6.5. Parameter Analysis 78

user plw f.p. t.p.
Faculty 800 (default) 0.11 1.00

600 0.16 1.00
400 0.20 1.00
200 0.16 1.00

Ph.D. Student 100 (default) 0.16 0.91
75 0.08 1.00
50 0.02 0.83
25 0.06 0.72

Master’s Student 600 (default) 0.13 0.55
450 0.11 1.00
300 0.29 1.00
150 0.17 0.85

Table 6.9: Influence of different values of long-term data window size on each user’s
model. Note: other parameters are set to the default values.

6.5.2 Long-term Window Size plw

Large long-term window size results in long training time. If it is too small, it will

not be accurate in future behavior prediction. The profile with a small number of

messages would be better if its prediction ability is not greatly affected. In Table 6.9,

each user is assigned four different values of long-term window size according to his

actual email usage. From the table, we can see that for the Faculty user, the value

800 gives better performance than the other three in terms of false positives and true

positives. For the Ph.D. Student, the three values—75, 50 and 25, offer better results

of false positive rates than the value 100. Considering both false positives and true

positives, the value 50 is the best option for her. For the Master’s Student, the value

450 offers the best results of false positives and true positives. Therefore, I conclude

that a large long-term window is not necessarily better than a small one.

6.5.3 Sender Confidence pC

For the parameter, sender confidence(pC), all users are set up with the same range of

values—20, 10, 2 and 1. Table 6.10 shows experimental results. For both the Faculty

6.5. Parameter Analysis 79

user pC f.p. t.p.
Faculty 20 0.11 1.00

10 (default) 0.11 1.00
2 0.15 1.00
1 0.17 1.00

Ph.D. Student 20 0.12 0.95
10 (default) 0.16 0.91
2 0.16 0.98
1 0.19 0.93

Master’s Student 20 0.13 0.55
10 (default) 0.13 0.55
2 0.13 0.58
1 0.13 0.71

Table 6.10: Influence of different values of the parameter pC on each user’s model.
Note: other parameters are set to the default values.

user and the Ph.D. Student, we can see that the larger the parameter value is, the

lower the false positive is. Therefore, the value 20 is the best option for them or 10

for the Faculty. For the Master’s Student, the parameter values only have impact on

true positives. The value 1 is good for the Master’s Student.

6.5.4 Calculation Method of Message Variation pv

There are two value options for the parameter pv—0 and 1. Table 6.11 shows that

in terms of false positives, with 9% (0.16-0.07) improvement on the Ph.D. Student’s

model, the parameter has more impact on her model than the other two users. There-

fore, for the Ph.D. Student, pv should be setup as 1. For the other two users—the

Faculty and the Master’s Student, pv does not have much impact on false positives,

and however, it slightly affects true positives. Therefore, pv = 0 is a little better for

the Faculty while pv = 1 is better for the Master’s Student.

6.5. Parameter Analysis 80

user pv f.p. t.p.
Faculty 0 (default) 0.11 1.00

1 0.11 0.85
Ph.D. Student 0 (default) 0.16 0.91

1 0.07 0.81
Master’s Student 0 (default) 0.13 0.55

1 0.13 0.68

Table 6.11: Influence of different values of the parameter pv for each user. note: other
parameters are set to the default values.

6.5.5 Conclusion about Parameter Analysis

From the above experimental analysis based on each single parameter, it seems that I

can make the following conclusions: different parameter values have different impacts

on each user’s model; and a user’s model might be sensitive to some parameter values

while not being affected by others; in terms of model effectiveness, the system should

customize parameters for each user through optimization. However, the optimization

will result in extra computation cost. Because the optimization may improve effec-

tiveness of the user model, I think that it is worth customizing each user’s model with

a little extra computation cost.

Chapter 7

Discussion

The past several chapters documented the user-specific design, the email user behavior

model implementation, and the testing of the model. This chapter reviews these

results and places them in perspective. I first explain the limitations of my work and

then discuss the implications.

7.1 Limitations

There are a number of limitations in my work that must be considered.

First, only part of the user-specific design is currently implemented. The user-

specific design needs further verification of its feasibility with support from math-

ematics theory. In order to make the design more concrete, more features need to

be explored and more sub-models need to be built based on the features. Each user

should be modelled not only at the level of dynamically-determined parameters but

also at the level of dynamically-chosen sub-models according to the design. It is a

question of balancing computation cost with fidelity to the user behavior model.

Second, my experimental results are based on a very small user population (3

users). I do not believe, however, that my model (or indeed, any simple model of user

81

7.1. Limitations 82

behavior) could ever apply to all users. Indeed, results on one of my test subjects

(the Master’s Student) show that for some users, email dispositions do not correlate

well with email senders. These results are sufficient, however, to conclude that my

modelling strategy has a good chance of working for some high-volume email users.

In the future, more users’ data will be collected to further estimate the accuracy of

my model in a large population.

Third, it should also be noted that a number of assumptions were made when

the data was analyzed. Users tend to receive a highly variable number of messages

per day, but I assumed that users receive a constant stream of messages. In addition

and more importantly, I assume that the detector checks each user’s activity records

once a day. As a result of these two assumptions, the size of the short-term window

(representing a user’s current behavior data) in the experiments was assigned as the

average number of messages received in one day. In reality, attackers might access

users’ accounts some time during a day (e.g., one hour in the middle of a day).

Therefore, the short-term data defined in that way could easily be mixed with user

behavior and attacker behavior. It is difficult for the detector to recognize attacker

behavior in the mixed behavior data. In the future, to avoid the mixed behavior data,

the time frame for short term behavior should be reduced to a single session1. Also,

it is possible that a user has multiple simultaneous sessions (e.g., originating from

different machines) during a single time period. In this case, only one session short-

term data out of the multiple sessions can not represent the user’s complete behavior

on new messages. Therefore, the session-based short-term data should include all

of the simultaneous sessions. In summary, a practical environment is more complex

than my experimental environment.

Fourth, in practice, I would not want to exclude email clients’ behaviors from

1Actually, I collected data based on per session (see Figure 5.1). But I analyzed the data based
on per day.

7.1. Limitations 83

the IMAP request command data, as a user’s email clients can be considered as part

of his behavior patterns. In addition, it is not practical to extract each user’s pure

behaviors, because an email system can have thousands of users who would use many

kinds of mail clients and the extraction algorithm used in this work requires manual

translation between IMAP requests sent by a mail client and users’ actual operations.

Fifth, though I believe that my approach to simulating attack behaviors is sys-

tematic, there is still a significant gap between realistic attacker behavior and the

chosen attack model (AUD). Can I measure or estimate this gap, and can I improve

upon it (i.e. reduce it) in a meaningful way? This is an important question for future

work, both for this problem and for other approaches to user behavior-level anomaly

intrusion detection.

Sixth, my modelling methods are based on Euclidean Distance. There might be

better metrics to use. In the definition of M ′, I ever tried to put ∆′

u
2 outside the

square root and found that the experimental results based on the three users’ data

are worse than those inside the square root. Also, I think the operation, marking

unseen, should not have more impact on the model than other operations. Therefore,

I put it inside the square root. In addition, I assume that most mail senders send one

message during the period of the short term, and therefore, in my model, frequencies

in the short-term data are normalized to either 1 or 0. In reality, some users might

often receive multiple messages from a mail sender during the short term period. I

do not know whether it will matter in my models or not.

Seventh, my work is only concerned with user access patterns on new messages.

Actually, attackers also likely read old messages especially in the first time that they

intrude. Actually, this system can more easily detect attackers, who only read old

messages and do not touch new messages, than those attackers who read new mes-

sages. It is very abnormal behavior that a user is not interested in his new messages.

The experiments on the attack model NO have verified this (see Figure 6.2). How-

7.2. Implications 84

ever, I still think that it is necessary to monitor user access pattern on old messages

in order to make the system more effective. Misuse intrusion detection is a good

option to monitor user behavior on old messages because of two observations. First,

if legitimate users access old messages, they most likely want to get a particular bit

of information, and therefore, they more likely view those old messages from a mail

sender or a couple of mail senders than each message; but attackers most likely access

each message from all kinds of mail senders, especially on their first access. Second,

legitimate users most likely view old messages very fast because they have read them

before; however attackers will read old messages slowly because they are new for the

attackers.

7.2 Implications

While I was doing this work, I found it difficult to conduct experiments and build

models. I tried to look for related books or references that could provide me with

theoretical guidance on these two aspects. Unfortunately, I failed to find these kinds

of books or references. Therefore, I first discuss the implications of my experiments

and modelling, and then discuss the applications to user-specific design.

7.2.1 Experimental Methodology

It is well-known that anomaly IDSs depend on experiments to verify their effective-

ness because it is hard (or impossible) to use pure mathematical methods to verify

that their models are good or not. However, experimental methodologies can have

significant impact on the quality of experimental results (e.g., models’ false positives

and true positives). For the same model, different experimental methodologies can

bring about different results. Currently, however, the anomaly IDS field is lacking in

specific instructions or standards on experimental methodologies, and researchers in

7.2. Implications 85

the field do experiments in their own ways. Based on my work, I summarize from the

following three aspects.

First, for user behavior-level anomaly IDSs, in order to evaluate models’ effective-

ness, besides user behavior data, attacker behavior data is also needed. However, it

is hard to obtain real attack behavior data. The only reliable way to obtain the data

is to simulate attack behaviors. How attack behaviors are simulated is important in

terms of correctly assessing a model. Careless simulation of attackers may provide

results that are too good to be true. The simulated attackers not only affect detec-

tion rates but also false positives rate, because there are generally trade-offs between

false positive rates and true positive rates. It is a problem about how to scientifi-

cally simulate attack behaviors so that the simulated attack behaviors are likely to

represent real attack behaviors. Though many researchers work on defining intrusive

behavior rules for misuse IDSs or design attack scenarios for the purpose of software

vulnerability testing, to my knowledge, no researchers have worked on scientifically

designing attack behavior models for the purpose of testing anomaly IDSs. However,

I think that the work related to attack behavior definition for other purposes can be

used to design attack models for testing anomaly IDSs.

Second, there is lack of guidance about experimental procedures such as the di-

vision of data for training and testing. I think experimental setups can also have

impact on experimental results. For the same model, different experimental setups

might bring about different results. Therefore, when we read experimental results in

a paper, we need to consider whether the experimental setup is reasonable. It is not

easy for readers, who do not have much experience in this aspect, to give a judge-

ment. Other scientific fields such as medicine have a set of uniform standards about

experimental procedures. Experiments which do not comply with the standards are

not accepted regardless of the experimental results. Compared with other fields, the

anomaly IDS field covers a broader scope in terms of data representation, which can

7.2. Implications 86

be user behaviors, system calls, and so on. Therefore, it might be difficult to define

a set of general standards to be applied for all categories. But we might be able to

define a set of standards for each category (e.g., user behavior-level anomaly IDS)

according to the characteristics of each category.

Third, I think that assessment of experimental results in the anomaly ID field

is subjective, mostly depending on the researchers’ own explanation. Normally, re-

searchers use false positives (or false alarm rates), true positives and ROC to assess a

model. But I believe that only if we are very sure that attack behavior data used for

testing can represent real attackers can a system be assessed through the single pair

of false positive rate and true positive rate. Both false positive rates and true positive

rates can be affected by the attack behavior data because of the trade-offs between

them. For example, if attack behavior data comes from a kind of silly attacker, who

can be easily detected, researchers can easily get good experimental results (low false

positives and high detection rates) by setting up an easy threshold. With that thresh-

old, the system is only able to detect that kind of silly attacker and has nothing to do

with other kinds. However, for most anomaly IDSs (not only user behavior-level IDS),

it is hard (or impossible) for researchers to obtain complete attack data even though

they can obtain a couple of real ones (e.g., a few types of real worms or viruses).

Therefore, I think probably we should use some other assessment methods to com-

plement the pair of false positive and true positive rates. In my experiments, besides

false positives and true positives, I also use some low-level data (window variation)

to present the feasibility of my models. In addition, false alarm rates are a better

measure of feasibility analysis of a system than false positives. However they should

be explained clearly in terms of standard units. Further, I think that the criteria of

acceptable false positives and true positives should depend on a specific application,

as each application might have different effectiveness requirements. Finally, how does

one evaluate a ROC, by distributions of points or curve forms? Is it possible to make

7.2. Implications 87

assessment criteria for ROC curves?

7.2.2 Modelling

In the anomaly ID field, some researchers directly apply some existing modelling

methods (e.g., neural networks), which have been used in other fields; some researchers

tailor modelling methods for their IDSs such as NIDES [11]; some researchers modify

existed modelling methods such as Lane’s work [37]. Though anomaly ID work is

tightly connected with modelling methodologies, there is no reference book about

how to build models for anomaly IDSs.

During the time I spent on this research, I consulted people in the statistics

department and I also tried to look for help from some statistics books. However,

neither of them was very helpful, because statistics is so large a field that those people

working on a specific statistical field do not really know the needs of the anomaly

ID field. Also I was not able to quickly get answers to my questions from the books

because I do not have any special knowledge of statistics. However, statistics, as the

most used modelling method in the anomaly ID field, has also been used in many fields

such as economics and medicine. For each field, there are corresponding statistical

subfields such as economics statistics and biological statistics. The anomaly ID field

has its own requirements for modelling, such as real-time events (low computation

cost). Therefore, a specialized subfield in statistics devoted to anomaly ID would be

useful.

However, compared with other statistical application fields, it might be more

difficult to form a set of general statistical theories or instructions for the anomaly ID

field, because of the variety of data representations in the field, where data used for

modelling can be system calls, network packets, user behaviors, or others. However,

we can divide the field into further sub-fields according to data source and provide

modelling tools for each sub-field.

7.2. Implications 88

The statistical-modelling tools for each sub-field can include the following infor-

mation: common statistics errors which can easily occur in modelling; general instruc-

tion for threshold setup, how to deal with unscalable data sizes; and good modelling

examples of anomaly IDSs.

7.2.3 The User-Specific Design

User behavior-level anomaly intrusion detection is one type of defense against insider

attackers. Its key disadvantage is high false positives. In order to lower false positives,

researchers work on selecting precise features, building effective models and designing

domain-specific architectures. My user-specific design, with the same purpose of

lowering false positives, takes advantage of not only the email domain characteristics

but also human beings’ strength, which has been discussed in detail in Chapter 3.

Any other domain which has the same key characteristics as the email domain—one

data file only belonging to one user, such as web bank application—can apply the

user-specific design for its anomaly IDS against insider attackers. As for applications

like databases where data files are shared and accessed by multiple users, only the

first part of the design—user-tailored modelling—can be applied, because that part

only derives from inherent properties of human beings’ behaviors, and has nothing

to do with the email domain. In fact, for any user behavior-level anomaly IDS, the

ideas of the user-tailored modelling part in the design can be considered.

The anomaly ID field has existed for many years; however most work has the

typical drawback—high false positives, especially the work on user behaviors. There-

fore, we need to think about the anomaly ID from a different perspective. While I

was doing this work I thought a lot about human beings’ natural behaviors. I think

that nature is the origin of inspiration. Some researchers work on associating natural

things (e.g., human immune system) with IDSs. I feel that might be the right starting

point for IDS evolution.

Bibliography

[1] Evolution. http://go-evolution.org/Main Page [Accessed: June 2005].

[2] Honeypots. www.honeypots.net [Accessed: June 2005].

[3] Introduction to Genertic Algorithm. www.rennard.org/alife/english/gavintrgb.html

[Accessed: Nov. 2005].

[4] Mozilla Thunderbird. www.mozilla.org/projects/thunderbird [Accessed: June

2005].

[5] Mutt. www.mutt.org [Accessed: June 2005].

[6] Norton AntiVirus. http://www.symantec.com [Accessed: June 2005].

[7] Procmail. www.procmail.org [Accessed: June 2005].

[8] Sendmail. www.sendmail.org [Accessed: June 2005].

[9] Smart Card News. http://www.smartcard.co.uk [Accessed: June 2005].

[10] The Spamhaus Project, 2005. http://www.spamhaus.org [Accessed: June 2005].

[11] D. Anderson, T. Frivold, and A. Valdes. Next-Generation Intrusion Detection

Expert System (NIDES): A Summary. Technical Report SRI–CSL–95–07, Com-

puter Science Laboratory, SRI International, May 1995.

89

BIBLIOGRAPHY 90

[12] Apache Software Foundation. SpamAssassin, 2005. http://spam-

assassin.apache.org [Accessed: June 2005].

[13] A. Boukerche. Security and Fraud Detection in Mobile and Wireless Networks.

Handbook of Wireless Networks and Mobile Computing, pages 309–323, 2002.

[14] R. Buschkes, D. Kesdogan, and P. Reichl. How to Increase Security in Mobile

Networks by Anomaly Detection. In ACSAC’98: Proceedings of the 1998 Annual

Computer Security Applications Conference, pages 3–12, 1998.

[15] P. Chan and S. Stolfo. Toward Scalable Learning with Non-Uniform Class and

Cost Distributions: A Case Study in Credit Card Fraud Detection. In Knowledge

Discovery and Data Mining, pages 164–168, 1998.

[16] C. Chung, M. Gertz, and K. Levitt. DEMIDS: Misuse Detection System

Database System. In Integrity and Internal Control in Information Systems

(IICIS), 1999.

[17] Cisco Inc. Identified Internet Mail. http://www.identifiedmail.com [Accessed:

June 2005].

[18] M. Crispin. Request for Comment (RFC) 3501: Internet Message Access

Protocol—Version 4rev1, March 2003. http://www.faqs.org/rfcs/rfc3501.html.

[19] M. Delany. Internet Draft: Domain-based Email Authentication Us-

ing Public-Keys Advertised in the DNS (DomainKeys), March 2005.

http://www.ietf.org/internet-drafts/draft-delany-domainkeys-base-02.txt.

[20] T. Dierks and C. Allen. Request for Comment (RFC) 2246: The TLS Protocol

Version 1.0, January 1999. http://www.ietf.org/rfc/rfc2246.txt.

BIBLIOGRAPHY 91

[21] W. DuMouchel. Computer Intrusion Detection Based on Bayes Factors for Com-

paring Command Transition Probabilities. Technical report, National Institute

of Statistical Sciences (NISS), USA, 1999.

[22] E.Allman, J.Callas, M.Delany, J.Fenton, and M.Thomas. DomainKeys Identi-

fied Mail (DKIM), October 2005. http://mipassoc.org/dkim/specs/draft-allman-

dkim-base-01.txt [Accessed: Nov. 2005].

[23] Email Marketer. http://www.emaillabs.com/resources statistics.html [Accessed:

June 2005].

[24] Google. Gmail, 2005. http://gmail.google.com [Accessed: June 2005].

[25] A. Gupta and R. Sekar. An Approach for Detecting Self-propagating Email

Using Anomaly Detection. In RAID 2003 Proceedings, volume 2820 of LNCS,

pages 55–72. Springer-Verlag, 2003.

[26] J. Hall, M. Barbeau, and E. Kranakis. Anomaly-based Intrusion Detection Using

Mobility Profiles of Public Transportation Users. In WiMob: Wirless and Mobile

Computing, Networking and Communications, 2005.

[27] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber. A

Network Security Monitor. In Proceedings of the IEEE Symposium on Security

and Privacy, 1990.

[28] Hewlett-Packard. HP-Fraud Management System, 2003. http://www.hp.com.

[29] S. Hofmeyr. An Immunological Model of Distributed Detection and its Application

to Computer Security. PhD thesis, University of New Mexico, 1999.

[30] H. Inoue and S. Forrest. Anomaly Intrusion Detection in Dynamic Execution

Environments. In NSPW ’02: Proceedings of the 2002 New Security Paradigms

Workshop, 2002.

BIBLIOGRAPHY 92

[31] Internet Security Systems Inc. RealSecure Internet.

http://www.iss.net/prod/rsds.html [Accessed: June 2005].

[32] J.Thorpe and P. van Oorschot. Graphical Dictionaries and the Memorable Space

of Graphical Passwords. In 13th USENIX Security Symposium, 2004.

[33] H.-A. Kim and B. Karp. Autograph: Toward Automated Distributed Worm

Signature Detection. In USENIX Security Symposium, pages 271–286, 2004.

[34] C. Ko, G. Fink, and K. Levitt. Automated Detection of Vulnerabilities in Priv-

ileged Programs by Execution Monitoring. In Proceedings of the 10th Annual

Computer Security Applications Conference, pages 134–144, Orlando, FL, 1994.

IEEE Computer Society Press.

[35] C. Kreibich and J. Crowcroft. Honeycomb - Creating Intrusion Detection Signa-

tures Using Honeypots. In Proceedings of the Second Workshop on Hot Topics

in Networks (Hotnets II), November 2003.

[36] C. Krugel, T. Toth, and E. Kirda. Service Specific Anomaly Detection for Net-

work Intrusion Detection. In SAC ’02: Proceedings of the 2002 ACM Symposium

on Applied Computing, 2002.

[37] T. Lane. Machine Learning Techniques for the Computer Security Domain of

Anomaly Detection. PhD thesis, Purdue University, 2000.

[38] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber,

S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissman. Evaluating In-

trusion Detection Systems: The 1998 DARPA Off-line Intrusion Detection Eval-

uation. In Proceedings of the 2000 DARPA Information Survivability Conference

and Exposition. DARPA, 2000.

BIBLIOGRAPHY 93

[39] M. Mahoney and P. Chan. PHAD: Packet Header Anomaly Detection for Iden-

tifying Hostile Network Traffic. Technical Report CS-2001-04, Florida Institute

of Technology, 2001.

[40] R. Maxion and T. Townsend. Masquerade Detection Using Truncated Com-

mand Lines. In DSN ’02: Proceedings of the 2002 International Conference on

Dependable Systems and Networks, 2002.

[41] Microsoft. Microsoft Outlook. http://www.office.microsoft.com [Accessed: June

2005].

[42] Microsoft. Hotmail, 2005. http://www.hotmail.com [Accessed: June 2005].

[43] J. Myers and M. Rose. Request for Comment (RFC) 1939: Post Office Protocol—

Version 3, May 1996. http://www.faqs.org/rfcs/rfc1939.html.

[44] M. Oka, Y. Oyama, H. Abe, and K. Kato. Anomaly Detection Using Layered

Networks Based on Eigen Co-occurrence Matrix. In RAID 2004 Proceedings,

volume 3224 of LNCS, pages 223–237. Springer-Verlag, 2004.

[45] P. Porras and P. Neumann. EMERALD: Event Monitoring Enabled Responses

to Anomalous Live Distrubances. In National Information Systems Security

Conference, 1997.

[46] B. Ramsdell. Request for Comment (RFC) 2633: S/MIME Version 3 Message

Specification, June 1999. http://www.ietf.org/rfc/rfc2633.txt.

[47] A. Roddy and J. Stosz. Fingerprint Features—Statistical Analysis and System

Performance Estimates. Proceedings of IEEE, 85:1390–1421, 1997.

[48] M. Schonlau, W. DuMouchel, W. Ju, A. Karr, M. Theus, and Y. Vardi. Computer

Intrusion: Detecting Masquerades. Statistical Science, 16(1):1–17, 2001.

BIBLIOGRAPHY 94

[49] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm Fingerprint-

ing. In SOSP03:19th ACM Symposium on Operating Systems Principles, August

2003.

[50] S. Singh, C. Estan, G. Varghese, and S. Savage. The EarlyBird System for Real-

time Detection of Unknown Worms. Technical Report CS2003-0761, University

of California, August 2003.

[51] S. Smaha. Haystack: An Intrusion Detection System. In 4th Aerospace Computer

Security Applications Conference, 1988.

[52] A. Somayaji. Operating System Stability and Security through Process Home-

ostasis. PhD thesis, University of New Mexico, 2002.

[53] S. Stolfo, C. Hu, W. Li, S. Hershkop, K. Wang, and O. Nimeskern. Combining

Behavior Models to Secure Email System. Technical report, Columbia University,

April 2003.

[54] B. Sun, F. Yu, K. Wu, and C. M. Leung. Mobility-based Anomaly Detection in

Cellular Mobile Networks. In WiSe ’04: Proceedings of the 2004 ACM Workshop

on Wireless Security, 2004.

[55] C. Taylor and J. Alves-Foss. An Empirical Analysis of NATE: Network Analysis

of Anomalous Traffic Events. In NSPW ’02: Proceedings of the 2002 New security

paradigms Workshop, 2002.

[56] H. Vaccaro and G. Liepins. Detection of Anomalous Computer Session Activity.

In Proceedings of IEEE Security and Privacy, May 1989.

[57] K. Wang and S. Stolfo. Anomalous Payload-based Network Intrusion Detection.

In Proceedings of RAID’04, Sep. 2004.

BIBLIOGRAPHY 95

[58] WheelGroup Corporation. Brochure of the Netranger Intrusion Detection Sys-

tem. http://www.wheelgroup.com [Accessed: June 2005].

[59] D. Whyte, P. van Oorschot, and E. Kranakis. Addressing Malicious SMTP-

based Mass-Mailing Activity Within an Enterprise Network. Technical Report

TR-05-06, Carleton University, 2005.

[60] M. Wong and W. Schlitt. Internet Draft: Sender Policy Framework

(SPF) for Authorizing Use of Domains in E-MAIL, version 1, June 6 2005.

http://www.ietf.org/internet-drafts/draft-schlitt-spf-classic-02.txt.

[61] P. Zimmerman. The official PGP user’s guide. MIT Press, Cambridge, MA,

1995.

