No Web Site Left Behind:
Are We Making Web Security Only for the Elite?

Terri Oda, Anil Somayaji
School of Computer Science
Carleton University
Ottawa, Canada
Email: {terri,soma} @ccsl.carleton.ca

Abstract—The web is riddled with flaws that make it unsafe.
Protection methods exist, but current web security solutions are
often designed to be deployed by programmers and security
experts. Unfortunately, programmers and web security experts
are not always available: many sites are created by graphic
designers with more artistic backgrounds, and others involve
web applications installed by non-programmers who want a
website to fit a targeted need. These non-expert page creators
may find web security solutions confusing and difficult to
implement because they assume significant technical expertise.
While solutions designed for experts are valuable, solutions for
non-experts are needed to make the web safer.

Keywords-computer security; web security; web develop-
ment; usable security

I. INTRODUCTION

The web is becoming a dominant threat within computer
security. In the second half of 2009, 82% of reported
commercial vulnerabilities were related to web technologies
(up from 78% in the first half of 2009) [1]. A report of
cases investigated by 7safe in the UK found that 86% of
studied attacks exploited a vulnerability in the web interface,
while only 14% targetted other parts of the infrastructure
[2]. Attackers know that valuable data and credentials pass
through the web, and the web interface is usually more
accessible to outsiders, thus making the web a logical point
of attack.

Those wishing to protect their websites are not without
resources. There are a variety of secure coding guides
available as well as commercial software to aid in finding
bugs and preventing attacks. Research is being done into
new security policies and other ways to protect web pages.
But while good solutions exist, they do not seem to have
had the widespread impact on web security that one might
hope. Vulnerabilities remain pervasive: A recent survey from
WhiteHat Security claims 83% of sites have had at least one
serious vulnerability, with 64% of sites showing a serious
vulnerability at the time of the report [3].

It is easy to blame web developers for the current state
of affairs. After all, they are responsible for producing
secure sites and protecting their users. Presumably, any
sufficiently experienced programmer should be able to learn

how to write secure code. But while we may call them web
developers, are web developers really programmers?

Although many sites are created by trained professionals,
at least some are created and maintained by random indi-
viduals: pet owners, parents, sports teams, garage bands,
etc. While some of these people may have programming
experience, many of them simply want a digital soapbox to
stand on or place to chat with others. Even web professionals
are not all programmers: Many come not from a computer
science background, but an artistic one.

However, current web security solutions rely heavily upon
programming expertise. Much of the jargon used requires
understanding of concepts related to computer programming,
and fixing problems may require extensive reimplementation
of sites using more secure programming practices. As a
result, explanations of web security issues may be incom-
prehensible to many web page creators, both professionals
and non-professionals.

Because existing web security literature and the available
solutions are targeted at more experienced web program-
mers, we are indirectly helping perpetuate the myth that
people with smaller sites need not worry about security. In
addition, by requiring significant background knowledge we
may have made the cost of security knowledge too high
relative to the benefits for small sites.

This is a hard problem to solve, but as it stands we run the
risk of ghettoizing smaller sites. While securing large sites
is clearly valuable, can we really be said to be providing
security for the web if so many sites are left behind?

II. PAGE CREATORS ARE NOT ALL PROGRAMMERS

When computers first became popular, many magazines
provided articles based upon the idea that everyone would
write their own custom programs. But while hobbyists then
may have typed in code from magazines, the majority of
modern computer users would rather use programs created
by others. We sometimes assume that the web is much the
same: many users, fewer programmers, and those program-
mers are often professionals who write code for a living.

But the web is less like computer programming and more
like desktop publishing. The desktop publishing revolution



gave individuals easy ways to produce newsletters, posters,
books, and other written materials for wide distribution.
Telephone poles are still covered with flyers from local
bands, small businesses, and others. But many people want
to get their message further than the local street corner,
so freely available web applications and HTML editors
hare replaced the printers and desktop publishing software.
Anyone can blog about their cat, and organizations who
were printing out flyers may now run small web sites where
members can communicate using a bulletin board system
or keep their contact information up to date. Anyone who
wants to share can make use of the web.

The web has also attracted people who formerly would
have pursued print design. You can see this in the titles
used for web professionals. While “Web developer” ranked
as the most common title in a 2008 survey, many of the titles
show ties to graphic design: web designer, designer, creative
director, art director among them [4]. You can also see the
artistic roots of web design by observing the other services
offered by web design companies: logo creation, brochures,
business cards and other services traditionally offered by
graphic designers imply a very artistic staff. There is always
a market for making your message more beautiful. The end
result is that while many sites on the web are created by
programmers, others are created by graphic designers and
by individuals from very diverse backgrounds.

III. WEB SECURITY IS FOR PROGRAMMERS

When we look at educational materials regarding web
security, many assume a high level of technical profi-
ciency/comprehension in the reader. For example, one can
tell from the name alone that the 2010 CWE/SANS Top
25 Most Dangerous Programming Errors [5] is intended for
those interested in programming, a fact reinforced by the list
of intended users. Even the OWASP Top 10 [6], a similar
list for web application security which could in theory be
accessible to a more general audience, describes itself as “a
great start to your secure coding security program.”

Overviews like these lists serve as a starting point to
understanding web security, yet they are unsuitable for many
web professionals and amateurs who run websites. If these
people do not understand the issues well enough to analyze
their risks, they cannot make informed security decisions.

Although we might wish it otherwise, there are no magic
bullets in web security. Many solutions require reimplemen-
tation of parts of a website to add in better input and output
sanitization [7], complex HTML modification [8], or other
checks. Though we might speed the discovery of bugs using
a web application vulnerability scanner or other tools, the
end result is that someone will eventually have to change
the code. In theory, such changes should be done by a
programmer.

Unfortunately, by making it seem like security is the
job of the programmer, we give the impression that only

programmers need to worry about security. While we may
want solutions to be provided by programmers right now, it
does not follow that only programmers need to understand
security. If that were true, why do we attempt to teach
users about how to create and use passwords? Users are
exposed to risk, and thus are expected to take on some of
the responsibility for securing their data. Similarly, web site
maintainers suffer the most if their sites are compromised,
even if they have just downloaded and installed some soft-
ware, not written any themselves. If all web site creators
and maintainers were more knowledgeable about security,
they could migitate their risks by being more vigilant about
updates or make better choices in the software they use.

IV. NON-PROGRAMMERS NEED SECURITY

It is tempting to assume that sites created and maintained
by non-programmers are not a problem. After all, the large
sites seem most likely to garner attack since they are more
valuable: they are more likely to handle large sums of
money, they have more visitors so they can provide greater
exposure, and they often have access to a large number of
user credentials.

It is hard to gather numbers for how many sites are created
by non-programmers. It may be that even many large sites
are developed by web firms whose staff is largely artistic.
Some businesses may allocate so little money or time to
their web sites that security is impossible even for experts,
let alone designers who would need to learn the necessary
skills within their own busy schedules. But it is not like such
sites advertise their potential insecurity.

What we can examine to get a picture of the scale of
the problem are amateur websites. Websites for community
groups, parents, sports teams, etc. are fairly likely to use
free software packages to provide things like blogging
software or web forums. It is fairly easy for a small group
or individual to rent a virtual machine for hosting, plus
many people have basic hosting provided with their Internet
service. In addition, such custom solutions allow individuals
and groups more control over their data and the applications
they use. This can make such a setup more attractive than
other managed solutions. If we can get a rough idea of the
number of installs of such software, we can get a rough idea
of how many sites may be maintained by non-programmers.

There are many popular free web applications for web-
mail, content management, and other services. Two of inter-
est are Wordpress [9], a blogging package, and phpBB [10],
a web forum application. To get a sense of the number of
such sites available, we searched Google for “powered by
Wordpress” which returned 78,300,000 hits and “powered
by phpBB” which returned 363,000,000 hits. While not
every Google hit on these phrases correspond to working
install, they do indicate a large number of installs and a
user community which discusses them.



Do these sites represent a significant risk to the world?
With headlines like, “Half-Million Sites Mostly Running
phpBB Forum Software Hacked In Latest Attack” [11] we
can make an educated guess that these do indeed represent
an attack vector worth noting.

Many smaller sites assume that they are not at risk because
of their size. Still others assume they are safe because they
do not handle money. But the who and why of attacks are not
what one might assume. Social/Web 2.0 sites are currently
the most likely to be attacked, with retail sites and financial
sites lagging behind [12]. And the goals of hacking are
also not quite what users assume: the number one goal for
attackers seems to be defacement and planting malware, with
monetary loss fourth on the list of goals [12]. In a mid-2008
report, IBM estimated that 75% of web sites with malicious
code were legitimate sites that had been compromised [13].

One might think that if the goal of an attack was to
spread malware, then larger sites would be ideal. But larger
sites are better protected, so the cost of attacking them is
relatively high. Attackers have automated tools to exploit
web sites [14], and these tools often target popular software
such as WordPress and phpBB [15], [11]. Automated com-
promise tools make it worthwhile for attackers to attempt
to compromise smaller sites. They may have fewer users to
compromise, but they still have enough to justify the effort.

V. TOWARDS WEB SECURITY FOR EVERYONE

Users are said to reject security advice for rational rea-
sons, since the cost of following the advice is higher than
the benefits they see [16]. So while it may be worthwhile
for attackers to compromise smaller sites, can we make it
worthwhile for smaller sites to improve their security?

It may be an uphill battle. Many people have a negative
impression of security as unusable, frustrating or pointless
[17]. In addition, perceived risks may be much lower than
actual risks. Risks for smaller sites are very difficult to clas-
sify. Since smaller sites handle less or even no money, risks
cannot necessarily be turned into dollar losses. Instead, risks
for site operators may be more intangible: embarrassment,
angry users, private data exposed. For many these risks may
not seem so severe. If someone installs malicious code on
a your soccer team’s website, you could just apologize and
fix it; people will probably stay on the team even if the web
site is broken. It may be easier to just do backups in case the
site is defaced than to do than security updates. If the cost
of a breach is sufficiently low, it is very difficult to create a
solution that will seem worth the trouble.

This is not to say that smaller sites should not be
concerned about security. Compromises on small sites can
still hurt site operators and users. Many users do care
about downtime and privacy. Users reuse passwords, so
compromised passwords can hurt users elsewhere. Sites can
be used to attack other sites or users. For small businesses,
a compromise can mean real loss of revenue. For everyone,

time spent on recovering a hacked website is time not spent
on other things. However, while these costs are real, they
may be apparent only when it it too late.

So how can we provide security for people who, effec-
tively, do not care about security?

One approach is to assume that web developers are
going to make security mistakes and we should provide
environments and tools that minimize the harm they can
create [18]. The web developer perceives no cost when
security is provided as part of the environment. Some of
the infrastructure of the web already has security features
built in: JavaScript’s sandbox and same origin policy both
significantly limit the scope of potential attacks. Another
route would be to target tools that appeal most to those
uninterested in programming. For example, HTML editors
such as Adobe Dreamweaver are popular among those
who want to create websites without learning to program.
Modifying such tools so that they produce more secure code
might be one way to integrate secure coding practices as part
of the workflow of a web page creator without diverting their
attention from the task at hand.

We can also attempt to get people to care about security.
Although security education is not always effective for
disinterested users [16], without education we are unlikely
to have interested users. Better educational materials can
allow users to become more aware of risks and stay abreast
of modern attacks: it needs to provide advice which is
reasonable relative to the risks, relevant to the users, and
up-to-date. Perhaps security messages need to be more like
marketing messages: short, for a specific target audience,
and perhaps even entertaining in order to better engage the
audience with the message.

Next, it may be useful to provide some security solutions
that require minimal intervention. Some research has been
done on security policy mechanisms such as the Origin:
header [19], Content Security Policy (CSP) [20] and SOMA
[21]. The risk for programmers is that in trying to make
such solutions sufficiently flexible they become totally un-
suitable for less sophisticated web developers. For example,
the CSP specification includes mathematical set definitions
and pseudocode that may be impenetrable for many page
creators. While heavyweight security policies have a place,
they have a higher cost of use, and can be more expensive to
implement than the costs of a breach, especially for smaller
sites.

Another way to handle the problem is to push the security
onto someone else along the line. Site designers are not the
only ones who can provide security enhancements. Security
policies can also be configured by systems administrators.
(For smaller organizations, the system administrator and the
web developer may be the same person.) Similarly, web
application firewalls can provide another layer of security,
but they may require complex tuning and monitoring, or
they may become obsolete quickly as heuristics no longer



detect all attacks. Such programs have largely been created
by commercial interests, and the space might benefit con-
siderably from more research and less hype.

Web security can also be pushed on to the user level, with
more complex web security suites and improved browsers.
These in theory could protect users even if they visit sites
with vulnerabilities and exploits. Currently, many popular
security extensions require significant work on the part of
the user. The popular browser security extension, NoScript,
made Computerworld’s list of “Top 10 Firefox Extensions
to Avoid” [22] due to its poor usability. A more usable
solution would probably be akin to a virus scanner (and
likely bundled with one) in that it would be something the
user could run in the background. The web is in some ways
the worst possible scenario for antivirus because every page
is a custom application, and many change regularly. Current
packages focus heavily upon drive-by-downloads and may
rely upon whitelisting for popular domains. This leaves users
very exposed. But while client-side solutions may seem
impossible at a glance, software such as NoScript shows
that end-users may be more interested in security than one
might expect. It is our hope that researchers will be able to
find more usable solutions on the client side.

Right now, the last resort is that if a user is convinced
that security is necessary, they can hire expert security help.
But how many people would hire a security guard to watch
their bicycle? How many would become a police officer to
ensure that their home was safe? The current web security
models assume you either are willing to hire an expert or
become one, both of which are excessive for many web sites.
It seems like there should be a large market for the web
equivalent of a bike lock, if only such a thing existed. But
for now, expert help is perhaps the safest security suggestion.

VI. CONCLUSION

While it is incredibly valuable to provide high quality
security resources and solutions for those best able to
understand and implement them, this should not be done
exclusively. Even web professionals may find the existing
literature challenging due to the assumptions made within.
As a result, web security is mostly accessible to the elite
of the web world. But if we want to provide a safer web
experience for all users, we cannot assume that only the
elite matter. Users will continue to visit smaller sites for a
variety of reasons. Dealing with this problem is difficult, as
it is hard to motivate smaller sites to care about security,
and even harder to teach them to be secure. If we can view
this as a challenge rather than a reason to avoid trying, we
stand to make great gains in overall security. As of now, we
still have a long way to go.

ACKNOWLEDGEMENTS

This work was supported by NSERC through the ISSNet
strategic network and the Discovery grant program. We also

would like to thank the members of the Carleton Computer
Security Laboratory who have provided ongoing feedback
for this research.

REFERENCES

[1] “Web application security trends report — q3-q4, 2009,”
Cenzic Inc., 2009.

[2] “UK security breach investigations report: An analysis of data
compromise cases security breach investigations report: An
analysis of data compromise cases,” 7safe, 2010.

[3] “Fall 09 website security statistics report,” WhiteHat Security,
Tech. Rep., 2009.

[4] A List Apart, “Findings from the a list apart survey for
people who make websites, 2008,” 2008. [Online]. Available:
http://aneventapart.com/alasurvey2008/

[5] “2010 CWE/SANS top 25 most dangerous programming
errors,” The MITRE Corporation, Tech. Rep., Feb 25 2010.
[Online]. Available: http://cwe.mitre.org/top25/

[6] “OWASP top 10,” OWASP, Tech. Rep., 2007. [Online].
Available: http://www.owasp.org/index.php/Top_10_2007

[7] “XSS (cross site scripting) prevention cheat sheet,” OWASP,
Jan 16 2010, available from http://www.owasp.org/.

[8] C. Jackson and H. J. Wang, “Subspace: Secure cross-domain
communication for web mashups,” in Proc. of the 16th In-
ternational World Wide Web Conference (WWW2007), Banft,
Alberta, May 8-12 2007.

[9] “Wordpress.” [Online]. Available: http://wordpress.com
[10] “phpbb.” [Online]. Available: http://www.phpbb.com

[11] “Half-million sites mostly running phpbb forum software
hacked in latest attack,” CyberInsecure.com, May 12 2008.

[12] “The web hacking incidents database 2009: Bi-annual report,”
Breach Security, Aug 2009.

[13] “IBM Internet Security Systems X-Force® 2008 mid-year
trend statistics,” IBM Global Technology Services, Tech.
Rep., Jul 2008.

[14] “X-force® 2009 trend and risk report: Annual review of
2009,” IBM Security Solutions, Tech. Rep., 2009.

[15] E. Howard, “Wordpress injection attack and “affiliate ping-
pong”,” SophosLabs blog, 2010.

[16] C. Herley, “So long, and no thanks for the externalities:
The rational rejection of security advice by users,” Proc. of
The 2009 New Security Paradigms Workshop (NSPW’09), pp.
133—144, Sep 8-11 20009.

[17] A. Adams and M. A. Sasse, “Users are not the enemy,”
Communications of the ACM, vol. 42, no. 12, pp. 41-46,
1999.

[18] G. Wurster and P. C. van Oorschot, “The developer is the
enemy,” New Security Paradigms Workshop (NSPW’08), Sep
2008.

[19] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses
for cross-site request forgery,” in Proc. of ACM Computer and
Communications Security (CCS’08), 2008.

[20] B. Sterne, “Security/csp/spec,” Mozilla Corporation, Tech.
Rep., 2009. [Online]. Available: https://wiki.mozilla.org/
Security/CSP

[21] T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji,
“SOMA: Mutual approval for included content in web pages,”
in Proc. of ACM Computer and Communications Security
(CCS’08), Oct 27-31 2008, pp. 89-98.

[22] P. Smith, “Top 10 firefox extensions to avoid,” Computer-
world, Apr 2007.



