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Abstract. Although multi-label classification has become an increas-
ingly important problem in machine learning, current approaches remain
restricted to learning in the original label space (or in a simple linear
projection of the original label space). Instead, we propose to use ker-

nels on output label vectors to significantly expand the forms of label
dependence that can be captured. The main challenge is to reformulate
standard multi-label losses to handle kernels between output vectors. We
first demonstrate how a state-of-the-art large margin loss for multi-label
classification can be reformulated, exactly, to handle output kernels as
well as input kernels. Importantly, the pre-image problem for multi-label
classification can be easily solved at test time, while the training pro-
cedure can still be simply expressed as a quadratic program in a dual
parameter space. We then develop a projected gradient descent training
procedure for this new formulation. Our empirical results demonstrate
the efficacy of the proposed approach on complex image labeling tasks.

1 Introduction

Multi-label classification is a central problem in modern data analysis, where
complex data items, such as documents, images and videos, exhibit multiple
concepts of interest and thus belong to multiple non-overlapping categories. For
example, in text categorization, a news article or web page is often relevant to a
set of topics; similarly, in image labeling, an image can contain multiple objects
and therefore be assigned multiple class labels. Although multi-label classifi-
cation has been well investigated, it continues to receive significant attention.
Initial work considered transforming multi-label classification to a set of indepen-
dent binary classification problems [1], but this approach proved unsatisfactory
as it failed to exploit label interdependence [2]. A key issue has since become
capturing label dependence to improve multi-label classification accuracy. Many
approaches have been developed to exploit label dependence in multi-label learn-
ing, including pairwise dependence methods [3, 4], large-margin methods [5–8],
ranking based methods [9–12], and probabilistic graphical models [13–15]. Un-
fortunately, these methods work in the original label space, limiting their ability
to capture complex dependence structure in a computationally efficient manner.
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There has been recent interest in multi-label methods that work in trans-
formed label spaces [16–21], primarily based on low-dimensional projections of
high dimensional label vectors. For example, random projections [16], maximum
eigenvalue projections [18, 17], and Gaussian random projections [21] provide
techniques for mapping high dimensional label vectors to low dimensional code-
words to improve the efficiency of multi-label learning. Canonical correlation
analysis (CCA) has also been considered for relating inputs to label projections
[20]. However, these projection approaches divide the learning problem into sep-
arate dimensionality reduction and training steps, which unfortunately does not
ensure that the reduced output representation is amenable to predictor training.
Max margin output coding [19], on the other hand, combines output projec-
tion and prediction model learning in a joint optimization, but unfortunately it
must consider every label combination while ignoring the residual error from the
projected representation back to the original label set, compromising accuracy.
These methods primarily focus on reducing output dimension to improve effi-
ciency, rather than attempt to explicitly capture richer label dependence. More-
over, the proposed label vector projections are limited to linear transformations,
which cannot capture nonlinear dependence between labels.

Instead, in this paper we propose a new multi-label classification approach
that uses output kernels to capture more complex nonlinear dependences be-
tween labels in a flexible yet tractable manner. Such an approach significantly
expands the form of label dependences that can be captured, both at training
and test time. Although kernel methods have been widely used for expanding
input representations, kernels have yet to be used to explicitly capture nonlin-
ear output structure in multi-label classification. We base our formulation on
a recent large margin multi-label approach that minimizes calibrated separation
ranking loss [8]. Such a loss achieves state-of-the-art results in multi-label clas-
sification, but it makes kernelization a challenge because it is different from any
loss formulation that has been previously shown to be kernelizable. Demonstrat-
ing that a tailored multi-label loss can be equivalently re-expressed in terms of
output kernels is one of the key contributions of this paper.

The remainder of the paper is organized as follows. After reviewing related
work on learning with output kernels in Section 2, we will introduce the main
multi-label classification formulation we use in Section 3. Our formulation is
based on the calibrated separation ranking loss of [8], which we show can be
equivalently re-expressed using an output kernel in Section 4. In particular, we
produce a standard quadratic program in dual parameter space that encodes
output labels and input features both in kernel forms. We also show that the
pre-image problem for multi-label classification can be easily solved at test time.
A scalable projected gradient descent optimization algorithm is then presented
in Section 5. Finally, we conduct experiments on multi-label data sets in Sec-
tion 6, and compare to standard multi-label classification. Our empirical results
demonstrate the efficacy of the proposed approach when the labels demonstrate
complex dependence structure. We conclude the paper with a brief discussion of
future work in Section 7.
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2 Related Work: Learning with Output Kernels

Although other losses have been re-expressed in terms of output kernels, cur-
rent formulations have either assumed a least squares loss or a simple 0-1 mis-
classification loss. These standard losses make the extension to output kernels
straightforward, but developing a similar extension for the more complex loss
we consider for multi-label classification is a greater challenge.

To re-express a problem in terms of a kernel over an output space Y, one
assumes there is a feature map ϕ : Y → HY that maps each output label vector
y into a new representation ϕ(y). A kernel between output vectors can then
be defined by an inner product between two output label vectors in the new
representation space (formally, in a reproducing kernel Hilbert space [22, 23]).
Such formulations have already been explored in machine learning, but they
are often hampered by an intractable pre-image problem at test time [24]: for
a given test instance, even though the similarity between any candidate output
and training outputs can be determined easily, the search for the optimal test
output can be a hard computational problem [23]. We will seek to avoid such
intractability in our method.

Previous work on multi-class (not multi-label) classification learning has
demonstrated that training can be equivalently expressed in terms of an out-
put kernel when the classes are disjoint [25–27]. In particular, extensions to
output kernels have been achieved for unsupervised and semi-supervised logistic
regression training with hidden output variables [25], and convex reformulations
of unsupervised and semi-supervised training of support vector machines [26,
27]. It turns out that output kernelization is trivially achieved in this special
case simply by using the linear kernel between class indicator vectors. However,
in these contexts, this extension is only used to achieve convex reformulations
of the training process, not to expand the set of output dependence structures
that can be captured. Moreover, these approaches generally involve learning an
output kernel via expensive semi-definite programming.

Applying kernel methods in the output space has also been exploited in
regression methods for structured output learning [28–37]. For example, in [28–
30], regression models are trained by least squares to predict an output kernel
matrix Ky from an input kernel matrix Kx. In [35, 36], similar methods are
developed for transductive link prediction and regression to fixed output kernel
values extracted from given link labels. The methods in [32–34] extend tree-
based regression to kernelized output spaces for structured data, but do not
exploit kernels defined over the input space. A related approach is to adopt a
joint kernel over input/output pairs [38]. Unfortunately, all of these regression
based approaches require the solution of a difficult pre-image problem to recover
the predictions for any test instance. Furthermore, none of these methods directly
address multi-label classification.

Other recent work has proposed to learn a covariance matrix between labels
in a multi-label setting to capture dependence [8, 39–41]. However, these methods
do not produce a kernel representation in the output space; rather, their output
representations remain restricted to the original label set. Our goal in this paper
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is to exploit kernels to capture complex nonlinear dependence between labels
for multi-label classification.

3 Background: Large Margin Multi-label Classification

To address multi-label classification we consider a large margin approach to clas-
sifier training. By optimizing a discriminative objective, large margin methods
have proved successful in practice, achieving both good generalization perfor-
mance and computational efficiency. We will therefore focus on the calibrated
separation ranking loss criterion of [8], which achieves state-of-the-art multi-
label classification results while retaining the simplicity and efficiency of a large
margin approach. This loss expresses the sum of two large margin losses, one
between the prediction value of the least positive label response and the value
of a dummy threshold class, and the other between the prediction value of the
least negative label response and the value of the dummy threshold class. Such
an approach allows the predictions to be coordinated across different labels sim-
ply by using a shared adaptive threshold, rather than suffering the intractability
of considering all label subsets [42] or even the cost of considering all label pairs
(followed by a difficult labeling problem at test time) [9].

Definitions and Notation: To formulate the approach, we introduce some
definitions and notation. X and Y denote the input and output spaces respec-
tively. Below we will use capital letters to denote matrices, bold lower-case letters
to denote column vectors, and regular lower-case letters to denote scalars, unless
special declaration is given. Given a vector x, ‖x‖2 denotes its Euclidean norm.
Given a matrix X, ‖X‖2F denotes its Frobenius norm. We use Xi: to denote the
ith row of a matrix X, use X:j to denote the jth column of X, and use Xij to
denote the entry at the ith row and jth column of X. For matrices, we use ‖X‖
to refer to a generic norm on X, and use tr to denote trace. We use Id to denote
a d× d identity matrix; and use 1 to denote a column vector with all 1 entries,
generally assuming its length can be inferred from context. Inequalities ≥,≤ are
applied entrywise. For a boolean label matrix Y we let Ȳ denote its complement
Ȳ = 11⊤ − Y . Finally, we use ◦ to denote Hadamard (componentwise) product.

To introduce the underlying approach, assume one is given an input data
matrix X ∈ R

t×d and label indicator matrix Y ∈ {0, 1}t×L, where L denotes the
number of classes. For convenience, we assume a feature function φ : X → HX

is provided that maps each input vector x into a new representation φ(x) in
the Hilbert space HX . Therefore the input data X can be putatively converted
(row-wise) into a feature matrix Φ := φ(X). Given an input instance x, an L

dimensional response vector s(x) := φ(x)⊤W can be recovered using parameter
matrix W , giving a “score” for each label. These scores can then be compared
to a threshold value s0(x) := φ(x)⊤u, using a parameter vector u, to determine
which labels are to be ‘on’ and ‘off’ respectively. In particular, the classification
of a test example x is determined by

y∗l = arg max
yl∈{0,1}

yl(sl(x)− s0(x)), (1)
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for each candidate label l ∈ {1, ..., L}.
To learn the parameters, W and u, of this score based multi-label classifier,

we consider the calibrated separation ranking loss of [8], given by:

max
l∈Yi:

(1 + s0(Xi:)− sl(Xi:))+ +max
l̄∈Ȳi:

(1 + sl̄(Xi:)− s0(Xi:))+. (2)

Intuitively, this training loss encourages the model to produce scores a minimum
margin above the threshold value for ‘on’ labels, and a minimum margin below
the threshold value for ‘off’ labels. In previous work, [8] demonstrates that this
loss achieves state-of-the-art generalization performance across a range of multi-
label data sets while retaining efficient training and test procedures.

To allow efficient optimization, training with the calibrated separation rank-
ing loss under standard Euclidean regularization of the parameters can be formu-
lated as a convex quadratic program (where we have rewritten the formulation
given in [8] in a more compact matrix form):

min
W,u,ξ,η

α

2
(‖W‖2F + ‖u‖22) + 1⊤ξ + 1⊤η (3)

s.t. ξ ≥ 0, ξ1⊤ ≥ Y ◦ (11⊤ + Φ(u1⊤ −W )),

η ≥ 0, η1⊤ ≥ Ȳ ◦ (11⊤ − Φ(u1⊤ −W )).

Training with respect to a kernel over the input space can then be easily achieved
by considering the dual of this quadratic program [8], given by:

max
M,N

1⊤(M +N)1− 1
2α tr((M −N)⊤K(M −N)(I + 11⊤)) (4)

s.t. M ≥ 0, M1 ≤ 1, M ◦ Ȳ = 0,

N ≥ 0, N1 ≤ 1, N ◦ Y = 0,

where K = ΦΦ⊤, M and N are both t × L dual parameter matrices. Here the
primal solution is related to the dual solution by:

W = 1
α
X⊤(M −N), u =

1

α
X⊤(N −M)1. (5)

Thus, one reaches the conclusion that the original training problem can be ex-
pressed in terms of a kernel on the input space. However, the target output labels
appear linearly in the constraints in both the primal and dual formulations. It
is not obvious how these constraints can be equivalently re-expressed in terms
of a kernel between output vectors.

4 Multi-label Classification with Output Kernels

A main contribution of this paper is to derive an equivalent formulation to (4)
that is expressed entirely in terms of a kernel between output vectors. Such a
formulation allows one to express multi-label classification in a manner that can
flexibly capture nonlinear dependence between output labels.
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We start by making the assumption that L < t; that is, there are more train-
ing examples than labels, which is a natural assumption in many applications.
First observe that, sinceM ≥ 0 and Ȳ ≥ 0 in (4), the constraintM◦Ȳ = 0 can be
equivalently re-expressed as tr(M⊤Ȳ ) = 0; similarly, the constraint N ◦ Y = 0
can be equivalently re-expressed as tr(N⊤Y ) = 0. This allows the quadratic
program (4) to be simplified somewhat to:

max
M,N

1⊤(M +N)1− 1
2α tr((M −N)⊤K(M −N)(I + 11⊤) (6)

s.t. M ≥ 0, M1 ≤ 1, tr(M⊤Ȳ ) = 0,

N ≥ 0, N1 ≤ 1, tr(N⊤Y ) = 0.

Unfortunately it is still not obvious that (6) can be converted to a form that
involves only inner products between label vectors. However, we will see now
that this can be achieved in two steps.

The first key step is to consider an expanded set of inner products; that is,
consider the set of inner products not just between label vectors in Y but also
between complements of these label vectors (i.e. in Ȳ ) and the canonical set of
single class indicator vectors (i.e. in IL). In particular, consider the expanded
(L+ 2t)× L label matrix S = [I;Y ; Ȳ ] (i.e., stacked vertically) from which one
can form the augmented inner product matrix

Q = SS⊤ =





I Y ⊤ Ȳ ⊤

Y Y Y ⊤ Y Ȳ ⊤

Ȳ Ȳ Y ⊤ Ȳ Ȳ ⊤



 . (7)

This augmented kernel matrix embodies useful information for reformulating the
training problem (6). For example, one important property it satisfies is:

Q1=





1+ (Y + Ȳ )⊤1
Y 1+ Y (Y + Ȳ )⊤1
Ȳ 1+ Ȳ (Y + Ȳ )⊤1



=





1+ 11⊤1

Y 1+ Y 11⊤1

Ȳ 1+ Ȳ 11⊤1



=(t+1)





1

Y 1

Ȳ 1



=(t+1)S1, (8)

which will be helpful below.
The second key step is to apply a change of variables by the following lemma.

Lemma 1. For any S defined as above, and for any M ≥ 0 and N ≥ 0, there
must exist two real value matrices Ω ≥ 0 and Γ ≥ 0 of size t× (L+2t) such that

M = ΩS and N = ΓS. (9)

Proof. First observe that M = ΩS defines a system of t linear equations where
the ith equation is given by Mi: = Ωi:S. By Farkas’ Lemma, given Mi: ∈ R

L

and S ∈ R
(L+2t)×L, exactly one of the following two statements must be true:

1. There exists an ω ∈ R
(L+2t) such that Mi: = ω⊤S and ω ≥ 0.

2. There exists a z ∈ R
L such that Sz ≥ 0 and Mi:z < 0.

Assume that there exists a z ∈ R
L such that Mi:z < 0. Then, since Mi: ≥ 0, z

must have at least one negative entry; i.e., zj < 0 for some j. However, since S
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has an identity submatrix, we conclude that the jth entry of Szmust be negative.
Therefore the second statement of Farkas’ lemma cannot hold. According to the
first statement, we therefore know that for the given S and Mi: ≥ 0, there
must exist an ω ≥ 0 such that Mi: = ω⊤S. Finally, by taking all of the linear
systems into consideration, we conclude that for any M ≥ 0 there must exist an
Ω ∈ R

t×(L+2t), Ω ≥ 0 that satisfies (9). An identical argument can be used to
establish the condition between the N ≥ 0 and Γ ≥ 0 matrices. �

Next, by introducing the expanded label kernel matrix Q and by making the
variable substitution suggested by Lemma 1, the main result can be established:
the original training problem (6) can be re-expressed in terms of inner products
between output vectors from the augmented set of label vectors S.

Proposition 1. By applying the variable substitution justified by Lemma 1 and
using (7) and (8), the quadratic program (6) can be equivalently re-expressed as:

max
Ω,Γ

1⊤(Ω+Γ )Q1− 1
2α tr((Ω−Γ )⊤K(Ω−Γ )((t+1)Q+ 1

t+1Q1(Q1)⊤)) (10)

s.t. Ω ≥ 0, ΩQ1 ≤ (t+ 1)1, tr(ΩQB) = 0,

Γ ≥ 0, ΓQ1 ≤ (t+ 1)1, tr(ΓQA) = 0;

where A = [OL,t; It;Ot], B = [OL,t;Ot; It], It is a t× t identity matrix, Ot is a
t× t matrix with all 0 values, and OL,t is a L× t matrix with all 0 values.

Proof. Using the substitution (9), the objective in (6) can be rewritten as:

(6) = 1⊤(Ω + Γ )S1− 1
2α tr((Ω − Γ )⊤K(Ω − Γ )(SS⊤ + S1(S1)⊤)). (11)

Next, observe that using Q = SS⊤ and S1 = 1
t+1Q1, the objective (11) can be

further rewritten as:

(11) = 1
t+11

⊤(Ω+Γ )Q1− 1
2α tr((Ω−Γ )⊤K(Ω−Γ )(Q+ 1

(t+1)2Q1(Q1)⊤)),(12)

which, multiplying by t+ 1, leads to the form stated in the proposition.
Finally, we consider the constraints in (6). For the equality constraints, using

the non-negativity of the matrices involved and applying the previous substitu-
tions one obtains:

tr(M⊤Ȳ ) = tr(ΩSȲ ⊤) = tr(Ω[Ȳ ⊤;Y Ȳ ⊤; Ȳ Ȳ ⊤]) = tr(ΩQB) = 0, (13)

tr(N⊤Y ) = tr(ΓSY ⊤) = tr(Γ [Y ⊤;Y Y ⊤; Ȳ Y ⊤]) = tr(ΓQA) = 0. (14)

For the middle inequality constraints, applying the same substitution (9) yields:

M1 = ΩS1 = 1
t+1ΩQ1 ≤ 1, (15)

N1 = ΓS1 = 1
t+1ΓQ1 ≤ 1. (16)

Finally, for the non-negativity constraints M ≥ 0 and N ≥ 0, Lemma 1 shows
that these can be equivalently enforced by asserting Ω ≥ 0 and Γ ≥ 0.

Combining the above set of derivations establishes the proposition. �
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4.1 Extension to Output Kernels for Multi-label Classification

Since Proposition 1 shows that minimizing the regularized calibrated separation
ranking loss can be expressed in terms of inner products between label vectors,
an extension to output kernels can be achieved in the obvious way. As before,
one assumes a feature map ϕ : Y → HY that transforms each label vector y

into a new representation ϕ(y) in the Hilbert space HY , hence a kernel between
output vectors can be defined by an inner product between two output label
vectors in the new representation space (an RKHS). In practice, one chooses a
positive semidefinite kernel function κy(·, ·) such that conceptually κy(y, ỹ) =
ϕ(y)⊤ϕ(ỹ) (where we are assuming this denotes inner product in the implied
reproducing kernel Hilbert space). In this way, the matrix Q can be constructed
as Q = κy(S, S), where conceptually κy(S, S) = ϕ(S)ϕ(S)⊤.

However, there is an important catch: in this case it turns out that, unlike in-
put kernelization (or output kernelization for least squares regression), not every
valid kernel is suitable as an output representation for multi-label classification.
Specifically, the optimization formulation above is only well posed for a subset
of possible output kernel functions (although any input kernel can still be used).

To preserve equivalence between the output kernelized form (10) and the dual
form (4) established in Proposition 1, we at least require that the kernel matrix
Q be doubly non-negative; i.e., Q � 0, and Q ≥ 0 entrywise. Furthermore, to
preserve Lemma 1, Q must also preserve orthogonality; that is, if Yi:Y

⊤
j: = 0 then

Qij = 0. Therefore, overall, for any output kernel function κy that one would
wish to use for multi-label classification training the following set of constraints
must be satisfied: positive semi-definiteness, κy(S, S) � 0 for any finite S; non-
negativity, κy(y, ỹ) ≥ 0 for all y ∈ {0, 1}L and ỹ ∈ {0, 1}L; and orthogonality,
y⊤ỹ = 0 must imply κy(y, ỹ) = 0.

These properties are obviously satisfied by the linear kernel used to derive
Proposition 1. However, in addition to the linear kernel, other kernels common
in document and language modeling are appropriate for this setting [43]. One
particularly useful family of kernels that satisfy these properties are the homo-
geneous polynomial kernels:

Kpoly(y, ỹ) =

k
∑

i=1

wi(y
⊤ỹ)i, (17)

where w ≥ 0 is a vector of non-negative weights. Unfortunately, many standard
kernels, such as the Gaussian (RBF) kernel are not suitable, since by violating the
constraints it blocks all nonzero solutions to (10). Below we find that the simple
weighted polynomial kernels allow sufficient flexibility in capturing nonlinear
dependence to achieve positive results in some real world multi-label data sets.

4.2 Classification of Test Instances

Although Proposition 1 shows that training for multi-label classification can
be formulated in terms of a kernel between label vectors, this does not imply
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that classifying new instances x at test time will be necessarily easy. In fact,
for regression formulations, test prediction generally involves solving a hard pre-
image problem [23, 24]. Fortunately, the pre-image problem can be efficiently
solved for multi-label classification, even when there are an exponential (2L)
number of label vectors to consider.

After solving the training problem (10) one obtains the global solution (Ω,Γ ),
which can be used to efficiently classify a new test instance as follows. Let κx

and κy denote the input and output kernels respectively. Conceptually, we can
think of these as evaluating an inner product between feature representations
of the inputs and outputs as κx(x, x̃) = φ(x)⊤φ(x̃) and κy(y, ỹ) = ϕ(y)⊤ϕ(ỹ)
respectively. Then from the optimal parameters, we can conceptually recover the
solution (M,N) to the original dual problem (4) via

M = Ωϕ(S) and N = Γϕ(S). (18)

Using (1), the optimal parameters (W,u) for the original problem (3) are:

W = 1
α
φ(X)⊤(Ω − Γ )ϕ(S), (19)

u = 1
α
φ(X)⊤(Γ −Ω)ϕ(S)1 = 1

α(t+1)φ(X)⊤(Γ −Ω)Q1. (20)

Finally, recall the classification rule used for multi-label assignment (1). Given
a new test instance x ∈ R

d, we will determine its labels by computing the score
function values s(x) = [s1(x), · · · , sL(x)] and s0(x); that is, the label vector y

for x is then given by a L × 1 indicator vector where yl = 1 if sl(x) ≥ s0(x),
yl = 0 otherwise. Fortunately, these score values can be efficiently computed
directly from the recovered (Ω,Γ ) parameters via:

s0(x) = φ(x)u = 1
α(t+1)κx(x, X)(Γ −Ω)Q1, (21)

sl(x) = φ(x)Wϕ(1l) =
1
α
κx(x, X)(Ω − Γ )κy(S,1l), ∀l = 1, · · · , L; (22)

where 1l denotes a vector with 1 as its lth entry and 0 elsewhere. Thus, the
multi-label assignment to test instance x can be efficiently computed.

5 A Scalable Training Method

One of the main challenges with this formulation is that the quadratic program-
ming problem (10) is defined over (L+2t)× t matrix variables, which makes the
training problem challenging for standard solvers. Instead, we develop a row-wise
projected gradient method to achieve a more scalable approach.

First note that the optimization problem (10) can be written in a more
compact form. Replace Ω and Γ with Λ = [Ω,Γ ]. Let C = [IL+2t;OL+2t] and
D = [OL+2t; IL+2t], such that Ω = ΛC and Γ = ΛD. Furthermore, let P =
1
α
(C−D)((t+1)Q+ 1

t+1Q1(Q1)⊤))(C−D)⊤; E = ((C+D)Q11⊤)⊤; a = 1
t+1CQ1;

b = 1
t+1DQ1; G = (CQB)⊤ and F = (DQA)⊤. Then (10) can be rewritten
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more succinctly as:

min
Λ

1
2 tr(Λ

⊤KΛP )− tr(ΛE⊤) (23)

s.t. Λ ≥ 0, Λa ≤ 1, tr(ΛG⊤) = 0, Λb ≤ 1, tr(−ΛF⊤) = 0.

The key property of this quadratic program is that the constraints decom-
pose row-wise. This allows us to use a row-wise coordinate descent procedure to
achieve scalability. Consider the ith row of Λ, assuming all other rows are fixed.
An update to row Λi: can be expressed as Λ = Λ+1i(z

⊤−Λi:), where 1i is a col-
umn vector of zeros with a single 1 in the ith position. Let Λī: := Λ−1iΛi:. The
objective function f(Λ) := 1

2 tr(Λ
⊤KΛP ) − tr(ΛE⊤) of the quadratic program

can be re-expressed as a function g over the single row update z such that:

g(z) = f(Λ+ 1i(z
⊤ − Λi:)) = f(Λī: + 1iz

⊤)

= 1
2Kii(z

⊤Pz) + (Ki:Λī:P − Ei:)z+ const

= 1
2Kii(z

⊤Pz) + (Ki:ΛP −KiiΛi:P − Ei:)z+ const (24)

which yields the row optimization problem:

min
z

g(z) s.t. z ≥ 0, z⊤a ≤ 1, Gi:z = 0, z⊤b ≤ 1, Fi:z = 0. (25)

The update of the ith row only affects other rows through the Ki:ΛP term.
Therefore, we maintain a matrix U = KΛP that can be updated locally after
an update to Λi:, by U = U +K:i(z

⊤ −Λi:)P . To ensure that progress is always
made, while maintaining scalability, we use a row-wise steepest descent method.
For the objective function g(z), its gradient vector is given by:

g =
dg(z)

dz
= KiiPz+ (Ki:ΛP −KiiΛi:P − Ei:)

⊤, (26)

which can be efficiently computed. Since the constraints on z are simple, this
gradient vector can be efficiently projected to a feasible direction d. Because the
objective f has a simple quadratic form, the optimal step size in the feasible
direction d can be computed in closed form. Thus, optimal updates can be made
by locally operating on each row of Λ in succession. We have found this approach
to be reasonably effective in our experiments below.

6 Experiments

To evaluate the proposed approach, we conducted experiments on a multi-label
classification image set, scene, and a set of multi-label classification tasks con-
structed from a real-world image data set,MIRFlickr. We compared the proposed
output kernel approach to a number of large margin multi-label classification
methods, and to an output-kernel based least square regression method.
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Table 1. Properties of the multi-label data sets used in the experiments.

Data set #classes #instances #features label-card.

Scene-6 6 2407 294 1.1

MIRFlickr-10 10 1484 1000 2.4

MIRFlickr-15 15 1929 1000 2.5

MIRFlickr-20 20 2902 1000 2.6

MIRFlickr-25 25 3414 1000 2.7

MIRFlickr-30 30 4057 1000 2.7

6.1 Experimental Setting

Data Sets We focused on image data sets for these experiments, since image
data usually exhibits highly nonlinear semantic dependence between labels. The
scene [44] data set has 2407 images and only 6 classes, whereas theMIRFlickr [45]
data set contains 25,000 images and 457 classes. Although MIRFlickr has a very
large number of classes, the labels appear in a very sparse manner. One key prop-
erty of multi-label data sets is their label cardinality [42]; the average number of
labels assigned to each instance. If the label cardinality of a data set is close to 1,
the task reduces to a standard single label classification task, and there will not
be any significant label dependence to capture. The effectiveness of multi-label
learning can therefore primarily be demonstrated on data sets whose label cardi-
nality is reasonably large and complex. We thus constructed a set of multi-label
classification tasks from the MIRFlickr image data set that maintained reason-
able label cardinalities while ranging across a set of different numbers of classes.
Specifically, we constructed five multi-label subsets, MIRFlickr-10, MIRFlickr-
15, MIRFlickr-20, MIRFlickr-25, and MIRFlickr-30, by randomly selecting L

classes, for L ∈ {10, 15, 20, 25, 30} respectively, to achieve a reasonable level of
label cardinality in each case; see Table 1 for a summary.

Approaches Our proposed approach (LM-K) is based on using output kernels
to capture nonlinear label dependence during training. In these experiments, we
employed the homogeneous polynomial kernels as defined in (17). With k ≥ 2,
these polynomial kernels can automatically encode pairwise and higher-order
label dependence structures in an expanded output space.

We compare the proposed approach to a number of state-of-the-art multi-
label classification methods to investigate the consequences of using nonlinear
output kernels. These competitors were: (1) the large margin method based
on the calibrated separation ranking loss (CSRL) [8]; (2) the pairwise rank-
ing loss SVM (Rank) proposed in [9], which first trains a large margin ranking
model and then learns the threshold of the multi-label predications using a least-
square method; and (3) the max-margin multi-label classification method (M3L)
proposed in [7], which takes prior knowledge about the label correlations into
account. None of these methods use output kernels. Therefore, we also compare
the proposed method with a least squares regression method that uses output
kernels (LS-K), thresholding its predictions for multi-label classification.
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Table 2. Summary of the performance (%) for the compared methods in terms of
micro-F1 (top section) and macro-F1 (bottom section).

Data set Rank M3L CSRL LS-K LM-K

Scene-6 58.8±0.5 52.7±0.7 52.8±0.7 46.0±0.7 60.6±0.4

MIRFlickr-10 32.9±0.5 37.6±0.7 41.0±0.9 36.8±0.5 44.4±0.2

MIRFlickr-15 26.9±0.5 26.9±0.9 33.1±0.3 28.0±0.2 34.3±0.1

MIRFlickr-20 17.9±0.6 19.2±0.9 26.0±0.5 22.1±0.2 27.9±0.1

MIRFlickr-25 16.0±0.4 17.2±0.7 22.4±0.5 18.6±0.2 24.4±0.1

MIRFlickr-30 13.8±0.3 14.6±0.6 18.7±0.6 15.8±0.2 21.8±0.1

Scene-6 60.0±0.5 52.0±0.9 51.8±0.9 45.3±0.7 60.3±0.6

MIRFlickr-10 30.9±0.4 32.2±0.6 38.1±1.0 34.7±0.4 42.6±0.2

MIRFlickr-15 20.7±0.4 22.0±0.4 28.8±0.4 24.7±0.2 32.5±0.2

MIRFlickr-20 14.0±0.4 15.2±0.7 22.8±0.5 19.5±0.2 26.8±0.1

MIRFlickr-25 12.8±0.3 12.5±0.4 19.1±0.5 16.0±0.2 23.2±0.1

MIRFlickr-30 10.7±0.4 10.1±0.4 15.6±0.5 13.3±0.2 20.9±0.1

6.2 Experimental Results

Classification Results We first conducted a set of experiments on the six
multi-label data sets by randomly sampling 300 labeled images as training data
and holding out the remaining as test data. The intent is to investigate how
well each approach can exploit label dependence when there are limited training
instances available. In the experiments, we set the trade-off parameter α = 0.1
for the proposed approach and CSRL, and set the trade-off parameters for Rank
and M3L correspondingly with C = 10. We used the linear input kernel for all
methods. For LS-K and LM-K, we used the polynomial output kernel given in
(17) with maximum degree k = 2, with weights w1 = w2 = 1. This polynomial
kernel automatically encodes all pairwise label dependency structures within
the induced high dimensional output space. We repeated each experiment 10
times and report the average multi-label classification performance in terms of
micro-F1 and macro-F1 in Table 2.

From Table 2, one can observe that the difficulty of the learning problem
increases with label set size, causing degradation in the performance of all meth-
ods. However, with a nonlinear output kernel, the proposed approach LM-K
consistently outperforms the three state-of-the-art large margin multi-label clas-
sification methods, Rank, M3L and CSRL, across all the data sets with differ-
ent numbers of classes. It also significantly outperforms least-squares regression
method with the same output kernel, LS-K. These results suggest that a nonlin-
ear output kernel is indeed useful for improving multi-label classification models
in a setting with interesting label dependencies. Here the proposed approach ap-
pears to provide an effective method for exploiting nonlinear dependence struc-
ture through the use of a polynomial output kernel.

Polynomial Kernels Based on the definition of homogeneous polynomial ker-
nels given in (17), one can produce many different kernels with different weights
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Fig. 1. Comparison of different polynomial output kernels on the MIRFlickr data sets.

{wi} and different maximum degree k. We next investigated the influence of
alternative output kernels on multi-label classification. We considered three dif-
ferent polynomial kernels by varying the degree number and the weights: (1)
Poly-kernel(3,1) uses degree up to k = 3 and weights w1 = w2 = w3 = 1;
(2) Poly-kernel(2,1) uses degree up to k = 2 and weights w1 = w2 = 1; and
(3) Poly-kernel(2,0.1) uses degree up to k = 2 but with weights w1 = 1 and
w2 = 0.1. Evidently the first polynomial kernel with maximum degree 3 consid-
ers triplet-wise label dependencies, whereas the other two kernels only consider
pairwise label dependence. Moreover, the last kernel put relatively less weight
on the higher order dependence features.

We conducted experiments on three MIRFlickr data sets, MIRFlickr-10,
MIRFlickr-20, and MIRFlickr-30, using the same setting as above. The results
are reported in Figure 1, in terms of micro-F1 measure and macro-F1 measure.
From these results one can see that even though it embodies more complex la-
bel features, Poly-kernel(3,1) demonstrates inferior performance when the class
number increases, compared to the less complex Poly-kernel(2,1). This suggests
that Poly-kernel(3,1) can over-fit when the classification problem gets more com-
plex given limited training data. On the other hand, Poly-kernel(2,0.1) further
suppresses the influence of the higher order label features, and demonstrates
inferior performance compared to Poly-kernel(3,1) when there are fewer labels.
The intermediate Poly-kernel(2,1) demonstrates good performance on all three
data sets. These results suggest selecting output kernels with the right complex-
ity is important, and pairwise label features are very useful for encoding label
dependence structure, somewhat vindicating an original intuition about multi-
label classification [9]. A proper output kernel should give proper consideration
over the pairwise feature expansions, and the complexity of the problem.

Performance vs Training Size With a modest training size, we have demon-
strated that the proposed approach can effectively improve multi-label classifica-
tion performance by exploiting the label dependence information and structure
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Fig. 2. Performance vs training size.

through the nonlinear output kernel. There remains a question of how the behav-
ior of the various methods would change with increasing sample size. To answer
this question, we conducted experiments with a number of different training sizes,
t ∈ [100, 200, 300, 400] on two of the data sets, MIRFlickr-10 and MIRFlickr-20.
We otherwise used the same experimental setting as above. The average re-
sults and standard deviations in terms of micro-F1 and macro-F1 measure on
these two data sets are plotted in Figure 2. Here, one can see that with increas-
ing training size, the performance of all methods generally improves. However,
the proposed approach with polynomial output kernel consistently outperforms
the other methods across all training sizes, evaluation measures, and data sets.
These results again demonstrate the efficacy of the proposed approach for using
nonlinear output kernel to capture label dependency of multi-label learning.

7 Conclusion

We have introduced a new form of multi-label classification learning that uses
an output kernel between multi-label output vectors to capture a rich set of non-
linear dependences between output labels, while retaining a tractable equivalent
formulation as a quadratic program. Although the resulting quadratic programs
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are expanded, a scalable training algorithm can be based on example-wise pro-
jected gradient descent. The resulting method demonstrates advantages in multi-
label image classification experiments over standard linear-output approaches.

In addition to investigating the benefits of alternative output kernels and
alternative scaling strategies, an important direction for future research is to
investigate other important loss formulations in machine learning, to determine
whether they too might be amenable to an equivalent kernelized approach.
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33. Geurts, P., Wehenkel, L., d’Alché Buc, F.: Gradient boosting for kernelized output
spaces. In: Proceedings ICML. (2007)

34. Geurts, P., Touleimat, N., Dutreix, M., d’Alché Buc, F.: Inferring biological net-
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35. Brouard, C., d’Alché Buc, F., Szafranski, M.: Semi-supervised penalized output
kernel regression for link prediction. In: Proceedings ICML. (2011)

36. Brouard, C., Szafranski, M.: Regularized output kernel regression applied to
protein-protein interaction network inference. In: NIPS MLCB Workshop. (2010)

37. Kadri, H., Duflos, E., Preux, P., Canu, S., Davy, M.: Nonlinear functional regres-
sion: a functional RKHS approach. In: Proceedings AISTATS. (2010)

38. Weston, J., Schoelkopf, B., Bousquet, O.: Joint kernel maps. In: Proceedings of
the International Work-Conference on Artificial Neural Networks(IWANN). (2005)

39. Zhang, Y., Yeung, D.: A convex formulation for learning task relationships in
multi-task learning. In: Proceedings UAI. (2010)

40. Dinuzzo, F., Fukumizu, K.: Learning low-rank output kernels. In: Proceedings
ACML. (2011)

41. Dinuzzo, F., Ong, C., Gehler, P., Pillonetto, G.: Learning output kernels with
block coordinate descent. In: Proceedings ICML. (2011)

42. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International
Journal of Data Warehousing and Mining (2007)

43. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press (2004)

44. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classiffication.
Pattern Recognition 37(9) (2004) 1757–1771

45. Huiskes, M., Lew, M.: The MIR flickr retrieval evaluation. In: Proc. of ACM
international conference on Multimedia information retrieval. (2008)


