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Abstract

Recently, supervised dimensionality reduction has been gaining attention, owing to the real-
ization that data labels are often available and indicate important underlying structure in the
data. In this paper, we present a novel convex supervised dimensionality reduction approach
based on exponential family PCA, which is able to avoid the local optima of typical EM learning.
Moreover, by introducing a sample-based approximation to exponential family models, it over-
comes the limitation of the prevailing Gaussian assumptions of standard PCA, and produces
a kernelized formulation for nonlinear supervised dimensionality reduction. A training algo-
rithm is then devised based on a subgradient bundle method, whose scalability can be gained
using a coordinate descent procedure. The advantage of our global optimization approach is
demonstrated by empirical results over both synthetic and real data. 1

1 Introduction

Principal component analysis (PCA) has been extensively used for data analysis and processing. It
provides a closed-form solution for linear unsupervised dimensionality reduction through singular
value decomposition (SVD) on the data matrix [7]. Probabilistic interpretations of PCA have
also been provided in [8, 18], which formulate PCA using a latent variable model with Gaussian
distributions. To generalize PCA to better suit non-Gaussian data, many extensions to PCA have
been proposed that relax the assumption of a Gaussian data distribution. Exponential family PCA
is the most prominent example, where the underlying dimensionality reduction principle of PCA
is extended to the general exponential family [4, 6, 15]. Previous work has shown that improved
quality of dimensionality reduction can be obtained by using exponential family models appropriate
for the data at hand [4, 15]. Given data from a non-Gaussian distribution these techniques are
better able than PCA to capture the intrinsic low dimensional structure. However, most existing

1A preliminary version of this paper appears in NIPS08.
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non-Gaussian dimensionality reduction methods rely on iterative local optimization procedures and
thus suffer from local optima, with the sole exception of [6] which shows a general convex form can
be obtained for dimensionality reduction with exponential family models.

Recently, supervised dimensionality reduction has begun to receive increased attention. As the
goal of dimensionality reduction is to identify the intrinsic structure of a data set in a low dimen-
sional space, there are many reasons why supervised dimensionality reduction is a meaningful topic
to study. First, data labels are almost always assigned based on some important intrinsic property
of the data. Such information should be helpful to suppress noise and capture the most useful
aspects of a compact representation of the data. Moreover, there are many high dimensional data
sets with label information available, e.g., face and digit images, and it is unwise to ignore them.
A few supervised dimensionality reduction methods based on exponential family models have been
proposed in the literature. For example, a supervised probabilistic PCA (SPPCA) model was pro-
posed in [21]. SPPCA extends probabilistic PCA by assuming that both features and labels have
Gaussian distributions and are generated independently from the latent low dimensional space
through linear transformations. The model is learned by maximizing the marginal likelihood of
the observed data using an alternating EM procedure. A more general supervised dimensionality
reduction approach with generalized linear models (SDR GLM) was proposed in [13]. SDR GLM
views both features and labels as exponential family random variables and optimizes a weighted
linear combination of their conditional likelihood given latent low dimensional variables using an
alternating EM-style procedure with closed-form update rules. SDR GLM is able to deal with
different data types by using different exponential family models. Similar to SDR GLM, the linear
supervised dimensionality reduction method proposed in [16] also takes advantage of exponential
family models to deal with different data types. However, it optimizes the conditional likelihood of
labels given observed features within a mixture model framework using an EM-style optimization
procedure. Beyond the PCA framework, many other supervised dimensionality reduction methods
have been proposed in the literature. Linear (fisher) discriminant analysis (LDA) is a popular alter-
native [5], which maximizes between-class variance and minimizes within-class variance. Moreover,
a kernelized fisher discriminant analysis (KDA) has been studied in [10]. Another notable nonlinear
supervised dimensionality reduction approach is the colored maximum variance unfolding (MVU)
approach proposed in [17], which maximizes the variance aligning with the side information (e.g.,
label information), while preserving the local distance structures from the data. However, colored
MVU has only been evaluated on training data.

In this paper, we propose a novel supervised exponential family PCA model (SEPCA). In
the SEPCA model, observed data x and its label y are assumed to be generated from the latent
variables z via conditional exponential family models; dimensionality reduction is conducted by
optimizing the conditional likelihood of the observations (x, y). By exploiting convex duality of
the sub-problems and eigenvector properties, a solvable convex formulation of the problem can
be derived that forms an upper bound in general, but preserves solution equivalence under an
additional assumption, to the original. This convex formulation allows efficient global optimization
algorithms to be devised. Moreover, by introducing a sample-based approximation to exponential
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family models, SEPCA does not suffer from the limitations of implicit Gaussian assumptions and
is able to be conveniently kernelized to achieve nonlinearity. A training algorithm is then devised
based on a subgradient bundle method, whose scalability can be gained through a coordinate descent
procedure. Finally, we present a simple formulation to project new testing data into the embedded
space. This projection can be used for other supervised dimensionality reduction approach as well.
Our experimental results over both synthetic and real data suggest that a more global, principled
probabilistic approach, SEPCA, is better able to capture subtle structure in the data, particularly
when good label information is present.

The remainder of this paper is organized as follows. First, in Section 2 we introduce preliminaries
about PCA and exponential family PCA models. Then, in Section 3 we present the proposed
supervised exponential family PCA model and formulate a convex nondifferentiable optimization
problem. An efficient global optimization algorithm is presented in Section 4. In Section 5, we
present a simple projection method for new testing points. We then present the experimental
results in Section 6. Finally, in Section 7 we conclude the paper.

2 Preliminaries

Given a t × n data matrix X, consisting of t observations of n-dimensional feature vectors, Xi:,
we consider to obtain its low dimensional representation Z, which is a t × d matrix for d < n.
For simplicity, we assume features in X are centered; that is, their empirical means are zeros.
The standard PCA finds the low dimensional subspace by minimizing the reconstruction error
tr((X − ZW )(X − ZW )>), where W is a d × n parameter matrix. PCA has a probabilistic
interpretation [18], where each point Xi: is taken as a random draw from a unit Gaussian with
mean Θi: for a t × n matrix Θ, which can be further viewed as a linear mapping of the low
dimensional Z such that Θ = ZW .

The Gaussian assumption of the standard PCA may be inappropriate for non-Gaussian data.
For example, if data is binary-valued, the Bernoulli distribution may be a better option; if data
is nonnegative and integer-valued, the Poisson distribution may be used instead. This drawback
of the standard PCA has been noticed by a few researchers. To address this problem, exponential
family PCA methods that generalize the standard PCA to the exponential family have been studied
[4, 15]. The main idea is to use a unified exponential family representation for a set of distributions
that fall into the class of exponential family, thus one can maintain flexibilities on dealing with
different types of data. Exponential family [9] denotes a family of distributions that can be written
in the form

logP (x|θ) = logP0(x) + xθ −A(θ)

where θ is called the natural parameter and is usually a real value; A(θ) is a function that
ensures that the probabilities sum or integrate to one over the domain of x, such as A(θ) =
log

∫

x∈X
P0(x) exp(xθ). Here X denotes the domain of x. P0(x) is a term that depends only on x,

3



and usually can be ignored as a constant during parameter estimation. Gaussian distributions, Bi-
nomial distributions and Possion distributions are all members of this family. The main difference
between different members of the exponential family is the form of A(θ) [4].

In this paper, we will in particular consider a general exponential family representation of the
conditional distribution of a n× 1 observation vector x given a d× 1 low dimensional vector z and
a d× n parameter matrix W :

logP (x|z,W ) = logP0(x) + x>W>z −A(W>z)

where

A(W>z) = log

∫

P0(x) exp(x>W>z)dx

Here the natural parameters θ can be defined as θ = W>z. When this conditional distribution
is a Gaussian distribution with unit variance, we have logP0(x) = −1

2(n log(2π) + x>x), and

A(θ) = 1
2θ

>
θ. Nevertheless, we would like to maintain the general exponential family represenation

to allow flexibilities in addressing different types of data. Given the observation data matrix X
and its low dimensional represenation Z defined before, the conditional likelihood of the data using
exponential family represenation can be written as

logP (X|Z,W ) =
∑

i

logP0(Xi:) + tr
(

ZWX>
)

−
∑

i

A(Zi:W ) (1)

where

A(Zi:W ) = log

∫

exp (Zi:Wx) P0(x) dx . (2)

3 Supervised Exponential Family PCA

In this section, we consider to extend exponential family PCA to address the problem of supervised
dimensionality reduction. Same as above, we assume we are given a t×n data matrix, X, consisting
of t observations of n-dimensional centered feature vectors, Xi:, and aim to recover a d-dimensional
re-representation, a t × d matrix Z, of the data (d < n). The difference is that we now consider
to exploit an additional t × k indicator matrix, Y , with each row to indicate the class label for
each observation Xi:; thus

∑k
j=1 Yij = 1. Since the label information Y is exploited in the latent

low dimensional space discovery process, this is called supervised dimensionality reduction. For
recovering Z, a key restriction that one would like to enforce is that the features used for coding,
Z:j , should be linearly independent; that is, one would like to enforce the constraint Z>Z = I, which
ensures that the codes are expressed by orthogonal features in the low dimensional representation.

Given the above setup, in this paper, we are attempting to address the problem of supervised
dimensionality reduction using a probabilistic latent variable model illustrated in Figure 1. Our
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Figure 1: Illustration of the Latent Variable Model

intuition is that the important intrinsic structure (underlying feature representation) of the data
should be able to accurately generate/predict the original data features and labels.

In this section, we formulate the low-dimensional principal component discovering problem as
a conditional likelihood maximization problem based on exponential family model representations,
which can be reformulated into a nondifferentiable convex optimization problem. We then exploit
a sample-based approximation to unify exponential family models for different data types.

3.1 Convex Formulation of Supervised Exponential Family PCA

As with the generalized exponential family PCA [4], we attempt to find low-dimensional repre-
sentation by maximizing the conditional likelihood of the observation matrix X and Y given the
latent matrix Z, logP (X,Y |Z) = logP (X|Z) + logP (Y |Z). We assume P (X|Z) is an exponential
family distribution. Since the class variable y is discrete, thus logP (Y |Z) is simply the likelihood
over a multi-class logistic regression problem, which can be formulated in a parametric form with
parameters Ω,b

logP (Y |Z,Ω,b) = tr
(

ZΩY >
)

+ 1>Y b −
∑

i

A(Zi:,Ω,b) (3)

where

A(Zi:,Ω,b) = log
k

∑

`=1

exp
(

Zi:Ω1` + 1>
` b

)

(4)

is the log normalization function to ensure valid probability distribution; b is a bias vector; and
1` denotes a zero vector with a single 1 in the `th entry. Using the general exponential family
representation in (1), and the multi-class logistic regression formulation in (3), a regularized version
of the conditional likelihood maximization problem can be formulated as

max
Z:Z>Z=I

max
W,Ω,b

logP (X|Z,W ) −
β

2
tr

(

WW>
)

+ logP (Y |Z,Ω,b) −
β

2

(

tr
(

ΩΩ>
)

+ b>b
)
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= max
Z:Z>Z=I

max
W,Ω,b

tr
(

ZWX>
)

−
∑

i

(A(Zi:W ) − logP0(Xi:)) −
β

2
tr

(

WW>
)

(5)

+tr
(

ZΩY >
)

+ 1>Y b −
∑

i

A(Zi:,Ω,b) −
β

2

(

tr
(

ΩΩ>
)

+ b>b
)

where W is a d × n parameter matrix for conditional model P (X|Z); Ω is a d × k parameter
matrix for conditional model P (Y |Z) and b is a k × 1 bias vector; 1 denotes the vector of all 1s;
A(Zi:W ) and A(Zi:,Ω,b) are the log normalization functions defined in (2) and (4) respectively; β
is a user provided parameter used to control the tradeoff between the likelhood terms and the the
L2 regularization terms over the parameters W,Ω,b.

Theorem 1 The optimization problem (5) is equivalent to

min
Ux,Uy

max
M :I�M�0, tr(M)=d

∑

i

(A∗(Ux
i:) + logP0(Xi:)) +

1

2β
tr

(

(X−Ux)(X−Ux)>M
)

+
∑

i

A∗(Uy
i:) +

1

2β
tr

(

(Y −Uy)(Y −Uy)>(M + E)
)

(6)

under the assumption that there are no ties between the dth and the (d + 1)th largest eigenvalues
of (X−Ux∗)(X−Ux∗)> + (Y −Uy∗)(Y −Uy∗)>, where Ux∗ and Uy∗ denote the optimal solution of
(6); otherwise, (6) forms an upper bound for (5). Here E is a t × t matrix with all 1s; Ux is a
t×n matrix; Uy is a t× k matrix; A∗(Ux

i:) and A∗(Uy
i:) are the Fenchel conjugates of A(Zi:W ) and

A(Zi:,Ω,b) respectively. The primal solution {Z∗,W ∗,Ω∗,b∗} to (5) can be recovered by setting Z∗

as the top d eigenvectors of the optimal M∗ and then obtaining the model parameters W ∗,Ω∗,b∗

by

W ∗ =
1

β
Z∗>(X − Ux∗), Ω∗ =

1

β
Z∗>(Y − Uy∗), b∗ =

1

β
(Y − Uy∗)>1

Note that (6) is a min-max optimization problem. Moreover, for each fixed M , the outer minimiza-
tion problem is obviously convex, since the Fenchel conjugates

A∗(Ux
i:) = max

W
tr

(

Zi:WUx>
i:

)

−A(Zi:W ),

A∗(Uy
i:) = max

Ω,b
tr

((

Zi:Ω + b>
)

Uy>
i:

)

−A(Zi:,Ω,b)

are convex functions of Ux and Uy respectively [2]; that is, the objective function for the outer
minimization is a pointwise supremum over an infinite set of convex functions. Thus the overall
min-max optimization is convex [3], but apparently not necessarily differentiable. We will address
the nondifferentiable training issue in Section 4.
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The proof for Theorem 1 comprises of a series of reformulations based on standard results. We
state these key reformulations using Lemmas. First, we derive the dual formulation of the inner
maximization of (5).

Lemma 1 The maximization problem

max
W

tr
(

ZWX>
)

−
∑

i

(A(Zi:W ) − logP0(Xi:)) −
β

2
tr

(

WW>
)

(7)

is equivalent to the following dual minimization

min
Ux

∑

i

(A∗(Ux
i:) + logP0(Xi:)) +

1

2β
tr

(

(X−Ux)(X−Ux)>ZZ>
)

(8)

Proof: Note the log normalization function A(Zi:W ) defined in (2) is convex in W and can be
reexpressed as

A(Zi:W ) = max
Ux

i:

tr
(

Zi:WUx>
i:

)

−A∗(Ux
i:)

where A∗ is the Fenchel conjugate of A, a closed convex function [3, 20]. Thus, we can rewrite (7)
as

max
W

min
Ux

∑

i

(A∗(Ux
i:) + logP0(Xi:)) + tr

(

ZW (X − Ux)>
)

−
β

2
tr

(

WW>
)

(9)

Let F (W,Ux) denote the objective in (9). Crucially, one can verify that F satisfies the conditions
of the strong min-max property [14, Theorem 37.3] and [2, Page 95], which allows the order of the
minimization and maximization to be reversed. That is, (9) is equivalent to

min
Ux

max
W

∑

i

(A∗(Ux
i:) + logP0(Xi:)) + tr

(

ZW (X − Ux)>
)

−
β

2
tr

(

WW>
)

(10)

Now, since the objective function for the inner maximization on W is concave in W for fixed Ux,
it can be solved by setting d/dW = Z>(X − U) − βW = 0, which implies W = 1

β
Z>(X − U).

Substituting this into (10) yields the result (8).

Lemma 2 The maximization problem

max
Ω,b

tr
(

ZΩY >
)

+ 1>Y b −
∑

i

A(Zi:,Ω,b) −
β

2

(

tr
(

ΩΩ>
)

+ b>b
)

(11)

is equivalent to the following dual minimization problem

min
Uy

∑

i

A∗(Uy
i:) +

1

2β
tr

(

(Y −Uy)(Y −Uy)>(ZZ> + E)
)

(12)
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Proof: The proof is similar as above. The log normalization functionA(Zi:,Ω,b) can be reexpressed
using its Fenchel conjugate dual; that is

A(Zi:,Ω,b) = max
U

y
i:

tr
((

Zi:Ω + b>
)

Uy>
i:

)

−A∗(Uy
i:)

Substituting this into (11) and then reversing the order of minimization and maximization according
to the strong min-max property yields

min
Uy

max
Ω,b

∑

i

A∗(Uy
i:) + tr

(

ZΩ(Y − Uy)>
)

+ 1>(Y − Uy)b −
β

2

(

tr
(

ΩΩ>
)

+ b>b
)

(13)

The inner maximization function is apparently concave in Ω and b, and thus can be solved by setting
d/dΩ = Z>(Y −Uy)−βΩ = 0, d/db = (Y −Uy)>1−βb = 0, which yields Ω = 1

β
Z>(Y −Uy) and

b = 1
β
(Y − Uy)>1 respectively. Substituting them into (13) yields the result (12).

Lemma 3 The optimization problem (5) is equivalent to

max
Z:Z>Z=I

min
Ux,Uy

∑

i

(A∗(Ux
i:) + logP0(Xi:)) +

1

2β
tr

(

(X−Ux)(X−Ux)>ZZ>
)

+
∑

i

A∗(Uy
i:) +

1

2β
tr

(

(Y −Uy)(Y −Uy)>(ZZ> + E)
)

(14)

Proof: The proof is simply a summarization of Lemma 1 and Lemma 2.

Next, we turn to the outer maximization over Z, which involves a non-convex constraint. Note
that Z only appears in the form of inner product ZZ> in (14). This allows us to rewrite the
objective function in terms of a square matrix M = ZZ>. Although this is a relaxation of the
original optimization problem in general, we can show later that the optimal solution can be
preserved under an additional assumption.

Lemma 4 The optimization (14) is upper bounded by

max
M :I�M�0, tr(M)=d

min
Ux,Uy

∑

i

(A∗(Ux
i:) + logP0(Xi:)) +

1

2β
tr

(

(X−Ux)(X−Ux)>M
)

+
∑

i

A∗(Uy
i:) +

1

2β
tr

(

(Y −Uy)(Y −Uy)>(M + E)
)

(15)
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Proof: The proof is based on the relationships hold between the following sets of constraints on
M

{M : M = ZZ> for some Z such that Z>Z = I}

= {M : I �M � 0, tr(M) = d,M2 = M}

⊆ {M : I �M � 0, tr(M) = d}.

The first equality holds because both sets of constraints bound the eigenvalues of the matrices to
be either 0 or 1, with exactly d of them being 1 [12]. Unfortunately, neither of the first two sets
of constraints is convex on M due to that they contain quadratic equality constraints M = ZZ>

and M2 = M respectively. Nevertheless we can relax the second set of constraints merely by
dropping the non-convex constraint M2 = M , which then means the eigenvalues of M are only
constrained to be between 0 and 1 with their sum totalling to d. The relaxed set of constraints is
convex. Obviously since the problem is a maximization, an upper bound is obtained by relaxing
the constraint.

Thus we have achieved a formulation where the problem is convex, albeit with a relaxation.
That is, the outer maximization in (15) is concave in M , since a minimum of linear functions
is concave and the constraints are convex [3]. Once again, one can further reverse the order of
minimization and maximization based on strong min-max property of the objective function of
(15).

Lemma 5 The optimization problem (15) is equivalent to (6).

Proof: The proof is immediate upon verifying the objective function of (15) satisfies the conditions
of strong min-max property [14, Theorem 37.3].

So far we have actually shown (6) is an upper bound relaxation of (5). Below we will further
establish this upper bound is as tight as being equivalent to the original problem (5) if the following
condition is satisfied by the optimal solution (Ux∗, Uy∗,M∗) of (6)

λd(D) > λd+1(D), for D = (X−Ux∗)(X−Ux∗)> + (Y −Uy∗)(Y −Uy∗)> (16)

where λd(D) denotes the dth largest eigenvalue of D.
Note that the inner maximization of (6) is in the form of a standard semidefinite program. We

invoke a fundamental theorem about semidefinite programs of this form to achieve the following
result.

Lemma 6 The optimization problem (6) is equivalent to

min
Ux,Uy

max
Z:Z>Z=I

∑

i

(A∗(Ux
i:) + logP0(Xi:)) +

1

2β
tr

(

(X−Ux)(X−Ux)>ZZ>
)

+
∑

i

A∗(Uy
i:) +

1

2β
tr

(

(Y −Uy)(Y −Uy)>(ZZ> + E)
)

(17)
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Moreover, under the assumption that the optimal solution (Ux∗, Uy∗,M∗) of (6) satisfies the con-
dition (16), we have M∗ = Z∗Z∗>, where Z∗ is the optimal solution for (17), which implies
rank(M∗) = d.

Proof: The proof is based on a standard result from [11], which shows that the semidefinite
program

max
M :I�M�0,tr(M)=d

tr(MA)

is equivalent to solving

max
Z:Z>Z=I

tr(Z>AZ)

and when there are no ties between the dth and (d+ 1)th largest eigenvalues of A, that is λd(A) >

λd+1(A), the primal and dual solutions are connected by M∗ = Z∗Z∗>, Z∗ = Q
(d)
max(A), where

Qd
max(A) denotes the matrix formed by the top d eigenvectors of A.

Lemma 7 The optimization problem (6) is equivalent to (14) when its solution satisfies the con-
dition (16).

Proof: Let (Ux∗, Uy∗,M∗) be an optimal solution to (6). When the optimization problem (6)
satisfies the condition (16), we have M∗ = Z∗Z∗> according to Lemma 6, where Z∗ belongs to the
optimal solution of (17); or equivalently rank(M∗) = d. Note that (6) is an equivalent optimization
problem to (15) by Lemma 5. Hence we have that (Ux∗, Uy∗,M∗) is an optimal solution of (15).
Recall that (15) was an upper bound on (14) only insofar as the constraint M2 = M was dropped.
However, the solution M∗ to (15) automatically satisfies M∗2 = M∗. Hence it also is a solution of
(14).

Finally, Theorem 1 can be proved by summarizing all the lemmas established above.

3.2 Sample-based Approximation

In the previous section, we have formulated our supervised exponential family PCA as a convex
optimization problem (6). However, before attempting to devise a training algorithm to solve it,
we have to provide some concrete forms for the Fenchel conjugate functions A∗(Ux

i:) and A∗(Uy
i:).

For different exponential family models, the Fenchel conjugate functions A∗ are different; see [20,
Table 2]. For example, since the y variable in our model is a discrete class variable, it takes a
multinomial distribution. Thus the Fenchel conjugate function A∗(Uy

i:) is given by

A∗(Uy
i:) = A∗(Θy

i:) = tr
(

Θy
i: log Θy>

i:

)

, where Θy ≥ 0, Θy1 = 1 (18)
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The specific exponential family model is determined by the data type and distribution. PCA and
SPPCA use Gaussian models, thus their performances might be degraded when the data distribu-
tion is non-Gaussian. However, it is tedious and sometimes hard to choose the most appropriate
exponential family model to use for each specific application problem. Moreover, the log normal-
ization function A and its Fenchel conjugate A∗ might not be easily computable. For these reasons,
we propose to use a sample-based approximation to the integral (2) and achieve an empirical ap-
proximation to the true underlying exponential family model as follows. If one replaces the integral

definition (2) with an empirical definition, A(Zi:W ) = log
∑

j exp
(

Zi:WX>
j:

)

/t, then the conjugate

function can be given by

A∗(Ux
i:) = A∗(Θx

i:) = tr
(

Θx
i: log Θx>

i:

)

− log(1/t), where Θx ≥ 0, Θx1 = 1 (19)

With this sample-based approximation, problem (6) can be expressed as

min
Θx,Θy

max
M :I�M�0, tr(M)=d

tr (Θx log Θx) +
1

2β
tr

(

(I−Θx)K(I−Θx)>M
)

(20)

+ tr (Θy log Θy) +
1

2β
tr

(

(Y −Θy)(Y −Θy)>(M + E)
)

subject to Θx ≥ 0, Θx1 = 1; Θy ≥ 0, Θy1 = 1 (21)

One benefit of working with this sample-based approximation is that it is automatically kernelized,
K = XX>, to enable non-linearity to be conveniently introduced.

4 Efficient Global Optimization

The optimization (20) we derived in the previous section is a convex-concave min-max optimization
problem. The inner maximization of (20) is a well known problem with a closed-form solution [11].
Let D = (I−Θx)K(I−Θx)> + (Y −Θy)(Y −Θy)>. If λd(D) > λd+1(D), the inner maximization of
(20) has a closed-form solution

M∗ = Z∗Z∗> and Z∗ = Qd
max(D).

If λ1(D) ≥ · · · ≥ λr(D) > λr+1(D) = · · · = λr+m(D) > λr+m+1(D) ≥ · · · ≥ λt(D) for r + 1 ≤ d <
r +m ≤ t, the inner maximization has closed-form solutions

{M∗ = Z1Z
>
1 + Z2RZ

>
2 }

for Z1 = Qr
max(D), Z2 = Qr+1:r+m

max (D), which denote the matrices formed by the top r eigenvectors
of D and the top (r+1)th to (r+m)th eigenvectors of D respectively; and R is a m×m symmetric
matrix such that I � R � 0, tr(R) = d− r.
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However, the overall outer minimization problem is nondifferentiable with respect to Θx and
Θy. Thus the standard first-order or second-order optimization techniques that rely on the stan-
dard gradients can not be applied here. In this section, we deploy a bundle method to solve this
nondifferentiable min-max optimization.

4.1 Bundle Method for Min-Max Optimization

The bundle method is an efficient subgradient method for nondifferentiable convex optimization;
it relies on the computation of subgradient terms of the objective function. A vector g is a sub-

gradient of function f at point x, if f(y) ≥ f(x) + g>(y − x),∀y. To adapt standard bundle
methods to our specific min-max problem, we need to first address the critical issue of subgradient
computation.

Proposition 1 Consider a joint function h(x,y) defined over x ∈ X and y ∈ Y, satisfying: (1)
h(·,y) is closed and convex for all y ∈ Y; (2) h(x, ·) is closed and concave for all x ∈ X , and
supy∈Y h(x,y) < ∞ for all x. Let f(x) = maxy h(x,y), and q(x0) = arg maxy h(x0,y). Assume
that g is a gradient of h(·, q(x0)) at x = x0, then g is a subgradient of f(x) at x = x0.

Proof:
f(x) = max

y
h(x,y) ≥ h(x, q(x0))

≥ h(x0, q(x0)) + g>(x − x0) (since h(·,y) is convex for all y ∈ Y)

= f(x0) + g>(x − x0) (by the definitions of f(x) and q(x0))

Thus g is a subgradient of f(x) at x = x0 according to the definition of subgradient.

According to Proposition 1, the subgradients of our outer minimization objective function f in
(20) over Θx and Θy can be given by

∂Θxf 3 ( log Θx + 1 −
1

β
M∗(I − Θx)K), ∂Θyf 3 ( log Θy + 1 −

1

β
M∗(Y − Θy)) (22)

where M∗ is the optimal inner maximization solution at the current point [Θx,Θy].
Algorithm 1 illustrates the bundle method we developed to solve the infinite min-max optimiza-

tion (20), where the linear constraints (21) over Θx and Θy can be conveniently incorporated into
the quadratic bound optimization. One important issue in this algorithm is how to manage the
size of the linear lower bound constraints formed from the active set B (defined in Algorithm 1),
as it incrementally increases with new points being explored. To solve this problem, we noticed
the Lagrangian dual parameters α for the lower bound constraints obtained by the quadratic opti-
mization in step 1 is a sparse vector, indicating that many lower bound constraints can be turned
off. Moreover, any constraint that is turned off will mostly stay off in the later steps. Therefore, for
the bundle method we developed, whenever the size of B is larger than a given constant b, we will
keep the active points of B that correspond to the first b largest α values, and drop the remaining
ones.
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Algorithm 1 Bundle Method for Min-Max Optimization in (20)

Input: δ̄ > 0,m ∈ (0, 1), b ∈ IN , µ ∈ IR
Initial: Find an initial point θ∗ satisfying the linear constraints in (21); compute f(θ∗).

Let ` = 1, θ` = θ∗, compute g` ∈ ∂θ`f by (22); e` = f(θ∗) − f(θ`) − g`>(θ∗ − θ`).
Let B = {(e`,g`)}, ε̂ = Inf, ĝ = 0; ` = `+ 1.

repeat

1. Solve quadratic minimization for solution θ̂, and Lagrangian dual parameters α w.r.t. the
lower bound linear constraints in B [1]:

θ̂ = arg min
θ
ψ`(θ) +

µ

2
‖θ − θ∗‖2, subject to the linear constraints in (21)

where ψ`(θ) = f(θ∗) + max { − ε̂+ ĝ>(θ − θ∗), max
(ei,gi)∈B

{−ei + ĝi>(θ − θ∗)}}

2. Define δ` = f(θ∗) − [ψ`(θ̂) + µ
2‖θ̂ − θ∗‖2 ≥ 0. If δ` < δ̂, return.

3. Conduct line search to minimize f(θ`) with θ` = γθ∗ + (1 − γ)θ̂, for 0 < γ < 1.
4. Compute g` ∈ ∂θ`f by (22); e` = f(θ∗) − f(θ`) − g`>(θ∗ − θ`); update B = B ∪ {(e`,g`)}.
5. If f(θ∗) − f(θ`) ≥ mδ`, then take a serious step:

(1) update: ei = ei + f(θ`) − f(θ∗) + gi>(θ∗ − θ`);
(2) update the aggregation: ĝ =

∑

i αig
i, ε̂ =

∑

i αie
i;

(3) update the stored solution: θ∗ = θ`, f(θ∗) = f(θ`).
6. If |B| > b, reduce B set according to α.
7. ` = `+ 1.

until maximum iteration number is reached

4.2 Coordinate Descent Procedure

An important factor affecting the running efficiency is the size of the problem. The convex opti-
mization (20) works in the dual parameter space, where the size of the parameters Θ = {Θx,Θy},
t× (t+ k), depends only on the number of training samples, t, not on the feature size, n. For high
dimensional small data sets (n � t), our dual optimization is certainly a good option. However,
with the increase of t, our problem size will increase in an order of O(t2). It might soon become
too large to handle for the quadratic optimization step of the bundle method.

On the other hand, the optimization problem (20) possesses a nice semi-decomposable structure:
one equality constraint in (21) involves only one row of the Θ; that is, the Θ can be separated into
rows without affecting the equality constraints. Based on this observation, we develop a coordinate
descent procedure to obtain scalability of the bundle method over large data sets. Specifically,
we put an outer loop above the bundle method. Within each of this outer loop iteration, we
randomly separate the Θ parameters into m groups, with each group containing a subset rows of
Θ; and we then use bundle method to sequentially optimize each subproblem defined on one group
of Θ parameters while keeping the remaining rows of Θ fixed. Although coordinate descent with
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a nondifferentiable convex objective is not guaranteed to converge to a minimum in general [19],
we have found that this procedure performs quite well in practice, as shown in the experimental
results.

5 Projection for Testing Data

One important issue for supervised dimensionality reduction is to map new testing data into the
dimensionality-reduced principal dimensions. We deploy a simple procedure for this purpose. After
training, we obtain a low-dimensional representation Z for X, where Z can be viewed as a linear
projection of X in some transformed space ψ(X) through a parameter matrix U; such that Z =
ψ(X)U = ψ(X)ψ(X)>K+ψ(X)U , where K+ denotes the pseudo inverse of K = ψ(X)ψ(X)>.
Then a new testing sample x∗ can be projected by

z∗ = ψ(x∗)ψ(X)>K+ψ(X)U = k(x∗, X)K+Z (23)

6 Experimental Results

In order to evaluate the performance of the proposed supervised exponential family PCA (SEPCA)
approach, we conducted experiments over both synthetic and real data, and compared to supervised
dimensionality reduction with generalized linear models (SDR GLM), supervised probabilistic PCA
(SPPCA), linear discriminant analysis (LDA), and colored maximum variance unfolding (MVU).
The projection procedure (23) is used for colored MVU as well. In all the experiments, we used
µ = 1 for Algorithm 1, and used α = 0.0001 for SDR GLM as suggested in [13].

6.1 Experiments on Synthetic Data

Two synthetic experiments were conducted to compare the five approaches under controlled con-
ditions. The first synthetic data set is formed by first generating four Gaussian clusters in a
two-dimensional space, with each corresponding to one class, and then adding the third dimension
to each point by uniformly sampling from a fixed interval. This experiment attempts to compare
the performance of the five approaches in the situation where the data distribution does not satisfy
the Gaussian assumption. The left figure in Figure 2 shows the original 3-dimensional test data.
Figure 3 shows the projection results for each approach in a two dimensional space for 120 testing
points after being trained on a set with 80 points. In this case, SEPCA and LDA outperform all
the other three approaches.

The second synthetic experiment is designed to test the capability of performing nonlinear
dimensionality reduction. The synthetic data is formed by first generating two circles in a two
dimensional space (one circle is located inside the other one), with each circle corresponding to
one class, and then the third dimension sampled uniformly from a fixed interval. As SDR GLM
does not provide a nonlinear form, we conducted the experiment with only the remaining four
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Figure 2: The original 3-dimensional test data: the left figure is for synthetic experiment 1 and
and the right figure is for synthetic experiment 2. Each color indicates one class.
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Figure 3: Projection results on test data for synthetic experiment 1. Each color indicates one class.
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Figure 4: Projection results on test data for synthetic experiment 2. Each color indicates one class.
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Table 1: Data set information and test accuracy results (%)

SDR colored
Dataset #Data #Dim #Class FULL SEPCA GLM SPPCA LDA MVU

Yale 165 4096 15 65.3 64.4 58.8 51.6 31.0 21.1
YaleB 2414 1024 38 47.0 20.5 19.0 9.8 6.2 2.8
11 Tumor 174 12533 11 77.6 88.9 63.5 63.0 23.7 40.2
Usps3456 120 256 4 82.1 79.7 77.9 78.5 74.3 75.8
Newsgroup 19928 25284 20 32.1 16.9 – 6.9 10.0 10.4

approaches. For LDA, we used its kernel variant, KDA. A Gaussian kernel with σ = 1 was used
for SEPCA, SPPCA and KDA. The right figure in Figure 2 shows the original 3-dimensional test
data. Figure 4 shows the projection results for each approach in a two dimensional space for 120
testing points after being trained on a set with 95 points. Again, SEPCA and KDA achieve good
class separations and outperform the other two approaches.

6.2 Experiments on Real Data

To better characterize the performance of dimensionality reduction in a supervised manner, we
conducted some experiments on a few high dimensional multi-class real world data sets. The left
side of Table 1 provides the information about these data sets.

Our experiments were conducted in the following way. We randomly selected 3∼5 examples
from each class to form the training set and used the remaining examples as the test set. For
each approach, we first learned the dimensionality reduction model on the training set. Moreover,
we also trained a logistic regression classifier using the projected training set in the reduced low
dimensional space. (Note, for SEPCA, a classifier was trained simultaneously during the process of
dimensionality reduction optimization.) Then the test data were projected into the low dimensional
space according to each dimensionality reduction model. Finally, the projected test set for each
approach were classified using each corresponding logistic regression classifier. The right side of
Table 1 shows the classification accuracies on the test set for each approach. To better understand
the quality of the classification using projected data, we also included the standard classification
results, indicated as ’FULL’, using the original high dimensional data. (Note, we are not able to
obtain any result for SDR GLM on the newsgroup data as it is inefficient for very high dimensional
data.) The results reported here are averages over 20 repeated runs, and the projection dimension
d = 10. Still the proposed SEPCA presents the best performance among the compared approaches.
But different from the synthetic experiments, LDA does not work well on these real data sets.

We have also conducted experiments to compare the SEPCA with the other few approaches
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Figure 5: Results on the Tumor and YaleB data sets with a set of different reduced dimensions
d = 5, 10, 15, 20.

using a set of different reduced (projection) dimensions: 5, 10, 15 and 20. Figure 5 shows the results
on the Tumor data set and YaleB data set. With the increasing of the projection dimension, each
approach obtains a better accuracy. But once again, the SEPCA shows a clear advantage over the
other approaches.

The results on both synthetic and real data show that SEPCA outperforms the other four
approaches. This might be attributed to its adaptive exponential family model approximation and
its global optimization, while SDR GLM and SPPCA apparently suffer from local optima.

7 Conclusions

In this paper, we propose a supervised exponential family PCA (SEPCA) approach, which can
be solved efficiently to find global solutions. Moreover, SEPCA overcomes the limitation of the
Gaussian assumption of PCA and SPPCA by using a data adaptive approximation for exponential
family models. A simple, straightforward projection method for new testing data has also been con-
structed. Empirical study suggests that this SEPCA outperforms other supervised dimensionality
reduction approaches, such as SDR GLM, SPPCA, LDA and colored MVU.
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