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Abstract

Recently, batch-mode active learning has attracted a lot ofattention. In this pa-
per, we propose a novel batch-mode active learning approachthat selects a batch
of queries in each iteration by maximizing a natural mutual information criterion
between the labeled and unlabeled instances. By employing aGaussian process
framework, this mutual information based instance selection problem can be for-
mulated as a matrix partition problem. Although matrix partition is an NP-hard
combinatorial optimization problem, we show that a good local solution can be
obtained by exploiting an effective local optimization technique on a relaxed con-
tinuous optimization problem. The proposed active learning approach is indepen-
dent of employed classification models. Our empirical studies show this approach
can achieve comparable or superior performance to discriminative batch-mode ac-
tive learning methods.

1 Introduction

Active learning is well-motivated in many supervised learning scenarios where unlabeled instances
are abundant and easy to retrieve but labels are difficult, time-consuming, or expensive to obtain.
For example, it is easy to gather large amounts of unlabeled documents or images from the Inter-
net, whereas labeling them requires manual effort from experienced human annotators. Randomly
selecting unlabeled instances for labeling is inefficient in many situations, since non-informative or
redundant instances might be selected. Aiming to reduce labeling effort, active learning (i.e., selec-
tive sampling) methods have been adopted to control the labeling process in many areas of machine
learning. Given a large pool of unlabeled instances, activelearning provides a way to iteratively
select the most informative unlabeled instances—the queries—from the pool to label.

Many researchers have addressed the active learning problem in various ways [13]. Most have fo-
cused on selecting a single most informative unlabeled instance to query each time. The ultimate
goal for most such approaches is to select instances that could lead to a classifier with low gener-
alization error. Towards this, a few variants of a mutual information criterion have been employed
in the literature to guide the active instance sampling process. The approaches in [4][10] select the
instance to maximize the increase of mutual information andthe mutual information, respectively,
between the selected set of instances and the remainder based on Gaussian process models. The
approach proposed in [5] seeks the instance whose optimistic label provides maximum mutual in-
formation about the labels of the remaining unlabeled instances. The mutual information measure
used is discriminative, computed using their trained classifier at that point. This approach implicitly
exploits the clustering information contained in the unlabeled data in an optimistic way.

The single instance selection active learning methods require tedious retraining with each single in-
stance being labeled. When the learning task is sufficiently complex, the retraining process between
queries can become very slow. This may make highly interactive learning inefficient or imprac-
tical. Furthermore, if a parallel labeling system is available, e.g., multiple annotators working on
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different labeling workstations at the same time on a network, a single instance selection system
can make wasteful use of the resource. Thus, a batch-mode active learning strategy that selects
multiple instances each time is more appropriate under these circumstances. The challenge in batch-
mode active learning is how to properly assemble the optimalquery batch. Simply using a single
instance selection strategy to select a batch of queries in each iteration does not work well, since
it fails to take the information overlap between the multiple instances into account. Principles for
batch mode active learning need to be developed to address the multi-instance selection specifically.
Several sophisticated batch-mode active learning methodshave been proposed for classification.
Most of these approaches use greedy heuristics to ensure theoverall informativeness of the batch by
taking both the individual informativeness and the diversity of the selected instances into account.
Schohn and Cohn [12] select instances according to their proximity to the dividing hyperplane for
a linear SVM. Brinker [2] considers an approach for SVMs thatexplicitly takes the diversity of the
selected instances into account, in addition to individualinformativeness. Xu et al. [14] propose a
representative sampling approach for SVM active learning,which also incorporates a diversity mea-
sure. Specifically, they query cluster centroids for instances that lie close to the decision boundary.
Hoi et al. [7, 8] extend the Fisher information framework to the batch-mode setting for binary logistic
regression. Hoi et al. [9] propose a novel batch-mode activelearning scheme on SVMs that exploits
semi-supervised kernel learning. In particular, a kernel function is first learned from a mixture of
labeled and unlabeled examples, and then is used to effectively identify the informative and diverse
instances via a min-max framework. Instead of using heuristic measures, Guo and Schuurmans [6]
treat batch construction for logistic regression as a discriminative optimization problem, and at-
tempt to construct the most informative batch directly. Overall, these batch-mode active learning
approaches all make batch selection decisions directly based on the classifiers employed.

In this paper, we propose a novel batch-mode active learningapproach that makes query selection
decisions independent of the classification model employed. The idea is to select a batch of queries
in each iteration by maximizing a generalmutual informationmeasure between the labeled instances
and the unlabeled instances. By employing a Gaussian process framework, this mutual information
maximization problem can be further formulated as a matrix partition problem. Although the matrix
partition problem is an NP-hard combinatorial optimization, it can first be relaxed into a continuous
optimization problem and then a good local solution can be obtained by exploiting an effective local
optimization. The local optimization method we use is developed by combining a local lineariza-
tion of the objective function based on its first-order Taylor series expansion, and a straightforward
backtracking line search. Unlike most active learning methods studied in the literature, our query
selection method does not require knowledge of the employedclassifier. Our empirical studies show
that the proposed batch-mode active learning approach can achieve superior or comparable perfor-
mance to discriminative batch-mode active learning methods that have been optimized on specific
classifiers.

The remainder of the paper is organized as follows. Section 2provides preliminaries on Gaussian
processes. Section 3 introduces the proposed matrix partition approach for batch-mode active learn-
ing. Empirical studies are presented in Section 4, and Section 5 concludes this work.

2 Gaussian Processes

A Gaussian process is a generalization of the Gaussian probability distribution. Although Gaussian
processes have a long history in statistics, their potential has only become widely appreciated in the
machine learning community during the past decade [11]. In this section, we provide an overview of
Gaussian processes and some of their important properties which we will exploit later to construct
our active learning approach.

2.1 Multivariate Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the distribution
of continuous variables. In the case of multiple random variables, the joint multivariate Gaussian
distribution for ad × 1 vectorx is given in the form

P (x) =
1

(2π)d/2|Σ|1/2
exp

(
−

1

2
(x − µ)>Σ−1(x − µ)

)
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whereµ is a d-dimensional mean vector,Σ is a d × d covariance matrix, and|Σ| denotes the
determinant ofΣ. Whend = 1, we obtain the standard one-variable Gaussian distribution.

2.2 Gaussian Processes

A Gaussian process is a generalization of a multivariate Gaussian distribution over a finite vector
space to a function space of infinite dimension. Given a set ofinstancesX = [x>

1 ;x>
2 ; · · · ;x>

t ],
a data modeling functionf(·) can be viewed as a single sample from a Gaussian distributionwith
a mean functionµ(·), and a covariance functionC(·, ·). In particular,µ(xi) denotes the mean of
the function variablef(xi) at pointxi, andC(xi,xj) expresses the expected covariance between
functionsf at pointxi andxj . A Gaussian process is defined as a Gaussian distribution on aspace
of functionsf which can be written in the form

P (f(x))=
1

Z
exp

(
−

1

2
(f(x)−µ(x))>Σ−1(f(x)−µ(x))

)

whereµ(x) is the mean function,Σ is defined using the covariance functionC, andZ denotes the
normalization factor. One typical choice for the covariance functionC is a symmetric positive-
definite kernel functionK, e.g. a Gaussian kernel

K(xi,xj) = exp

(
−

(‖xi − xj‖
2

τ2

)
(1)

One important property of Gaussian processes is that for every finite set (or subset) of instancesXQ

with indicesQ, the joint distribution over the corresponding random function variablesfQ = f(XQ)
is a multivariate Gaussian distribution with a mean vectorµQ = µ(XQ) and a covariance matrix
ΣQQ, where each entryΣi,j is defined using the covariance kernel functionK(xi,xj)

P (fQ)=
1

Z
exp

(
−

1

2
(fQ−µQ)>Σ−1

QQ(fQ−µQ)

)
(2)

HereZ = (2π)q/2|ΣQQ|
1/2, andq is the size of setQ. We can assume the the mean function

µ(·) = 0. Nevertheless, it is irrelevant in this paper.

3 Batch-mode Active Learning via Matrix Partition

Given a small set of labeled instances{(xi, yi)}i∈L and a large set of unlabeled instances{xj}j∈U ,
our task is to iteratively select the most informative set ofb instances fromU and add them into
the labeled setL after querying their labels from a labeling system. In this section, we propose to
conduct instance selective sampling using a maximum mutualinformation strategy which can then
be formulated into a matrix partition problem.

3.1 Maximum Mutual Information Instance Selection

Since the ultimate goal of active learning is to achieve a classifier with good generalization perfor-
mance on unseen test data, it makes sense to select instancesthat can produce a labeled set that is
most informative about the unseen test instances. Apparently it is not possible to access theunseen
test data. Nevertheless, in active learning setting, we have a large number of unlabeled instances
available that come from the same distribution as the futuretest instances. Thus we can select in-
stances that lead to a labeled set which is most informative about the large set of unlabeled instances
instead. We propose to use a mutual information criterion tomeasure the informativeness of the
labeled setL over the unlabeled setU

I(XL,XU ) = H(XL) + H(XU ) − H(XL,XU ) (3)

whereXL andXU denotes the labeled set of instances and the unlabeled set ofinstances respec-
tively, H(·) denotes the entropy term.

Both the mutual information measure and the entropy measureare defined on probability distribu-
tions [3]. We thus employ a Gaussian process framework (introduced in the previous section) to
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model the joint probability distribution over all the instances. We first associate each instancexi

with a random variablefi. Then the joint distribution over a finite number of instances XQ can be
represented using the joint multivariate Gaussian distribution over variablesfQ, which is given in
(2). Thus the entropy termH(XQ) = H(fQ) can be computed using a closed-form solution

H(fQ) =
1

2
ln

(
(2πe)m|ΣQQ|

)
(4)

wherem is the number of variables, i.e., the size ofQ; ΣQQ is the covariance matrix computed over
XQ using a kernel functionK given in (1). Within this Gaussian process framework, the mutual
information criterion in (3) can be rewritten as

I(XL,XU ) = H(fL) + H(fU ) − H(fL, fU ) (5)

=
1

2
ln

(
(2πe)l|ΣLL|

)
+

1

2
ln

(
(2πe)u|ΣUU |

)
−

1

2
ln

(
(2πe)t|ΣV V |

)

whereV is the union ofL andU ; l, u, t denote the sizes ofL,U, V respectively such thatl + u = t.
Note that for a given data set, the overall number of instances does not change during the active
learning process. We simply moveb instances from the unlabeled setU into the labeled setL
in each iteration. Thus the setV and the entropy termH(fL, fU ) are irrelevant to the instance
selection. Based on this observation, our maximum mutual information instance selection strategy
can be formulated as

Q∗ = argmax
|Q|=b,Q⊆U

I(XL∪Q,XU\Q) = argmax
|Q|=b,Q⊆U

ln |ΣL′L′ | + ln |ΣU ′U ′ | (6)

whereL′ = L∪Q andU ′ = U \Q. This also suggests the mutual information criterion depends only
on the covariance matrices computed using the kernel functions over the instances. Our maximum
mutual information strategy attempts to select the batch ofb instances from the unlabeled setU to
label, to maximize the log determinants of the covariance matrices over the produced setsL′ andU ′.

3.2 Matrix Partition

Let Σ be the covariance matrix over all the instances indexed byV = L ∪ U = L′ ∪ U ′. Then
the covariance matricesΣLL, ΣUU , ΣL′L′ andΣU ′U ′ are all submatrices ofΣ. Without losing any
generality, we assume the instances are arranged in the order of [U,L], such that

Σ =

[
ΣUU ΣUL

ΣLU ΣLL

]
(7)

The instance selection problem formulated in (6) selects a subset ofb instances indexed byQ fromU
and moves them into the labeled setL. This problem is actually equivalent topartitioning matrixΣ
into submatricesΣL′L′ , ΣU ′U ′ , ΣL′U ′ andΣU ′L′ by reordering the instances inU . SinceL is fixed,
the actual matrix partition is conduct on covariance matrixΣUU . Now we define a permutation
matrixM ∈ {0, 1}u×u such that

M1 = 1, M>
1 = 1

where1 denotes a vector of all1 entries. We letMb̃ denote the firstu−b rows ofM , andMb denote
the lastb rows ofM , such that

Mb̃ΣUUM>
b̃

= ΣU ′U ′ , MbΣUUM>
b = ΣQQ (8)

ObviouslyMb selectsb instances fromU to formQ. Let

T =
[
Mb̃ O(u−b)×l

]
, B =

[
Mb Ob×l

Ol×u Il

]
(9)

whereOm×n denotes am × n matrix with all 0 entries, andIl denotes al × l identity matrix.
According to (8) we then have

ΣU ′U ′ = TΣT>, ΣL′L′ = BΣB> (10)

Finally, the maximum mutual information problem given in (6) can be equivalently formulated into
the following matrix partition problem

max
M

ln |BΣB>| + ln |TΣT>| (11)

s.t. M ∈ {0, 1}u×u, M1 = 1, M>
1 = 1
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After solving this problem to obtain an optimalM∗, the instance selection can be determined from
the lastb rows ofM∗, i.e.,M∗

b .

However, the optimization problem (11) is an NP-hard combinatorial optimization problem over an
integer matrixM . To facilitate a convenient optimization procedure, we relax the integer optimiza-
tion problem (11) into the following upper bound optimization problem

max
M

ln |BΣB>| + ln |TΣT>| (12)

s.t. 0 ≤ M ≤ 1, M1 = 1, M>
1 = 1 (13)

Note a determinant is a log concave function on positive definite matrices [1]. Thusln |X| is concave
in X. However, the quadratic matrix functionX = BΣB> is matrix convex given the matrixΣ
is positive definite. Thus the composition functionln |BΣB>| is neither convex nor concave, but
differentiable. In general, this type of problems are difficult global optimization problems. We
develop an efficient local optimization technique to solve for a reasonable local solution instead.

3.3 First-order Local Optimization

The target optimization (12) is an optimization problem over a u × u matrix M , subject to the
linear inequality and equality constraints (13). Hereu is the number of unlabeled instances, and
we typically assume it is a large number. Therefore a second-order optimization approach will be
space demanding. We develop a first-order local maximization algorithm to conduct optimization,
which combines a gradient direction finding method with a straightforward backtracking line search
technique. This local optimization algorithm produced promising results in our experiments.

The algorithm is an iterative procedure, starting from an initial matrix M (0). Let M (k) denote the
optimization variable values returned from the thekth iteration. At the(k + 1)th iteration, we
approximate the objective function in (12) using its first-order Taylor series expansion at pointM (k)

g(M) = ln |BΣB>| + ln |TΣT>|

≈ ln |B(k)ΣB(k)>| + ln |T (k)ΣT (k)>| + Tr
(
G(M (k))>(M − M (k))

)
(14)

WhereB(k) andT (k) denote the correspondingB andT matrices with theirM submatrices fixed to
values given byM (k); Tr denotes the trace operator;G(M (k)) denotes the gradient matrix value at
pointM (k). The gradient of the objective functiong(M) can be calculated using the matrix calculus,
which gives the following results

G(Mb̃) =
dg(M)

dMb̃

= 2
[
(TΣT>)−1TΣ

]
1:(u−b),1:u

(15)

G(Mb) =
dg(M)

dMb
= 2

[
(BΣB>)−1BΣ

]
1:b,1:u

(16)

G(M) =
[
G(Mb̃)

>, G(Mb)
>

]>
(17)

Note here we use notations in the matlab format where[X]i:j,m:n denotes the(j−i+1)×(n−m+1)
submatrix ofX formed by entries between theith to thejth rows and themth to thenth columns.

Given the gradient at pointM (k), we maximize the local linearization (14) to seek a gradientdirec-
tion regarding the constraints. This leads to a convex linear optimization

M̃ = arg max
M

Tr
(
G(M (k))>M

)
(18)

s.t. 0 ≤ M ≤ 1, M1 = 1, M>
1 = 1

The gradient direction for the(k + 1)th iteration can be determined as

D = M̃ − M (k). (19)

We then employ a backtracking line search to seek the optimalvalue M (k+1) to improve the
original objective functiong(M) with g(M (k+1)) > g(M (k)). The line search procedure,

5



Algorithm 1 Matrix Partition
Input: l: the number of labeled instances;u the number of unlabeled instances;

Σ: covariance matrix given in form of (7);b: batch size;
M (0); ε < 1e − 8.

Output: M∗

Initialize k = 0, NoChange = false.
repeat

SetT andB according to equations (9) using the currentM (k).
Compute gradientG(M (k)) at pointM (k) according to equations (15), (16) and (17).
Solve the local linear optimization (18) for the given gradient to getM̃ .
Compute the gradient ascend directionD using the equation (19).
ComputeM (k+1) = linesearch(D,M (k)).
if ‖M (k+1) − M (k)‖2 < ε then NoChange=true.end if
k = k+1.

until NoChange is true or maximum iteration number is reached.
M∗ = M (k).

Algorithm 2 Heuristic Greedy Rounding Procedure

Input: b, M ∈ (0, 1)b×u for b < u.
Output: M̂,Q.
Initialize Let Q = ∅, setM̂ as ab × u matrix with all 0 entries.
for k = 1 to b do

Identify the largest valuev = max(M(:)).
Identify the indices(i, j) of v in M .
SetQ = Q ∪ {j}, M̂(i, j) = 1, M(i, :) = −Inf, M(:, j) = −Inf.

end for

linesearch(D,M (k)), seeks an optimal step size,0 ≤ s < 1, to update theM (k) in the ascending
directionD given in (19), i.e.M (k+1) = M (k) + sD, guaranteeing the returnedM (k+1) satisfies
the linear constraints in (13), and leads to an objective value no worse than before.

The overall algorithm for optimizing the matrix partition problem (12) is given in Algorithm 1.
In our implementation, the constrained linear optimization (18) can be efficiently solved using an
optimization software package CPLEX. When the number of unlabeled instances,u, is large, com-
puting the log-determinant of the(u − b) × (u − b) matrix, TΣT>, is likely to run into overflow
or underflow. Instead of computing the log-determinant directly, we choose to compute it in an
alternative efficient way. The key idea is based on the mathematical fact that the determinant of a
triangular matrix equals the product of its diagonal elements. Hence, the matrix’s log-determinant
is equal to the sum of their logarithm values. By keeping all computations in log-scale, the problem
of underflow/overflow caused by product of many numbers can beeffectively circumvented. For
positive definite matrices, such as the matrices we have, onecan use Cholesky factorization to first
produce a triangular matrix and then compute the log-determinant of the original matrix using the
logarithms of the diagonal values of the triangular matrix.The computation of log-determinants or
matrix inverse in our algorithm are all conducted on matrices assumed to be positive definite. How-
ever, in order to increase the robustness of the algorithm and avoid numerical problems, we can add
an additionalδI term to the matrices to guarantee the positive definite property. Hereδ is a very
small value andI is an identity matrix.

By solving the matrix partition problem in (12) using Algorithm 1, an optimal matrixM∗ is returned.
However, thisM∗ contains continuous values. In order to determine which setof b instances to
select, we need to roundM∗ to a{0,1}-valuedM̂∗, while maintaining the permutation constraints

M̂∗1 = 1 andM̂∗
>
1 = 1. We use a simple heuristic greedy procedure to conduct the rounding. In

this procedure, we focused on rounding the lastb rows,M∗
b , since they are the ones used to pickb

instances for labeling. The procedure is described in Algorithm 2, which returns the indices of the
selectedb instances as well.
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4 Experiments

To investigate the empirical performance of the proposed batch-mode active learning algorithm, we
conducted two sets of experiments on a few UCI datasets and the 20 newsgroups dataset. Note the
proposed active learning method is in general independent of the specific classification model em-
ployed. For the experiments in this section, we used logistic regression as its classification model to
evaluate the informativeness of the selected labeled instances. We compared the proposed approach,
denoted asMatrix, with three discriminative batch-mode active learning methods proposed in the
literature:svmD, an approach that incorporates diversity in active learning with SVMs [2]; Fisher,
an approach that uses Fisher information matrix based on logistic regression classifiers for instance
selection [8];Discriminative, a discriminative optimization approach based on logisticregression
classifiers [6]. We have also compared our approach to one transductive experimental design method
which is formulated from regression problems and whose instance selection process is independent
of evaluation classification models [15]. We used the sequential design code downloaded from the
authors’ webpage and denote this method asDesign.

First, we conducted experiments on seven UCI datasets. We consider a hard case of active learning,
where we start active learning from only a few labeled instances. In each experiment, we start with
two randomly selected labeled instances, one in each class.We then randomly select 2/3 of the
remaining instances as the unlabeled set, using all the other instances for testing. All the algorithms
start with the same initial labeled set, unlabeled set and testing set. For a fixed batch sizeb, each
algorithm repeatedly selectb instances to label each time and evaluate the produced classifier on
testing data after each new labeling, with maximum110 instances to select in total. The experiments
were repeated 20 times. In Table 1, we report the experimental results withb = 10, comparing the
proposedMatrix algorithm with each of the three batch-mode alternatives. With b = 10, there are
totally 11 evaluation points, with 20 results on each of them. We therefore run a 2-sided paired t-test
at each evaluation point to compare the performance of each pair of algorithms. The “win%” denotes
the percentage of evaluation points where theMatrix algorithm outperforms the specified algorithm
using a 2-sided paired t-test at the level of p<0.05; the “lose%” denotes the percentage of evaluation
points where the specified algorithm outperforms theMatrix algorithm. The “overall” nevertheless
show the comparison results using a single 2-sided paired t-test on all 220 results. These results
show that the proposed active learning method,Matrix, overperformedsvmD, FisherandDesignon
most data sets, except an overallloseto svmDon pima, atie with FisherandDesignon hepatitis, and
a tie with Designon flare.Matrix is mostly tied withDiscriminativeon all data sets, with a slight
pointwisewin on crx and a slight overalllose on german. AlthoughMatrix and Discriminative
demonstrated similar performance, the proposedMatrix is more efficient regarding running time on
relatively big data sets. The comparison in running times over 20 repeats are reported in Table 2.

Table 1: Comparison of the active learning algorithms on UCIdata with batch size = 10. These
results are based on 2-sided paired t-test at the level of p< 0.05.

Data set Matrix vs svmD Matrix vs Fisher Matrix vs Discriminative Matrix vs Design
win% lose% overallwin% lose% overallwin% lose% overall win% lose% overall

cleve 63.6 0 win 45.5 0 win 0 0 tie 90.9 0 win
crx 27.3 0 win 9.1 0 win 9.1 0 tie 90.9 0 win
flare 54.5 0 win 100.0 0 win 0 0 tie 36.4 9.1 tie
german 81.8 0 win 9.1 0 win 0 0 lose 72.7 0 win
heart 63.6 0 win 36.4 0 win 0 0 tie 100.0 0 win
hepatitis 100.0 0 win 33.3 0 tie 0 0 tie 0 0 tie
pima 0 0 lose 100.0 0 win 0 0 tie 81.8 0 win

Table 2: Average running time (in minutes)

Method cleve crx flare german heart hepatitis pima
Matrix 8.37 6.14 9.53 22.08 5.68 0.12 60.11
Discriminative 3.33 61.44 220.12 285.65 2.40 0.08 68.27
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Table 3: Comparison of the active learning algorithms on Newsgroup data with batch size = 20.
These results are based on 2-sided paired t-test at the levelof p< 0.05.

Data set Matrix vs svmD Matrix vs Fisher Matrix vs Random Matrix vs Design
win% lose% overallwin% lose% overallwin% lose% overallwin% lose% overall

Autos 86.7 0 win 20.0 6.6 tie 73.3 6.6 win 80.0 6.7 win
Hardware100.0 0 win 0 0 tie 13.3 0 win 86.7 0 win
Sport 86.7 6.6 win 20.0 13.3 tie 46.7 0 win 80.0 6.7 win

Next we conducted experiments on 20 newsgroups dataset for document categorization. We build
three binary classification tasks: (1) Autos: rec.autos (987 documents) vs. rec.motorcycles (993 doc-
uments); (2) Hardware: comp.sys.ibm.pc.hardware (979 documents) vs. comp.sys.mac.hardware
(958 documents); (3) Sport: rec.sport.baseball (991 documents) vs. rec.sport.hockey (997 docu-
ments). Each document is first minimally processed into a “tf.idf” vector. We then select the top
400 features to use according to their total “tf.idf” frequencies in all the documents for the consid-
ered task. In each experiment, we start with four randomly selected labeled instances, two in each
class. We then randomly select 1000 instances (500 from eachclass) from the remaining ones as the
unlabeled set, using all the other instances for testing. All the algorithms start with the same initial
labeled set, unlabeled set and testing set. For a fixed batch size b, each algorithm repeatedly selectb
instances to label each time with maximum300 instances to select in total. In this section, we report
the experimental results withb = 20 averaged over 20 times repetitions. There are300/20 = 15
evaluation points in this case.

Note the unlabeled sets used for this set of experiments are much larger than the ones used for
experiments on UCI datasets. This substantially increasesthe searching space of instance selection.
One consequence in our experiments is that theDiscriminativealgorithm becomes very slow. Thus
we were not able to produce comparison results for this algorithm. The proposedMatrix method
was affected as well. However, we coped with this problem using a subsampling assisted method,
where we first select a subset of 400 instances from the unlabeled set and then restrain our instance
selection to this subset. This is equivalent to solving the matrix partition optimization in (12) with
additional constraints onMb, such that the columns ofMb corresponding to instances outside of
this subset of 400 instances are all set to 0. For the experiments, we chose the 400 instances as
the ones with top entropy terms under the current classification model. The same subsampling was
used for the methodDesignas well. Table 3 shows the comparison results on the three document
categorization tasks, comparingMatrix to svmD, Fisher, Designand a baseline random selection,
Random. These results show the proposedMatrix outperformedsvmD, DesignandRandom. It tied
with Fisherregarding overall measure, but had a slightwin regarding pointwise measure.

These empirical results suggest that selecting unlabeled instances independent of the classification
model using the proposed matrix partition method can achieve reasonable performance, which is
better than a transductive experimental design method and comparable to the discriminative batch-
mode active learning approaches. However, our approach canoffer certain conveniences in some
circumstances where one does not know the classification model to be employed for classification.

5 Conclusions

In this paper, we propose a novel batch-mode active learningapproach that makes query selection
decisions independent of the classification model employed. The proposed approach is based on a
generalmaximum mutual informationprinciple. It is formulated as a matrix partition optimization
problem under a Gaussian process framework. To tackle the formulated combinatorial optimization
problem, we developed an effective local optimization technique. Our empirical studies show the
proposed flexible batch-mode active learning approach can achieve comparable or superior perfor-
mance to discriminative batch-mode active learning methods that have been optimized on specific
classifiers. A future extension for this work is to consider batch-mode active learning with structured
data by exploiting different kernel functions.
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