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Abstract

Due to the dramatic expanse of data cat-
egories and the lack of labeled instances,
zero-shot learning, which transfers knowledge
from observed classes to recognize unseen
classes, has started drawing a lot of attention
from the research community. In this paper,
we propose a semi-supervised max-margin
learning framework that integrates the semi-
supervised classification problem over ob-
served classes and the unsupervised cluster-
ing problem over unseen classes together to
tackle zero-shot multi-class classification. By
further integrating label embedding into this
framework, we produce a dual formulation
that permits convenient incorporation of aux-
iliary label semantic knowledge to improve
zero-shot learning. We conduct extensive ex-
periments on three standard image data sets
to evaluate the proposed approach by com-
paring to two state-of-the-art methods. Our
results demonstrate the efficacy of the pro-
posed framework.

1 Introduction

Traditionally, learning multi-class classification models
notoriously requires a large amount of labeled training
instances. However, it is either costly or impractical
to prepare a sufficient amount of annotated training
instances for every single class given that a real world
application can encounter a large number of categories.
Moreover, it is important to reduce the cost of collect-
ing new annotations whenever there is an expanse over
the label categories with the dramatic increase of the
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Figure 1: Two major types of zero-shot learning meth-
ods. Dark nodes indicate being observed. Y and Z
nodes represent observed classes and unseen classes
respectively. Left is the graphical representation of
attribute-based methods with an attribute layer (a
nodes) and right is of similarity-based methods.

data set. Due to these needs in real word applications,
some new learning schemes such as few-shot, one-shot
learning [Bart and Ullman, 2005, Fei-Fei et al., 2006,
Krause et al., 2014, Lake et al., 2013] and the most
challenging case, zero-shot learning [Rohrbach et al.,
2013, Da et al., 2014, Mensink et al., 2014, Lampert
et al., 2014] become increasingly popular.

Zero-shot learning addresses the problem of transfer-
ring knowledge from observed classes, in which one
has labeled training instances, to automatically clas-
sify instances into proper unseen classes, in which one
does not have labeled training instances. A good zero-
shot learning approach can effectively reduce the la-
beling cost required to annotate new instances when-
ever a data set expands to include new label cate-
gories. It can also relieve the requirement of prepar-
ing annotated instances for all classes for learning ef-
fective multi-class classification models. Existing zero-
shot learning methods typically bridge the gap be-
tween the observed classes and the unseen classes by
using additional sources of information to build se-
mantic links between the observed and unseen classes.
Based on the way of building such semantic links,
current zero-shot learning approaches can be grouped
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into two major types, attribute-based methods and
similarity-based methods. The methods of the former
type build a latent layer of attributes (or features) as
a common subspace representation for the seen and
unseen classes [Farhadi et al., 2009, Lampert et al.,
2009, Kankuekul et al., 2012, Yu and Aloimonos, 2010,
Akata et al., 2013, Rohrbach et al., 2013, Palatucci
et al., 2009], whereas the similarity-based methods uti-
lize the semantic relationship between the seen and
unseen classes [Rohrbach et al., 2011, Mensink et al.,
2013, 2014]. Both types are illustrated in Figure 1.
However, the attribute-based methods require not only
the instance-level (usually images) annotations but
also the attribute-level annotations for each instance,
which is time and human effort consuming. More-
over, they introduce an intermediate problem of at-
tribute classification. The similarity-based methods on
the other hand heavily rely on the seen classes to ex-
press the unseen classes. They usually are only used
for predicting unseen classes. Moreover, most of these
existing methods, attribute-based or similarity-based,
do not exploit unlabeled data which are typically ad-
equate in amount and economic to collect.

In this work, we propose a semi-supervised max-
margin classification framework that exploit both la-
beled and unlabeled data for zero-shot learning. Specif-
ically, our framework integrates the semi-supervised
classification problem on observed classes and the un-
supervised clustering problem on unseen classes into a
unified max-margin multi-class classification formula-
tion. This framework treats the observed classes and
unseen classes in an equal way and the classifier pro-
duced can be applied to categorize an instance to the
most suitable class among all these classes, which over-
comes the drawback of the similarity based methods.
By further integrating a label embedding idea into this
framework, we derive a kernelized dual formation of
the max-margin model, which permits leverage of aux-
iliary linguistic resources or expert-specified knowledge
to improve zero-shot learning performance. We con-
duct experiments on three standard image data sets for
zero-shot learning to evaluate the proposed approach
by comparing to two state-of-the-art zero-shot learn-
ing methods. Our results demonstrate the efficacy of
the proposed framework.

2 Related Work

Zero-shot learning addresses the challenging problem
of knowledge transfer from observed classes to un-
seen classes (i.e., novel classes) in which there are
no labeled training instances at all. Existing zero-
shot learning methods can be grouped into two major
groups, attribute-based methods and similarity-based
methods, based on the different ways of building se-

mantic links between the observed and unseen classes.

Attribute-based methods build an intermediate layer
of attributes or features across the observed and un-
seen classes to bridge the semantic gap. Many such
works have been studied on image classification prob-
lems. [Farhadi et al., 2009] and [Lampert et al., 2009]
belong to the first few attribute-based works that ad-
dress zero-shot image classification tasks. Farhadi et al.
[2009] introduced a feature selection method for learn-
ing attributes that generalize well across categories.
Lampert et al. [2009] proposed a direct attribute pre-
diction (DAP) method that learns binary attribute
classifiers and then use the output of these attribute
classifiers as image representation for image-level clas-
sification. Kankuekul et al. [2012] applied the self-
organizing and incremental neural networks as the
learning mechanism, and their model can learn new
attributes and update existing attributes in an on-
line incremental manner. Yu and Aloimonos [2010] ex-
tended the author-topic model for attribute prediction
based on the analogy of document-author relation and
attribute-class relation. Akata et al. [2013] casted the
problem of attribute-based classification as a label em-
bedding problem to avoid attribute classifier learning.
Their method however requires the association mea-
sure between each class and each attribute. Rohrbach
et al. [2011] utilized linguistic knowledge bases to
build the attribute inventory automatically and dis-
cover the association between attributes and object
classes. Though they exploit knowledge from linguistic
sources such as WordNet and Wikipedia, their model
does not utilize unlabeled data in the training pro-
cess. Rohrbach et al. [2013] proposed a propagated se-
mantic transfer (PST) method that incorporates the
mid-layer of semantic attributes and linguistic infor-
mation. This method shares similarity with our pro-
posed approach as we both exploit knowledge from
auxiliary resources and unlabeled data. However, the
PST method is a graph-based learning algorithm while
our proposed approach provides a discriminative max-
margin learning framework. Moreover the PST method
incorporates a mid-level layer which requires perform-
ing intermediate inference, while our proposed method
does not have such an issue. In addition to these meth-
ods developed on image classifications, Palatucci et al.
[2009] presented a model that utilizes an intermediate
set of features derived from a semantic knowledge base
for zero-shot learning on fMRI data of neural activi-
ties. This work again does not exploit unlabeled data.

Similarity-based methods perform zero-shot classifi-
cation on unseen classes using the classifiers trained
for observed classes and the relationships between the
observed and unseen classes. Rohrbach et al. [2011]
proposed a similarity-based model by representing the
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novel classes using the observed ones with the assis-
tance of linguistic knowledge, such as Wikipedia and
WordNet. Mensink et al. [2013] proposed a similarity-
based classifier, named nearest class mean, for large-
scale zero-shot learning. Mensink et al. [2014] ex-
tensively explored various metrics to measure co-
occurrence between different classes for zero-shot clas-
sification. Recently, Norouzi et al. [2014] took semantic
label embeddings into account, and assumed the un-
seen classes can be predicted as convex combinations of
the observed classes in the given semantic embedding
space. These works however only performed zero-shot
classifications on unseen classes, and they may not be
much usable when the testing labels and training la-
bels are not disjoint.

3 Proposed Approach

In this section, we present a semi-supervised max-
margin classification framework to address multi-class
zero-shot learning. For simplicity, the following nota-
tions are used in the presentation: We use 1 to denote
a column vector with all 1 values, assuming its length
can be determined from the context; use 1k to denote
a column vector with all zeros but a single 1 in its k-th
entry. We use It to denote an identity matrix with size
t, use Or,c to denote a r× c matrix with all zeros, use
Xi to denote the i-th row of matrix X, and use ‖ · ‖F
to denote the Frobenius matrix norm.

3.1 Semi-supervised Max-margin
Classification Framework

We assume a training set D = (X,Y ) for a L-class
classification problem, which contains t` labeled in-
stances X` ∈ Rt`×d with an observed label matrix
Y ` ∈ {0, 1}t`×L, and tu unlabeled instances Xu ∈
Rtu×d with an unknown label matrix Y u ∈ {0, 1}tu×L,
such that X = [X`;Xu], Y = [Y `;Y u] and t = t` + tu.
For each row label vector Y `i , there will be a single
1 entry which denotes the class membership of the
instance. Furthermore, without loss of generality, we
assume the observed labels only appear in the first L`
classes and hence the last (L− L`) classes are unseen
classes, while the unlabeled instances can belong to
any of the total L classes. We assume there are a suf-
ficient number of unlabeled instances such that their
latent labels will cover all the unseen classes. We aim
to learn a L-class classifier on this training set.

The learning problem is apparently a zero-shot learn-
ing problem. In particular, we treat the problem as
a standard semi-supervised learning problem over the
first L` observed classes, and an unsupervised cluster-
ing problem over the (L − L`) unknown classes. We
propose to integrate these two parts in a latent max-

margin multi-classification framework below:

min
Y,W,ξ

β

2
‖W‖2F + 1>ξ (1)

s.t. diag
(
(Y − 11>k )WX>

)
≥ (1− Y 1k)− ξ, ∀k ∈ Y

Y ∈ {0, 1}t×L, BY = Y `,

Y 1 = 1, a1 ≤ Y >1 ≤ b1

where W ∈ RL×d is the model parameter matrix, ξ
is a length t vector that captures the hinge loss over
all the t instances; the set Y = {1, · · · , L} is the
class index set, and B = [It` , Ot`,tu ] is a selector ma-
trix that selects the first t` rows of Y . The constraint
a1 ≤ Y >1 ≤ b1 is introduced to avoid degenerated
clustering, where the positive constants a and b are
used to set a lower bound and an upper bound re-
spectively on the number of instances assigned into
each of the L classes. Note if the label matrix Y is
fully observed, the optimization problem in (1) will
be equivalent to the standard multi-class SVM model
in [Crammer and Singer, 2001].

We expect the discriminative framework above can
build a good foundation for zero-shot learning. But
to produce an effective zero-shot learning model, we
still need additional knowledge to bridge the gap be-
tween observed classes and unseen classes. Below we
will extend the framework above by integrating a la-
bel embedding idea, which provides a natural form to
incorporate auxiliary label relatedness knowledge.

For many real world multi-class classification prob-
lems, the class labels have semantic meanings. For
example, for an image data set with classes {people,
street, car, · · · }, these class labels express more in-
formation than simple class index numbers. Hence in-
stead of simplifying each class label into a class in-
dex, we propose to incorporate a label embedding idea
into our zero-shot learning framework and express each
class label as a semantic vector u ∈ Rh. For all the L
classes, we form a label embedding matrix U ∈ RL×h,
whose each row contains the embedding vector for the
corresponding class label. Given U , the label embed-
ding vector for the i-th training instance can be written
as YiU , where the label indicator vector is used as a se-
lection vector. By incorporating this label embedding
matrix, we extend the semi-supervised max-margin
formulation in (1) into the following max-margin co-
embedding formulation:

min
Y,U,W,ξ

β

2
‖W‖2F +

β

2
‖U‖2F + 1>ξ (2)

s.t. diag
(
(Y − 11>k )UWX>

)
≥ (1−Y 1k)− ξ, ∀k ∈ Y

Y ∈ {0, 1}t×L, BY = Y `,

Y 1 = 1, a1 ≤ Y >1 ≤ b1

where the model parameter matrix W ∈ Rh×d maps
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the input feature vectors into the label embedding
space to form an input-label co-embedding [Mirza-
zadeh et al., 2014, Weston et al., 2011].

Proposition 1 The max-margin co-embedding prob-
lem in (2) can be equivalently formulated into the fol-
lowing dual optimization problem:

min
Y,U

max
M

β

2
tr(UU>)− tr(MY )−

1

2β
tr
(

(Y > −M)K(Y > −M)>UU>
)

(3)

s.t. M ≥ 0, M>1 = 1, Y ∈ {0, 1}t×L,

BY = Y `, Y 1 = 1, a1 ≤ Y >1 ≤ b1

where M is the L × t dual variable matrix, and K =
XX> denotes the kernel matrix on the input data. The
primal matrix W can be recovered from M via

W =
1

β
U>(Y > −M)X (4)

This proposition can be proved by introducing La-
grangian multipliers and deriving the standard dual
formulation of the primal max-margin multi-class opti-
mization problem over W and ξ [Xu and Schuurmans,
2005], while assuming Y and U fixed.

Following the primal parameter matrix recovery equa-
tion in (4), we can predict the class index of a new
instance x ∈ Rd in terms of the dual model parame-
ters, such as

y = arg max
k∈Y

UkWx = arg max
k∈Y

1

β
UkU

>(Y > −M)Xx (5)

3.1.1 Incorporating Auxiliary Label
Semantic Similarity Information

The dual formulation in (3) provides a general frame-
work for incorporating auxiliary label semantic simi-
larity information. Note the label embedding matrix
U only appears in a product form UU> in the ob-
jective function of (3). Let Q = UU>. Then the
L × L matrix Q is a label covariance matrix which
encodes the semantic similarity of each pair of la-
bels. Information about such a label semantic relat-
edness matrix can be extracted from different auxil-
iary resources. For example, in some image classifica-
tion problems, the attribute based representation of
the class labels can be available [Kemp et al., 2006,
Patterson and Hays, 2012, Farhadi et al., 2009]. In

this case, a fixed label similarity matrix Q̂ can be
computed by measuring the similarity of the attribute-
based label vectors. In more general cases where one
does not have meaningful attribute-based label rep-
resentations available, auxiliary semantic information
can still be extracted from a large free text corpus such

as Wikipedia through methods such as explicit seman-
tic analysis (ESA) [Gabrilovich and Markovitch, 2007].
Using ESA, one can represent a label phrase as a vector
which contains the statistical appearance information
of the phase in the large number of articles of the text
corpus. A label similarity matrix Q̂ can then be com-
puted based on the similarity measures of the label se-
mantic representation vectors. Instead of learning the
label embedding matrix U , we can directly incorporate
the label similarity matrix into our learning problem
(3) by replacing UU> with the pre-computed Q̂. By
further relaxing the integer constraints over Y , we have
the following min-max optimization problem:

min
Y

max
M

−tr(MY )− 1

2β
tr
(

(Y >−M)K(Y >−M)>Q̂
)

(6)

s.t. M ≥ 0, M>1 = 1, Y ≥ 0,

BY = Y `, Y 1 = 1, a1 ≤ Y >1 ≤ b1

3.2 Training Algorithm

The min-max optimization problem (6) is a non-
convex optimization problem. Though a simple alter-
nating optimization procedure over Y and M can pro-
vide an intuitive solution, such an algorithm is not
guaranteed to converge to local optima or stationary
points. In this section, we instead present a first-order
local conditional gradient descent algorithm to solve
the optimization problem (6).

Let L(Y,M) denote the objective function of (6). We
first re-express this min-max optimization problem as
a minimization problem over a non-smooth and non-
convex objective function F(Y ),

min
Y ∈ΩY

F(Y ) (7)

with F(Y ) = L(Y,M∗Y ) = max
M∈ΩM

L(Y,M) (8)

M∗Y = arg max
M∈ΩM

L(Y,M). (9)

Here ΩY and ΩM denote the feasible sets defined by
the constraints over Y and M respectively, such that
ΩY = {Y ∈ Rt×L : BY = Y `, Y ≥ 0, Y 1 = 1, a1 ≤
Y >1 ≤ b1} and ΩM = {M ∈ RL×t : M ≥ 0, M>1 =
1}. Note M∗Y denotes the optimal solution for the in-
ner maximization problem over M given the fixed Y
matrix. With a fixed Y , the inner maximization prob-
lem over M in (9) is a standard quadratic optimization
problem and can be efficiently solved using a standard
quadratic solver.

Then we develop a local conditional gradient descent
procedure to iteratively solve the minimization prob-
lem in (7). We first randomly initialize a feasible ma-
trix Y(0) and then repeatedly make updates in each



Xin Li, Yuhong Guo

Algorithm 1: Local Conditional Gradient Descent

Input: K, Q̂, Y `, β, a, b
Initialize Y(0), and set r = 0.
Repeat

1. Compute subgradient ∇Y F(Y(r))
at the current point using Eq. (10).

2. Solve linear programming in Eq. (11) for Ŷ .
3. Conduct backtracking line search to select

an optimal step-size η∗:

η∗ = arg min
0≤η≤1

F((1− η)Y(r) + ηŶ )

4. Set Y(r+1) = (1− η∗)Y(r) + η∗Ŷ , Y ∗ = Y(r+1)

5. if the difference between Y(r+1) and Y(r)

is small enough then break out endif
6. Set r = r + 1.

Until max-iters are reached

iteration. At the (r+ 1)-th iteration, we first compute
the subgradient of F(Y ) at the current point Y(r):

∇Y F(Y(r)) = −M∗(r) −
1

β
K(Y >(r) −M

∗
(r))
>Q̂ (10)

where M∗(r) is a simplification of M∗Y(r)
. Next we

compute an intermediate point using the first order
method by solving a convex linear programming:

Ŷ = arg min
Y ∈ΩY

tr(Y >∇Y F(Y(r))) (11)

Finally we find an optimal step-size η∗ by performing
backtracking line search over 0 ≤ η ≤ 1 to minimize
the objective F((1− η)Y(r) + ηŶ ), and determine the
next point as

Y(r+1) = (1− η∗)Y(r) + η∗Ŷ . (12)

The overall algorithm is presented in Algorithm 1. Af-
ter solving for the optimal solution Y ∗ which contains
continuous values between 0 and 1, we round Y ∗ back
to class indicator values in a heuristic way by setting
the entry with the largest value in each row to 1 and
all other entries to 0s.

4 Experiments

4.1 Experimental Setting

Data sets. We evaluated the proposed approach on
three standard zero-shot image data sets, Animal with
Attributes introduced in [Kemp et al., 2006], Attribute
of Pascal introduced in [Farhadi et al., 2009] and SUN
Attributes introduced by [Patterson and Hays, 2012].
The Animal with Attribute (AwA) data set has 30,475

Table 1: Statistical properties of the preprocessed data
sets used in the experiments.

Dataset Images Classes Attributes Feature
AwA 30,475 50 85 252
aPascal 12,695 20 64 500
SUNA 1,000 50 102 512

images across 50 mammal classes (e.g. lion, fox) and it
also provides 85 binary semantic attributes (e.g. furry,
spots). For each image of this data set, PHOG feature
vectors [Bosch et al., 2007] are extracted separately for
all 21 cells of a 3-level spatial pyramids (1 × 1, 2 × 2,
4×4). On each cell, a 12-dimensional base histogram is
extracted and concatenated to form a 252-dimensional
(21× 12) feature vector. Attribute of Pascal (aPascal)
is a subset of the aPascal-aYahoo data set. aPascal
consists a 12,695-image subset of the PASCAL VOC
2008 data set with 20 object classes. Each image in
this data set has been annotated with 64 binary at-
tributes that characterize the visible objects. The fea-
ture vector of each image provided within this data set
is a 9,751-dimensional vector, including local texture,
HOG, edge and color descriptors. We performed di-
mension reduction on the long vectors using PCA and
obtained 500-dimensional vectors for all the images.
The SUN Attributes (SUNA) data set is a subset of
the SUN Database [Xiao et al., 2010] for fine-grained
scene categorization. It consists of 14,340 images from
717 classes (20 image per class). Each image is an-
notated with 102 binary attributes that describe the
scenes’ material and surface properties as well as light-
ing conditions, functions, affordances, and general im-
age layout. In our experiment, we randomly selected a
50-class subset out of 717 classes and used the GIST
feature vectors [Oliva and Torralba, 2001] for image
representation. Table 1 summarizes the characteristics
of all the three data sets used in our experiments.

Comparison methods. In order to evaluate the per-
formance of the proposed method, we compared it
with two recently published zero-shot learning ap-
proaches, Direct Attribute Prediction (DAP) [Lampert
et al., 2014] and Propagated Semantic Transfer (PST)
[Rohrbach et al., 2013], both of which are attribute-
based methods and can be tested on data with both
seen and unseen classes. The DAP method assumes
that the class-attribute relationship is given and trains
a probabilistic classifier for each attribute. MAP pre-
diction of the classes can then be conducted for the test
instances according to the attribute probabilities. The
PST method performs label propagation on a graph
structure over all (training and testing) instances and
the graph is constructed based on their attribute rep-
resentations. The results of both methods are repro-
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Table 2: Test results (mean±std) in terms of classification accuracy on all three data sets with different numbers
of unseen classes. The test results on unseen categories, seen categories and all categories (mixed) are all reported.
Bold font indicates the best results.

Dataset Unseen Test Proposed DAP PST

AwA

5
Unseen 0.416 ± 0.022 0.382 ± 0.036 0.375 ± 0.024

Seen 0.729 ± 0.025 0.683 ± 0.031 0.704 ± 0.019
Mix 0.596 ± 0.024 0.557 ± 0.037 0.553 ± 0.021

10
Unseen 0.382 ± 0.023 0.371 ± 0.039 0.357 ± 0.021

Seen 0.741 ± 0.026 0.703 ± 0.033 0.732 ± 0.024
Mix 0.591 ± 0.025 0.553 ± 0.035 0.550 ± 0.023

aPascal

5
Unseen 0.275 ± 0.016 0.254 ± 0.015 0.261 ± 0.019

Seen 0.601 ± 0.013 0.534 ± 0.017 0.554 ± 0.013
Mix 0.455 ± 0.014 0.408 ± 0.016 0.427 ± 0.014

10
Unseen 0.187 ± 0.021 0.168 ± 0.018 0.162 ± 0.021

Seen 0.637 ± 0.018 0.559 ± 0.016 0.582 ± 0.012
Mix 0.419 ± 0.019 0.373 ± 0.017 0.381 ± 0.015

SUNA

5
Unseen 0.252 ± 0.018 0.241 ± 0.018 0.247 ± 0.021

Seen 0.501 ± 0.019 0.487 ± 0.016 0.492 ± 0.023
Mix 0.405 ± 0.019 0.398 ± 0.017 0.399 ± 0.022

10
Unseen 0.189 ± 0.025 0.181 ± 0.020 0.183 ± 0.024

Seen 0.512 ± 0.023 0.501 ± 0.019 0.506 ± 0.024
Mix 0.371 ± 0.024 0.359 ± 0.019 0.363 ± 0.024

duced using the code released by the authors.

Implementation. On each data set, we randomly se-
lected k classes to be the unseen classes, where k equals
to 5 or 10 in our experiments. For the AwA and aPascal
data sets, we use 50% of the instances for training and
the rest for testing. That is, 15,238 instances in AwA
and 6,348 instances in aPascal are randomly selected
as training examples. Training set is further divided
into labeled, unlabeled and validation sets, where both
labeled and validation sets are instances from known
classes but unlabeled set contains instances from ei-
ther known or unseen classes. The numbers of la-
beled, unlabeled and validation instances are 6942,
4130, 4166 respectively on AwA and 2668, 2079 and
1601 on aPascal. On the SUNA data set, we randomly
selected 362 images as labeled ones, 221 as unlabeled
ones and 217 as validation set, while the rest 200 in-
stances are used for testing. Parameter selection is con-
ducted by evaluating the classification performance of
each approach on the validation set. For our proposed
approach, we set a=ceil(0.5 × t/L) and b=ceil(2 ×
t/L) on each data set, while selecting the trade-off
parameter β from {.001, .01, .01, .1, 1, 10, 100, 1000}.
For the DAP method, its parameter C is selected
from {.001, .01, .01, .1, 1, 10, 100, 1000}. For the PST
method, its parameter δ is set to 0.15 and k is set
to 50, and the trade-off parameter α is selected from
{.001, .01, .01, .1, 1, 10, 100, 1000}. As all comparison
methods can use an input kernel matrix, we used a
RBF kernel with free parameter 1 in all experiments.

The results reported in this section are averages of 5
repeated runs and each individual run involves model
training, parameter selection and model testing for
each comparison method.

4.2 Classification results

We first compared our proposed approach with the two
related methods, DAP and PST, in terms of classifi-
cation accuracy on the three image data sets, where
class-attribute relationships are included in the data
sets. The two comparison methods are attribute-based
methods and they require the knowledge of attribute-
based class representations on each data set. In or-
der to provide a fair comparison, we hence incorpo-
rated the same auxiliary knowledge in our proposed
approach, by leveraging the class-attribute relation
(CAR) knowledge to compute a label similarity ma-

trix Q̂ with the cosine similarity measure.

We conducted experiments on the three data sets with
two different numbers of unseen classes, 5 and 10, while
using the remaining classes as observed classes. In each
case, we recorded the test accuracy results on unseen
classes, seen classes, and the mixed all classes. The av-
erage classification results for each setting are reported
in Table 2. We can see that with the number of unseen
classes increasing from 5 to 10, the test accuracies de-
crease in general for all methods on unseen classes, but
increase on seen classes due to better discrimination
capability between fewer observed classes. Neverthe-
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less, the proposed method produces the best results
consistently across all the test cases, and it outper-
forms the other two methods with remarkable margins
not only on unseen classes but also on seen classes. For
example, on AwA our method improves the test accu-
racy in unseen classes by about 3% comparing to DAP
and by about 4% comparing to PST when 5 classes
are set unseen. Similar results can be observed on the
other two data sets as well. These results demonstrate
the efficacy of the proposed max-margin framework.

On the other hand, since all the comparison meth-
ods utilize class-attribute relationships to guide the
model learning, one may wonder what makes the pro-
posed method more effective. One possible reason is
that both of DAP and PST involve an intermediate
step of attribute inference. Such intermediate infer-
ence of attributes can introduce noise into image-level
classification. Our method on the other hand incorpo-
rates the class-attribute relationship seamlessly into
the max-margin framework in the form of label cor-
relation matrix. Moreover, our semi-supervised max-
margin model provides a discriminative framework for
exploiting both labeled and unlabeled data.

4.3 Impact of External Knowledge

Different from the attribute-based methods, our pro-
posed model can incorporate external auxiliary knowl-
edge beyond the class-attribute relation knowledge in-
cluded in the data sets. We next investigated the ca-
pacity of our proposed model in exploiting different
auxiliary label relation knowledge. In this study, be-
sides the class-attribute relation (CAR), we have also
explored two other types of external knowledge, Ex-
plicit Semantic Analysis [Gabrilovich and Markovitch,
2007] and Word Embedding [Collobert et al., 2011].
ESA and WE provide linguistic knowledge learned
from Wikipedia. Explicit Semantic Analysis (ESA)
represents an input word by a vector of its appear-
ance records in a set of concepts in Wikipedia. Word
Embedding (WE) is trained by neural networks using
an earlier dump of Wikipedia. It represents each in-
put word using a 50-dimensional vector. We can use
ESA and WE to provide semantic vector representa-
tions for the class labels in our data sets. Then the
label similarity matrix Q̂ can be computed over the
label vectors using a cosine similarity measure. Figure
2 uses graphs to illustrate the label similarity matri-
ces obtained on the aPascal data set using CAR, ESA
and WE respectively. To avoid cluttered graphs, we
applied a threshold on the matrices. The thresholds
are selected to preserve the top 20% edges for each
graph. An edge in each graph indicates that the la-
bel nodes connected have close semantic relationship.
From the three graphs, we can observe some inter-
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Figure 2: Graphical illustration of Semantic Related-
ness between Classes in the aPascal data set. An edge
indicates that two nodes has semantic relationship.

esting patterns such as transportation tools are con-
nected with each other and animals are connected with
each other. On the other hand, the three graphs dif-
fer from each other in some details. For example, the
label “sofa” in ESA and WE is an isolated node af-
ter thresholding, but it has a connection with “chair”
in CAR. We looked into the attributes of “sofa” and
“chair”, and found they have 10 attributes in common,
including “has leg”, “has back”, and “has arm”. CAR
provides richer information than the other two types
of external knowledge because it is directly provided
by human experts based on their interpretations of the
label concepts while ESA and WE representations are
learned automatically from free textual documents.
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Table 3: Test results (mean±std) in terms of classification accuracy on all three data sets for the proposed ap-
proach with different external knowledge. The test results on unseen categories, seen categories and all categories
(mixed) are all reported. Bold font indicates the best results.

Dataset Unseen Test Proposed+CAR Proposed+ESA Proposed+WE Proposed+ø

AwA

5
Unseen 0.416 ± 0.022 0.401 ± 0.025 0.351 ± 0.026 0.264 ± 0.022

Seen 0.729 ± 0.025 0.712 ± 0.021 0.698 ± 0.020 0.682 ± 0.023
Mix 0.596 ± 0.024 0.579 ± 0.022 0.543 ± 0.022 0.481 ± 0.023

10
Unseen 0.382 ± 0.023 0.376 ± 0.023 0.347 ± 0.021 0.152 ± 0.025

Seen 0.741 ± 0.026 0.732 ± 0.021 0.720 ± 0.024 0.706 ± 0.025
Mix 0.591 ± 0.025 0.576 ± 0.022 0.549 ± 0.023 0.437 ± 0.025

aPascal

5
Unseen 0.275 ± 0.016 0.259 ± 0.017 0.239 ± 0.016 0.210 ± 0.016

Seen 0.601 ± 0.013 0.598 ± 0.016 0.587 ± 0.015 0.581 ± 0.016
Mix 0.455 ± 0.014 0.438 ± 0.016 0.422 ± 0.015 0.401 ± 0.016

10
Unseen 0.187 ± 0.021 0.177 ± 0.020 0.148 ± 0.021 0.126 ± 0.022

Seen 0.637 ± 0.018 0.632 ± 0.019 0.615 ± 0.021 0.613 ± 0.020
Mix 0.419 ± 0.019 0.414 ± 0.020 0.394 ± 0.021 0.382 ± 0.021

SUNA

5
Unseen 0.252 ± 0.018 0.247 ± 0.016 0.245 ± 0.020 0.203 ± 0.025

Seen 0.501 ± 0.019 0.494 ± 0.019 0.492 ± 0.020 0.486 ± 0.025
Mix 0.405 ± 0.019 0.399 ± 0.018 0.397 ± 0.020 0.359 ± 0.025

10
Unseen 0.189 ± 0.025 0.185 ± 0.019 0.184 ± 0.021 0.103 ± 0.024

Seen 0.512 ± 0.023 0.508 ± 0.020 0.505 ± 0.020 0.491 ± 0.023
Mix 0.371 ± 0.024 0.367 ± 0.020 0.364 ± 0.020 0.309 ± 0.023

We compared the classification performance of the pro-
posed approach with three different auxiliary knowl-
edge, CAR, ESA and WE. We have also compared
these three variants of the proposed approach to a
baseline variant which uses the proposed model with-
out any auxiliary knowledge by setting Q̂ to an iden-
tity matrix. The comparison results of the four variant
methods are reported in Table 3. From the table, we
can see all the three variants with auxiliary knowledge
outperform the baseline with empty auxiliary knowl-
edge. But even without any bridge between the seen
and unseen classes, the baseline performs much bet-
ter than random guesses, except on SUNA, where the
training set is small and external knowledge becomes
more critical. The proposed method with CAR outper-
forms the variant methods with ESA or WE auxiliary
knowledge across all data sets. This is reasonable since
CAR provides human expert knowledge while ESA
and WE are from free linguistic resources. Even so,
the difference between the results of Proposed+CAR
and Proposed+ESA are quite small. Moreover, if we
compare the results across Table 2 and Table 3, we
can see that Proposed+ESA outperforms both DAP
and PST across almost all the evaluation cases. These
results suggest that it is helpful to use either expert-
specified knowledge or external knowledge from auxil-
iary sources in context of zero-shot learning, while our
proposed max-margin approach provides an effective
framework to utilize different auxiliary resources for
zero-shot learning.

5 Conclusion

In this paper, we developed a semi-supervised max-
margin classification framework to tackle the chal-
lenging problem of zero-shot learning. Specifically, our
framework integrates the semi-supervised classifica-
tion problem over the observed classes and the un-
supervised clustering problem over the unseen classes
into a unified max-margin multi-class classification for-
mulation, which exploits both labeled and unlabeled
data. We further integrated the label embedding idea
into this framework to produce a kernelized dual classi-
fication model, which provides the capacity of leverag-
ing external linguistic or expert-specified knowledge to
assist zero-shot learning. To evaluate the performance
of the proposed model, we performed extensive exper-
iments on multiple standard image data sets, by com-
paring the proposed approach to two state-of-the-art
zero-shot learning methods. The experimental results
demonstrated the efficacy of the proposed model and
its superiority over the comparison methods. We have
also investigated the capacity of the proposed model on
integrating different auxiliary knowledge. The results
showed that our model produced good performance
even with free available linguistic resources.
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