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Abstract
Recommender systems have been widely studied
in the literature as they have real world impacts in
many E-commerce platforms and social networks.
Most previous systems are based on the user-item
recommendation matrix, which contains users’ his-
tory recommendation activities on items. In this pa-
per, we propose a novel predictive collaborative fil-
tering approach that exploits both the partially ob-
served user-item recommendation matrix and the
item-based side information to produce top-N rec-
ommender systems. The proposed approach auto-
matically identifies the most interesting items for
each user from his or her non-recommended item
pool by aggregating over his or her recommended
items via a low-rank coefficient matrix. Moreover,
it also simultaneously builds linear regression mod-
els from the item-based side information such as
item reviews to predict the item recommendation
scores for the users. The proposed approach is
formulated as a rank constrained joint minimiza-
tion problem with integrated least squares losses,
for which an efficient analytical solution can be
derived. To evaluate the proposed learning tech-
nique, empirical evaluations on five recommenda-
tion tasks are conducted. The experimental results
demonstrate the efficacy of the proposed approach
comparing to the competing methods.

1 Introduction
Item-based recommender systems aim to recommend new
items to a target user based on the user’s previous recom-
mendation activities (e.g., previous purchases, ratings, or
clicks) [Sarwar et al., 2001; Blei et al., 2003; Deshpande and
Karypis, 2004; Ostuni et al., 2013]. Recommending a ranked
list of new items, which may be very attractive to the user
but have not been observed in the user’s previous recommen-
dation activities, can encourage additional purchase or visits,
which is very important in real application scenarios. Rec-
ommender systems have been popularly studied due to their
important impacts in E-commerce platforms such as Amazon
and eBay, social networks such as Facebook and LinkedIn,
and search engines such as Google and Bing [Ricci et al.,

2011]. A variety of works have been developed in the litera-
ture to address different recommender systems such as movie
recommendations [Park and Pennock, 2007; Koren, 2008;
Rendle et al., 2009; Kabbur et al., 2013], book recommen-
dations [Ning and Karypis, 2012], music recommendations
[Ning and Karypis, 2011], advert recommendations [Stern
et al., 2009], news recommendations [Pan et al., 2008] and
channel/program recommendations [Hu et al., 2008].

There are many different recommendation approaches,
including content filtering-based approaches [Mooney and
Roy, 2000; Pazzani and Billsus, 2007] and collaborative
filtering-based approaches [Sarwar et al., 2001; Deshpande
and Karypis, 2004; Hofmann, 2003]. The content filtering-
based approaches make recommendations to a target user
by only using this particular user’s profile information (e.g.,
previous recommendation activities), while the collaborative
filtering-based approaches also exploit other users’ profile in-
formation. Usually, these recommender systems work on the
user-item recommendation matrix and generate a list of top-N
potential interesting items with the highest recommendation
scores for each target user from the user’s non-recommended
item pool. They typically retrieve relevant interesting items
for target users by only using users’ history recommendation
activities on items, but ignoring the existing valuable side in-
formation such as the reviews for books, or the plots for the
movies, which limits their recommendation capacity and per-
formance.

In this paper, we propose a novel predictive collaborative
filtering approach to generate a list of top-N items with the
highest recommendation scores for each target user. The pro-
posed approach exploits the item-based side information in
addition to the conventional user-item recommendation ma-
trix. To be more specific, it automatically identifies the rec-
ommendation scores for non-recommended items via low-
rank aggregation over the users’ already-recommended items
to recover the full recommendation matrix for all items. Si-
multaneously, it incorporates the item-based side information
as an item-feature matrix and trains a regularized linear re-
gression model to predict the recommendation scores from
the item features for each user. We formulate this simulta-
neous user-item matrix self-recovering and predictive regres-
sion model training process as a joint low-rank constrained
minimization problem, and derive an efficient analytical so-
lution for it. To evaluate the proposed approach, we con-



duct a set of experiments on a number of real world Amazon
datasets with recommendation items such as books, beauty
products, etc. The experimental results demonstrate that the
proposed approach is very effective and efficient in produc-
ing top-N recommender systems, and achieves superior rec-
ommendation performance than the comparison methods.

2 Related Work
A variety of works have been developed in the literature to ad-
dress item-based recommender systems. We provide a brief
review below on the most related collaborative filtering ap-
proaches and side information assisted approaches.

Collaborative filtering approaches make recommenda-
tions by using both the target user’s previous recommen-
dation activities and other users’ history behaviors [Su and
Khoshgoftaar, 2009], which include two groups of meth-
ods, neighborhood-based methods [Sarwar et al., 2001; Desh-
pande and Karypis, 2004; Kabbur et al., 2013] and latent
factor-based methods [Blei et al., 2003; Hofmann, 2003;
Rennie and Srebro, 2005; Salakhutdinov et al., 2007; Weimer
et al., 2007; Koren et al., 2009; Cremonesi et al., 2010;
Sindhwani et al., 2010].

Neighborhood-based collaborative filtering methods make
recommendations by exploiting similarities among items
within the user-item recommendation matrix. Once item-item
similarities are computed, the prediction on a new item for
a user is obtained by considering the particular user’s past
recommendation activities on similar items. For example,
the work in [Sarwar et al., 2001] proposed to use similarity-
weighted sum prediction to recommend new items for a target
user. In order to measure the item-item similarities, various
similarity schemes have been investigated, including cosine
similarity, correlation similarity, adjusted cosine similarity
[Sarwar et al., 2001], and conditional probability similarity
[Deshpande and Karypis, 2004].

Unlike the neighborhood-based methods, which directly
employ the user-item recommendation matrix for prediction,
the latent factor-based collaborative filtering methods first
identify a set of latent factors for users and items respectively.
They then train a prediction model on the latent space to make
recommendations. In order to identify the latent factors, a va-
riety of models have been employed, including the pure sin-
gular value decomposition (PureSVD) method [Cremonesi et
al., 2010], the Gaussian probabilistic latent semantic analy-
sis method [Hofmann, 2003], the latent Dirichlet allocation
method [Blei et al., 2003], the matrix factorization method
[Koren et al., 2009], the maximum margin matrix factoriza-
tion methods [Rennie and Srebro, 2005; Weimer et al., 2007],
the pairwise comparison method [Rendle et al., 2009], the
restricted Boltzmann machines [Salakhutdinov et al., 2007],
and the weighted non-negative matrix factorization method
[Sindhwani et al., 2010].

In addition to these two groups, some other collabora-
tive filtering recommender systems have also been devel-
oped in the literature [Koren, 2008; Ning and Karypis, 2011;
Shi et al., 2012]. Koren (2008) proposed an asymmetric-
SVD based hybrid approach to address recommendation
problems, which combines the similarity-based neighbor-

hood method and the latent factor-based method together
for recommendations. Ning and Karypis (2011) proposed
a sparse linear method to address top-N recommendation
problems, which computes the recommendation score on a
non-purchased/non-recommended item for a target user us-
ing sparse aggregation of purchased/recommended items of
the particular user. Shi et al. (2012) proposed a collaborative
less-is-more filtering approach, which maximizes the mean
reciprocal rank to address recommendation problems in so-
cial networks.

Different from collaborative filtering approaches, which
only exploit previous recommendation activities in user-item
matrix, side information assisted approaches also exploit ad-
ditional meta-data information (e.g., product reviews, film
plots, etc) to recommend new items for a target user [Stern
et al., 2009; Gunawardana and Meek, 2009; de Campos et
al., 2010; Ning and Karypis, 2012]. Stern et al. (2009) pro-
posed to use both user meta-data such as a user’s job, age,
gender and id, and item meta-data such as a movie’s genre
and id. They represented these meta-data as feature vec-
tors for the users and items respectively and incorporated
the meta-data information into the collaborative filtering rec-
ommender system. The work in [Gunawardana and Meek,
2009] incorporated both the user-item recommendation infor-
mation and the item meta-data into a unified Boltzmann ma-
chine to form a hybrid recommender system. Similarly, the
work in [de Campos et al., 2010] developed a hybrid recom-
mender system based on Bayesian networks over user nodes,
item nodes, and item-feature nodes. The approach propagates
content-based information from recommended items to non-
recommended items via the item-feature nodes, and propa-
gates collaborative-based information via item nodes. Ning
and Karypis (2012) proposed to incorporate item-based side
information into the sparse linear method [Ning and Karypis,
2011] to learn the aggregation coefficient matrix and address
top-N recommendation problems, which has demonstrated
superior performance over conventional recommender sys-
tems without side information. Different from these previous
methods, our proposed approach performs a joint predictive
recovery of the user-item matrix for top-N recommendations
by integrating the partially observed user-item matrix and the
item-based side information such as reviews in a discrimina-
tive and mutually complementary manner.

A few recent works [Bao et al., 2014; McAuley and
Leskovec, 2013; Xu et al., 2014] have exploited user reviews
for building recommender systems, while [Chen et al., 2015]
provides a survey of such recent attempts. However most of
these methods require the reviews to be directly associated
with the user ratings, while our approach treats reviews as
side information and can exploit reviews from auxiliary re-
sources that have no direct relationships with the target users.

3 Proposed Approach
In this section, we present the proposed predictive collabo-
rative filtering approach for item-based top-N recommender
systems. We assume an observed item-user recommendation
matrix Y ∈ Rn×t, which contains the observed recommenda-
tion (or purchase) activities of t users over n product items. In



this matrix, an observed entry Yij (with an indicator value 1
or a positive recommendation score) indicates the i-th prod-
uct item has been recommended (or purchased) by the j-th
user, while an unobserved entry Yij = 0 only indicates an un-
known relationship between the j-th user and the i-th product
item, i.e., the recommendation (or purchase) action of the j-
th user over the i-th item has not been observed in the user’s
past recommendation activities, but it is possible that the j-th
user can be interested in the i-th item. As item-based side
information in the form of product reviews for E-commerce
applications or film plots for movie recommendations exists
in many application domains, we take the item-based side in-
formation into account as well. In particular, we assume there
is an item-feature matrix X ∈ Rn×d, whose each row con-
tains a feature vector for the corresponding product item and
presents the item-based side information. We aim to automat-
ically identify the most promising interesting product items,
in particular the top-N items, for each target user from his
non-recommended items by using both the observed item-
user recommendation matrix Y and the item-feature matrix
X . Below we first present a matrix self-completion compo-
nent based on the item-user recommendation matrix, and then
incorporate the predictions from the item-feature matrix to
form a joint prediction model. We finally derive a convenient
analytical solution for the proposed joint learning method.

In the rest of the paper, we use 1 to denote a column vector
of all 1s, while assuming the size of the column vector can
be inferred from the context. We use In to denote an iden-
tity matrix with size n. For any matrix X , ‖X‖F denotes its
Frobenius norm, and X† denotes its pseudo-inverse.

3.1 A Joint Prediction Model
Given the past recommendation/purchase activities in the ob-
served item-user recommendation matrix Y , the recommen-
dation score on a non-recommended/non-purchased item vi
for a user uj can be calculated as a linear aggregation of the
items that have already been recommended/purchased by uj ,
that is, Ỹij = w>Y:j , where Y:j denotes the j-th column of Y .
Such a linear recovery model can be built for all items with
Ỹ:j = WY:j , while the linear functions have to be learned
from the statistical item aggregation relationships existed in
the observed data for all the users. This leads to a matrix self-
recovery (self-completion) formulation Ỹ = WY , where W
is an n×n linear aggregation coefficient matrix that is shared
across all the t users. A meaningful matrix self-recovery
should automatically complete the unobserved recommenda-
tion scores in the matrix without affecting much the observed
recommendation scores. We hence enforce the self-recovered
item-user matrix to maximally preserve the original matrix
values and formulate the self-recovery model as the follow-
ing learning problem

min
W

‖Y −WY ‖2F s.t. rank(W ) ≤ λ (1)

To avoid the trivial solution of settingW as an identity matrix,
we assume the coefficient matrix W should be low rank and
encode this low rank property using a rank constraint with a
hyperparameter λ. This low rank property can also allow the
model to implicitly exploit the latent low-dimensional repre-
sentations of the items.

In addition to the item-user recommendation matrix Y , we
also have explicit item-based side information available as an
item-feature matrix X , where each item feature vector de-
scribes the properties of a given product item. Note that this
product item side information is common to all users. But
different users may have different tastes over the same prod-
uct item. The recommendation scores of each user over the
set of product items depend on the properties of the prod-
uct items. Hence we propose to predict the recommendation
score of each user over a product item from the feature vector
of this product item. In particular, we can use a linear regres-
sion model, fj(x) = x>q + b, for the j-th user to predict his
or her recommendation score y from the item feature vector
x. Given the observed item-feature matrix X and the recov-
ered item-user recommendation matrix Ỹ , the linear regres-
sion model fj for the j-th user can be trained on the data by
minimizing a least squares regression loss ‖Xq+ b1− Ỹ:j‖2
over the model parameters q and b. Thus the linear regression
model is specifically tailored to the j-th user and can help to
capture user-specific preferences of the product items when
making recommendations. For all the t users, we will train
t linear regression models from the data by minimizing the
following regularized least squares loss function

min
Q,b

‖XQ+ 1b> − Ỹ ‖2F + β‖Q‖2F (2)

where Q ∈ Rd×t and b ∈ Rt are the model parameters for
the t linear regression models, such that fj(x) = x>Q:j +bj
for the j-th user.

Since Ỹ = WY is a self-recovered matrix via Eq. (1), by
integrating the recommendation matrix recovery in Eq. (1)
and the linear regression model training in Eq. (2) together,
we formulate a joint recommendation prediction model as
follows to perform joint recommendation score prediction in
a mutually complementary manner

min
W,Q,b

‖XQ+1b>−WY ‖2F + β‖Q‖2F + γ‖Y −WY ‖2F

s.t. rank(W ) ≤ λ (3)
where β and γ are the trade-off parameters. By solving this
joint minimization problem, we expect to integrate both the
existing recommendation activity information and the item-
based side information to predict the recommendation scores
of each user over his or her non-recommended/non-purchased
items. The top-N recommendations for a user uj can be
produced by sorting uj’s non-recommended/non-purchased
items in a decreasing order based on their predicted recom-
mendation scores.

3.2 Learning Algorithm
The learning problem in Eq. (3) is a joint minimization prob-
lem over both the linear regression model parameters {Q,b}
and the linear aggregation coefficient matrix W . We first per-
form minimization over the linear regression model parame-
ters assuming fixed W , which produces the following closed-
form solutions for Q and b,

Q =
(
X>HX + βId

)−1
X>HWY (4)

b =
1

n
(WY −XQ)

>
1 (5)



Algorithm 1 Learning Algorithm
Input: X, Y, β > 0, γ > 0, λ > 0.
Procedure:

1. Compute auxiliary matrices F and S with Eq. (7)
2. Perform singular value decomposition over F and Y ,

compute PF,L and PY,R, and let M = PF,LSPY,R.
3. Compute a solution W ∗ using Eq. (9),

and set Ỹ ∗ = W ∗Y .

where H = In − 1
n11

> is a centering matrix.
By plugging the solutions for the regression model param-

eters Q in Eq. (4) and b in Eq. (5) back into the objective
function in Eq. (3), the joint learning problem in Eq. (3) can
be equivalently reformulated into the following minimization
problem over W ,

min
W : rank(W )≤λ

‖BWY ‖2F + β‖AWY ‖2F + γ‖Y −WY ‖2F
(6)

whereA = (X>HX+βId)
−1X>H andB =H (XA− In).

By further introducing the following replacement matrices,

F =

 B√
βA√
γIn

 , S =

[
O(n+d)×t√

γY

]
(7)

where O(n+d)×t denotes a (n+ d)× t matrix with all 0s, the
problem (6) can be rewritten as

min
W : rank(W )≤λ

‖FWY − S‖2F (8)

Though the optimization problem in (8) is still a non-convex
optimization problem due to the rank constraint, below we
will derive a convenient analytical solution for it.

For matrix F , we denote its thin SVD as F = UFΣFV
>
F .

Two projections can be defined consequently as PF,L :=
UFU

>
F and PF,R := VFV

>
F . Similarly, we can define pro-

jections PY,L and PY,R for matrix Y . We then have the fol-
lowing theorem.
Theorem 1 For N 3 λ ≤ rank(PF,LSPY,R), let M =
PF,LSPY,R, then

W ∗ = F †M(λ)Y
† (9)

is a solution to the minimization problem in (8), where the
operation M(λ) extracts the truncation of M by setting all of
its singular values as zeros except the λ largest ones, i.e.,

M = UMΣMV
>
M , M(λ) = UM Σ̂M (λ)V >M , (10)

and Σ̂M (λ) is the truncation of Σ by keeping only the largest
λ diagonal values of Σ and setting all others as zeros. The
solution is unique iff the λ-th and (λ+ 1)-th largest singular
values of M are different.
Theorem 1 was proved by Sondermann [Sondermann, 1986]
and Friedland&Torokhti [Friedland and Torokhti, 2007]. It
provides an analytical closed-form solution for our rank con-
strained minimization problem (8). The overall learning al-
gorithm is summarized in Algorithm 1.

Table 1: Statistic summary for the experimental datasets.
Dataset #items #users #trns rsize csize density
Beauty 7034 5294 23576 4.45 3.35 0.063%
Office 6167 2389 10988 4.60 1.78 0.075%
Sports&Outdoors 7085 7971 32742 4.10 4.62 0.058%
Gourmet Foods 8322 4780 23553 4.93 2.83 0.059%
Health 7877 9121 38215 4.19 4.85 0.053%

The complexity of Algorithm 1 is dominated by the three
singular value decomposition operations on F, Y and M
respectively. This leads to a computational complexity of
O
(
(2n+ d)n2 +min(n2t, nt2) + min((2n+ d)2t, (2n+ d)t2)

)
for the proposed algorithm when a standard full SVD al-
gorithm is used [Brand, 2006]. Moreover, based on the
definitions of F and S in Eq.(7) and the definition of M
in Theorem 1, it is easy to conclude that rank(F ) = n and
rank(M) ≤ rank(S)=rank(Y ). The item-user recommenda-
tion matrix Y is typically low rank due to the existence of
dependencies and correlations among the users’ activities.
Hence if r=rank(Y ), one could have r � min(n, t). In this
case, the computational complexity of Algorithm 1 can be
further reduced to O

(
(2n+ d)n2 + r(3n+ d)t

)
by using a

fast SVD algorithm in [Brand, 2006].
After obtaining the solution W ∗ in Eq. (9) for the coef-

ficient matrix, we can get the recovered item-user recom-
mendation matrix Ỹ ∗ by setting Ỹ ∗ = W ∗Y , which con-
tains the predicted recommendation scores for the originally
non-recommended/non-purchased items of each user. We
then perform top-N recommendation in the following way.
For the j-th user, Ỹ ∗:j denotes his predicted recommendation
scores over all the product items. We rank the scores for non-
recommended items in a non-increasing order and consider
the first N items as the predicted recommendation items.

4 Experiments
In this section, we present our empirical evaluations and dis-
cussions of recommender systems on real-world datasets.

Datasets
We conducted experiments on five real-world Amazon
datasets [McAuley and Leskovec, 2013], Beauty, Office,
Sports&Outdoors, Gourmet Foods and Health, each of which
corresponds to one category of Amazon products. For each
category, the original dataset contains transactions between
different product items and users, indicated with non-zero
multivariate rating values. We converted the multivariate rat-
ing values to 1s and filtered those less popular product items
and users that appeared less than three transactions to con-
struct the item-user recommendation matrix. The statistic
summary of the produced datasets is presented in Table 1.
For each dataset, we present the number of items (#items), the
number of users (#users), the number of transactions (#trns),
the average number of transactions for each item (#rsize), the
average number of transactions for each user (#csize) and the
density value (#trns/(#users×#items)).

Item-based Side Information
For each dataset, we used the product reviews as the item-
based side information for the product items. We extracted



Table 2: Average performance comparison in terms of HR, ARHR, model learning time (mt) and test time (tt) in seconds. The
params columns present the parameter setting for each approach. PureSVD has one parameter f , indicating the number of latent
factors; BPRMF has two parameters, latent factor dimension f and regularization parameter λ; SLIM has two parameters, the
`2-norm and `1-norm regularization parameters β and λ; cSLIM has three parameters, the side-information weighting parameter
α, the `2-norm and `1-norm regularization parameters β and λ; the proposed approach has three parameters, β, γ, λ.

feature method Beauty
params HR ARHR mt tt

Fno
PureSVD 100 - - 0.214± 0.005 0.178± 0.005 112s 0.5s
BPRMF 500 0.01 - 0.264± 0.001 0.234± 0.002 1900s 0.6s
SLIM 10 0.01 - 0.289± 0.001 0.258± 0.001 3500s 5s

Ftf
cSLIM 1e-6 10 0.01 0.299± 0.001 0.263± 0.001 38000s 5s
Proposed 200 0.01 2000 0.346± 0.001 0.284± 0.002 1800s 10s

feature method Office
params HR ARHR mt tt

Fno
PureSVD 100 - - 0.095± 0.005 0.075± 0.005 21s 0.3s
BPRMF 200 0.01 - 0.132± 0.003 0.095± 0.001 800s 0.1s
SLIM 100 0.001 - 0.166± 0.003 0.110± 0.002 1200s 2s

Ftf
cSLIM 1e-6 100 0.001 0.177± 0.002 0.111± 0.002 2800s 2s
Proposed 100 0.1 2000 0.219± 0.001 0.151± 0.001 600s 6s

feature method Sports&Outdoors
params HR ARHR mt tt

Fno
PureSVD 500 - - 0.154± 0.005 0.126± 0.005 200s 2s
BPRMF 500 0.01 - 0.186± 0.002 0.158± 0.001 3500s 0.3s
SLIM 10 0.01 - 0.221± 0.001 0.185± 0.001 4300s 7s

Ftf
cSLIM 1e-6 10 0.01 0.224± 0.001 0.187± 0.001 46000s 5s
Proposed 200 0.05 2000 0.238± 0.001 0.187± 0.001 1000s 10s

feature method Gourmet Foods
params HR ARHR mt tt

Fno
PureSVD 500 - - 0.069± 0.005 0.045± 0.005 150s 0.5s
BPRMF 200 0.01 - 0.076± 0.002 0.053± 0.001 2100s 0.4s
SLIM 10 0.01 - 0.122± 0.002 0.074± 0.001 4800s 6s

Ftf
cSLIM 1e-6 10 0.01 0.129± 0.002 0.081± 0.001 52000s 5s
Proposed 200 0.05 2000 0.173± 0.001 0.089± 0.001 1400s 9s

feature method Health
params HR ARHR mt tt

Fno
PureSVD 100 - - 0.122± 0.005 0.095± 0.003 250s 2s
BPRMF 500 0.01 - 0.162± 0.001 0.121± 0.001 4500s 1s
SLIM 1 0.01 - 0.191± 0.001 0.159± 0.001 8000s 12s

Ftf
cSLIM 1e-7 1 0.01 0.209± 0.001 0.155± 0.001 70000s 10s
Proposed 200 0.05 2000 0.211± 0.001 0.161± 0.001 1400s 14s

the unigram features from the review articles with stopwords
being removed. We further selected the most frequent 5000
unigram features as the item features and represented each
product item as a bag-of-word feature vector with term-
frequency feature values (Ftf). We denote the recommender
systems without item-based side information as Fno.

Comparison Approaches
We compared our proposed approach with the following ap-
proaches for recommender systems: (1) Pure Singular Value
Decomposition (PureSVD), which is a baseline collabora-
tive filtering method based on singular value decomposition
[Cremonesi et al., 2010]; (2) Bayesian Personalized Ranking
for matrix factorization (BPRMF), which exploits pairwise
comparison [Rendle et al., 2009]; (3) Sparse Linear Model
(SLIM), which learns a sparse coefficient matrix to induce
recommendation scores [Ning and Karypis, 2011]; and (4)
Collective Sparse Linear Model (cSLIM), which incorporates

item-based side information into the SLIM model to generate
the top-N recommendations [Ning and Karypis, 2012]. These
methods address collaborative filtering from different aspects
and have demonstrated effective performance in the literature.

Evaluation Criteria
We used the commonly used leave-one-out cross validation to
evaluate the performance of each recommendation algorithm
over five runs. For each run, we randomly chose one trans-
action for each user and put it into the test set. The training
set is the masked item-user transaction matrix with the trans-
actions of the test set removed. We ran each recommender
system five times based on random partitions of the training
and test sets. The evaluation is conducted on the top-N items
recommended for each user by the recommender system. We
set N=10 and used the following two criteria to evaluate the
top-N recommendation performance: the Hit Rate (HR) and
the Average Reciprocal Hit-Rank (ARHR) [Deshpande and



Karypis, 2004],

HR =
#hits

#users
, ARHR =

1

#users

#hits∑
i=1

1

pi
(11)

where #users is the number of users, #hits is the number of
users with the test item recommended in the top-N list, and
pi is the position of the item in the top-N ranked list. Larger
HR and ARHR values indicate better performance.

4.1 Experimental Results
We compared the five comparison methods (PureSVD,
BPRMF, SLIM, cSLIM, Proposed) on the five datasets us-
ing the evaluation criteria presented above. The average
comparison results for all these methods in terms of HR
and ARHR are presented in Table 2. We can see that the
baseline PureSVD method does not work well on all the
datasets comparing to the other systems, which shows that
the pure singular value decomposition-based collaborative fil-
tering method is far from enough to develop a good recom-
mender system without using other information. The BPRMF
and SLIM methods on the other hand work much better than
the PureSVD method on all the datasets in both measure-
ments. The cSLIM method, which utilizes item-based side in-
formation, outperforms PureSVD, BPRMF and SLIM across
all cases except on Health in terms of ARHR. This shows that
the item-based side information is useful for improving the
recommendation performance. Our proposed approach on
the other hand consistently produced the best results among
all the comparison methods on all the five datasets in terms
of both measurements. This demonstrates that our proposed
approach provides an effective mechanism to integrate infor-
mation from the item-user matrix and the item-based side in-
formation for producing top-N recommender systems.

Moreover, we also recorded the model learning time and
the recommendation test time for all the comparison ap-
proaches in all these experiments. These running times are
reported in Table 2 as well. We can see that with an analyt-
ical solution our proposed method is very efficient in learn-
ing. It significantly reduced the training time by comparing
not only to the cSLIM method which also utilizes item-based
side information, but also to SLIM and BPRMF that are not
able to incorporate side information. On the datasets with
larger recommendation matrices such as Gourmet Foods and
Health, the differences between the model learning times of
the proposed method and the cSLIM method are quite dra-
matic. Though the PureSVD method runs faster than our pro-
posed approach, this baseline cannot exploit side information
and produced very poor performance. Our proposed approach
on the other hand maintains both efficiency and effectiveness.
All these results demonstrate that the proposed approach is an
effective and efficient state-of-the-art solution for top-N rec-
ommender systems.

4.2 Integration Model Study
To verify the effectiveness of the integration mechanism of
the proposed joint model, we also compared the two individ-
ual components, the self-completion component and the side-
information based prediction component, to the proposed

Table 3: Comparisons of the side-information based predic-
tion component, self-completion component, and the pro-
posed joint model.

Method Beauty
HR ARHR

Side-Prediction 0.048± 0.000 0.022± 0.000
Self-Completion 0.286± 0.002 0.256± 0.002
Proposed 0.346± 0.002 0.284± 0.001

Method Office
HR ARHR

Side-Prediction 0.057± 0.000 0.019± 0.000
Self-Completion 0.152± 0.001 0.102± 0.001
Proposed 0.219± 0.001 0.151± 0.001

Method Sports&Outdoors
HR ARHR

Side-Prediction 0.034± 0.000 0.011± 0.000
Self-Completion 0.216± 0.001 0.183± 0.001
Proposed 0.238± 0.001 0.187± 0.001

Method Gourmet Foods
HR ARHR

Side-Prediction 0.048± 0.000 0.022± 0.000
Self-Completion 0.113± 0.001 0.070± 0.001
Proposed 0.173± 0.001 0.089± 0.001

Method Health
HR ARHR

Side-Prediction 0.036± 0.000 0.0138± 0.000
Self-Completion 0.185± 0.003 0.154± 0.002
Proposed 0.211± 0.001 0.161± 0.001

joint model in terms of top-N recommendation performance.
The comparison results in terms of HR and ARHR are re-
ported in Table 3. We can see that the proposed joint model
consistently outperforms both of the individual components.
With each component alone, the model cannot achieve a
state-of-the-art performance. This suggests that our proposed
model provides an effective integration over the individual in-
formation sources.

5 Conclusion

In this paper, we presented a novel joint prediction approach
that exploits both the conventional user-item recommenda-
tion matrix and the item-based side information in a comple-
mentary manner to generate top-N recommendations for tar-
get users. We formulated the simultaneous user-item matrix
recovering and item-based linear regression model training
process as a joint low-rank constrained minimization prob-
lem, and derived an analytical closed-form solution for it. We
conducted a set of experiments on five real world Amazon
datasets with different recommendation items. The exper-
imental results demonstrated that the proposed approach is
effective and efficient in producing top-N recommender sys-
tems, and outperforms the comparison methods.
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